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Ancilla systems are often indispensable to universal control of a nearly isolated quantum system.
However, ancilla systems are typically more vulnerable to environmental noise, which limits the
performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced
decoherence, we propose a general framework that integrates quantum control and quantum error
correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the
path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-
independent gate is provided for superconducting circuits with a hardware-efficient design.

DOI: 10.1103/PhysRevLett.125.110503

An outstanding challenge of quantum computing is
building quantum devices with both excellent coherence
and reliable universal control [1–3]. For good coherence,
we may choose physical systems with low dissipation (e.g.,
superconducting cavities [4–6] and nuclear spins [7–10]) or
further boost the coherence with active quantum error
correction [11,12]. As we improve the coherence by better
isolating the central system from the noisy environment, it
becomes more difficult to process information stored in the
central system. To control the nearly isolated central
system, we often introduce an ancilla system (e.g., trans-
mon qubits [13–15] and electron spins [8,9]) that is
relatively easy to control, but the ancilla system typically
suffers more decoherence than the central system, limiting
the fidelity of the ancilla-assisted quantum operations.
Therefore, it is crucial to develop quantum control proto-
cols that are fault-tolerant against ancilla errors.
For noise with temporal or spatial correlations, we can

use techniques of dynamical decoupling [16–18] or
decoherence-free encoding [19,20] to achieve noise-resil-
ient control of the central system. When the noise has no
correlations (e.g., Markovian noise), we need active quan-
tum error correction (QEC) to extract the entropy. For qubit
systems, a common strategy to suppress ancilla errors is to
use the transversal approach [1,21–26], which may have a
significant hardware overhead and cannot provide universal
control [1], and it is desirable to have a hardware-efficient
approach to fault-tolerant operations against ancilla
errors [27–32]. Different from qubit systems, each bosonic
mode has a large Hilbert space that can encode qua-
ntum information using various bosonic quantum codes
as demonstrated in recent experiments [11,33–35].
However, there is no simple way to divide the bosonic

mode into separate subsystems, which prevents us from
extending the transversal approach to the bosonic central
system. Ancilla errors can propagate to the bosonic mode
and compromise the encoded quantum information [36].
Nevertheless, a recent experiment with a hardware-efficient
three-level ancilla demonstrated fault-tolerant readout of an
error syndrome of the central system against the decay of
the ancilla [37]. Moreover, the error-transparent gates for
QEC codes (using control Hamiltonian commuting with
errors) have been proposed [38–40] to achieve quantum
operations insensitive to errors, but it is typically very
demanding to fulfill the error-transparent condition while
performing nontrivial quantum gates. Therefore, there
is an urgent need of a general theoretical framework that
integrates quantum control and quantum error correction, to
guide the design of hardware-efficient robust quantum
operations against ancilla errors.
In this Letter, we provide a general criterion for fault-

tolerant quantum gates on the central system robust against
ancilla errors [Fig. 1(a)]. Our general criterion of path
independence (PI) requires that, for given initial and final
ancilla states, the central system undergoes a unitary gate
independent of the specific ancilla path induced by control
drives and ancilla error events [Figs. 1(b) and 1(c)]. For a
subset of final ancilla states, the desired quantum gate on
the central system is successfully implemented, while other
final ancilla states herald a failure of the attempted
operation, but the central system still undergoes a deter-
ministic unitary evolution without loss of coherence. Thus
we may repeat our attempts of PI gates on the central
system until the gate succeeds. As an application of our
general criterion, a PI design of the selective number-
dependent arbitrary phase (SNAP) gates [14,15] is provided
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for universal control and quantum error correction of
superconducting circuits. Moreover, the error-transparent
gates [38–40] are also shown to be a special class of PI gates.
Ancilla-assisted quantum control.—Suppose we intend

to implement some unitary gate on the central system
assisted by a d-level ancilla system. The total Hamiltonian
is

HtotðtÞ ¼ H0 þHcðtÞ; ð1Þ

where HcðtÞ is the control Hamiltonian and H0 ¼ Has þ
Hcs þHint is the static Hamiltonian with contributions
from the ancilla system, the central system, and their
interaction, correspondingly. We assume that ½Has; Hint� ¼
0, so that Hint preserves the eigenbasis fjmigd−1m¼0 of the
ancilla (Hasjmi ¼ εmjmi). The static Hamiltonian H0 can
be diagonalized in the eigenbasis of the ancilla,

H0 ¼
Xd−1
m¼0

jmihmj ⊗ ðεm þHcs þHint;mÞ; ð2Þ

with Hint;m ¼ hmjHintjmi. The propagator for total system
in the ancilla eigenbasis is

Uðt2; t1Þ ¼ T exp

�
−i

Z
t2

t1

Htotðt0Þdt0
�

¼
X
m;n

ηmnðt2; t1Þjmihnj ⊗ Vmnðt2; t1Þ; ð3Þ

where T is the time-ordering operator, ηmnðt2; t1Þ is a
complex function and Vmnðt2; t1Þ is an operator on the
central system. For preselection of the ancilla on state jii at
time t1 and postselection on jfi at t2, the central system
undergoes a quantum operation Vmnðt2; t1Þ.
Markovian ancilla noise.—We assume that the central

system suffers much weaker noise than the ancilla and
therefore can be regarded as noise free within the ancilla

coherence time [Fig. 1(a)]. Suppose the ancilla suffers from
Markovian noise and the dynamics of the total system is

dρ
dt

¼ i½ρ; HtotðtÞ� þ
�X

l

D½ ffiffiffiffi
κl

p
Ll� þ

X
j

D½ ffiffiffiffi
γj

p
Jj�

�
ρ;

ð4Þ

where D½A�ρ ¼ AρA† − fA†A; ρg=2 is the Lindbladian
dissipator, fLlg=fJjg are the Lindblad operators describing
the ancilla dephasing and relaxation errors (Ll ¼P

d−1
m¼0Δ

ðmÞ
l jmihmj with ΔðmÞ

l ∈ C, Jj ¼ jmjihnjj with
mj; nj ∈ ½0; d − 1� andmj ≠ nj), and κl=γj is the dephasing
and relaxation rate. The ancilla dephasing and relaxation
errors can be unified into a general class of ancilla
errors [41].
The Liouville superoperator LðtÞ generating the

Markovian dynamics in Eq. (4) can be divided into two
parts [43],

dρ
dt

¼ LðtÞρðtÞ ¼ ½LeffðtÞ þ S�ρðtÞ; ð5Þ

where Leffρ ¼ iðρH†
eff −HeffρÞ represents the no-jump

evolution with HeffðtÞ ¼ HtotðtÞ − i
2
ðPl κlL

†
l Ll þP

j γjJ
†
jJjÞ, and Sρ ¼ P

l κlLlρL
†
l þ

P
j γjJjρJ

†
j repre-

sents the quantum jumps interrupting the no-jump evolu-
tion. The propagator for the whole system can be
represented by the generalized Dyson expansion as

ρðtÞ ¼
X∞
p¼0

Gpðt; 0Þρð0Þ; ð6Þ

with

G0ðt; 0Þ ¼ Wðt; 0Þ; ð7Þ

Gpðt; 0Þ ¼
Z

t

0

dtp � � �
Z

t3

0

dt2

Z
t2

0

dt1Wðt; tpÞ

×S � � �SWðt2; t1ÞSWðt1; 0Þ; p ≥ 1; ð8Þ

where ρð0Þ ¼ jmihmj ⊗ ρcs with m ∈ ½0; d − 1� and ρcs
being the initial density matrix of the central system,
and Wðt2; t1Þρ ¼ Wðt2; t1ÞρW†ðt2; t1Þ with Wðt2; t1Þ ¼
T exp½−i R t2

t1 Heffðt0Þdt0� being the no-jump propagator.
Gpðt; 0Þ contains all the paths with any sequence of p
ancilla jump events, therefore describing the pth-order
ancilla errors. When κlt; γjt ≪ 1, the Liouville superoper-
ator is well approximated by a finite-order Dyson
expansion.
Definition of path independence.—The PI gates in this

Letter can be understood as follows. With an initial ancilla
eigenstate jii of Has, some control Hamiltonian acting

FIG. 1. (a) Schematic of a central system with good coherence
coupled to an ancilla system with poor coherence. The ancilla
dephasing rate κ and relaxation rate γ of are much larger than the
decoherence rate ζ of the central system. (b),(c) For PI control,
the central system undergoes a unitary evolution Ufi for the
ancilla starting from state jii and finally measured in jfi,
regardless of the ancilla paths induced by the control and ancilla
error events.

PHYSICAL REVIEW LETTERS 125, 110503 (2020)

110503-2



during ½0; t� and a final projective measurement on the
ancilla with result jri, the central system undergoes a
deterministic unitary evolution up to finite-order or infinite-
order Dyson expansion in Eq. (6). Now we provide a
formal definition of path independence.
Definition 1: path independence. Let the ancilla start

from jii and end in jri, with jii; jri ∈ fjmigd−1m¼0. Suppose
that

hrj
�Xk
p¼0

Gpðt; 0Þðjiihij ⊗ ρcsÞ
�
jri ∝ Uriðt; 0Þρcs ð9Þ

applies for k ≤ n but does not hold for k > n, where
Uriðt; 0Þρcs ¼ Uriðt; 0ÞρcsU†

riðt; 0Þ is a unitary channel on
the central system. Then we say the central system gate is
PI of the ancilla errors up to the nth order from jii to jri.

Path independence for ancilla dephasing errors.—The
path independence for ancilla dephasing errors is guaran-
teed if the no-jump propagator is in a PI form below.
Lemma 1. Let fUmnðt2; t1Þgd−1m;n¼0 be a set of unitaries

on the central system that are differentiable with respect to
t2 and t1 and also satisfy the PI condition

Umeðt3; t2ÞUenðt2; t1Þ ¼ Umnðt3; t1Þ; ð10Þ

with m; e; n ∈ ½0; d − 1�and t1; t2; t3 ∈ R, there exist a
class of PI no-jump propagators

Wðt2; t1Þ ¼
X
m;n

ξmnðt2; t1Þjmihnj ⊗ Umnðt2; t1Þ; ð11Þ

where fξmnðt2; t1Þgd−1m;n¼0 are a set of complex functions of
t2 and t1 satisfying ξmnðt3; t1Þ ¼

P
d−1
e¼0 ξmeðt3; t2Þξenðt2; t1Þ

and ξmnðt; tÞ ¼ δmn.
Note that here we define all the unitaries in the set

fUmnðt2; t1Þgd−1m;n¼0, but typically only a subset of
fUmnðt2; t1Þgd−1m;n¼0 with ξmnðt2; t1Þ ≠ 0 contribute to the
no-jump dynamics and the other unitaries in the set with
ξmnðt2; t1Þ ¼ 0 can be left undefined.
Lemma 2. The PI condition for fUmnðt2; t1Þgd−1m;n¼0 in

Eq. (10) is satisfied if and only if

Umnðt2; t1Þ ¼ Rmðt2ÞUmnR
†
nðt1Þ; ð12Þ

where RmðtÞ ¼ T fe−i
R

t

0
Hmðt0Þdt0 g with HmðtÞ being an

arbitrary time-dependent Hamiltonian on the central system
and fUmngd−1m;n¼0 ¼ fUmnð0; 0Þgd−1m;n¼0 satisfy

UmeUen ¼ Umn: ð13Þ

Theorem 1: dephasing errors. With the PI no-jump
propagator in Eq. (11) and only ancilla dephasing
errors, the central system gate is PI of all ancilla dephasing

errors up to infinite order from jii to jri for
all jii; jri ∈ fjmigd−1m¼0.

To understand Theorem 1, we move to the interaction
picture associated with H0

0ðtÞ ¼
P

d−1
m¼0 jmihmj ⊗ HmðtÞ

[note that H0 in Eq. (2) and H0
0ðtÞ are similar but can

be different]. The no-jump propagator becomes

WðIÞðt2; t1Þ ¼
X
m;n

ξmnðt2; t1Þjmihnj ⊗ Umn; ð14Þ

and the ancilla dephasing operator LðIÞ
l ðt1Þ ¼ Ll acts

trivially on the central system regardless of the jump time
t1. Suppose the ancilla suffers a dephasing error LðIÞðt1Þ at
time t1 ∈ ½0; t�, the quantum operation on the central
system is

hrjWðIÞðt; t1ÞLðIÞðt1ÞWðIÞðt1; 0Þjii ∝ Uri; ð15Þ

where we have used Eq. (13). So independent of the error
time t1, the central system undergoes the same unitary gate
as that without any ancilla error [hrjWðIÞðt; 0Þjii ∝ Uri].
The conclusion holds for arbitrary number of dephasing
jumps during the gate, since Uri ¼ Ure � � �UbaUai with
a; b;…; e ∈ ½0; d − 1� from Eq. (13). An intuitive picture is
provided in Fig. 2(a). Without ancilla errors [blue path in
Fig. 2(a)], the ancilla goes directly from the initial state to
the final state with the target central system gate. With
ancilla dephasing errors [green paths in Fig. 2(a)], the
ancilla takes different continuous paths between the same

FIG. 2. Schematic of ancilla evolution paths with different
kinds of ancilla errors. (a) In the paths with blue line, the ancilla
goes from jii to jfi without any ancilla error and the central
system gate is Ufi. In the paths with green lines, the ancilla
suffers two dephasing errors jaihaj and at jcihcj, while the central
system gate is still UfcUcaUai ¼ Ufi, independent of the
dephasing error times. (b) In the paths with red lines, the ancilla
suffers a relaxation error jbihaj (dashed red arrow lines) in the
NAS spanned by fjai; jbig (purple-shaded region) with the
unitary gate as UebUai. In the paths with yellow line, the ancilla
suffers two additional dephasing errors jaihaj and jcihcj but with
the same unitary gate as that for a single relaxation error. The
solid (hollow) circles represent the initial and final (intermediate)
ancilla states, and the red dashed arrows represent the ancilla
relaxation errors. Here we adopt the interaction picture associated
with H0

0ðtÞ.
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initial and final states, but the central system gate remains
unchanged since it depends only on the initial and final
ancilla states.
Path independence for ancilla relaxation errors.—The

path independence for ancilla relaxation errors is slightly
more demanding than that for ancilla dephasing errors. To
see this, suppose the ancilla suffers a relaxation error
JðIÞðt1Þ ¼ jmihnj ⊗ R†

mðt1ÞRnðt1Þ at time t1, the final
quantum operation on the central system is

hrjWðIÞðt; t1ÞJðIÞðt1ÞWðIÞðt1; 0Þjii
∝ UrmR

†
mðt1ÞRnðt1ÞUni; ð16Þ

which is typically a unitary gate depending on t1, causing
decoherence of the central system when averaged over t1.
This can be avoided if R†

mðt1ÞRnðt1Þ ∝ eiΔλt1 or HmðtÞ −
HnðtÞ ¼ Δλ with Δλ ∈ R. So the following definition is
motivated.
Definition 2: noiseless ancilla subspace. We denote the

ancilla subspace spanned by fjkig ⊂ fjmigd−1m¼0 satisfying
HmðtÞ þ λmðtÞ ¼ HnðtÞ þ λnðtÞ with λmðtÞ; λnðtÞ ∈ R
for all jmi; jni ∈ fjkig as the noiseless ancilla sub-
space (NAS).
Path independence of first-order ancilla relaxation errors

is guaranteed if the same unitary operation is applied to the
central system for all possible paths from jii to jri with at
most one ancilla relaxation jump. For example, if ξri ≠ 0
and there are no paths with first-order relaxation errors
from jii to jri, the central system gate is still Uri, or if
ξri ¼ 0 and the only path from jii to jri is through a
relaxation operator JðIÞ in the NAS, then the central system
gate is UrmUni [this is equivalent to redefining Uri ¼
UrmUmnUni by setting Umn ¼ I as the identity operation,
since Uri in Eq. (14) is not well defined if ξri ¼ 0]. The
conclusion can be extended to the cases for higher-order
relaxation errors.
Theorem 2: relaxation and dephasing errors. With

the PI no-jump propagator in Eq. (11) and both ancilla
relaxation and dephasing errors, if all the possible paths
from jii to jri with at most n sequential ancilla relaxation
jumps, only include either the path without relaxation
errors or the paths consisting of no more than n sequential
ancilla relaxation jumps in the NAS, and these paths
produce the same unitary gate on the central system, which
does not hold for all the paths from jii to jri with at most
(nþ 1) sequential ancilla relaxation jumps, then the central
system gate is PI of the combination of up to the nth-order
ancilla relaxation errors and up to infinite-order ancilla
dephasing errors from jii to jri.

Theorem 2 can be intuitively understood by the diagrams
in Fig. 2(b). With only ancilla relaxation errors in the NAS
[red paths in Fig. 2(b)], the ancilla path is composed of
discontinuous segments connected by the relaxation error
operators, and the final unitary gate on the central system is

often different from that without ancilla errors. However, if
the ancilla ends in another state, the central system still
undergoes a deterministic unitary evolution. With both
ancilla relaxation errors in the NAS and dephasing errors
[orange paths in Fig. 2(b)], for each path segment con-
nected by the relaxation errors, the ancilla goes another
continuous way with the same initial and final states, so the
final unitary gate on the central system is the same as that
with only relaxation errors.
A special case of PI gates is the error-transparent gates,

theoretically proposed [38,39] and recently experimentally
demonstrated [40] against a specific system error, with the
error syndromes corresponding to the ancilla states here.
Error transparency requires the physical Hamiltonian to
commute with the errors when acting on the QEC code
subspace (a more general condition for error transparency is
that the commutator of the physical Hamiltonian and the
error operator is proportional to the error operator),
corresponding to a PI no-jump propagator [Eq. (11)] with
ξmn ¼ 0 for m ≠ n and all the ancilla errors are relaxation
errors jmihnj in the NAS, and thus fulfill the PI criterion.
However, the PI gates contain a larger set of operations,
because the PI criterion can be fulfilled with non-error-
transparent Hamiltonians (see the Supplemental Material
[41] for general construction of the PI control Hamiltonian
and jump operators).
Example: PI gates in superconducting circuits.—We

consider the implementation of the SNAP gates in super-
conducting circuits [14,15]. The superconducting cavity
(central system) dispersively couples to a nonlinear trans-
mon device (ancilla system) with Hamiltonian H0 ¼
ωgejeihej þ ωca†a − χa†ajeihej [5], where ωge (ωc) is
the transmon (cavity) frequency, a (a†) is the annihilation
(creation) operator of the cavity mode, χ is the dispersive
coupling strength, and jei (jgi) denotes the excited
(ground) state of the ancilla transmon. The SNAP gate
on the cavity, Sð  φÞ ¼ P∞

n¼0 e
iφn jnihnj, imparts arbitrary

phases  φ ¼ fφng∞n¼0 to the different Fock states of the
cavity.
In the interaction picture associated with H0

0 ¼
H0 − δjeihej, the total Hamiltonian is HðIÞ

tot¼Ω½jgihej⊗
Sð  φÞþjeihgj⊗Sð−  φÞ�þδjeihej¼Ω

P∞
n¼0ðeiφn jg;nihe;njþ

e−iφn je;nihg;njÞþδjeihej, inducing a PI propagator
[Eq. (14)] [41]. The original SNAP gate consists of two
consecutive π pulses (between jg; ni and je; ni) with a
geometric phase depending on the phase difference
between the two π pulses. For simplicity, we may fix
the phase of the second pulse to be 0, so that the geometric
phase for the SNAP gate is determined by the phase φn of
the first π pulse. Returning to the Schrödinger picture,
HcðtÞ¼Ω

P∞
n¼0ðei½ðωge−nχÞtþφn−δ�jg;nihe;njþH:c:Þ. When

Ω ≪ χ, the control Hamiltonian can be simplified as the
driving acting on the transmon alone but with multiple
frequency components, HcðtÞ≈ϵgeðtÞeiðωge−δÞtjgihejþH:c:
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with ϵgeðtÞ ¼
P

n Ωeiðφn−nχtÞ. Then the SNAP gates are PI
of any transmon dephasing error with D½ ffiffiffiffiffi

γ1
p ðcejeihej þ

cgjgihgjÞ� with cg=e ∈ C (see Theorem 1), but not PI of the
transmon relaxation error with D½ ffiffiffiffiffi

κ1
p ðjgihejÞ�, since

fjgi; jeig do not span a NAS (Theorem 2) [41].
To make the SNAP gates PI of the dominant transmon

relaxation error, we use a three-level transmon with
H0¼ωgejeihejþωgfjfihfjþωca†a−χðjeihejþjfihfjÞa†a,
where the dispersive coupling strength is engineered to the
same for the first-excited transmon state jei and the second-
excited state jfi [37]. The SNAP gate is implemented by
applying the Hamiltonian that drives the jgi ↔ jfi tran-
sition instead of the jgi ↔ jei transition (if the direct
transition between jgi and jfi is not allowed, we can use
Raman drives detuned from the jgi ↔ jei and jei ↔ jfi
transitions). Since fjei; jfig span a NAS, the SNAP gate is
PI of the dominant transmon relaxation error with
D½ ffiffiffiffiffi

κ2
p ðjeihfjÞ� and also of any transmon dephasing error

with D½ ffiffiffiffiffi
γ2

p ðcgjgihgj þ cejeihej þ cfjfihfjÞ�. Note that the
PI SNAP gates are not error transparent, but they still
enable robustness against transmon errors.
PI gates for both ancilla errors and central system

errors.—The PI gates for ancilla errors can also be made PI
of the central system errors. We assume that the central
system also suffers Markovian noise with the Lindbladian
dissipators

Pq−1
i¼0 D½ ffiffiffi

ζ
p

iEi�. Suppose a quantum error
correction (QEC) code exists for the central system
[1,44,45], which means that the error set fEig satisfies
the Knill-Laflamme condition P0E

†
i EjP0 ¼ AijP0 with

E0 ¼ P0 being the projection to the code subspace and
A a Hermitian matrix. We may diagonalize A as B ¼ u†Au
to obtain another set of correctable errors fFkg with
Fk ¼

P
ik uikEi, satisfying P0F

†
kFlP0 ¼ rkδklP0 with

F0 ¼ P0, B00 ¼ 1 and rk ¼ Bkk. Then the condition for
path independence against the central system errors is

½H0
0ðtÞ; Fk� ¼

Xd−1
m¼0

cm;kðtÞjmihmj ⊗ Fk; ð17Þ

wherem ∈ ½0; d − 1�; k ∈ ½0; q − 1� and cm;kðtÞ ∈ R. In the
interaction picture associated with H0

0ðtÞ, this condition

ensures that R†ðtÞFkRðtÞ ¼
P

m e
i
R

t2
t1

cm;kðt0Þdt0 jmihmj ⊗ Fk
is a tensor product of the ancilla dephasing operator and the

same error operator Fk with RðtÞ ¼ T e−i
R

t

0
H0

0
ðt0Þdt0 . Then

the PI no-jump propagator for both ancilla and central
system errors [38,39,41] can be constructed as in Eq. (14)
with

Umn ¼
X
k

eiϕmn;kFkUmn;0F
†
k=rk; ð18Þ

where Umn;0 is the target unitary in the code subspace
satisfying Umn;0U

†
mn;0 ¼ P0 and ϕmn;k ∈ R. After such a PI

gate, we can make a joint measurement on both the ancilla

state and the error syndromes of the central system. The
path independence of ancilla errors is then ensured and the
first-order central system errors during the gate can also be
corrected [41].
Summary.—To address the challenge of ancilla-induced

decoherence, we provide a general criterion of path
independence. For quantum information processing with
bosonic encoding, such a PI design will be crucial in
protecting the encoded information from ancilla errors,
while the previous transversal approach does not apply.
Moreover, different from the traditional approaches with
separated quantum control and error correction tasks, our
approach integrates quantum control and error correction.
Using the general PI design, we can further explore PI gates
using various kinds of ancilla systems to achieve higher-
order suppression of ancilla errors, design PI operations
robust against both ancilla errors and central system errors,
and extend the PI technique to quantum sensing and other
quantum information processing tasks.
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Note added.—Recently the PI SNAP gates have been
experimentally implemented in a superconducting circuits
[42], with the SNAP gate fidelity significantly improved by
the PI design.
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