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Quantum repeaters based on concatenated bosonic
and discrete-variable quantum codes
Filip Rozpędek 1✉, Kyungjoo Noh 2, Qian Xu1, Saikat Guha3 and Liang Jiang 1✉

We propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and
continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code
consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On
the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of
the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical
scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-
variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of
the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven
optical modes.
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INTRODUCTION
Quantum cryptographic and quantum computing tasks offer
qualitative advantages over their classical counterparts. However,
in order to implement these tasks, it is essential to be able to
transmit quantum information across long distances. There have
been significant efforts in recent years in designing future large-
scale quantum networks, that could offer such a functionality by
overcoming the exponential signal decay with distance in the
optical fibre through the use of quantum repeaters1,2. Multiple
different types of quantum repeaters have been proposed,
utilising different techniques to overcome losses and operational
errors of the devices.
The original repeater proposals utilise heralded entanglement

generation between repeater stations1,2. These elementary links
can then be connected into end-to-end entanglement using Bell-
measurements at the repeaters. The entanglement rate of these
schemes is significantly limited by the communication time
between repeaters, where the communication is needed to herald
success of both elementary link generation and probabilistic
entanglement distillation used for correcting operational errors.
These limitations can be overcome using one-way quantum
repeaters based on forward error correction2–12. Such repeaters
are not limited by two-way communication, as a stream of qubits,
encoded in a loss-tolerant code, is sent over a multi-hop channel.
A repeater station uses quantum decoding and re-encoding
operations to near-deterministically correct errors (loss and
operational) and forwards the encoded state to the next station.
Most of the repeater schemes belonging to the above two
categories need quantum memories, which could be substituted
by all-photonic entangled states13,14. However, there also exist
one-way schemes which do not require any storage of quantum
information, and where all the operations performed inside the
repeaters involve only optical elements7,11. Yet, the use of a few
matter qubits in such repeaters could enable for more efficient
generation and error correction of the photonic encoded states12.

The significant rate improvement of these error-correction-
based schemes comes at the cost of large physical resource
overhead. Specifically, in order to overcome losses over a 1000 km
path, most one-way and all-photonic architectures would require
the ability to generate, transfer, store, and operate on hundreds or
thousands of highly entangled qubits within each repeater4,7,11–14.
So far, all existing one-way quantum repeaters only considered

quantum error correction based on two-level or multi-level
encoding to correct excitation loss errors, without taking
advantage of the bosonic nature of the quantum channel. Here,
we propose a new type of quantum repeater architecture based
on concatenated quantum error correction, with continuous-
variable (CV) bosonic encoding at the lower level (inner code) and
discrete-variable (DV) encoding at the higher level (outer code).
The specific bosonic code that we consider here is the single-
mode Gottesman–Kitaev–Preskill (GKP) code15, which has been
demonstrated to perform well against photon loss errors given a
suitable encoding strategy16,17. We note that while implementa-
tion of GKP encodings is challenging, there have been experi-
mental demonstrations of approximate GKP states in trapped
ions18,19 and the superconducting microwave cavity20. While
various architectures for quantum computing based on GKP
encodings have been proposed21–26, no corresponding quantum
communication protocol has yet been considered. Similarly as in
the proposed quantum computing architectures with GKP code,
we propose to concatenate the GKP code with a higher-level
multi-qubit code to boost its performance. We show here that if
sufficiently high-quality GKP states can be prepared and operated
on, then long-distance quantum communication can be achieved
by using only few qubits in the higher-level multi-qubit encoding.
Moreover, our repeater architecture is also cost-efficient. This is
because we find that in order to maintain high performance it is
not necessary for all quantum repeaters to be able to perform
error correction on both encoding levels. Specifically, it is sufficient
for the more powerful but at the same time more costly repeaters
correcting errors on both levels to be placed only sporadically,
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with majority of repeaters correcting only the lower-level errors as
shown in Fig. 1. This enables significant reduction of the required
resources as the repeaters correcting only the lower-level errors
need to operate only on single GKP data modes at a time.

RESULTS
GKP repeater chain architecture
In this section, we describe a simple repeater architecture in which
quantum information is encoded in the GKP code and the GKP
repeaters placed along the channel are used to correct errors
arising from the communication through a lossy channel. We will
see that GKP encoding alone together with a specific considered
decoding strategy is not sufficient to achieve long-distance
quantum communication, which motivates the introduction of
the concatenated-coded scheme, described in “Repeater archi-
tecture based on concatenated GKP and discrete-variable codes”
section. Firstly however, we provide some basic information about
the fundamental principles behind the GKP error correction.

GKP-qubit error correction. Similarly to quadrature amplitude
modulation encoding used in classical communication27, we may
use the quantum GKP encoding to correct loss errors. The basic
idea behind the GKP code15 is that while the exact value of two
conjugate continuous observables q̂ and p̂ cannot be measured
simultaneously, the two operators

Ŝq ¼ expði2 ffiffiffi
π

p
q̂Þ; Ŝp ¼ expð�i2

ffiffiffi
π

p
p̂Þ; (1)

which are periodic functions of q̂ and p̂, commute with each other
and therefore can be measured simultaneously. The GKP code
thus encodes a qubit in a two-dimensional subspace of an infinite-
dimensional oscillator space. This subspace is stabilised by these
two operators and the GKP state can be visualised as an infinite,

periodic grid structure in the (q, p) phase space. For the GKP code
based on a square lattice, which we will consider here, the
standard basis states are given as:

0GKPj i ¼ P
n2Z

q ¼ 2n
ffiffiffi
π

pj i;

1GKPj i ¼ P
n2Z

q ¼ ð2nþ 1Þ ffiffiffi
π

pj i: (2)

Similarly the GKP X basis logical states are:

þGKPj i ¼ P
n2Z

p ¼ 2n
ffiffiffi
π

pj i;

�GKPj i ¼ P
n2Z

p ¼ ð2nþ 1Þ ffiffiffi
π

pj i: (3)

We can see that the grid corresponding to the basis state 0j i
( þj i) is shifted by

ffiffiffi
π

p
along the q̂ (p̂) quadrature with respect to

1j i ( �j i). Hence, by measuring the two stabilisers, which amounts
to measuring both q̂ and p̂ quadratures of the GKP state moduloffiffiffi
π

p
, we can detect and correct any small shifts (of size smaller thanffiffiffi

π
p

=2) in both quadratures, in a way that does not reveal the
encoded logical information.
The two GKP stabilisers can in fact be measured using

additional GKP ancilla modes through a Steane error-correction
process. Application of a two-mode operation between the GKP
data mode and the GKP ancilla can transfer the information about
the noise from the data qubit onto the ancilla in such a way that
the logical information is not revealed. Hence, measuring the
ancilla and applying a feedback displacement based on the
measurement outcome enables GKP quantum error correction.
More detailed information about this procedure can be found in
Supplementary Note 1.
We note here that an ideal GKP state corresponds to a

superposition of infinitely many infinitely squeezed states hence

Fig. 1 The proposed hybrid concatenated-coded repeater architecture. a The Wigner function of the single-mode imperfect GKP state is
depicted in the enlarged inset. We propose to use two levels of encoding and on the second level multiple single-mode GKP qubits are
entangled together (marked with an orange ribbon) to encode a single logical qubit. The repeater architecture makes use of two types of
repeaters. The first type are type-B repeaters (marked as blue), which can correct small displacement errors on the single GKP qubits that are
sequentially transmitted between those stations. A displacement larger than the critical value cannot be corrected by the type-B repeaters
and results in a logical error at the GKP level after the GKP correction (marked by the red GKP qubit). Therefore we sporadically introduce more
powerful (and costly) type-A repeaters (marked as green) which store all the subsequently arriving GKP qubits from a given second-level-
encoded block. By jointly operating on all such qubits, the type-A repeaters can efficiently correct logical errors from the failed GKP
corrections at the lower level. b High-level depiction of the operations performed in each repeater type. Type-B repeater corrects small
random displacement errors in both q̂ and p̂ quadratures by measuring the stabilisers of the GKP code. Type-A repeater additionally corrects
higher-level X and Z errors corresponding to the logical errors on the GKP level. These errors are corrected by measuring the Z and X stabilisers
of the outer code. A detailed description of these operations for the type-B repeaters is provided in Supplementary Note 5 and for the type-A
repeaters in Supplementary Note 7.
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requiring infinite energy. Such states are unphysical and realistic
GKP states have finite amount of squeezing, see “Realistic GKP
states” section. This means that the information obtained from the
measurement on the GKP ancilla is effectively noisy and therefore
the feedback displacement will not bring the data state exactly to
the logical space, but will leave some residual displacement
reflecting the finite amount of squeezing of the GKP ancilla. Here,
we consider a specific strategy of rescaling the measured GKP
syndrome by a real number c∈ (0, 1] before applying the
feedback displacement24,28,29. The value of c depends on the
relation between the channel noise and the amount of GKP
squeezing and is chosen such that the variance of the residual
displacement after the feedback correction can be minimised, see
Supplementary Note 2 for details.
In practice, communication channels are corrupted by loss, not

a shift in phase space. Nevertheless, it is known that the GKP code
also works well against loss errors. This is because the sender can
phase-insensitively amplify the GKP states (with a gain determined
by the expected loss) such that the action of the effective channel
results in random shift errors, which the GKP code is designed to
correct for17,30–32. This strategy is described in more detail in
Supplementary Note 3.

Repeater model. In the considered architecture quantum infor-
mation encoded in the GKP qubits is sent through the repeater
chain as follows. After Alice performs the encoding operation, she
applies the phase-insensitive amplification and sends the GKP
qubit through the lossy channel towards the first GKP repeater.
The repeater performs GKP correction first in q̂ and then in
p̂ quadrature. After that it again applies the phase-insensitive
amplification and sends the state to the next repeater. In this way
the encoded qubit can effectively be transmitted to Bob. In our
model, we consider two sources of imperfections apart from loss
in the communication channel. Firstly, we assume a finite photon
in-coupling and out-coupling efficiency η0, which quantifies the
efficiency of transferring the photon from the fibre to the repeater
and back into the fibre. Hence, the total transmissivity of the lossy
channel between two neighbouring repeaters separated by the
distance L is:

η ¼ η0e
�L=L0 ; (4)

where L0 is the attenuation length of the channel. Here we assume
transmission at telecom frequency at which L0= 22 km. The
second imperfection we consider is the finite amount of GKP
squeezing. Under finite squeezing the GKP grid does not consist of
delta functions but of Gaussian peaks with an overlaying envelope
function, such that the peaks in the Wigner function decay to zero
height in the limit of large quadrature values. The standard
deviation of these finitely squeezed Gaussian peaks is given by
σGKP, and the amount of squeezing can also be quantified by
comparing σGKP to the standard deviation of a Gaussian peak of a
coherent state given by 1=

ffiffiffi
2

p
. Hence squeezing expressed in dB

can be defined as:

s ¼ �10 log10ð2σ2GKP Þ: (5)

In our analysis, similarly to26, we consider a conservative error
model which allows us to describe a finitely squeezed GKP qubit
as an ideal GKP state subjected to a random displacement
according to a probability distribution parameterised by σGKP, see
“Realistic GKP states” section for details. Since both finite GKP
squeezing and the channel noise lead now to random displace-
ment errors, we can reliably approximate the repeater perfor-
mance by considering perfect error correction using infinitely
squeezed ancillas, which however is now performed on the data
qubits subjected to an effective communication channel. This
effective channel now includes not only the noise coming from η

defined in Eq. (4) but also from non-zero σGKP. That is we consider
an approximation in which the noise from finite squeezing can be
effectively incorporated into the channel, and combined with the
noise due to photon loss. This approximation enables us to
construct a simple analytical model through which we can
efficiently evaluate repeater performance, including optimisation
over repeater spacing. We validate this analytical model against a
numerical Monte-Carlo simulation, see Supplementary Notes 4
and 5 for more information about the model.

Performance of the GKP repeater chain. We quantify the
performance of our scheme by calculating the achievable secret-
key rate in bits per optical mode r0. This is a fundamental
information-theoretic quantity that plays a key role in the studies
of quantum communication33,34, and the units of bits per mode
are also often referred to as bits per channel use or bits per
channel use per mode. We consider a six-state quantum key
distribution (QKD) protocol35 supplemented with the two-way
post-processing scheme called advantage distillation36. This
scheme enables Alice and Bob to filter out a large fraction of
erroneous rounds thus significantly increasing the achievable key
rate in the high-noise regime. Specifically, we consider the
advantage distillation protocol of37 which for all noise regimes
allows us to generate more key than with standard one-way post-
processing. Moreover, since in the GKP error correction we
independently correct errors in the q̂ and p̂ quadratures, the
probability of a Y flip is quadratically suppressed. This is because a
logical Y-error can only happen if there is both a logical X and Z
error. This asymmetry leads to the fact that the quantum bit error
rate (QBER) will be much larger in the Y basis than in the X and Z
basis. Therefore, we can make use of the result of38 where it is
shown that if advantage distillation is used, we will obtain the
highest secret-key rate by using the basis with the highest QBER
for key generation. See Supplementary Note 8 for more details on
the discussed QKD protocol and Supplementary Note 5 for details
on evaluating QBER for the GKP repeater chain.
We list the results in the top left table in Fig. 3. Specifically, we

list the achievable distances over which secret-key rate in bits per
optical mode stays above r0 ¼ 0:01. We choose this specific value
as a threshold as it allows us for an easy comparison of our scheme
with the PLOB bound34, which corresponds to the two-way
assisted capacity of the pure-loss channel. This quantity describes
the ultimate limit of repeater-less quantum communication. For
perfect devices and as a function of the communication distance
Ltot it is given by KðLtotÞ ¼ �log2ð1� expð�Ltot=L0ÞÞ. While it
drops below K(Ltot)= 0.01 after Ltot= 109 km, it stays positive for
all distances Ltot. However, the amount of key that can be
generated through such direct transmission becomes negligible for
large distances. On the other hand, the secret-key rate of our
repeater schemes starts dropping rapidly to zero at certain
distance Ltot such that the distance at which its value is given by
r0 ¼ 0:01 is close to the distance at which it falls to zero. This is due
to the fact that the effective channel modelling the transmission
through our repeater schemes is the Pauli channel, see “Monte-
Carlo simulation” section and Supplementary Note 8. These
features can also be seen in Fig. 5 for our concatenated-coded
schemes. Hence, the threshold value of 0.01 provides a good
reference that allows us to investigate the communication
distances for which the amount of generated key is non-negligible.
For each set of parameters we optimise the repeater separation

such that the generated secret-key rate can be maximised, with the
restriction that the minimum repeater separation is 250 m. We find
that for all the parameter configurations, for which the achievable
distance is larger than 100 km, the optimal repeater spacing that
maximises secret-key rate at that achievable distance is always the
minimum separation of 250 m. The main conclusion drawn from
the obtained data is that in order to achieve communication over
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distances of 1000 km and larger, close to perfect photon coupling
efficiency is needed with unrealistically high amount of GKP
squeezing. This means that for the GKP encoding/decoding
strategy based on phase-insensitive amplification, GKP code alone
is not sufficient for achieving practical long-distance quantum
communication. This motivates us to introduce the second level of
encoding.

Repeater architecture based on concatenated GKP and
discrete-variable codes
Random displacements with components along the q and p axes
that are larger in magnitude than

ffiffiffi
π

p
=2 are not correctable by the

GKP code alone. Therefore we consider a second level of
encoding, either with a [[4,1,2]] code39 that encodes one logical
qubit in four modes (i.e., four GKP qubits) or with [[7,1,3]] Steane
code40, which encodes one logical qubit in seven modes (i.e.,
seven GKP qubits). This higher-level encoding enables us to
correct logical GKP errors and hence effectively to correct
displacements with magnitude larger than

ffiffiffi
π

p
=2.

Concatenated-coded repeater architecture. We consider a hybrid
repeater architecture in a linear chain, with N type-A (outer code)
repeater nodes and mN type-B (inner code) repeater nodes (where
m is an integer we optimise) such that there are m type-B nodes
(also referred to as GKP nodes) between consecutive type-A nodes
(also referred to as multi-qubit nodes). Distance between
consecutive repeater nodes (regardless of their type) is taken to
be a constant we optimise. A type-A node waits to receive 4 (7)
modes—of a 4-GKP-qubit-encoded (7-GKP-qubit-encoded) single
logical qubit in a [[4,1,2]] code ([[7,1,3]] Steane code), corrupted by
noise—performs a GKP error correction described in “GKP
repeater chain architecture” section on all the modes followed
by the outer-code error correction, and transmits in sequence the
4 (7) GKP modes of the 4-mode-entangled (7-mode-entangled)
state to the next hop (a type-B node). A type-B node simply
applies GKP error correction as in the GKP repeater chain to each
received mode, and sends it to the next node (which could be
type-A or type-B).
We note that in order to maximise repeater performance,

repeater architecture utilising only the more powerful type-A
nodes would in most cases be sufficient. However, this would
necessitate a dense placement of these multi-qubit nodes, which
require more quantum memory and processing, and are more
resource expensive than type-B nodes. Therefore we will show
that in order to optimise the performance-cost trade-off, it is
beneficial to consider the hybrid architecture consisting of both
types of nodes. We depict our repeater architecture in Fig. 1.
Further details of our concatenated-coded repeater scheme are
described in Supplementary Notes 6 and 7.

GKP analogue information. The feature of our repeater scheme
that enables us to significantly boost its performance with respect
to other one-way repeater architectures based on error correction,
is the use of analogue continuous information from the GKP
corrections at both type-B and type-A nodes in order to enhance
the correcting capabilities of the outer code41. Specifically,
measuring the GKP syndrome amounts to measuring each of
the quadratures modulo

ffiffiffi
π

p
, such that the syndrome is a number

from a continuous interval ½� ffiffiffi
π

p
=2;

ffiffiffi
π

p
=2Þ. If the measured value

is close to the boundary of this interval, there is a higher
probability that the correction back to the logical GKP space will
result in a logical error. This observation can be made
mathematically rigorous, that is for a given measured syndrome
value an error likelihood during correction can be established. This
additional syndrome information, when passed from the type-B
GKP repeater nodes to the type-A (multi-qubit) repeater nodes,
enables the latter to correct more errors that are otherwise not

correctable by the [[4,1,2]] and [[7,1,3]] codes. Specifically, for Pauli
errors the [[4,1,2]] outer code is only an error-detection code that
cannot correct any errors while the [[7,1,3]] outer code can
normally correct only single-qubit errors. However, as shown in
ref. 41, by utilising the continuous GKP syndrome information the
[[4,1,2]] outer code can be transformed into an error-correction
code, which can correct most of single-qubit errors. We also find
that with the analogue information the [[7,1,3]] outer code can
correct most of both single-qubit and two-qubit errors. See
Supplementary Notes 1, 6, and 7 for mathematical details on
calculating error likelihood from the analogue information for our
schemes.
We illustrate the benefit of the analogue GKP information in

Fig. 2, where we consider a simple scenario in which Alice
performs perfect encoding, applies phase-insensitive amplification
to all the GKP qubits and then transmits the encoded state
through the pure-loss channel with photon loss probability γ=
1− η. Bob then firstly performs a round of perfect (i.e., using
infinitely squeezed ancilla modes) GKP correction on all the GKP
qubits followed by the perfect outer-code correction. We then plot
the maximum infidelity versus the loss probability γ for the single-
mode GKP encoding and the two-level-coded scheme. The
maximum infidelity is given by one minus fidelity between the
input state of Alice and the output state after transmission and
correction of Bob. The specific input state is the state that
minimises the fidelity or equivalently maximises the infidelity, see
Supplementary Note 9 for more details. For the case when the
[[7,1,3]] outer code is used, we plot separately the scenarios in
which we do and do not make use of the additional analogue
information from the GKP correction round. We see that making
use of this information provides a significant performance boost
for our two-level-coded scheme. We also see that the
concatenated-coded schemes improve the performance with
respect to just GKP encoding. Furthermore, we see that for low
loss, if we use the [[7,1,3]] outer code but do not make use of the
analogue information, the performance becomes similar to that of
the scheme based on the [[4,1,2]] outer code, as both
architectures can then correct only single-qubit errors. For larger

0.08 0.1 0.12 0.14 0.16 0.18 0.2
10-6

10-4

10-2
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M
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Maximum infidelity vs photon loss probability 

only [[4,1,2]]
only GKP
[[7,1,3]] with GKP, no analog info
[[4,1,2]] with GKP
[[7,1,3]] with GKP

Fig. 2 Maximum infidelity (maximised over all input states)
versus photon loss probability γ for the different considered
encoding schemes. We consider a scenario where Alice performs
the encoding and sends the state to Bob, who performs error
correction. For all plotted schemes apart from the “only [[4,1,2]]”
scheme it is the GKP error correction, followed by the second-level
error correction for the concatenated-coded schemes. We assume
correction using infinitely squeezed ancilla modes, so that after
correction the state will be in the code space, either with errors
corrected or with a logical error. Additionally, we plot the maximum
infidelity of 5γ2 for the purely discrete-variable scheme based on the
[[4,1,2]] code (dotted green) as proposed in ref. 42. The curves for all
the schemes apart from the “only [[4,1,2]]” scenario have been
obtained from the simulated data and the relative error on the
maximum infidelity is around 7% for all the data points, see “Monte-
Carlo simulation” section for details.
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losses the scheme based on the [[4,1,2]] outer code performs even
better, because less qubits are used resulting in a smaller
probability of an uncorrectable two-qubit error after GKP
correction. The fact that these two schemes achieve a similar
performance further justifies the capability of the analogue
information to transform the error-detecting code into an error-
correcting code originally observed in ref. 41.
Additionally we also compare the performance of our GKP-

based schemes with a purely discrete-variable qubit scheme
based on the [[4,1,2]] code42. Specifically, it has been shown that
while this code is only an error-detection code against Pauli errors,
it can be used for approximate error correction against a qubit
amplitude damping channel, which corresponds to the pure-loss
channel restricted to the vacuum and single-photon subspace. We
see in Fig. 2 that making use of the full infinite-dimensional space
with the GKP-based encodings that convert the action of the pure-
loss channel into a random displacement channel allows for better
performance than using only a qubit space of four optical modes
against the amplitude damping channel. We note that we
consider this additional strategy based on the purely discrete-
variable encoding only in Fig. 2. Therefore in the following
sections whenever we refer to the schemes based on the [[4,1,2]]
code and the [[7,1,3]] code, we always refer to the concatenated-
coded schemes with the GKP encoding at the lower level.

Performance of the concatenated-coded repeater architecture. We
again assess the performance of our repeater scheme for the task
of generating shared secret key using the six-state QKD protocol
with advantage distillation. We note that the two considered outer
codes also correct the X and Z errors independently, similarly to
the GKP code. This means that the quadratic suppression of Y-
errors also applies to the concatenated-coded scheme. Therefore
we can continue to make use of the result of38 and maximise the
key by extracting it in Y basis. We note that Alice and Bob extract
secret keys from the logical qubits. Hence, secret-key rate in bits
per mode is calculated by dividing secret-key rates in bits per

logical qubit, by 4 for the case of the [[4,1,2]] outer code and by 7
for the case of the [[7,1,3]] outer code. We again refer the reader to
Supplementary Note 8 for the discussion of the considered QKD
protocol.
We perform Monte-Carlo simulation for the evolution of errors in

the ðq̂; p̂Þ quadratures in our repeater scheme. From the simulation
we estimate the quantum bit error rate (QBER) and calculate the
expected asymptotic secret-key rate. We run the simulation for
different placements of the type-A and type-B repeater nodes.
Specifically, we assume at least one type-A station per 10 km. We
then consider denser configurations with more type-A stations and
for each of these cases we vary m, the number of type-B stations
placed between neighbouring type-A stations. We consider all
such configurations for which, similarly as in the case of the GKP
repeater chain, the minimum separation between the neighbour-
ing stations is 250 m, that is the sum of the number of type-A and
type-B stations per 10 km cannot exceed 40. We describe the
details of the simulation in “Monte-Carlo simulation” section.
In the first step we consider only the repeater performance, that

is we look for the repeater placement configuration that maximises
the achievable secret-key rate. We look for the achievable
distances with the concatenated-coded schemes, for which the
achievable secret-key rate in bits per mode is larger than r0 ¼ 0:01.
The results are presented in the bottom two tables in Fig. 3. We see
that the achievable distances are much larger and can be attained
with more relaxed parameters than for the GKP repeater scheme.
Specifically, for η0= 0.97, the architecture based on the [[4,1,2]]
code ([[7,1,3]] code) enables to achieve secret-key rate per optical
mode larger 0.01 for total distances larger than 1000 km already
with 16.2 dB (14.7 dB) of squeezing. For the [[7,1,3]] code achieving
such secret-key rate for total distance close to 1000 km is also
possible with much lower photon coupling efficiency of η0= 0.93 if
17.9 dB of GKP squeezing is considered.
All the values from the tables in Fig. 3, can also be compared

against the PLOB bound34 introduced in “GKP repeater chain
architecture” section and describing the limits of direct transmission.

Fig. 3 Achievable distances (km) over which secret-key rate in bits per mode stays above r0 ¼ 0:01 for the three considered repeater
architectures. We see that using two levels of encoding allows for achieving larger distances with more relaxed hardware parameters than
just a single level of GKP encoding alone. For comparison, the corresponding distance over which the capacity of the pure-loss channel drops
to K(Ltot)= 0.01 when perfect devices and the same attenuation length are considered is Ltot= 109 km. This is the distance over which we
could maintain the secret-key rate per optical mode larger than 0.01 if we did not have access to quantum repeaters but could perform direct
communication using optimal encoding and decoding strategy with perfect hardware. For the “only GKP” case, the data were obtained using
ten iterations of the binary search method over distance in the interval [0, 10,000] km resulting in approximately 10 km accuracy, where for
each of the considered distances the secret-key rate was evaluated using the analytical model described in Supplementary Note 5. For the
concatenated-coded schemes we performed numerical Monte-Carlo simulations such that the effective error on the achievable distances is
around 10%, see “Monte-Carlo simulation” section for details.
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Since its value drops below K(Ltot)= 0.01 after Ltot= 109 km, we see
that for most considered parameter regimes the concatenated-
coded schemes easily overcome the optimal direct transmission.
The relaxed hardware requirements, large achievable distances and
performance against the PLOB bound show that our concatenated-
coded schemes are promising architectures for long-distance
quantum communication.

Performance versus cost trade-off of the concatenated-coded
repeater architecture. Clearly the more costly denser placement
of type-A repeaters results in better performance. Therefore in the
second step we also take the repeater cost into account.
Specifically, for each end-to-end distance we aim to minimise
the normalised cost function defined as

C0 ¼ Resources used per km
achieved secret-key rate permode

: (6)

The natural way of counting the resources will clearly depend on
the physical implementation of our scheme. Here, we count the
resources by considering the needed number of GKP storage
modes and the storage duration needed for these modes in both
types of repeater nodes, see “Cost function” section for
mathematical definition of the cost function. Specifically we
consider not only the storage of the data modes, but also of the
ancilla modes needed for error correction. We consider a
discretization of all the operations into time steps, where one
time step is needed either for preparing a GKP ancilla state or for
performing all the two-mode Gaussian operations between a
single data mode and the ancilla mode for the purpose of the
inner or outer code stabiliser measurement. We describe the
details of our scheduling procedure in Supplementary Note 10. For
each of the needed storage modes, we count the number of time
steps that this mode must be able to store the state for without
losing or decohering it. Then we sum the number of these time
steps for all the needed storage modes inside each repeater type
to obtain the total cost of placing a given repeater. This way of
estimating repeater cost applies e.g., to an architecture in which
the repeaters would consist of coupled cavities, where each cavity
is effectively used as a quantum memory for a single GKP mode
during the correction operations. We discuss possible implemen-
tations in more detail in “Discussion” section as well as in “Cost
function” section.
For the above discussed strategy of estimating the resources,

the exact cost values are explicitly stated in “Cost function” section
and derived in Supplementary Note 10. Here, we just note that in
our architecture we add additional operations inside type-A
repeaters, which aim at decreasing the noise effect of finite GKP
squeezing. This includes performing additional GKP corrections
between multi-qubit stabiliser measurements, and repeating the
measurement of the second-level syndrome for better measure-
ment reliability. As a result, we find that for the proposed
scheduling of the operations the type-A repeater for the [[4,1,2]]
code costs around 17 times more than the type-B repeater, while
the type-A repeater for the [[7,1,3]] code costs around 78 times
more than the type-B repeater. The numerator in the cost function
in Eq. (6) is just the sum of the costs of Alice’s encoding station,
and all the repeaters in the given configuration (including Bob’s
decoding station which also performs quantum error correction
and can be treated as a type-A repeater, see Supplementary Note
8 for more details) over the total communication distance Ltot,
divided by this distance in km, see “Cost function” section for
more detail. We note that while we do not specify the scheduling
of operations at Alice’s encoding station, higher-level encoding
from GKP qubits can be achieved by performing the same type of
operations as performed inside repeaters. These include CV two-
qubit Clifford gates and additional GKP corrections to limit the
accumulation of errors due to finite squeezing in GKP modes. We
have verified that such a procedure enables reliable higher-level

encoding, where the probability of a logical error on any of the
GKP data qubits during this procedure is smaller than the
corresponding probability of error due to performing operations
with finitely squeezed GKP ancilla modes during error-correction
inside the type-A repeaters. The complexity of such an encoding
does not exceed the corresponding complexity of operations
performed inside the type-A repeater, and therefore in the cost
function we assign to the encoding the same cost as to the type-A
repeater. In our analysis, the cost function is minimised
independently for each distance over all the repeater placement
configurations.
Here, we perform the cost function analysis for the scenario

with η0= 0.97 and with 17.9 dB of squeezing corresponding to
σGKP= 0.09. In Fig. 4 we depict the optimal repeater placement
configuration for each distance for the concatenated-coded
architectures. We plot the optimal number of repeaters per
10 km for the hybrid architecture and for comparison for the
architecture that uses only type-A repeaters. We see that the
hybrid architecture enables us to use less of the expensive type-A
repeaters thanks to the help of the cheaper type-B repeaters.
Since type-B repeaters are cheap, we see that already for shorter
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Fig. 4 Optimal repeater configuration which minimises the cost
function for the concatenated-coded schemes. The figure shows
the optimal repeater placement for the architectures based on the
[[4,1,2]] code and [[7,1,3]] code versus communication distance. We
show the optimal number of type-A repeaters (solid green), type-B
repeaters (solid blue) as well as the number of stations in the
architecture that uses only type-A repeaters (dotted red). The
considered parameters are η0= 0.97 and σGKP= 0.09. We see that
using the hybrid scheme allows for reducing the density of the more
costly type-A repeaters, with respect to the scheme that uses only
type-A repeaters. We also see that since the [[7,1,3]] code type-A
repeaters are powerful but costly, we need much less of them than
the [[4,1,2]] code type-A repeaters. The type-B repeaters are cheap
and so already for shorter distances it is beneficial to place them
densely. For the scheme based on the [[4,1,2]] code we observe that
for distances larger than around 2500 km the architecture utilising
only type-A repeaters becomes optimal. The effect of the simulation
error is described in “Monte-Carlo simulation” section.
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distances it is optimal to place them densely. Moreover, we see
that since the [[7,1,3]] code repeaters are more powerful than
[[4,1,2]] code repeaters, we need less of the former ones in the first
architecture than we need of the latter ones in the second one.
We also observe that for the hybrid architectures the optimal
number of type-A repeaters increases monotonically with
distance, and the stepwise increase of this number may result in
a stepwise decrease of the optimal number of type-B stations.
We also describe the behaviour of the secret key under the cost

function minimisation. Again, for each of the two second-level
codes, we consider two architectures, one using only type-A
stations and the second one using both types of repeaters. Let us
then consider the amount of secret key in bits per mode r0 that
can be generated by each of these schemes. We plot r0 for all the
four architectures in Fig. 5. We see that the architectures based on
the [[4,1,2]] code ([[7,1,3]] code) achieve r0 > 0:02 (r0 > 0:06) for all
the distances up to 10,000 km. While under the cost function
minimisation the hybrid schemes generate for most distances
slightly less key than the corresponding schemes based only on

type-A stations, there is no significant difference in performance
trend with distance between these two schemes. The overall “zig-
zag” shape of the curves is caused by discrete changes in the
optimal repeater placement configurations with changing dis-
tance. We also see that for most distances the [[4,1,2]] code
architectures can generate more key per optical mode than the
corresponding [[7,1,3]] code architectures, since the former ones
need less modes to transmit a logical qubit. However, we see that
after around 4000 km the key starts decaying for the architectures
based on the [[4,1,2]] code. This reveals that the [[4,1,2]] code
schemes will not be able to sustain secret-key generation
for distances much larger than 10,000 km. On the other hand
the [[7,1,3]] code architectures maintain a steady r0 for all
the distances.
This conclusion can be also drawn from the consideration of

the simulation error. Specifically, since the simulation data has at
most 10% relative error, we have also investigated the
corresponding behaviour for the upper-bound on the simulated
logical X and Z flip probabilities. In particular, we have minimised
the cost-function and investigated the resulting secret-key rate
for the scenario, when the obtained X and Z flip probabilities are
increased by 10% for all the repeater placement configurations.
We find that this does not have any significant effect on the
architectures based on the [[7,1,3]] code, that is the secret-key
rate still stays such that r0 > 0:06 for all the distances. However, for
the [[4,1,2]] code schemes r0 drops below 0.02 for 10,000 km now.
This supports the observation that for the considered parameters
the [[7,1,3]] code architectures remain robust even at such large
distances. On the other hand, the [[4,1,2]] code schemes, which
for distances close to 10,000 km require placement of type-A
repeaters almost every 250 m, become sensitive to noise at these
distances.
We note that for comparison in Fig. 5 we also plot the PLOB

bound34. We see that for the considered set of parameters all our
architectures overcome the PLOB bound already for distances
much smaller than 100 km.
The final question is how the costs of these different schemes

compare. We plot the normalised cost function for all these
schemes in Fig. 6. Since we have already verified that the
performances of the hybrid scheme and the scheme utilising only
type-A repeaters are similar, we conclude from this plot that the
hybrid architecture enables us to save a lot of resources in
comparison to the architecture based only on the more expensive
type-A repeaters. This is because the performance benefits of
using the more expensive type-A repeaters can be maintained by
replacing some of them with the cheaper type-B repeaters.
Secondly, we see that for shorter distances it is more resource-
efficient to use the architecture based on the [[4,1,2]] code, while
for larger distances the [[7,1,3]] architecture is preferable. This is
linked to the fact that the type-A repeaters in the [[7,1,3]] code
architecture are more expensive but also more powerful than the
type-A repeaters in the [[4,1,2]] code architecture. For smaller
overall losses at shorter distances these larger powerful repeaters
are not necessary, while for larger distances they are more
efficient at overcoming the overall high losses.

DISCUSSION
Let us now discuss the experimental challenges related to our
scheme. These will naturally depend on its physical implementa-
tion. In our cost-function analysis we have assumed an
architecture, where all the GKP modes need to be placed in
effective quantum memories for the duration of the error-
correction operations. A possible implementation of such a CV-
quantum memory that allows for preparation of the highly non-
classical GKP state as well as GKP error correction is a super-
conducting microwave cavity as experimentally demonstrated in
ref. 20. Storing GKP data and ancilla modes in coupled microwave

101 102 103 104

Distance (km)

0

0.05

0.1

0.15

0.2

0.25

0.3

S
ec

re
t-

ke
y 

ra
te

 r
' (

bi
ts

 p
er

 m
od

e)

Secret-key rate r' vs distance, [[4,1,2]] code

Hybrid
Only type-A repeaters
PLOB bound
Saturation secret key

101 102 103 104

Distance (km)

0

0.05

0.1

0.15

0.2

0.25

0.3

S
ec

re
t-

ke
y 

ra
te

 r
' (

bi
ts

 p
er

 m
od

e)

Secret-key rate r' vs distance, [[7,1,3]] code

Hybrid
Only type-A repeaters
PLOB bound
Saturation secret key

Fig. 5 Secret-key rate in bits per optical mode r0 versus distance
(km) for the concatenated-coded schemes. We consider four
schemes: two schemes based on the [[4,1,2]] code and two schemes
based on the [[7,1,3]] code for η0= 0.97 and σGKP= 0.09. The blue
solid lines correspond to the strategy with two types of repeaters,
type-A and type-B stations, while the red dotted lines correspond to
the schemes for which only multi-qubit repeaters are used. We see
that the hybrid schemes exhibit similar performance as the schemes
with only type-A stations. We also plot the PLOB bound,
corresponding to the two-way assisted secret-key capacity of the
pure-loss channel and therefore the ultimate limit of repeater-less
quantum communication with perfect devices. Finally, we mark the
saturation secret key, which is the maximum value r0max attainable
with zero QBER. For the [[4,1,2]] code it is 1/4 and for the [[7,1,3]]
code it is 1/7. We observe that the overall trend for the [[7,1,3]] code
schemes is that they maintain a steady secret-fraction r0 for all
the considered distances while for the [[4,1,2]] code architectures
the key starts decreasing for larger distances. All the schemes easily
overcome the PLOB bound already for distances much smaller than
100 km. The effect of the simulation error is described in “Monte-
Carlo simulation” section.
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cavities at the repeater nodes would clearly require an efficient
transduction between the telecom optical channel and the
microwave regime43–47.
On the other hand one could also consider an all-optical

implementation, where all the repeaters perform error correction
online on the flying GKP qubits stored and coupled to ancilla GKP
modes directly in the optical fibre. Such an implementation would
be similar in spirit to the all-photonic repeaters13,14. Since storage
of additional GKP modes in the same spool of optical fibre does
not require additional quantum memories, the resource cost
analysis for such an all-optical implementation will clearly differ
from the one using the microwave-cavity-based repeaters. Since
the all-optical preparation of GKP states remains a significant
experimental challenge48–52, the cost analysis presented here and
the corresponding scheduling of operations discussed in Supple-
mentary Note 10 are performed with respect to a model which is
more suitable for the microwave cavity implementation.
Let us now compare the hardware requirements of our scheme

with respect to other error-correction-based repeater proposals.
The requirement on the photon coupling efficiency for our
scheme is similar as for the proposed error-correction-based
repeater architectures utilising discrete-variable encoding using
tree codes and parity codes4,7,11–14. On the other hand the need
for operating on large number of modes/qubits, which is required
for these schemes is removed in our scheme at the expense of the
requirement for being able to prepare highly non-classical and
highly squeezed GKP states in each of these few modes. We note
that while for the discrete-variable encodings large number of
entangled qubits are needed, the number of required entangled
photons can be significantly reduced by multiplexing which
allows for encoding multiple qubits in a single photon53. In fact, if
the average number of photons needed for the encoding is
considered to be the main resource, then the relative cost of
utilising such multiplexed schemes versus single-mode GKP
encoding for combating photon loss depends on the channel
transmissivity, see ref. 53.

The experimentally demonstrated amount of GKP squeezing is
in the regime 7.5–9.5 dB18–20. Therefore more experimental
progress is needed in order to achieve the required levels of
squeezing predicted by our analysis. It would also be beneficial to
study the effect of finite gate fidelity and finite storage time in our
architecture26. Furthermore, Steane error correction for GKP qubits
has been demonstrated using an ancilla transmon qubit20. Hence
experimental procedures for using ancilla GKP modes need to be
developed as well as the procedures for encoding and decoding
the proposed two-level-coded qubits.
We note that our motivation for using the metric of secret-key

rate in bits per optical mode as a way of assessing the repeater
performance comes from the fact that this figure of merit has a
clear operational meaning and quantifies the feasibility of a
specific quantum communication task. Moreover, closely related
figure of merits are also throughput and latency which quantify
how much secret key can be generated per unit time, and how
long it takes to generate the first raw key bit, respectively. We
discuss the performance of our schemes with respect to these
metrics in Supplementary Note 11. However, the considered
repeater schemes can also enable and facilitate implementation of
various tasks other than QKD. Specifically, the deterministic nature
of these schemes could enable deterministic quantum state
transfer as well as deterministic remote entanglement generation.
It is important to mention that the GKP encoding/decoding

strategy based on effectively converting the pure-loss channel
into the Gaussian random displacement channel using phase-
insensitive amplification is an achievable strategy but not an
optimal one. There exists a numerical proof based on semi-
definite optimisation, that a more efficient strategy of using GKP
codes against the pure-loss channel exists16. It is plausible that
under the optimal decoding strategy, the single-mode GKP
architecture with coupling efficiency and squeezing levels similar
to the ones considered in our concatenated-coded schemes will
be sufficient for long-distance quantum communication. However,
the numerical nature of this proof makes it difficult to extract from
the solution the corresponding decoding procedure. In particular
such an optimal decoding procedure might require much more
complex operations than phase-insensitive amplification as well as
the need to use large number of ancilla systems. Therefore, further
study is needed to establish the optimal decoding procedure for
correcting loss errors using GKP code, and to evaluate its
complexity and experimental feasibility.
Let us now summarise the future outlook of this work. Firstly,

utilisation of microwave cavities in long-distance quantum
communication will require experimental realisation of highly
efficient transduction between the microwave and optical
regimes47. An alternative solution would be an all-optical realisa-
tion which would require implementation of GKP state preparation
directly in the optical regime48–52. Secondly, it could also be
beneficial to incorporate autonomous GKP error correction into our
procedure which does not require active measurements and
feedback19,54. This technique could potentially be more efficient
than the considered GKP Steane error correction, though it would
not provide us with the additional analogue information which we
have seen plays a crucial role in the performance of the
concatenated-coded schemes. Thirdly, additional improvements
could come from investigation of the optimal decoding strategy
for GKP code used against the action of the pure-loss channel16.
Fourthly, our analysis shows that more experimental progress on
GKP squeezing is needed as well as implementation of high
photon coupling efficiency in order for the considered schemes to
become practical. Finally, given the nature of the concatenated-
coded repeater architecture in which multiple GKP qubits from a
single outer-code encoding block are transmitted in sequence, it
could be valuable to investigate the use of a quantum convolu-
tional code55 as the outer code, as this would allow for easier
online error correction, e.g., in the all-photonic implementation.
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Fig. 6 Normalised cost function C0 versus distance (km) for the
concatenated-coded architectures. The considered parameters are
η0= 0.97 and σGKP= 0.09. We see that the hybrid scheme enables us
to reduce the cost function with respect to the corresponding
scheme that uses only type-A repeaters. We also see that for shorter
distances it is more efficient to use the architecture based on the
[[4,1,2]] code (solid red) since the type-A repeaters of the [[7,1,3]]
code are expensive while their large error correcting capabilities are
not needed for these distances. For larger distances the cost
function is smaller for the [[7,1,3]] code architecture (solid blue),
because these high error correcting capabilities allow for achieving
better performance-cost trade-off than the use of the cheaper but
less efficient [[4,1,2]] repeaters. The visible initial decrease of the cost
function with distance for the solid blue line is caused by the initial
cost of Alice’s encoding station. The effect of the simulation error is
described in “Monte-Carlo simulation” section.
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METHODS
Realistic GKP states
Since qj i and pj i eigenstates are unphysical and require infinite amount of
squeezing and energy, the ideal GKP states defined in Eqs. (2) and (3) are
also unphysical. Therefore we will consider imperfect GKP states
corresponding to a finite amount of squeezing. Let ψGKPj i denote an ideal
GKP state. Then an approximate GKP state can be obtained by applying a
Gaussian envelope operator expð�Δ2n̂Þ to the perfect GKP state. Here n̂ is
the photon number operator and Δ describes the width of each peak in
the grid-structure of the GKP Wigner function. We can use displacement
operators D̂ðαÞ ¼ exp½αây � α�â� to rewrite the approximate GKP state
ψΔ

GKP

�� �
as26:

ψΔ
GKP

�� � / R
d2α
π Tr½expð�Δ2n̂ÞD̂yðαÞ�D̂ðαÞ ψGKPj i

/ R
d2α exp � jαj2

2σ2GKP

h i
D̂ðαÞ ψGKPj i:

(7)

Here σ2GKP ¼ ð1� e�Δ2 Þ=ð1þ e�Δ2 Þ. We see that an imperfect GKP state
can be described as a coherent superposition of randomly displaced ideal
GKP states with a Gaussian envelope centred at zero displacement.
Similarly as in ref. 26, in our simulation we consider a more conservative
error model for imperfect GKP states. Specifically, let us define the
Gaussian random displacement channel as:

N disp½σ�ðρÞ ¼ 1
πσ2

Z
d2α exp � jαj2

σ2

" #
D̂ðαÞρD̂yðαÞ: (8)

Then by adding further twirling noise to the state in Eq. (7), we can
remove the coherences between the superposition terms with different
values of the displacement amplitude α. This can be done by applying
random displacements by an integer multiple of 2

ffiffiffi
π

p
in each quadrature,

such that for the relevant amount of GKP squeezing considered here, we
obtain a state that can be described as26:

ρGKP½σGKP� ¼ N disp½σGKP�ð ψGKPj i ψGKPh jÞ: (9)

Hence, we can simulate the imperfect GKP state by sampling displacement
values ξ GKP

q and ξ GKP
p along the q̂ and p̂ quadratures respectively from the

normal distribution centred at zero and with standard deviation σGKP:
ξ GKP
q ; ξGKPp � Nð0; σGKPÞ. We then consider an ideal GKP state that has
been displaced according to these values.

Cost function
In this section, we make the notion of the repeater cost mathematically
precise by defining a cost function, whose minimisation aims at finding the
best trade-off between the repeater performance and the resource cost.
We also propose a specific scheduling procedure for the operations in all
the repeaters and aim to minimise the cost function under this
scheduling model.
The resource cost as well as duration and time scheduling of all the

operations performed within the proposed repeaters will naturally
depend on the physical implementation of our scheme. Two possible
implementations for which the scheduling of the operations and the
natural way of counting the resources would be very different are
repeaters that store GKP modes inside microwave cavities and all-optical
stations in which all the operations are performed on the fly while the GKP
data and ancilla qubits are stored in the spools of optical fibre. The main
difference between the two implementations from the perspective of the
scheduling of operations as well as estimating resource cost is the fact
that the first implementation entails the use of effective quantum
memories that are required for storing the GKP modes. Hence if the
number of such memories (e.g., microwave cavities) is limited, then not all
the GKP data modes can be operated on simultaneously, while increasing
the number of such available memories will clearly increase the resource
cost of the stations. On the other hand, the all-optical implementation
does not involve the concept of such quantum memories, as all the
modes are operated on in the optical fibre. Hence, the main limiting factor
with respect to the delay between the consecutive GKP qubits will be in
this case the repetition rate of the GKP source. As discussed in the main
text, here we perform the analysis under the model of the first
implementation involving the CV-quantum memories, motivated by the
experimental demonstration of GKP error correction in a superconducting
microwave cavity20.
For the considered model, the cost of the resources can be measured by

the amount of GKP storage modes times the storage time in all the
repeaters needed for communication over the distance Ltot. Let tGKP

denote the cost of the single GKP repeater and tmulti-qubit the cost of the
single multi-qubit repeater. Then for each of these repeater types

t ¼
Xm
i¼1

ki: (10)

Here m denotes the number of storage modes (both for data and ancilla
GKP qubits) that are required in a given repeater. Then the mode i in that
repeater needs to be able to store a GKP qubit for ki time steps
defined below.
These repeater costs depend on the specific scheduling scheme of the

operations performed inside the repeaters. Here, we consider a specific
scheduling scheme based on the following assumptions:

1. We assume full connectivity, that is a two-qubit gate can be
performed between any two GKP qubits inside every repeater.

2. We measure time of performing all the operations inside repeaters
in time steps. We assume that one time step is the time of
performing each of the following procedures:

● preparing an ancilla GKP qubit,
● applying a two-qubit gate between a data and an ancilla GKP

qubit followed by a homodyne measurement of the ancilla and a
subsequent feedback displacement of the data qubit; for the first
or last operation on a given data mode inside a given repeater,
the process of receiving or sending out a GKP qubit is also
incorporated in this time step.

Clearly the second procedure involves more steps, but consists solely of
Gaussian operations which are experimentally much easier to realise than
the first procedure of GKP state preparation. Preparing GKP states requires
a source of optical non-linearity as the GKP state is highly non-classical.
The detailed scheduling of all the operations performed inside the

repeaters is described in Supplementary Note 10, where it is shown that
within our model the cost of the type-B repeater is tGKP= 4, the cost of the
type-A repeater based on the [[4,1,2]] code is t4-qubit= 68, while the cost of
the type-A repeater based on the [[7,1,3]] code is t7-qubit= 311.
Now we can define the cost function that measures both the

performance and cost for the concatenated-coded schemes as:

CðLtot; Nmulti-qubit; NallÞ ¼
Ltot
10 � tGKPðNall � Nmulti-qubitÞ þ tmulti-qubitNmulti-qubit

� � þ tmulti-qubit
r0ðLtot; Nmulti-qubit; NallÞ :

(11)

Here r0 is the secret-key rate per optical mode defined in Supplementary
Note 8 and tmulti-qubit can correspond to t4-qubit or t7-qubit depending on the
considered architecture. Moreover, the total distance Ltot is expressed in
km, Nall is the number of all repeaters per 10 km and Nmulti-qubit is the
number of multi-qubit repeaters per 10 km. That is, e.g., if after a type-A
repeater there is a type-B repeater 5 km away and then another type-A
repeater after another 5 km, such that the repeater types oscillate every
5 km, then Nall= 2 and Nmulti-qubit= 1. Such convention has the nice
feature that it is then reasonable to only consider cases when Nall is a
multiple of Nmulti-qubit. This is because we can think of our architecture as
firstly placing multi-qubit repeaters equidistant to each other and then
adding GKP repeaters in between such that all the neighbouring type-B
stations are also equidistant to each other. Moreover, the separation
between the consecutive multi-qubit repeaters is then 10/Nmulti-qubit km,
while the spacing between any two neighbouring repeaters (indepen-
dently of their types) is 10/Nall km. The choice of 10 km as a reference
distance is motivated by the fact that for all parameter regimes that we
consider and for Ltot of at least 500 km, it turns out that the optimal
repeater configuration requires more than one type-A repeater per 10 km,
see Fig. 4. Hence we then only consider configurations in which Nmulti-qubit

and Nall are positive integers. We see that in Eq. (11) we include a residual
tmulti-qubit term to account for Alice’s encoding station, which we expect to
have a similar cost as the type-A repeater. Bob’s decoding station performs
multi-qubit error correction and therefore counts as a type-A repeater and
is implicitly included in Nmulti-qubit for the last 10 km segment.
Now, we aim to optimise our repeater configuration by minimising this

cost function over Nmulti-qubit and Nall for each distance Ltot. We note that
for practical terms it can be more informative to minimise a normalised
cost function, which for a given distance Ltot counts resources per km
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rather than for the total distance:

C0ðLtot; Nmulti-qubit; NallÞ ¼ CðLtot ;Nmulti-qubit ;NallÞ
Ltot

¼ LtotðtGKPðNall�Nmulti-qubitÞþ tmulti-qubitNmulti-qubitÞþ 10tmulti-qubit
10Ltot � r0 ðLtot ;Nmulti-qubit ;NallÞ :

(12)

This normalised cost function is plotted in Fig. 6.

Monte-Carlo simulation
Analytical modelling of the performance of the concatenated-coded
repeater architectures is challenging. This is due to multiple effects. Firstly,
even assuming the use of ideal GKP states, the analogue information does
not allow us to correct all the single-qubit errors for the [[4,1,2]] code and
all the single-qubit and two-qubit errors for the [[7,1,3]] code on the higher
level. Specifically, from the simulation we see that the performance of the
repeater in correctly identifying those errors depends on the channel
parameters, that is, depending on the standard deviation σ of the effective
Gaussian random displacement channel between the repeaters we
observe a different fraction of the single-qubit and two-qubit logical GKP
errors which the higher-level code fails to identify correctly and therefore
fails to correct. In general, the larger σ, the higher the probability of
misidentifying the erroneous qubit(s) on the second level. Moreover, the
use of imperfect GKP ancillas together with the rescaling coefficients for
the feedback displacement make it impractical to model errors after GKP
correction as discrete Pauli errors on GKP qubits. Therefore we evaluate the
performance of our scheme using a Monte-Carlo simulation for specific
parameters.
We perform numerical Monte-Carlo simulation by tracking the evolution

of the errors in the q̂ and p̂ quadratures. While at the end of the simulation
we would like to identify logical errors on the second level, the actual
quadrature shifts on all the data qubits are continuous. Specifically, the
imperfect squeezing in the GKP ancillas means that the final state of the
qubits will in general be neither in the GKP code space nor in the second-
level code space. Therefore, we finish by applying first a round of virtual
perfect GKP correction on all the GKP qubits, and then a round of virtual
perfect second-level correction to bring the state to the code space of both
codes. As here we just want to identify the closest logical state, we do not
consider any analogue information for this virtual corrections. These
perfect corrections can be thought of as being performed using perfect
infinitely squeezed ancilla GKP modes. The perfect GKP correction brings
all the GKP data qubits to the nearest state in the code space, such that we
can now assign to them discrete values quantifying whether a logical X
and/or Z error has taken place. Then the perfect multi-qubit correction
(now without using the analogue information) brings the state to the
nearest logical state on the second level, such that we can now count
whether a logical error on the second level has taken place.
We find that it is not enough to simulate a single link between two

consecutive type-A repeaters. When simulating only a single such link,
there is a high probability that due to finite ancilla squeezing, before the
perfect virtual multi-qubit correction we will be in a state that is outside of
the code space on the second level and has e.g., a single GKP data qubit
flipped. In the real-life scenario such a residual error on the second level
would carry over to the next elementary link. Therefore the perfect virtual
multi-qubit correction after a single link could significantly underestimate
the error rate by effectively removing all such residual errors. However, we
can simulate multiple consecutive links with the virtual correction only at
the very end. In that case such a residual error on the second level before
the final perfect virtual correction will only occur if there is a failure in
correctly identifying the second-level stabilisers in the last link before the
simulation end. This probability is always the same, that is, it is
independent of the number of links we are simulating. Yet, if we simulate
multiple links then the total error accumulates so the probability of logical
error after large number of links is much larger than after a single link.
Therefore, we simulate a chain of 100 such links before the virtual
correction, and in this way we make the probability of such a residual error
negligible relative to the probability of the actual logical error.
For each quadrature we start the simulation directly after the multi-qubit

correction in that quadrature in the first repeater assuming that each GKP
data qubit carries a residual Gaussian random displacement error from a
channel with variance coptσ2GKP coming from the last GKP correction from
the preceding link. Here copt is the optimal coefficient used to rescale the
GKP syndrome during error correction, see Supplementary Note 2 for more
details. We then evolve this quadrature following all the error channels and
correction operations as described in Supplementary Notes 5, 6, 7, and 10.

We finish the simulation directly after the multi-qubit correction in that
quadrature after the 100th link. We note that this means that the
simulation of the q̂ quadrature evolution has its beginning and end shifted
with respect to the simulation of the p̂ quadrature given that the multi-
qubit syndrome measurements in those two quadratures happen at
different times. Finally, after the virtual corrections, we read off whether a
logical error on the second level has occurred in any of the two
quadratures. Hence from the simulation we extract the probabilities of X
and Z logical errors perr,X/Z(η0, σGKP, Nmulti-qubit, Nall) over such 100
elementary links. We can then discretise these errors, assigning a well-
defined probability of a logical error for a single elementary link given by

Perr;X=Z ¼ 1�ð1�2perr;X=ZÞ1=100
2 . Hence, we consider that the logical error over 100

links is given by an odd number of these effective discrete logical errors
over single links. We can then use the values of perr,X and perr,Z obtained
from the simulation to calculate the total probabilities of X and Z errors
over the total distance Ltot by considering the probabilities of odd number
of such errors over the entire channel. These can be obtained by
substituting Perr,XZ into the equation:

Qerr;X=Z ¼ 1� ð1� 2Perr;X=ZÞLtot=L
2

: (13)

where L is the length of the single link given by L= 10/Nmulti-qubit. As a
result we have that:

Qerr;X=Zðη0; σGKP; Nmulti-qubit; Nall; LtotÞ ¼ 1� ð1� 2perr;X=ZÞNmulti-qubitLtot=1000

2
:

(14)

Then this leads to an effective channel over Ltot given by:

DðρÞ ¼ ð1� qX � qZ � qYÞρþ qXXρX þ qZZρZ þ qYYρY: (15)

with qX=Qerr,X(1−Qerr,Z), qZ=Qerr,Z(1−Qerr,X), and qY=Qerr,XQerr,Z.
This enables us to calculate the secret-key rate per mode as described in
Supplementary Note 8 and then the normalised cost function given in
Eq. (12).
For each considered setting of the experimental parameters η0 and σGKP

we run the simulation for multiple configurations of {Nmulti-qubit, Nall}. That is,
we start with Nmulti-qubit=Nall= 1 and then rerun the simulation for the
configurations for which Nall is a multiple of Nmulti-qubit, where we place a limit
of 250 m on the minimum repeater spacing (Nall ≤ 40 and Nmulti-qubit ≤ 40). In
order to find the achievable distances presented in Fig. 3 and in
Supplementary Fig. 4 we maximise this secret-key rate for each distance
by choosing the setting of {Nmulti-qubit, Nall} and the corresponding perr,X/Z
which gives the highest secret-key rate for that distance Ltot. Then we look
for the largest distance for which such secret-key rate per mode stays above
0.01. We proceed similarly when calculating the optimal resource-cost trade-
off. Then for each distance we minimise the cost function by choosing this
setting of {Nmulti-qubit, Nall} and the corresponding perr,X/Z which gives the
smallest cost function for that distance Ltot. We also evaluate the cost
function for the architecture based solely on multi-qubit stations by imposing
the additional constraint {Nmulti-qubit=Nall}.
In a similar spirit, we also run a Monte-Carlo simulation for a GKP

repeater chain to verify the analytical model described in Supplementary
Note 5. To include the effect of the residual displacements after GKP
correction in a given repeater on the probability of successful correction in
the next repeater, also in this case we simulate a chain of 100 elementary
links, where this time an elementary link is a single link between the
neighbouring type-B repeaters. We again simulate the errors in the two
quadratures independently, where the simulation in each quadrature starts
directly after the corresponding GKP correction, so that the initial error
displacement comes from a distribution with variance coptσ2GKP . We then
simulate 100 elementary links and apply the virtual perfect GKP correction
at the end. We read-off whether there was a logical X or Z error, so that
from the statistics we can extract the value of perr,X/Z. Here perr,X/Z is the X or
Z logical error probability over a chain of 100 GKP repeaters. Analogously
to the concatenated-coded architecture, we calculate the logical X and Z
error probability for the total distance Ltot:

Qerr;X=Zðη0; σGKP; NGKP; LtotÞ ¼
1� ð1� 2perr;X=ZÞNGKPLtot=1000

2
; (16)

where NGKP is the number of GKP stations per 10 km. We can then extract
the corresponding secret-key rate per optical mode r0 in the same way as
described above for the concatenated-coded scheme. The results of our
Monte-Carlo simulation for the GKP repeater chain verify the analytical
model from Supplementary Note 5 as shown in Supplementary Fig. 4.
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Now we also specify how we determine the accuracy of the simulations.
When simulating a chain of 100 elementary links, we start with the sample
of size k= 10 and calculate the estimates of the standard error for the
probability of logical X and Z flips perr,X/Z as:

Δperr;X=Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
perr;X=Zð1� perr;X=ZÞ

k

s
; (17)

where the numerator is the standard deviation of the Bernoulli distribution.
Then we calculate the relative error Δperr,X/Z/perr,X/Z and check whether it is
smaller than a threshold b which we set. If not we increase k by a factor of
10 and repeat the procedure. We iterate until the relative error becomes
smaller than the threshold b. We then estimate the upper-bound and
lower-bound on the achievable distance presented in Fig. 3 and in
Supplementary Fig. 4 by performing the above described optimisation of
the secret-key rate per mode for each distance Ltot not only for the logical
error probabilities {perr,X, perr,Z} but also for the values {(1− b)perr,X, (1− b)
perr,Z} leading to the upper-bound and {(1+ b)perr,X, (1+ b)perr,Z} leading to
the lower-bound. For the simulations of the concatenated-coded schemes
in Fig. 3 we set b= 0.1 and for the simulations of the GKP repeater chain in
Supplementary Fig. 4 we set b= 0.02. The optimal repeater placement
configuration presented in Fig. 4, the minimised cost function presented in
Fig. 6 and the behaviour of secret-key rate per mode under cost function
minimisation shown in Fig. 5 have all been obtained from the simulated
data with the accuracy given by b= 0.1.
Let us now briefly discuss the effect of minimising the cost function for

the concatenated-coded schemes when taking the simulation error into
account, that is when we increase or decrease {perr,X, perr,Z} by 10% for the
parameters η0= 0.97 and σGKP= 0.09. We have already mentioned in
“Repeater architecture based on concatenated GKP and discrete-variable
codes” section that increasing the logical error probabilities by 10% leads
to a visible decrease of the secret-key rate for the [[4,1,2]] scheme for
10,000 km. We also find that decreasing the logical error probabilities by
10% for this scheme leads to a visible increase of the secret-key rate above
r0 ¼ 0:03 for that distance. Moreover, when varying the logical error
probabilities within this confidence interval we find a visible change in
behaviour for the first 200 km for both concatenated-coded schemes
based on only type-A repeaters. Specifically, for distances up to around
100 km when the logical error probabilities are decreased by 10%, the
optimal repeater configuration for these schemes requires only a single
multi-qubit repeater per 10 km, which also significantly lowers the
achievable secret-key rate in that regime, yet allows to significantly
decrease the cost function relative to the values shown in Fig. 6. Finally,
there is also a visible change in behaviour for the hybrid schemes when
varying the logical error probabilities within the confidence interval, yet
again only for the first 200 km. This change corresponds to the change of
the optimal number of type-B repeaters within that distance regime, which
for the scheme based on the [[4,1,2]] code also affects the amount of
generated secret key and the cost function in that distance regime.
Finally, we note that we also run a simple simulation of a single

elementary link with channel loss γ and ideal GKP and higher-level
correction at the end in order to obtain the data presented in Fig. 2. As in
this case there are no residual errors after correction, it is then sufficient to
simulate only a single such elementary link rather than 100 consecutive
links. For this single link we extract from the simulation the probabilities of
logical X and Z flips, perr,X/Z. These probabilities are then used to calculate
the maximum infidelity given by:

ϵmax ¼ qX þ qZ; (18)

where qX= perr,X(1− perr,Z) and qZ= perr,Z(1− perr,X), as shown in the
Supplementary Note 9. We similarly use Eq. (17) to calculate the standard
error on perr,Z and perr,X and again require the corresponding relative errors
to be smaller than b. We can then calculate the relative error on ϵmax as
follows. Firstly, the relative error on qX is bounded by:

ΔqX
qX

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δperr;X
perr;X

� �2
þ Δperr;Z

1�perr;Z

� �2r

� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ perr;Z

1�perr;Z

� �2r
:

(19)

Similarly:

ΔqZ
qZ

� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ perr;X

1� perr;X

 !2
vuut : (20)

Let us define now u ¼ 1þ perr;Z
1�perr;Z

� �2
and v ¼ 1þ perr;X

1�perr;X

� �2
. From here

we can bound the relative error on the maximum infidelity as:

Δϵmax

ϵmax
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uq2X þ vq2Z

p
qX þ qZ

: (21)

Since u and v are close to one, we see that the relative error on ϵmax is
smaller than b. In the simulation we set b= 0.1. We then run the simulation
for 101 values of γ in the interval [0.08, 0.2]. We find that the relative error
on ϵmax is around 7% for all the data points.
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