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Field-gradient measurement using a Stern-Gerlach atomic interferometer with butterfly geometry
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Atomic interferometers have been studied as a promising device for precise sensing of external fields.
Among various configurations, a particular configuration with a butterfly-shaped geometry has been designed
to sensitively probe field gradients. We introduce a Stern-Gerlach (SG) butterfly interferometer by incorporating
magnetic field in the conventional butterfly-shaped configuration. Atomic trajectories of the interferometer can
be flexibly adjusted by controlling magnetic fields to increase the sensitivity of the interferometer, while the
conventional butterfly interferometer using Raman transitions can be understood as a special case. We also show
that the SG interferometer can keep high contrast against a misalignment in position and momentum caused by
the field gradient.
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I. INTRODUCTION

Atomic interferometry is a state-of-the-art technique that
manipulates a coherent superposition of atomic states for pre-
cise field sensing tasks [1]. Among various types of atomic
interferometers, an atomic fountain configuration using stim-
ulated Raman transitions [2,3] has attracted much attention
due to the high sensitivity and has been employed for a pre-
cise measurement of the acceleration of gravity [4–8], the
Newtonian gravitational constant G [9–12], gravity gradients
[13–15], rotations [16–18], gravitational redshift [19,20], and
the fine-structure constant [21]. The high sensitivity of the
atomic interferometers has opened a promising direction to
test the fundamental nature of gravity beyond the Newtonian
limit, such as Einstein’s equivalence principle [22–27], the
inverse law of gravitation [28,29], gravitational wave detec-
tion [30,31], and dark energy [32,33]. Moreover, a promising
scheme to test a nonclassical nature of gravity has recently
been proposed [34,35].

The basic procedure of an atomic fountain is to prepare a
superposition of the internal energy states of atoms and to split
their paths depending on the internal states so that the wave
packet in each trajectory acquires a different phase [2,3]. The
phase difference induced by the external field can be detected
by measuring the population of the internal states by apply-
ing Raman pulses in a Mach-Zehnder type of configuration
(π/2-π -π/2). Since the size of the area enclosed by the two
trajectories of the atoms determines the sensitivity of the in-
terferometer, there have been many theoretical proposals and
numerous experimental efforts to increase the area enclosed
by the interferometer [36–41].

Recently, a variant of the atomic fountain configuration,
the so-called Stern-Gerlach (SG) matter-wave interferometer
[42–49], has been proposed and experimentally implemented.
Such type of interferometer employs magnetic fields to give
a momentum kick to atoms instead of laser pulses inducing
Raman transitions. A SG interferometer requires an extreme

accuracy of the field gradients to maintain coherence [50–52].
Remarkably, a recent state-of-the-art experiment [48] has
successfully implemented the interferometer. Besides, the ex-
periment has shown that the SG interferometer enables the
atomic ensemble to have the phase difference with T 3 scal-
ing, where T is the total interferometer time. This provides
a higher sensitivity to the acceleration induced by the exter-
nal field than the conventional atomic fountain using Raman
transitions, rendering T 2 scaling. Along with this proposal,
it has been shown that external fields instead of laser-pulses
can be exploited to enhance the precision of matter-wave
interferometers [53].

Atomic interferometers can also be utilized for probing
the gradient of an external field, i.e., when the acceleration
varies by position. The precise measurement of field gradients
is particularly important for testing fundamental physics such
as the variation of the gravitation constant G and the violation
of the 1/r2 law [28,29,54]. Besides, it has various technical
applications, including detecting subsurface mass anomalies
[55,56], inertial navigation system [57], underground struc-
ture detection [58], and mineral exploration [59].

The effect of a field gradient appears in the conventional
Mach-Zehnder-type atomic interferometers because it causes
a systematic misalignment of position and momentum, which
eventually diminishes visibility [12,60]. The obstacle can be
overcome if a precise estimate of the gravity gradient is given
[60,61]. An interesting way to employ an atomic interferom-
eter for measuring the field gradient is to construct a butterfly
configuration [14,17,62–69]. The butterfly interferometer en-
ables us to analyze the second-order effect precisely because
the area diagram between two wave packets in space-time,
which contribute to the first-order effect, cancel out [70].

In this paper, we introduce a SG interferometer in a but-
terfly configuration to measure a field gradient. By applying
a magnetic field to split the atoms’ trajectory depending
on the magnetic moments of the internal atomic states, the
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interferometer can be closed up to zeroth-order in the field
gradient strength. Applying the magnetic field provides a
more flexible control of the interferometer paths than laser
pulses, resulting in a higher sensitivity in the phase difference.
We compare the performance of the proposed interferometer
with that of the conventional one. From this, we show that
the phase difference can be efficiently increased by inducing
a larger momentum splitting in the interferometer and using
larger magnetic moments of atoms. We also verify that the
interferometer maintains a high visibility even though the
misalignment of the interferometer can occur in the higher
orders of the field gradient strength.

II. CONVENTIONAL BUTTERFLY INTERFEROMETER

Let us consider a quantum system exposed to an external
field having a quadratic potentialV (ẑ) = −F0ẑ − 1

2Kẑ2 in one
dimension (1-D) with constants F0 and K . The Hamiltonian of
the system is then described as

Ĥ = p̂2

2m
− F0ẑ − 1

2
Kẑ2. (1)

Here, ẑ and p̂ are quantized position and momentum operators
along the z axis, satisfying the canonical commutation relation
[ẑ, p̂] = ih̄. When K < 0, the last term is a harmonic potential
that provides a restoration force to a stable point determined
by F0 and K . When K > 0, a force from the last term pushes
the atoms outward. For example, the Hamiltonian can describe
the effect of gravity by setting F0 = −mg and K = m� with
the gravitational acceleration g and gravity gradient �.

We consider the problem of measuring the field gradient,
given by the parameter K . The conventional butterfly interfer-
ometer [69] measures the constant K as follows: First, a π/2
pulse is applied to an atomic cloud prepared in the ground
state |1〉 of the internal state to generate an equal superposition
between the ground state |1〉 and the excited state |2〉. By ap-
plying the pulse, the wave packet in the internal state |2〉 gains
momentum, which leads to a momentum difference between
the two trajectories δp = h̄k proportional to the wave number
k of the laser pulse. Second, after waiting Tdis for displacement
of position, a π pulse is applied to swap the momentum states
of the two different trajectories. Third, the wave packets freely
evolve for a free evolution time Tf . Finally, we repeat the first
two steps in the reverse way and measure the internal state
on the basis {|1〉, |2〉}. The procedure is illustrated in Fig. 1.
Since the trajectory of each wave packet is different, the phase
accumulation is also different for each trajectory. One can find
that the phase difference before the measurement is written as
[70]

δ�c = −KT 2k

32m

(
p0
m
T + h̄k

2m
T + F0

2m
T 2

)
, (2)

where T = 2Tdis + Tf is the total interferometer time, and
p0 is the initial momentum of the wave packet. Since the
probabilities of obtaining outcomes {|1〉, |2〉} are P1 = (1 +
C cos δ�c)/2 and P2 = (1 −C cos δ�c)/2, the parameter K
can be inferred by the population of each state. Here, C
represents the visibility that quantifies the interference of the
atomic interferometer. We discuss the effect of the visibility
in the following section.

FIG. 1. Conventional butterfly interferometer in a free-falling
frame. The trajectories describe the mean position of each wave
packet.

One can easily verify that the interferometer is closed in
the zeroth order of K when the free evolution time satisfies

Tf = 2mδz

δp
, (3)

where δz is the difference in position right before the free
evolution. In the case of the conventional butterfly configu-
ration, the preparation time Tdis for displacement has to obey
Tdis = Tf /2 to meet the condition Eq. (3) by noting that δz =
δpTdis/m. Thus, the total time duration of the interferometer is
given by T = 2Tf . When we consider the gravitational accel-
eration and gravity gradient, we recover the phase difference
from the gravity gradient, which is obtained in Refs. [15,69].

More specifically, Eq. (2) presents that the phase difference
is decomposed into two factors: (i) the velocity difference
δp/m of the two wave packets, which corresponds to the term
in front of the parentheses and (ii) the difference between
the initial and final positions of the wave packet, which cor-
responds to the terms inside of the parentheses. Thus, the
sensitivity of measuring K can be improved by increasing
the difference of the velocities of the wave packets or that
of the initial and final position of the wave packet. As re-
cently pointed out in Ref. [53], the laser-pulse-based atomic
interferometer has a limitation of increasing the momentum
difference of the wave packets while employing external fields
to give a momentum difference may resolve this drawback.
As a remark, since the difference between the initial and final
positions is required to be large, it is beneficial to have the
direction of an initial velocity to be the same as that of the
linear force. For example, if the final position is the same as
the initial one, which may arise in a fountain configuration,
the phase difference of the two trajectories vanish.

III. STERN-GERLACH BUTTERFLY INTERFEROMETER

A. Implementation of Stern-Gerlach butterfly interferometer

We propose a SG butterfly interferometer that exploits an
external magnetic field, which is a variant of the conventional
butterfly interferometer. The configuration of the interfer-
ometer is illustrated in Fig. 2. Such a configuration can be
experimentally implemented by applying a magnetic field in
the y direction �B(t ) = (0,By(t ), 0) having a gradient in the z
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FIG. 2. SG butterfly interferometer in a free-falling frame as-
suming h̄k → 0. (a) The trajectories describe the mean positions
of the atomic states |1〉 and |2〉 having magnetic moments μ1 and
μ2. (b) The momentum difference between the two wave packets,
�p(t ) = p2(t ) − p1(t ), and the magnetic gradient ∂By(t )/∂z that is
applied to the atoms. Note that the two wave packets do not need to
have the same direction of momentum.

direction to give momentum kicks to wave packets differently
based on their magnetic moments μ1 and μ2 (Fig. 2) with
μi = μBgFimFi . Here, μB, gFi , and mFi denote the Bohr mag-
neton, the Landé factor, and the magnetic quantum number
along the y axis, respectively. Including the magnetic-field
contribution, the force exerted on the atoms becomes time
dependent:

Ĥ = p̂2

2m
− F (t )ẑ − 1

2
Kẑ2, (4)

where F (t ) consists of a given linear force F0 and the time-
dependent magnetic force that we apply:

F (t ) = F0 + μ1
∂By(t )

∂z
|1〉〈1| + μ2

∂By(t )

∂z
|2〉〈2|, (5)

where |1〉 and |2〉 are the internal quantum states having
magnetic moments μ1 and μ2, respectively. Because of the
difference between the magnetic moments, the wave packets
experience different forces from the magnetic field.

A detailed protocol for measuring the field gradient K is
given as follows: We prepare a quantum state in an equal su-
perposition between two different internal states by applying
a π/2 pulse

|�(0)〉 = 1√
2
[|1〉|ψ1(0)〉 + |2〉|ψ2(0)〉], (6)

where the first and second kets represent the internal state and
the spatial wave function of the atom, respectively. The wave
packet in the internal state |2〉 obtains a momentum h̄k from
the pulse.

We then apply a magnetic field �B(t ) for Tdis. As the simplest
configuration, we assume a sequence of the magnetic field,

By(t ) =
⎧⎨
⎩
bz, 0 � t < t1
0, t1 � t < t1 + t2
−bz, t1 + t2 � t < t1 + t2 + t3,

(7)

where b is the magnitude of the field gradient along the z
axis, and we denote as t1, t2, t3 the time duration for each
step composing the total time duration for displacement Tdis =
t1 + t2 + t3, as illustrated in Fig. 2. Due to the magnetic field,
the dynamics of the wave packets depend on their magnetic
moments such that

|�(t )〉 = 1√
2
(|1〉Û1(t, 0)|ψ1(0)〉 + |2〉Û2(t, 0)|ψ2(0)〉), (8)

where the unitary operators applied to the motion are written
as [70]

Ûi(t, 0) = ei�i (t )D̂ [zi(t ), pi(t )] V̂ (t, 0). (9)

Here, �i(t ) is the phase accumulation on each trajectory,
and the dynamics of the spatial wave function can be di-
vided into the time-evolution operator V̂ (t ) = exp[− it

h̄ (
p̂2

2m −
1
2Kẑ2)] without linear force and the displacement operator
D̂[zi(t ), pi(t )] = ei[pi (t )ẑ−zi (t )p̂]/h̄ due to the force exerted on
the atoms. The displacement parameters zi and pi follow the
dynamics of classical trajectories of the atoms. Explicitly, for
a constant magnetic field in time, the dynamics is described
by

zi(t ) =
[
zi(t0) + Fi(t )

mω2

]
coshω(t − t0)

+ pi(t0)

mω
sinhω(t − t0) − Fi(t )

mω2
, (10)

pi(t ) =
[
Fi(t )

ω
+ mωzi(t0)

]
sinhω(t − t0)

+ pi(t0) coshω(t − t0), (11)

where t0 is the initial time, and we define ω ≡ √
K/m, and

Fi(t ) = F0 + μi∂By(t )/∂z is the force that each wave packet
experiences. The phase accumulation of each wave packet is
written as

�i(t ) = 1

2h̄

∫ t

0
dτ zi(τ )Fi(τ ) + φi, (12)

where φi denotes the phase accumulation from π/2 pulses
[70]. Since we focus on the time-dependent phase accumu-
lation, we omit the phase φi from π/2 pulses throughout the
paper.

After this magnetic-field sequence, assuming ωT � 1, the
displacement of the position and momentum right before the
free evolution, i.e., at t = Tdis, can be easily found by using
Eqs. (10) and (11), and one can determine the free evolution
time Tf by the condition given by Eq. (3). After the free
evolution time Tf , we apply the magnetic field in the reverse
sequence to Eq. (7), as illustrated in Fig. 2. Finally, after an-
other π/2 pulse, the internal states of the atoms are measured
in the basis {|1〉, |2〉}. As a result, the phase difference between
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two wave packets is written as

δ� = �2(T ) − �1(T ) + z1(T )p2(T ) − z2(T )p1(T )

2h̄
, (13)

where the last term in Eq. (13) arises from the misalignment
of the wave packets caused by nonzero constant K . As the
misalignment not only leads to an additional phase but also
causes a degradation of visibility of the interferometer, it is
demanded to minimize it in practice. We first focus on the
phase difference δ� and then discuss the effect of diminished
visibility in Sec. III C. Note that, in general, the phase dif-
ference depends on the initial position and momentum of the
wave packets.

B. Magnetic-field gradient pulse regime

Let us focus on an important limit that a magnetic-field
gradient pulse is applied, i.e., we take a limit t1, t3 � Tf with
fixing the momentum transfer of the magnetic fields as

(μ2 − μ1)bt1 = δp− h̄k, (14)

(μ2 − μ1)bt3 = 2δp. (15)

Here, δp represents the momentum difference between the
two trajectories at t = Tdis, and t2 is determined by the con-
dition (3) as t2 = Tf /2. Under these conditions, the phase
difference (13) becomes

δ� =
(

δp

h̄k

)
δ�c + (μ1 + μ2)

(μ2 − μ1)

KT 3δp

32m2 h̄

(
δp

3
+ h̄k

2

)
. (16)

In this pulse regime, the role of the magnetic-field gradient
pulse is similar to π/2 and π pulses in the conventional
butterfly configuration. Especially by assuming δp = h̄k and
μ1 = −μ2, the phase difference δ� is exactly the same as
that of the conventional butterfly interferometer, δ�c. In this
case, no magnetic field is applied during 0 � t � t1 as we
have t1 = 0 from Eq. (14), and the magnetic field t2 � t � t3
has the same role as the π pulse in the conventional butterfly
setup.

When the momentum difference δp is fixed, there is a
trade-off relation between the difference of the magnetic mo-
ments μ2 − μ1 and the impulse per magnetic moment from
the magnetic field bt1 and bt3 given by Eqs. (14) and (15).
Thus, in order to use the fact that the phase difference is
proportional to (μ2 − μ1)−1, the strength of the magnetic-
field gradient is required to be large enough to satisfy the
conditions (14) and (15). Indeed, the underlying phase differ-
ence from the magnetic field is proportional to (μ2

2 − μ2
1)bdt

(dt ≈ dt1, dt3), and it is simplified as Eq. (16) due to the
aforementioned trade-off relation.

We highlight that the magnetic-field gradient pulse can
provide an additional control in the momentum transfer δp to
increase the sensitivity of the interferometer compared with
using the conventional laser pulses [53]. One can observe that
the first term of Eq. (16) has the same form as in the conven-
tional butterfly interferometer but scales linearly by increasing
the momentum difference δp. Thus, when the magnetic field
induces a larger momentum transfer δp than that from the
Raman transition h̄k, the accumulated phase difference can
be increased with the factor of δp/(h̄k).

Meanwhile, the second term in Eq. (16), which is
magnetic-moment dependent, is a distinct feature of the SG
butterfly interferometer. In contrast with the first term or δ�c,
this term does not depend on the initial and final position of
the atoms in the interferometer, and thus can yield a nonva-
nishing phase difference even when the final position of the
wave packet is the same as the initial position, which leads to
δ�c = 0.

We also note that α ≡ (μ1 + μ2)/(μ2 − μ1) determines
the prefactor of the magnetic-moment-dependent phase differ-
ence from the butterfly configuration of the SG interferometer.
To increase the factor α, the magnitude of the magnetic
moments μ1 and μ2 should be as large as possible, while
keeping their difference |μ2 − μ1| small. Note that α =
0 when μ1 = −μ2, in which case the interferometer has
a symmetric geometry. For example, a recent experiment
on the atomic interferometer [48] has implemented the
52S1/2 manifold of 87Rb atom to generate superposition be-
tween |F = 2,mF = 2〉 and |F = 2,mF = 1〉. In this case,
the prefactor is α = 3. This prefactor can be increased
by employing an atom in superposition between higher
magnetic moments. Rydberg atoms can be a promising op-
tion to realize this because they can have high quantum
numbers of n, l , and m. Superposition between circular Ry-
dberg states |55c〉 = |n = 55, l = 54,m = 54〉 and |56c〉 =
|n = 56, l = 55,m = 55〉 recently realized in experiment [71]
can boost the factor to α = 109, which is significantly higher
than using the 52S1/2 manifold of 87Rb.

To focus on the effect of the magnetic field, let us consider
the case h̄k � δp, p0,F0T so that the initial and final π/2
pulses have a negligible role in the momentum transfer and
the phase difference. We simply denote such a regime as
h̄k → 0. A relevant physical situation would be when the
atoms’ internal states |1〉 and |2〉 undergo the Raman transition
at radio frequencies [49]. In this case, the phase is written as

δ�h̄k→0 = − KT 2

32h̄

δp

m

[
p0
m
T + F0

2m
T 2 − δp

m

(μ1 + μ2)

3(μ2 − μ1)
T

]
.

(17)

As an illustrative example, we have plotted in Fig. 3 the
phase differences in the SG butterfly interferometer induced
by the gravitational field. As physical parameters, we take the
experimentally feasible values of m = 1.42 × 10−25 kg, g =
9.8 m/s2, � = mK = 3 × 10−6 s−2, δv = δp/m = 0.02 m/s
based on Ref. [48]. First of all, the figure shows that when
the initial and final positions are the same, only the phase
difference from the magnetic moment is nonvanishing. Also,
when Rydberg atoms are employed with α = 109, the phase
difference from the magnetic moment can be large enough to
increase the sensitivity.

In realistic experiments, the magnetic field in the displace-
ment stage has to be large enough to attain the phase δ� of
the above limit. Taking into account practical situations, we
analyze the phase accumulation with a finite time duration of
displacement instead of the pulse regime. In this case, from
the condition (3), the free evolution time is determined by
Tf = t1 + 2t2. We show the phase accumulation from finite
time of displacement in Fig. 4. As shown in the figure, the
finite time duration for displacement still leads to a phase
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Total interferometer time T [s]
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 [
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]

FIG. 3. Phase difference from (i) difference between the ini-
tial and final positions, δ�1 = | KT 2

32h̄
δp
m ( p0m T + F0

2mT
2)|, and (ii)

a magnetic-moment-dependent term δ�2 = | KT 3

32h̄
δp2

m2
(μ1+μ2 )
3(μ2−μ1 )

| in
Eq. (17). Here, v0 = p0/m is the initial velocity. We assume that
h̄k → 0. See the main text for details.

difference similar to what we obtained in the limit t1 → 0.
Since the time duration for displacement is not required to
be extremely small, fixing the magnetic moment difference
and the momentum difference in Eqs. (14) and (15), one may
employ a smaller magnetic-field gradient by increasing t1 or
t3 in practice.

C. Visibility

Finally, let us discuss the degradation of the visibility due
to the misalignment. The misalignment changes the prob-
abilities of detecting |1〉, |2〉 as P1 = (1 +C cos δ�)/2 and
P2 = (1 −C cos δ�)/2, where

C = |〈ψ0(T )
∣∣V̂ †(T )D̂(�z(T ),�p(T ))V̂ (T )

∣∣ψ0(T )〉| (18)

represents the visibility. Here, �z(T ) = z2(T ) − z1(T ) and
�p(T ) = p2(T ) − p1(T ). Unless �z(T ) = �p(T ) = 0, the

Total interferometer time T [s]

Ph
as

e 
[R

ad
]

FIG. 4. Phase difference with a finite time duration for displace-
ment fixing δv = 0.02 m/s [48]. The magnitude of the gradient of
magnetic field we need is b = 0.34 T/m for t1 = 10−3 s. The maxi-
mum separation is less than 0.01 m. Note that we have observed that
the difference is very small even for larger t1 such as t1 = 10−2s. We
assume that h̄k → 0.

Total interferometer time T [s]

FIG. 5. Visibility of atomic interferometers using 87Rb atoms
with the position uncertainty σz = 200 μm and the velocity uncer-
tainty σpz/m = 0.44 mm/s, which is achieved with a temperature
Teff = 2 nK [60]. The solid curve represents the visibility of the
butterfly configuration and the dashed curve represents that of the
Mach-Zehnder configuration.

visibility of the signal is strictly less than 1. In the butterfly
interferometer case with a pulse regime, up to order of K , we
have

�z(T ) ≈ KT 3δp

32m2
, �p(T ) ≈ 0. (19)

In the case of a Mach-Zehnder-type of atomic interferometer,
the misalignment is given by

�z(T ) ≈ KT 3δp

8m2
, �p(T ) ≈ KT 2δp

4m
. (20)

To analyze the effect of the misalignment, let us assume the
initial wave packet to be Gaussian, with the uncertainty of the
position and momentum along the z axis denoted σz and σpz .
We assume that the correlation of the position and momentum
is zero for simplicity. In this case, the visibility C for a pure
state can be simplified as

C = |〈ψ (0)|D̂(�z′,�p′
z )|ψ (0)〉| = exp

[
−�z′2

8σ 2
z

− �p′2
z

8σ 2
pz

]
,

(21)

and for a mixed initial state ρ̂(0),

C = |Tr[D̂(�z′,�p′
z )ρ̂0]| = exp

[
−σ 2

z �p′2
z + σ 2

pz�z′2

2h̄2

]
,

(22)

where �z′ = �z coshωT − �pz
mω

sinhωT and �p′
z =

�pz coshωT + mω�z sinhωT . Figure 5 shows the visibility
of an example with different interferometer time T . It
shows that the visibility is approximately 1 for 5 s and 3 s
for the butterfly configuration and the Mach-Zehnder-type
interferometer, respectively. Thus, the butterfly configuration
is more robust to the misalignment.

When the visibility is degraded by the misalignment, one
may overcome this obstacle by adjusting experimental param-
eters more elaborately [60,72]. For example, for an atomic
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interferometer based on laser pulses, by changing the fre-
quency of the laser depending on the gravity gradient one
can align atoms’ trajectories to reduce the amount of the mis-
alignment. The same technique can be applied by changing
the magnetic-field gradient accordingly.

IV. CONCLUSION

We have introduced a variant of a butterfly interferometer
that enables a precise measurement of the field gradient. In our
SG butterfly configuration, the atoms are prepared in superpo-
sition between the internal states having different magnetic
moments, so that the external magnetic field can split the
trajectories in the time-dependent manner.

The proposed interferometer is flexible in controlling
the momentum transfer of the atoms by using the external
magnetic field, while it implements the conventional but-
terfly configuration as a special case. We have shown that
the phase difference between the different atomic trajecto-
ries arising from the field gradient can be decomposed into
magnetic-moment-independent and -dependent parts. The
magnetic-moment-independent phase can be compared with
the phase difference in the conventional butterfly interferom-
eter, but can linearly increase by the momentum difference of
the interferometer δp induced by the external magnetic field.

The magnetic-moment-dependent phase provides a distinct
feature of the SG butterfly interferometer scaling in T 3 and
can be increased by enlarging the magnetic quantum number
of the internal atomic state.

We have also investigated the degradation of the visibility
when the interferometer is not perfectly closed due to the field
gradient. We have demonstrated that the robustness of the
interferometer against the misalignment is comparable to or
better than the Mach-Zehnder type of atomic interferometer.
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