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Microscopic organisms must frequently swim through complex biofluids, including
bacterial biofilms and the mucus lining of the upper respiratory tract. Recently, there
has been great interest in understanding how the non-Newtonian behavior of the fluids,
in particular fluid elasticity, can enable methods of self-propulsion that otherwise would
not work in a Newtonian fluid. We present such a swimmer that consists of two spheres
of unequal size that rotate in opposite directions. The swimmer is force- and torque-free
and placed in an elastic fluid. Using a combination of analytical theory and numerical
simulations, we show that this model swimmer, which has zero propulsion in a Newtonian
fluid under Stokes flow, swims in the direction of the larger of the two spheres in an elastic
fluid. We show that the speed of swimming increases nearly linearly with the Deborah
number De or primary normal stress coefficient ¥, which is an appropriate measure of the
elasticity of the fluid and for De < 1 is also nearly linear in the concentration of polymer
in the fluid. The dependence of the swim speed on the relative size of the two spheres
is nonmonotonic, exhibiting a maximum at a size ratio of about 0.75. By analyzing the
forces acting on the swimmer and the surrounding flow field, we find that propulsion is
driven by thrust due to pressure applied along the swimmer. This thrust originates from
flow advection driven by hoop stresses surrounding the faster-spinning smaller sphere.
We compare our predictions to experimental measurements of swimming speeds for the
bacterium E. coli, which swims via a rotating flagellar bundle and counterrotating body,
and find that the speeds predicted by our analysis are remarkably close to the speed increase
E. coli experiences in viscoelastic fluids. Finally, we conclude our work by showing how
our analysis can be extended to different swimmer configurations and gaits, as long as the
propulsion is driven by swirl alone.

DOI: 10.1103/PhysRevFluids.6.053301

I. INTRODUCTION

Recently, there has been a great deal of work examining the fundamental fluid mechanics of the
motion of swimming microorganisms [1-3]. Of particular interest is their motility in complex fluids,
since the biofluids in which these microorganisms are commonly immersed (e.g., biofilms [4,5] and
mucus in the human body [6,7]) very often exhibit significant non-Newtonian behavior [8]. One
active area of research is focused on developing and understanding propulsion mechanisms that
otherwise would be ineffectual in a Newtonian fluid since, for example, translation via reciprocal
motion is forbidden at zero Reynolds number [9]. Such microswimmers in non-Newtonian fluids
could be used in biomedical applications such as targeted drug delivery [10,11] or could serve
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FIG. 1. (a) Depiction of a swimming E. coli cell (left) and the schematic of a coarse-grained model
swimmer (right) that can be tuned to reproduce the azimuthal flow field created by the E. coli rotating flagellar
bundle and counterrotating body. (b) Dimensions and coordinate system for the model two-sphere swimmer.

as a microrheometer for the fluid itself [12]. Some of these proposed swimming mechanisms
include a synthetic microscallop [13], a sphere dimer rotated in a reciprocal motion by an external
magnetic field [14], and a model swimmer consisting of two spheres that oscillate along their axis
of symmetry [15]. While these swimmers achieve net translation by utilizing a reciprocal gait in an
elastic fluid, propulsion can also be achieved by leveraging normal stress differences in viscoelastic
fluids to break symmetry [16,17].

One example of propulsion in non-Newtonian fluids was examined by Pak et al. [12] and
Puente-Veldzquez et al. [18], who consider a body comprised of two rigid spheres that undergoes
net translational motion along the axis of symmetry in a viscoelastic fluid when rotated by a net
torque (e.g., provided by an external magnetic field). However, the propulsion examined by Pak
et al. [12] does not apply to a torque-free swimming microorganism. We are inspired by Pak
et al. [12] to develop a coarse-grained model swimmer that is force- and torque-free and can be
realized experimentally. Moreover, such a swimmer can be used to study the effect of rheology on
the motion of swimming microorganisms, particularly those whose gait induces a significant degree
of swirling flow, e.g., the bacterium E. coli [19,20] [cf. Fig. 1(a)]. Our interest in this particular class
of swimmers comes from recent work demonstrating the significance of rotational-translational
coupling in predicting the kinematics of passive and active particles [21-23], i.e., that swirl aids
propulsion in elastic fluids. Other studies [24-26] have also demonstrated the importance of swirling
flow in viscoelastic fluids by considering helical swimmers, although it should be noted that in these
cases the swimmer is not torque-free. The distinction from this prior work and the reason for this
present effort is that the specific squirmer slip velocity containing swirl in [22,23] showed that swirl
aided propulsion in viscoelastic fluids, but the swirl did not create propulsion alone. In contrast, as
we will demonstrate, the microswimmer shown in Fig. 1 merely requires spinning two spheres in
opposite directions connected by a fixed link to achieve propulsion of the freely suspended body.

II. GOVERNING EQUATIONS AND SOLUTION METHODOLOGY

We begin by noting the geometry and arrangement of our model microswimmer. The situation
is illustrated in Fig. 1(b), where the two-sphere swimmer is oriented vertically along the z direction
with the larger sphere placed above the smaller sphere. Here R; and D; denote the radius and
diameter of the larger sphere, while Ry and Dy refer to the radius and diameter of the smaller sphere.
The spheres counterrotate, and let us assume the larger sphere rotates counterclockwise (looking
from above) with a rotation rate €2;, while the smaller sphere rotates clockwise with a rotation rate
Q. Note that 2, and Q25 denote only the magnitude of the angular velocity, not the direction (i.e.,
they are always positive quantities). Finally, the gap between the two spheres is of size hgp such
that the distance between the centers of the two spheres is given by ' = Ry, + hgep, + Rs.
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For the fluid surrounding the microswimmer, the equations for conservation of momentum and
mass written in dimensionless form are

]
Re<8—1;~|—u~Vu>=V~a, V.u=0, @))

where u is the velocity of the fluid, ¢ is time, and o is the Cauchy stress. We have chosen to
scale lengths by the radius of the larger sphere Ry, time by the inverse of the smaller sphere’s
rotation rate Qs’l, velocities by the product R, Qg, and stresses by 1oS2s, where p is the total
zero-shear viscosity of the fluid. Note that we use 2 rather than €2 in our scaling since in our
application the former is considered “prescribed” as the rotation rate of the swimmer’s tail, while
the latter is determined by the fact that the total torque on the swimmer vanishes. With this choice of
characteristic scales, the Reynolds number Re is given by Re = pR? 25/ L0, where p is the density
of the fluid. Owing to their small size and the viscous environments in which they are commonly
found, microorganisms swim at virtually zero Reynolds number [9]. For this reason, in both our
analytical theory and numerical simulations we assume Re = 0.

We further assume that the fluid in which the microswimmer is immersed is viscoelastic; thus
the total stress o is given as the sum of a Newtonian and polymeric contribution

o =—pl+ B(Vu+ Vvul) + 77, )

where p is the pressure, ¥ is the extra stress from the polymer molecules in the fluid, and
B = s/ (s + tp) = [Ls/ 1o is the viscosity ratio for a fluid with solvent viscosity ., and polymer
viscosity p,. To describe the extra polymer stress 77, we use the Oldroyd-B constitutive equation,
which models the polymer molecules as Hookean dumbbells [27]:

1-p
De

De ¢ +(c — ) = 0. 4)

7’ =

(C - I)’ (3)

In the above set of equations, ¢ is the conformation tensor, X: oc/dt +u-Ve — Vu’ -¢c—c-Vu
is the upper-convected derivative, and De = A Qg is the Deborah number, which measures the degree
of elasticity of a viscoelastic fluid having a relaxation time A.

These governing equations are supplemented by an appropriate set of boundary conditions and
constraints applied to the swimming motion. Applying the no-slip boundary condition at the surface
of the swimmer gives the velocity at the surface of the smaller sphere as ug = U 4 25 X rg and that
at the surface of the larger sphere as u, = U + €, x rz, where U is the velocity of the swimmer
and rg and r;, are position vectors originating from the center of the smaller and the larger sphere,
respectively. Finally, upon applying conservation of linear and angular momentum to the swimming
body in the limit of Re = 0, one finds that the net force and torque on the microswimmer must
vanish [28],

F:[a~ndS:0, 5)

S

L:/xx(a-n)dS:O, (6)
S

in which § denotes the surface of the swimmer, x is the position vector for a coordinate system
placed at the center of the gap between the two spheres, and n is the outward surface unit normal
vector. Finally, the fluid far from the swimmer is stagnant, so u(|x| — oo) = 0.

In what follows we will use a combination of analytical theory and numerical simulations to
determine the swimming speed of this model microswimmer subject to the above set of governing
equations and boundary conditions. With respect to the former, our derivation is a generalization
of that done in [18] and Sec. V of [12], but now the rotation rates of the two spheres Qg and 2,
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are not necessarily equal since they are determined from the torque-free condition. We begin by
considering the leading-order radial disturbance flow at small De for each sphere in isolation [29],

*2 3’,*4 %5
u(9 rs)—r(l—ﬂ)Del:zz— 24 +—](3COS 6 —1), 7
s

(—pDe[ 1 3 -
@y [zrg zrz+rL](3°°” D, ®)

ubO,r) =
where r, = |rz|, rs = |rg|, and 6 is the polar angle in the spherical coordinate system, as shown
in Fig. 1(b). Additionally, two new dimensionless groups emerge: Q* = Qg/2; is the ratio of the
rotation rates of the two spheres and r* = Rg/R; is the ratio of their radii. Finally, with r* defined,
we can write the distance between the centers of the spheres in dimensionless formash = 1 + h* +
r*, where h* = hg, /Ry . In the scenario where the two spheres are touching, 7* = 0and h = 1 + r*.
Owing to the axisymmetry of the problem, the x and y components of the net force F acting
on the swimmer are trivially zero. This leaves us with the component acting in the z direction, F,
which consists of drag from the steady translation of the swimmer as well as contributions from the
hydrodynamic interactions between the two spheres. The sum of the latter two contributions is the
propulsive contribution to the net force, i.e., F, = F¥ 4 FPP_We explicitly write this contribution
as the sum of the force acting on the smaller sphere due to the flow field of the larger sphere and
the force acting on the larger sphere due to the flow field of the smaller sphere. These are given
approximately by Faxén’s law [30], viz.,

*2
FPoP = 67r(1 + évz) S =0,rs=h)— 6nr*<1 + %vz)uf(e =, r.="h). (9
Note that in the above, as distinct from Sec. V of [12] and from [18], we have included the Laplacian
term in Faxén’s law since we find that it significantly improves the accuracy of the final result. It
should be mentioned here that a more accurate prediction for the propulsive force and hence the
swimming speed could likely be obtained by performing a formal perturbation expansion in the
limit of small De, as was done in [12]. Satisfied with the agreement between theory and numerics
shown in Sec. III, we forego this more detailed calculation in the interest of providing a final result
that through its conciseness can yield greater physical intuition and more readily be employed to
make predictions for a range of geometries and conditions.

We can estimate the speed of the microswimmer by noting that this propulsive force is equal and
opposite to the viscous drag experienced by the swimmer, i.e., F, = F.™¢ 4+ FP™ = 0. As a simple
approximation, we can estimate this drag using the hydrodynamic resistance for a Newtonian fluid,
ie., F; drag —67m (1 + r*)U,, so that the velocity (specifically the z component U,) is given by

PP
U=—"-—. 10
Sl 4r%) (10)
For the sake of presentation, we will split the contribution to U, originating from the two terms that
involve the Laplacian in Eq. (9) as UZ(H 9, The velocity of the swimmer can then be written explicitly
as
uS —rul 1 VRS — VRt
U7=U0 U(HO): r r - r r 11
N e T 1+ r* +6 1+ r* (an

We can express U, in terms of the dimensionless groups r*, h*, De, 8, and Q* by plugging in the
velocity fields given in Egs. (7) and (8) into Eq. (11) and we obtain
(1 4+ B2 3 (1 + h* 4 3r)Q*2 — r*(h* + r*)* (3 + h* + r*)

U} =De(l —
e =De(l=5) (L + )+ b+ )5

(12)
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and

0
31+ )1+ h* + r*)79*2)’

where Q, the factor in the numerator of U”?, is

U9 = De(1 — ,B)r*3( (13)

O, h*, Q%) = =3 + 15h* 4+ 61* + 21*> + 157* + 121 r* + 6121 + 61" + 6" r*?
+27 — 201 + h*)* 4 6(1 4+ B* P r* +15(1 + 1) = 37197, (14)

Note that, alternatively, since for the Oldroyd-B fluid the relaxation time is directly related to the
primary normal stress coefficient W, via the expression
v
A= —) (15)
2y
we have expressed the propulsion velocity as linear in the primary normal stress coefficient and
therefore a direct measure of the fluid elasticity via rheometry.

With this result in hand, we first consider specific subcases of the overall parameter space. For
example, if we consider the situation where the two spheres are touching (h* = 0) and are rotating
together as a rigid body (2* = 1) and we neglect the higher-order terms in the propulsive force
(achieved in effect by setting UZ(H 9 = (), then we in fact recover the result derived from the use of
Faxén’s law in Sec. V of [12]:

U — De(l )2(r*—1)r*3
. =De(l1 -8 (1 + )0

As stated above, we are interested in using this model swimmer to understand the effect of
swirling flow on microorganism motility in complex biofluids. For a freely suspended swimmer,
we must ensure that the two-sphere swimmer is torque-free, as is the case for all freely suspended
microswimmers. This is achieved in our model by allowing the two spheres to rotate in opposite
directions such that the net torque vanishes, regardless of the chosen size ratio r*. Noting that the
(dimensional) torque on a sphere rotating at Re = 0 in a Newtonian fluid is equal in magnitude to
87 11oQ2R3, we see that the torques on the two spheres sum to zero when Q* = (1/r*)3. Assuming
the two spheres are touching (A* = 0), we can then obtain a simplified result for the velocity:

(16)

o (1= 7)1 4 107% 4 16r*2 4+ 2872 4 287** 4287 + 16 4 1077 + *%)

U, = De(1 — B)r ATy

a7

Note that the assumption in taking this limit (2* = 0) is that the propulsion speed is regular as
h* — 0. We demonstrate via lubrication theory in the Appendix that while the flow demonstrates a
pressure singularity in this limit, the propulsion speed is bounded as #* — 0, which is demonstrated
in Fig. 4 below as well. One can easily verify that the numerator of the fraction in Eq. (17) is positive
for 0 < r* < 1, indicating U, > 0 for all values of De and 8; in other words, our model predicts that
a torque-free two-sphere swimmer always swims in the direction of the larger sphere for any size
ratio and specific Oldroyd-B fluid rheology. For the remainder of this study, we will use our theory
[i.e., (12), (13), and (17)] and complementary numerical simulations to understand this result.

For the numerical calculations, we perform three-dimensional simulations of the governing
equations and boundary conditions using a third-order-accurate finite-volume flow solver developed
at Stanford’s Center for Turbulence Research [31]. As detailed in a number of previous studies, this
code has been thoroughly tested for accuracy and robustness for a wide range of problems, including
viscoelastic flows [32-34], deformable particles [35], and active swimmers [36]. Specifically for this
problem, the numerical solution closely follows that described in our previous work [22]; namely,
we consider the comoving frame of reference such that we may use a body-fitted mesh, the evolution
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FIG. 2. (a) Swimming speed U as a function of the Deborah number De and the viscosity ratio 8 for
h* = 0.05 and r* = 0.5. Markers connected by solid lines denote simulation data, while the dashed lines denote
the low-De theory, i.e., Eqs. (12) and (13). As indicated by the black arrow, as one moves down the set of curves,
the value of B increases from 0.25 to 0.75, i.e., an increasing contribution from the Newtonian solvent. The
theory and simulations show that the speed of the two-sphere swimmer increases with increasing fluid elasticity
(De) and increasing polymer concentration (decreasing ). The inset shows the same set of data but with the
speed U now normalized by 1 — B to show that all data collapses onto a single curve for low De, as predicted
by the theory. (b) Swimming speed U as a function of time for #* = 0.05, r* = 0.5, and g = 0.5.

equation for the conformation tensor [Eq. (4)] is solved using the log-conformation method [37,38],
and for boundary conditions for the conformation tensor we set ¢ = I at the entrance to the domain
and utilize a convective outlet boundary condition at the exit. We use a cylindrical computational
domain of length and diameter 20R;, whose axis of revolution is aligned with the z direction and in
which the two-sphere swimmer shown in Fig. 1 is placed at the center. To resolve the stress boundary
layers present near the swimmer, we use an unstructured tetrahedral mesh with increasing resolution
towards the center of the domain. To determine the kinematics of the two-sphere swimmer, we
advance Eq. (1) forward in time, solving for U, and €2, at each time step such that F, = 0 and
L, =0 by using a quasi-Newton method, specifically Broyden’s method [39]. We prescribe a
dimensionless rotation rate of the smaller sphere equal to unity for all # while the initial condition for
our simulations is that of a quiescent fluid with ¢ = I; this results in U,(t = 0) = 0 and Q. (¢ = 0)
being determined from the torque balance at the start of the simulation.

III. RESULTS, DISCUSSION, AND MORE GENERAL SWIMMERS

A. Speed and mechanism of propulsion for the two-sphere swimmer

With our theory and numerical simulations described above, we proceed to discuss our results,
starting with the dependence of the swimming speed on the rheology of the surrounding fluid when
the swimmer has achieved steady state. The results are shown in Fig. 2(a), where the swimming
speed U = |U,]| is plotted as a function of the Deborah number for the case of § = 0.5 and r* = 0.5.
Note that in Fig. 2 we assume #* = 0.05; choosing a small but nonzero value of /* in this way allows
us to consider the case where the two vortical flows induced by the spheres are interacting with one
another (as they likely are for real microorganisms like E. coli), but the gap is still large enough
such that the stress within it can be resolved numerically (cf. Fig. 6). From this plot we see that both
theory (dashed lines) and simulations (closed symbols) indicate an increase in swimming speed with
fluid elasticity (increasing De) and increasing polymer concentration (decreasing ). The theory
agrees remarkably well with the simulations, with the agreement increasing as the fraction of the
fluid that is Newtonian solvent increases. Thus, for small values of 8, the theoretical and numerical
predictions depart from one another for De > 1, with the theory overpredicting the swimming speed
observed in simulations. The inset shows that for small De, the swimming speed increases linearly
with respect to (1 — B)De, as is predicted by the theory.

053301-6



SELF-PROPULSION OF A FREELY SUSPENDED SWIMMER ...

(@ o.015 . : (b) 015 . : : :
---- Theory h™=0.05
—e— Simulations h*=0.5
0.010 O 0.010F — h* = 1
> > h™=
0.005 0.005 | 1
0.000 : ' 0.000 ' ' '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
* *
r r

FIG. 3. (a) Swimming speed U as a function of the size ratio r* for #* = 0.05, De = 1, and g = 0.5. Both
theory and simulations predict a nonmonotonic dependence of U on r*, with U vanishing in the case of r* = 0
and 1, while reaching a maximum at r* ~ 0.75. (b) Theoretical prediction for the swimming speed U as a
function of the size ratio r* for De = 1, B = 0.5, and a range of values of h*. As h* is increased, U decreases
in magnitude for all 7*. However, the functional dependence of U with respect to r* is not strongly affected by
the value of h*.

In Fig. 2(b) the swimming speed U is plotted as a function of time for A* = 0.05, r* = 0.5,
B = 0.5, and for the range of De shown in Fig. 2(a). From this figure we can see how the two-sphere
swimmer reaches a steady-state speed starting from rest. We see that the time to reach steady state
increases with increasing De. For small to moderate values of De, the speed increases monotonically
until the steady-state speed is reached. For large values of De (e.g., De = 3), however, there is an
overshoot in the swimming speed prior to reaching the steady-state value. As we see in Fig. 2(b), it
takes between 0.1 and 0.8 rotations of the small-sphere tail to reach steady state for De < 1.

In Fig. 3(a) the swimming speed U is plotted as a function of the relative size of the two spheres
r* for the case of 8§ = 0.5, De = 1, and #* = 0.05. From this plot we see that the speed of the
two-sphere swimmer exhibits a nonmonotonic dependence on r*, with U vanishing for either r* = 0
or r* = 1. Both theory and simulations predict that the speed is approximately maximized at a size
ratio of about 0.75, with the theory underpredicting the quantitative value of the maximum speed.
We believe the disagreement for this range of size ratios is a manifestation of the far-field assumption
inherent in applying Faxén’s law. That is, Faxén’s law prescribes the force on a particle as that due
to the external flow (from another particle) applied at its center and the Laplacian of that flow; this
is valid when the particles are well separated but is inaccurate in the near field. In other words, as
the sizes of the two spheres become comparable, higher-order hydrodynamic reflections become
significant and need to be taken into account for a quantitative theory. Neglecting these interactions
is fine for smaller values of r* since as r* decreases, the larger sphere is increasingly in the far field
of the smaller sphere.

To understand how this picture changes as the gap size is altered, in Fig. 3(b) we have plotted
the theoretical prediction of the swimming speed U as a function of r* for a range of values of
h*. Interestingly, up to a gap size of #* = 0.5, there appears to be little effect with respect to
increasing h*. Past h* = 0.5, an increase in h* leads to a decrease in swimming speed for all
values of r* and a very slight increase in the location of the optimal size ratio. To explore the
effect of the gap size further, in Fig. 4 we have plotted the swimming speed U normalized by the
factor De(1 — ) as a function of 4* for both theory and simulations for the case of r* = 0.75. We
divide U by De(1 — B) in this case to isolate the effect of geometry; e.g., as shown in Eqgs. (12)
and (13), U/De(1 — B) depends solely on the size ratio r* and gap size h* [recall we have taken
Q* = (1/r*)3]. From this figure we see that the theory predicts a very slight increase in swimming
speed with increasing gap size before exhibiting a monotonic decay. The numerical results, in
contrast, suggest that the swimming speed only decreases with increasing gap size. The agreement
between theory and simulations becomes better with increasing gap size, as expected given the
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FIG. 4. Normalized swimming speed U/De(1 — §) as a function of the gap size h* for a size ratio of
r* = 0.75. The numerical simulations were conducted at De = 1 and § = 0.5. While the theory predicts a
slight increase in the swimming speed before a monotonic decrease with increasing gap size, the simulation
results predict a purely decreasing function of gap size. As expected, the two predict the same result for large
values of #* since the theory becomes more accurate as the separation increases.

far-field approximations made in our derivation. Taking this into account, i.e., that we expect the
theory to become less accurate for very small gap sizes, and considering that the simulations are
valid for any geometry, we believe that the true trend with respect to the gap size is a monotonic
decrease in speed.

We now turn to an examination of the forces acting on the microswimmer and the surrounding
flow field in an effort to understand the origin of the self-propulsion observed in Figs. 2 and 3.
We split the contributions to the net hydrodynamic force in accordance with Eq. (2) as those
due to pressure, viscous stress, and polymeric stress (written using indicial notation assuming
cylindrical coordinates): F, = [ o,;n;dS = FP + FY 4 FF*Y = 0, where F [s pn.ds,
FYs¢ = B [(V.u; + V ju)n;dS, and FFY = [, t/'n;dS. These contributions are plotted as a func-
tion of De in Fig. 5(b). We see from Fig. 5(a), where these contributions are further divided into those
acting on the large and the small sphere, respectively, that the contribution due to pressure dominates
the force on both the larger (indicated with the dash-dotted line) and the smaller (indicated with a

(@ 4 - . — (b) 4 . . :
Pressure (large sphere) Pressure (total)
Viscous (large sphere) K
o | k- Elastic (large sphere) ] 2| Viscous (total) 1
-4-- Elastic (total)
‘:’L 0ré——vff-----f----------- F--- :: 1 :LL O ——3f—— - - . 1
-2F Pressure (small sphere) T -2r T
Viscous (small sphere)
—A— Elastic (small sphere)
—4 L 1 L gL 1 L L
0 1 2 3 1 2 3

De De

FIG. 5. Contributions to the net force acting on the swimmer as a function of De for #* = 0.05, r* = 0.5,
and B = 0.5. (a) Total integrated force contributions acting on each sphere. Solid lines denote forces on the
smaller sphere, while dash-dotted lines denote force on the larger sphere. The plot indicates that pressure
acting on the larger sphere creates a positive (i.e., propulsive) contribution to the net hydrodynamic force,
while contributions from pressure, viscous, and elastic stresses acting on the smaller sphere are negative and
thus oppose the swimming motion. (b) Total integrated force contributions acting over the entire swimmer (i.e.,
summing individual forces acting on the large and the small sphere). This plot indicates that the net effect of
pressure is propulsive, while those of viscous and elastic stresses are resistive.
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FIG. 6. Contour plots in the x-z plane at y = 0 of (a) the pressure and (b) the polymer stress energy t/;
for the simulation at De = 1, 8 = 0.5, h* = 0.05, and r* = 0.5. Streamlines indicate the direction of the radial
flow field in the comoving frame of reference; the gray arrow in each panel indicates the swimming direction in
the laboratory frame. Given the results shown in Fig. 5, propulsion appears to created by a buildup of pressure
towards the rear of the swimmer that originates from flow pulled inward from the faster-spinning smaller
sphere. In (b) we see the development of hoop stresses from the rotation of the smaller sphere that otherwise
act to impede motion according to Fig. 5.

solid line) sphere. The former is the seemingly only positive contribution to the net force on the
swimmer, indicating that it is pressure on the larger sphere that provides the dominant thrust for
the microswimmer’s motion. In contrast, all of the contributions related to the smaller sphere are
negative and thus oppose the motion of the swimmer. This suggests that the drag on the overall body
is concentrated at the back of the swimmer and thus on the smaller sphere.

To understand this mechanism of self-propulsion in more detail, we now examine the surrounding
flow field to see exactly where tractions are being exerted on the swimmer. From Fig. 6(a) we see
that there is a significant pressure in the small gap between the two rotating spheres. If we examine
the streamlines of the radial flow field (presented in the comoving frame) while recalling that the
swimmer translates in the direction of the larger sphere (as indicated by the gray arrow), we see that
fluid is readily advected by the fast-spinning smaller sphere, thereby creating a high-pressure region
in the thin gap and along its sides. Hence, in analogy with E. coli [cf. Fig. 1(a)], it appears that the
fast-spinning tail of our model swimmer pulls fluid inward so as to create an overall thrust due to
pressure. Interestingly enough, the net effect of the pressure specifically in the thin-gap region is
zero; i.e., the pressure tractions exerted on the larger and the smaller sphere in this region cancel
each other. We show this below by applying lubrication theory to the thin-gap region. While we
refer the reader to the Appendix for the full derivation, the key result is that the pressure in the gap
is given by

(@ + 1)

p = De(l —ﬁ)m, (18)

where B = %(r”‘_1 + 1) and r is the radial coordinate in cylindrical coordinates (made dimension-
less by R;). A comparison of the pressure as predicted by this equation to that from our numerical
simulations is shown in Fig. 7. This demonstrates that in the limit of 2* — 0, there is a pressure
singularity. However, if we integrate this function over the surface of the large and the small sphere
in the thin-gap region, we find that the result is zero, i.e., the individual pressure forces exerted on
each sphere are equal and opposite. This suggests that the net pressure thrust seen in Fig. 5(b) is not
coming from the high pressure in the thin gap, but rather from the pressure observed at the back of
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FIG. 7. Comparison of the pressure p predicted by lubrication theory [i.e., Eq. (18)] to that from our
numerical simulation as a function of the radial coordinate 7 in cylindrical coordinates for the case of r* = 0.5,
h* =0.05,8=0.5and De = 1.

the smaller sphere and swimmer as a whole as seen in Fig. 6(a). This makes sense in light of the
results varying the gap size [i.e., Fig. 3(b) and Fig. 4]; that is, if the thrust had been primarily due to
the high pressure in the thin gap, then we would expect to see a strong dependence of the swimming
speed on the size of the gap. Finally, if we plot the polymer stress energy t/, i.e., the trace of the
polymer stress tensor, as done in Fig. 6(b), we observe the development of hoop stresses created by
the fast-rotating smaller sphere. This likely corresponds to the negative elastic contribution to the
net force seen in Fig. 5(b), suggesting that the elasticity of the fluid directly only hinders motion, but
indirectly can provide thrust through a modification of the pressure field (an effect seen previously
in several different studies [21,23]).

A natural question to ask is how the results presented above relate to a real microorganism.
We can perform an approximate calculation to determine the appropriate values for r*, 8, and
De for a bacterium like E. coli and compare the swimming speed of E. coli in a viscoelastic
fluid to that predicted by our theory and simulations. For this, we reference the work of Patteson
et al. [40], where they measure a swimming speed of about 11.2 um/s in a 225 ppm carboxymethyl
cellulose (CMC) solution. To put this speed in dimensionless terms, we scale it by R; g, where
for the value of R, we consider the radius of the E. coli body and for Qg we use the angular
frequency of the flagellar bundle. The former is about 0.4 pum [19], while the latter was measured
by Patteson et al. [40] to be 56 Hz (i.e., approximately equal to 352 rad/s) in the CMC solution.
This yields a dimensionless speed of 11.2/(0.4 x 352) = 0.08. For the value of Ry and thus r*,
we use the radius of one of the E. coli helical flagella, which is about 0.4 um [19] such that
r* & 0.5. Finally, to compute appropriate values for 8 and De, we note the measured value of
X =9.5 x 1073 s in the work of Patteson et al. [40] and then fit their data for the shear viscosity as
a function of shear rate to a polymer constitutive equation that exhibits shear thinning, specifically
the Giesekus equation [41]. From this fit we estimate that 8 & 0.1, and since De = AQg, De ~
9.5 x 1073 x 352 = 3.3. Our nearest simulation to r* = 0.5, B =0.1,and De = 3.3 isat r* = 0.5,
B = 0.25, and De = 3, where we predict a speed of about 0.021. If we consider the dependence
on B to be linear in 1 — B as predicted by the theory, then we expect our simulations to yield a
speed of 0.021 x (1 —0.1)/(1 — 0.25) =~ 0.025 at this smaller value of 8. This value is thus about
31% of the experimentally measured swimming speed of E. coli, suggesting that the propulsion
mechanism as described above from swirling flow could account for up to about one-third of
the E. coli motility in viscoelastic fluids. If we assume that the remaining 69% of the swimming
speed is a product of the viscous propulsion generated from rotating a helix at zero Reynolds
number [20], then we expect the Newtonian speed of E. coli to be about two-thirds that in the
elastic fluid. Patteson et al. [40] measured a Newtonian swimming speed of 8.3 um/s, which is 74%
that in the 225 ppm solution and is remarkably close to the value of 69% predicted by our simple
estimation.
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FIG. 8. Illustration of one particular example of an axisymmetric swimmer consisting of two counterrotat-
ing bodies of revolution.

B. Generalization to arbitrary bodies of revolution

While the results above were presented in the context of the two-sphere swimmer, similar
arguments in the derivation of the theory can be made for arbitrary bodies of revolution (e.g.,
ellipsoids and cones). For example, consider a swimmer consisting of two axisymmetric shapes
of different sizes that are rotating in opposite directions about the axis of symmetry (cf. Fig. 8). We
define length scales for the smaller and the larger of these two bodies through the torque they exert
on the surrounding fluid at Re = 0, i.e.,

LS = —8m poly s, (19)

Z
Lt = 8w puol; ., (20)

where ()’ denotes a dimensional quantity. The requirement of no torque on the combined body thus
gives Q* = Qg/Q = [} /I3 = 1/r**. In the far field from the representation theorem in Newtonian
Stokes flow, these rotating objects produce a rotlet disturbance flow such that their respective flow
fields in isolation are given by [30]

13Qsin @
u;;s - _%, 1)
Ts
o I}Q sin6
Uy =
L

(22)

Note that this is exactly the flow created by a rotating sphere in Stokes flow, with the length scales
ls and [}, taking the place of the sphere’s radius. It follows that to first order in De, the far-field radial
velocities are the most slowly decaying terms in Eqs. (7) and (8), viz.,

3cos?6 — 1

U, ry) = lgszng?, (23)
3cos?6 — 1

ut@,r) = zgszi,\T,Lz (24)

Assuming these far-field velocities are the largest contribution, we can write the propulsive force as
the difference between the force exerted on the larger body by the smaller body and vice versa,

F/PP = Dppuolpuy® (6 = 0, rg = h') = Dsjuolsuy(0 = 70, rp = '), (25)
, 13Q2) 32
F;,pl‘op = DL/'LOIL|: Sh/; i| - DS/'LOIS|: Lh/ZL :|’ (26)
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where we have used an approximation to Faxén’s law for bodies of revolution [30]. Note that /'
is the dimensional distance between the center of mass of each body. Thus we might anticipate a
net propulsive force as before, but now accounting for the particular shape of the two halves of the
swimmer via drag coefficients Dg and D;. By factoring this expression, we can determine under
what conditions we expect propulsion in the positive z direction:

DLlLolnggzg)» 1 DS ls Qilz
2 Dyl Q33 )

F/,prop
Z

sz/,prop — (27)

For self-propulsion in the positive z direction, we need > 0, meaning that the expression
in parentheses in Eq. (27) must be positive. Note though that for the swimmer to be torque-free,
Q1/Qs = 13/13. Thus, for F,"™™" to be positive, indicating propulsion towards the larger body, it
must be the case that

Ds Is Q213

=2z 0, 28
DLl @203 28
D<l 273
Ds Is Qil} <1, (29)
Dy I Q313
D 4
bsls . (30)
D I}

i.e., there is net propulsion if Dyl}/Dsl¢ > 1. Thus, using the effective lengths and the drag
coefficients of the two-body swimmer, the criterion above can be used to predict propulsion by
swirl in viscoelastic fluids.

The drag resulting from translation of the swimmer in the z direction is given by —uo(Dpl, +
Dgls)U/; thus, using only the far-field flow as an approximation and balancing the propulsive and
drag force yields, for U/,

A 31y

wo(Dilp + Dsly)
;L DI 1392 Dy I} 32)

¢ W2(Dyly + Dsls) DI} )
or in dimensionless terms

D.r*D D

U. = L(l - —Sr*4>. (33)
"~ h2(Dp + r*Dy) Dy

To illustrate the utility of our criteria for propulsion in the direction of the larger body,
Dyl}/Dsl¢ > 1, we consider a specific axisymmetric swimmer consisting of a spherical head and
prolate spheroidal tail oriented in the vertical z direction [cf. Fig. 9(a)]. The diameter of the spherical
head is Dy, while the dimensions of the spheroidal tail are given by its polar radius a and equatorial
radius c. To study how the relative sizes of the head and tail affect the direction of propulsion,
we vary the polar radius of the tail while maintaining ¢/R; = 0.75. We consider five such swim-
mers with tail aspect ratios c¢/a equal to 1, 2, 2.75, 3.6, and 4. For each swimmer, we measure
its velocity in the z direction and compute the ratio Dy[}/Dslg for its specific geometry using
formulas provided in [30] to compute translational and rotational resistance coefficients for prolate
spheroids.

The results are shown in Fig. 9(b), where the swimming speed is plotted as a function of the
ratio Dy I} /Dsl§ in the case of De = 1, B = 0.5, h* = 0.05, and ¢/R;, = 0.75. For large values
of DLIZ1 /D5l4, corresponding to relatively short tails, we find that U, > 0. Below a critical value,
however, the velocity changes sign once the tail becomes too long and the swimmer propels
in the direction of the prolate spheroid. From this figure we estimate that the crossover occurs
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FIG. 9. (a) Schematic of an axisymmetric swimmer with a spherical head and prolate spheroidal tail
oriented along the vertical z direction. (b) Swimming velocity U, as a function of the ratio DI} /Dslg‘ for the
case of ¢/R;, = 0.75, De = 1, B = 0.5, and h* = 0.05. From far-field hydrodynamic interactions, we predict
that the swimmer shown in (a) should self-propel in the direction of the spherical head if D/} /Dsl¢ > 1. From
this set of simulations, we find that U, changes sign at a value of approximately 1.3; we expect this value to
converge to unity as 4* increases and the far-field approximation becomes more accurate.

at approximately 1.3, which is remarkably close to our critical value of unity predicted above.
Considering the many far-field assumptions made above, we anticipate that the measured value
of Dy 1} /Dsl§ for which U, changes sign will converge to unity as h* is increased.

C. Extension to different swimming gaits and configurations

We conclude our work by illustrating how the simple theory and physical insight we have
developed can be easily extended to a variety of microswimmer configurations. For example,
consider the situation illustrated in Fig. 10, where the swimmer consists of a large sphere (head)
of diameter D; flanked by two smaller spheres of diameter Dy, each offset from the symmetry
axis by an angle equal to « and located a (dimensional) distance /' from the center of the large
sphere. This swimmer can undergo torque-free motion by rotating each of the smaller spheres at
equal rotation rates directed in opposite directions. We can derive an estimate for the speed of this
swimmer in the z direction, by again considering the net thrust on the microswimmer via Eq. (9) as

FIG. 10. Illustration of a proposed three-sphere swimmer that translates in a viscoelastic fluid by rotating
the two smaller spheres located at its rear.
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FIG. 11. Velocity U, of the three-sphere swimmer illustrated in Fig. 10 atDe =1, 8 = 0.5, and »* = 1. In
(a) the velocity is plotted as a function of the angle « and the size ratio r* and indicates that the speed of the
swimmer U = |U,| is maximized by selecting the smallest angle and largest size ratio possible. Note that the
range of « values considered for each curve is given by & = opin = 1/(1 + 4" + r*) to o« = 7 /2, where amin
is the smallest achievable angle for a given size ratio (i.e., taking into account the finite size of the spheres). In
(b) the velocity is plotted as a function of r*, assuming & = ®py-

well as balancing the net drag of 67 (1 + 2r*), viz.,

v = 29 (1 L) s0 — s = (34)
S g 6 )T e Is=:

Again, splitting U, into the terms including and not including the Laplacian in Eq. (34), i.e., U, =
U2+ UM, we obtain the following result for the speed in the z direction of this three-sphere
swimmer:

Ssd+ 21 + I 4 3r*)(cos )(1 + 3 cos 2a)
21 + h* + r*)5(1 + 2r%)

o3 201+ )34+ 6(14 h*)?r*+ 15(14 h*)r** — 3r**](cos a)(1+ 3 cos 2ar)

6(14 h*+ r*) (14 2r*) '

U? = De(1 — B)r : (35)

UH? = —De(1- B)r
(36)
We can simplify this expression significantly by considering a specific gap distance, e.g., h* = 1:

{80 + 3r*[72 4 r*(46 4+ 13r*)]}(cosa)(1 + 3 cos 2w)
6(2 4+ r*)7(1 + 2r*) )

U, = De(1 — g)r*’ (37)

We illustrate how the velocity in the z direction depends on the tilt angle « and the size ratio r*
in Fig. 11 [assuming De = 1 and g = 0.5 since the dependence on these variables is already clear
from Eq. (37)]. In Fig. 11(a) we see that velocity of the swimmer shows a complex dependence on
a, actually changing sign at an intermediate value of «. The speed |U, | appears to be maximized by
minimizing the tilt angle « and maximizing the size of the smaller spheres, i.e., r*. Note that this is
distinct from the two-sphere swimmer, whose swimming speed vanishes as the size ratio approaches
unity. We suspect that the increase in swimming speed with respect to 7* in this case is analogous to
the mechanism described for the two-sphere swimmer; i.e., an increase in size of the spinning tail
spheres for a fixed rotation rate would lead to more fluid being advected to the rear of the swimmer,
thereby creating a net imbalance of pressure on the entire swimmer that acts as a thrust. Note that
since the head does not rotate, there is no elastic push back on the tail. Of course, as r* increases,
the minimum achievable angle o, increases since the two smaller spheres cannot overlap, and it
is straightforward to calculate this minimum angle using geometry as opmin = r*/(1 + h* + r*). We
plot the velocity of the swimmer assuming & = o in Fig. 11(b). This concludes our analysis of the
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three-sphere swimmer and illustrates how one can quickly generate predictions for the swimming
speed of newly proposed swimmer configurations through the general framework suggested here.

IV. CONCLUSION

In summary, we have examined a simple model swimmer in a viscoelastic fluid that is both
force- and torque-free using analytical and numerical calculations in an effort to understand how the
interaction between swirling flow and fluid elasticity impacts microorganism motility. The theory
and numerical simulations show excellent agreement and predict that the torque-free two-sphere
swimmer translates in the direction of the slower-rotating larger sphere. Furthermore, we predict that
the swimming speed increases nearly linearly with the Deborah number (measuring the elasticity of
the fluid) and 1 — B (i.e., the concentration of polymer in the surrounding fluid). The speed shows
a nonmonotonic dependence on the relative size of the two spheres, r*, with a maximum reached
at a value of r* =~ 0.75. By examining the tractions exerted on the surface of the swimmer and the
surrounding flow field, we find that the swimmer generates thrust from regions of high pressure
surrounding the fast-spinning tail of the swimmer. Upon performing an approximate calculation
using literature values for an actual swimming microorganism, i.e., E. coli, we find that the speeds
predicted are remarkably close to the increase in speed E. coli experiences when transitioning
from swimming in a Newtonian fluid to a viscoelastic fluid. This suggests that the extra thrust
generated from the coupling of rotational to translational motion due to fluid elasticity may be one
of the dominant mechanisms in the speed enhancement experienced by bacteria such as E. coli in
viscoelastic fluids. Finally, we demonstrated how the theory can be quickly extended to different
microswimmer configurations and gaits, illustrating its potential utility, for example, in the design
of new synthetic swimmers that can be used in future studies on the effect of fluid rheology on
motility. We look forward to the verification of our theoretical work via future experiments.
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APPENDIX: DERIVATION OF LUBRICATION THEORY

To derive an approximation of the pressure in the thin-gap region between the two spheres of the
two-sphere swimmer, we apply the lubrication approximation to the flow in the gap [42]. For this
analysis, we operate in a cylindrical coordinate system aligned with the axis of motion and centered
between the two spheres. As is often done in lubrication theory, we approximate the distance of the
two surfaces from the center of the gap using a Taylor series expansion truncated at the quadratic
term, which of course is valid in the limit of A.p/R; < 1 and hgp/Ry < 1,

heep 1 r?
hy = =Py Al
L > 2R, (A1)
L (A2)
ST T 2Ry

where h;, and hg correspond to the distance from the center of the gap of the surfaces of the larger
and the smaller sphere, respectively, and r is the radial coordinate (dimensional) in cylindrical
coordinates. After applying the lubrication approximation, conservation of momentum in the 6
direction is given by

32 ol 10
Ms _M9+ 92_—_[)_0

= = A3
972 9z r 96 (A3)
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In the above, g—g = 0 due to symmetry and all quantities are dimensional (note that this is in contrast
to the main text and is done for clarity in presentation). In the radial direction, conservation of

momentum is given by

@:_ﬁ (A4)
or r

Because the flow in the gap is simple shear flow to leading order (the flow direction being the
azimuthal @ direction), we can write the polymeric shear stress as
am)

az
Combining Egs. (40) and (42), we find that the velocity in the 6 direction is governed by the one-
dimensional Laplace equation

T = [hp (AS)

82149
972
Consequently, the solution must be given by uy = Ci(r)z + C(r), where Ci(r) and C,(r) are

arbitrary functions of ». These functions can be easily found by applying the boundary conditions
at the surface of the large and the small sphere:

=0. (A6)

up(z = hy) = rQ2p = Cihy + G, (A7)
ug(z = —hs) = —rQs = —Cihs + G,. (A3)
Through some simple algebra, we find that C; and C, are given by
QL+ Q
C, = w (A9)
hs + hr
C2 = C]]’ls - I‘Qs. (AIO)

To derive an expression for the pressure in the gap, we must integrate Eq. (A4) with respect to the
radial coordinate. Because the flow is locally simple shear flow, the hoop stress 7}, is given by [29]

3 2
) = 2xup(%) = 221, C2. (A11)
z
The last equality comes from the fact that uy = Cyz + C,. With rgp o, now determined, we can integrate
Eq. (A4) with respect to r, yielding

r CZ(O')
P = Poo — 2mp/ 10 do, (A12)

oo

* Cl(o)

p =t 2oy [ do, (A13)

r

where o is a dummy variable for the radial coordinate and po, = p(r — 00). Upon substituting our
expressions for Cy, hg, and A, into the above integral and performing the integration, we obtain

(Qs + Q)?

T T o Al4
Mpb(hsep + brz) ( )

P=PxtX
where b = %(Rgl + RL_l ). If we divide both sides of this expression by 1£(€2s and make use of our
definitions for Q*, h*, r*, etc. presented in the main text, we arrive at the dimensionless version of

this expression, i.e., Eq. (18).
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The most significant result from this short lubrication theory is found when we integrate this
pressure [i.e., Eq. (A14)] over the surfaces of the large and the small sphere to see if there is a net
thrust created by the high pressure in the gap region, that is,

Ehrust = Fpres,L + Fpres,S (AlS)
Rs Rs
=2r (p — poo)rdr — 21 (p — poo)rdr (A16)
0 0
=0, (A17)

where Fyres 1 and Fpre s are the integrated net forces due to pressure exerted on the large and the
small sphere, respectively. Note that we have only integrated over the inner region where lubrication
theory is expected to hold. It is clear from this that lubrication theory predicts no net propulsion of
the swimmer and that the interaction of the outer region (of size Rs) must be included to describe a
nonzero pressure thrust on the swimmer. Therefore, this region provides terms that go to zero like
some power of Agp/Rs resulting in the propulsion speed being regular as the gap goes to zero. This
justifies our use of Egs. (12) and (13) in the limit of 2* — 0 in the main text and is supported by the
results of Fig. 4.
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