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Abstract

We study the transient and steady shear rheology of rigid particle suspensions in Boger fluids via complete 3D numerical simulations and
experiments. We calculate the transient per-particle extra viscosity and primary stress coefficients for suspensions at different particle volume
fractions ¢ for a range of Weissenberg numbers (Wi). The per-particle viscosity (1) and the primary normal coefficient (y) increase mono-
tonically to steady state in body-fitted (BF) simulations (for dilute suspensions) and immersed boundary (IB) simulations (for nondilute sus-
pensions). We also present experimental measurements including small amplitude oscillatory shear, steady shear, and transient shear
measurements at different particle volume fraction suspensions in a Boger fluid. The simulations and experiments suggest that longer strains
are needed to achieve steady state at higher ¢ and Wi. We also show the comparison of the BF and the IB simulations with experimental data
for the per-particle viscosity and find excellent quantitative agreement between simulations and experiments at Wi = 3 but the IB simulations
underpredict the steady values at higher Wi = 6. Nevertheless, the IB simulations show an increase in the per-particle viscosity with ¢ as wit-
nessed in the experiments. To understand this behavior, we examine the particle-induced fluid stress (PIFS) and the stresslet contributions
using a novel method developed for the IB simulations in this work. We find that the PIFS is independent of ¢ but the stresslet values
increase with ¢. Thus, the particle-particle hydrodynamic interactions in nondilute suspensions affect the stresslet and, in turn, the per-particle

viscosity at a given Wi. © 2021 The Society of Rheology. https://doi.org/10.1122/8.0000265

. INTRODUCTION shear flows mostly through experiments for relatively concen-
trated suspensions [4,8,9], but there are very few computa-
tional simulation studies in the literature that may shed light on
these experiments. The two-dimensional (2D) simulations of
suspensions by Hwang et al. [10] using an Oldroyd-B model
matrix have been instructive, but for three-dimensional (3D)
simulations, there are only the works of Hwang er al. [11],
D’Avino et al. [12], Yang et al. [5,13], and Vazquez-Quesada
etal [7].

Yang et al. [13] performed complete 3D numerical simu-
lations of dilute suspensions in steady shear flow where the
authors computed the per-particle “extra” viscosity contribu-
tion to the suspension viscosity as a function of Weissenberg
number (Wi). They found that the per-particle viscosity
increases with Wi and plateaus at large values of Wi. The
authors performed numerical calculation of the two extra
stress contributions that come from the addition of rigid parti-
cles to the nonlinear elastic fluid: (1) the particle-induced
fluid stress (PIFS), which is a measure of extra stress in the
fluid phase due to the presence of particles, and (2) the parti-
cle stresslet, which is a measure of stress in the particle
region as rigid particles resist deformation. The authors of
the same study found that the increase in per-particle viscos-
ity was caused by an increase in PIFS with the Wi. In a sub-
sequent study [6], they looked into the mechanism of
thickening via the PIFS by analyzing the flow type in the
regions of significant polymer-induced fluid stress and found
that the stretch of polymers in strain-dominated flow within
“Author to whom correspondence should be addressed; electronic mail: closed streamlines around the particles generates large
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The rheology of suspensions of rigid particles in polymeric
fluids is a particularly important field of study as these materi-
als find applications in a variety of industries like foods, phar-
maceuticals, adhesives and coatings, paints, personal care
products, and biomedical devices. Moreover, the rheology of
these materials can be complex when compared to suspensions
in Newtonian fluids. In this context, noncolloidal suspensions
of rigid particles in Newtonian fluids exhibit no shear rate
dependence in steady shear flow for particle volume fractions
¢ less than 30% [1,2], but this is not the case when the sus-
pending fluid is polymeric. In the present article, we will focus
on suspensions in the so-called “Boger fluids” [3], as we are
interested in understanding how the fluid elasticity affects the
flows of rigid particle suspensions. Boger fluids are highly
elastic fluids that exhibit nearly constant viscosity for a range
of shear rates [3-5]. Previous experimental studies show that
noncolloidal suspensions in Boger fluids exhibit shear-
thickening behavior in steady shear flow, for all particle
volume fractions down to 5% [4,5]. The response of rigid par-
ticle suspensions in such viscoelastic fluids has been shown to
be nonlinear in shear rate because of complex particle-fluid
interactions as well as hydrodynamic interactions between par-
ticles even at ¢ < 10% [5-7]. Previously, noncolloidal sus-
pensions in viscoelastic fluids have been studied in steady
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Numerical simulations studies of multiple-particle systems
include the recent work of Yang and Shaqfeh [5] who
studied the steady shear rheology of noncolloidal, nondilute
suspensions in Boger fluids via numerical simulations using
a 3D, finite-volume method. The authors in the study used
an immersed boundary (IB) method to simulate an ensemble
of particles as a function of time until they achieved steady
average bulk properties. They showed that the viscosity of
suspensions with particle volume fraction ¢ < 10% in
numerical simulations can be characterized by a shift factor
that depends on the zero shear viscosity and suggested a
“master” curve that describes the viscosity thickening for all
¢ values. The master curve could be determined by
single-particle-fluid interactions only and is apparently not
dependent on particle-particle interactions when plotted as a
function of the suspension stress. The authors demonstrated
that the master curve exists for the thickening of the shear
viscosity not only in simulations but also in their experimen-
tal data and other experimental data in the literature.
Numerical simulations underpredicted the master curve.

In another recent publication, Vazquez et al. [7] per-
formed 3D numerical simulations using the smoothed parti-
cle hydrodynamics method to study the rheology of
noncolloidal suspensions of rigid spherical particles in a vis-
coelastic matrix. They reported that they needed to perform
full many-particle simulations with no a priori specification
of their spatial distribution to recover precisely experimental
values even under dilute conditions. They found that the
agreement was quantitative between multiple-particle simula-
tions and experiments for particle volume fraction ¢ = 5%
but qualitative only for ¢ = 10% and 30% as the simulations
underpredicted the experimental viscosity measurements of
suspensions.

In this work, we study the time-dependent evolution and
steady values of the bulk shear stress in rigid particle suspen-
sions during start-up of shear flow via experiments and
numerical simulations. The suspensions are composed of
spherical particles suspended in Boger fluids. Note that the
time dependent response of viscoelastic suspensions is of
great practical and fundamental importance because, typi-
cally, it takes 10—100 shear strain for these materials to reach
steady state in the start-up of shear flow, and it is often diffi-
cult to achieve such high strains in practical situations. We
are not aware of any theoretical or 3D direct numerical
studies that compute the viscometric functions or any experi-
mental data of viscoelastic suspensions undergoing start-up
of shear flow appearing in any previous work. In this study,
we perform time-dependent complete 3D simulations in the
dilute limit (i.e., single particle) using a body-fitted (BF)
code [13] and in the nondilute limit using an immersed body
method [14,15]. We also present transient shear experiments
of suspensions in a Boger fluid at different particle volume
fractions, ¢ < 20%. The focus is on low volume fraction sus-
pensions where the bulk properties are dominated by long
range hydrodynamic interactions rather than close range
“lubrication” or “collisional” particle-particle interactions.
We directly compare our experiments and numerical simula-
tions to assess their agreement and to understand the
observed rheological behavior in experiments with the help
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of numerical tools. Thus, the aim is to determine how the
time-dependent rheology of particle suspensions differs from
the suspending Boger fluid in the start-up of shear flow
within a range of particle loadings at multiple shear rates.
This paper is organized as follows. In Sec. II, we describe
numerical methods used to perform the transient shear simu-
lations of suspensions in viscoelastic fluids. Next, the numer-
ical results from the BF simulations are validated by
comparing to a transient small Wi theory developed in this
work. Thereafter, we validate the IB simulations by compar-
ing with the converged BF simulations. We describe a novel
method of calculating the stresslet and PIFS in IB simula-
tions where the particle interface does not have to be defined.
This also includes a new approach to calculate the first
normal stress difference coefficient in IB simulations.
In Sec. III, we present the numerical results of the BF simula-
tions for dilute particle suspensions in a Boger fluid consid-
ered by Dai er al. [4] over the range 0.3 < Wi < 4. Next, we
present BF and IB simulation results for particle suspensions
in a Boger fluid that we prepared in the laboratory (referred
to as B25 fluid in this study) at two values of Wi = 3 and 6.
In Sec. IV, we report a set of laboratory experiments for the
characterization of the B25 Boger fluid and the associated
suspensions with different ¢ ranging from 2.5% to 20%. The
measurements include small amplitude oscillatory shear
(SAOS), steady shear, and transient shear experiments of the
B25 Boger fluid and the suspensions. In Sec. V, we show the
comparison of the per-particle viscosity and the primary
normal stress coefficient from experiments and numerical
simulations in transient shear flow at Wi=3 and 6. In
Sec. VI, we examine the mechanism of the increase in per-
particle viscosity with ¢ at a given Wi observed in both
experiments and IB simulations by performing the decompo-
sition of the per-particle viscosity into PIFS and stresslet
contributions to determine how these components change
with ¢. We also determine if there is a need to perform
multiple-particle simulations or if it suffices to do single-
particle simulations to study the shear rheology of ¢ < 10%
suspensions. In Sec. VII, we summarize the main findings.

Il. PROBLEM FORMULATION
A. Bulk rheology of a suspension

We first summarize the calculation of the appropriate vis-
cometric functions in our numerical simulations, the details
of which are given in studies by Yang and Shaqfeh [5,6]. To
obtain the bulk stress in a suspension of freely suspended,
noncolloidal spheres in a viscoelastic fluid, we need to
ensemble average over many configurations of the suspen-
sion. Equivalently, we can average over a sufficiently large
volume of the suspension (large compared to interparticle
distance assuming “reasonable randomness” [16]) where the
mean velocity is specified to be a shear flow (u;) = yx,8;;.
The angle bracket denotes a spatial average over the volume
V. We have the following expression for the bulk stress of
the suspension:

1
<O',’j> :VJVGUdV (1)
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where o; is the stress in the suspension that is a function of
position and time, Vy is the fluid domain, V), is the particle
domain, 0'; and oy; are the stresses in the fluid phase and par-
ticle phase, respectively, and V = V; +V,. As shown by
Yang et al. [13], we can split the bulk stress into two
contributions—the stress in the suspending fluid in the
absence of particles and the “extra” stress due to particles in
suspension. The stress due to particles can be further split
into PIFS (represented by X; in this study) and stresslet
(represented by S;; in this study) as

(05) = o +n(Zj + 5y), @)

where 0'{;0 is the fluid stress in the absence of particles. This
can be computed analytically for the Oldroyd-B model and
numerically for the Giesekus model.

After we apply the divergence theorem to write the
volume integral over the particle domain as a surface integral
in Eq. (2) (assuming freely suspended particles), we can cal-
culate the PIFS and stresslet using local stress values as

1 .
%= IT/JV (o}, — alhav, O]

1
Sj = NJ xjohmdA, (5)
AP

where N is the number of particles in the system and
n = N/V is the number density; A, is the surface of all parti-
cles and x; is a position vector on the surface of the particle.
For very dilute suspensions, the PIFS and the stresslet can be
calculated by considering a subregion of the suspension that
contains only a single particle and the disturbances in the
flow due to that particle; thus, all interactions are neglected.
For these calculations, we use a BF mesh method [13,17,18]
where a single stationary mesh that conforms to surface of a
single sphere is used. For nondilute suspensions, we need to
consider a subregion that contains enough particles to repro-
duce the bulk behavior. We calculate the bulk viscometric
functions in multiple-particle simulations using the same
Eq. (3), but it is not possible to use Egs. (4) and (5) in IB
because the particle surface boundary is diffuse in the IB
method. Thus, we develop a novel method to calculate the
PIFS and stresslet in IB simulations in Sec. I C. The material
functions of primary interest are the suspension shear viscos-
ity and first normal stress coefficient and in dimensional
form they are given by the equations

S0
o1

2+ S
N n——m —,
Y Y

(6)
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FIG. 1. Schematic of a sphere placed at the center of computation domain
in shear flow. This image is taken from Yang et al. [13].
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B. Governing equations

For modeling dilute suspensions, we consider a neutrally
buoyant sphere placed at the center of a rectangular computa-
tion domain (+ L,/2, + L,/2, + L3/2) in a mean flow
field (u;) = yx,6;1 where y is the shear rate. The schematic
of the single sphere BF simulation geometry is shown in
Fig. 1. For nondilute suspensions, we employ IB simulations;
thus we consider N spheres, each of radius a, that are freely
suspended in a computation domain shown in Fig. 2.
The linear velocity and angular velocity of the spheres in
both cases are updated at each time step such that they are
force free and torque free at all times in the applied shear
flow. The mean flow is imposed on the walls of the domain
u; = (+ yLy/2,0,0) at x, = +L,/2, and the boundaries at

moving solid boundary

periodic
boundary

Ly

FIG. 2. Initial random distribution of spheres in a computational box for IB
simulations. This image is taken from Yang and Shaqgfeh [5].
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x; = +L;/2 and x3 = +L3/2 are periodic. The governing
equations for the simulation of fluid flow around rigid parti-
cles are the continuity and momentum balance equations
shown below, suitably made dimensionless,

ol o, 0w\ oy 0ol
—,—O, Re(W—i_uj@_xj’»)__a—xg—i_a—xj’ (8)

where prime denotes a nondimensional variable. Length is
made dimensionless by the particle radius a, time by inverse
shear rate y, velocity by ya, and stress by 71,¥, where 7, is the
zero shear viscosity of the suspending fluid. The Reynolds
number is defined as Re = pya®/n,. The fluid stress af in
Eq. (8) is the sum of Newtonian and polymer stress,

" 15) 81/
a§=ﬁ<“+aﬂ>+5, )

where 8 = n,/1, is the ratio of Newtonian solvent v1scosny
to the zero shear viscosity of the suspending fluid and 7, i 1s
the nondimensional polymer stress. We use the Oldroyd-B
and the Giesekus models for the suspending Boger fluids
used in this work. The Oldroyd-B equation describing the
evolution of the polymer conformation tensor C; in a flow
field is

8C,] P 8Ci]' 8u]’ ou' 15
s —Cik=——Cijx=—F=— , 10
R M M i gy (10)
and the Giesekus model equation is given by
— Ci — —C; _1i
ar T Mae T “han T “ox,
T sCy o 1
71—[37%( ik — lk)( ki — kj)’ ( )

where the conformation tensor components C; are nondi-
mensionalized by the polymer radius of gyration squared and
a is the mobility parameter. When o = 0, the Giesekus equa-
tion is equivalent to the Oldroyd-B model. The polymer
stress is related to the polymer conformation tensor for both
Oldroyd-B and Giesekus models through the relation

/ 1 —
——.ﬂ(c,-j—é,-j). (12)

The dimensionless groups in Eqs. (11) and (12) are (a)
Weissenberg number Wi = Ay that is defined as the product
of the longest relaxation time of the ﬂuid A and the imposed
shear rate ¥ and (b) viscosity ratio = + is the
polymer viscosity. For completion of the tlme dependent
shear problem, we also require initial conditions for the
velocity and conformation tensor. For the initial velocity, we
choose the known Newtonian creeping flow solution for
shear flow past a single sphere in the dilute limit and solve
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for the Newtonian flow field for multiple particles using the
IB method in the nondilute case. For the initial conformation
tensor, it is set equal to the identity tensor (the dimension-
less, equilibrium configuration thus producing no polymer
stress). We drop primes in rest of the paper for convenience,
and all the variables are assumed to be nondimensional.

C. Simulation method

We perform BF simulations for single spheres in a fixed
reference frame since by symmetry the sphere does not move
even though it is force free. Therefore, the underlying mesh
is fixed. The details of BF simulations can be found in Yang
et al. [13] where the authors used a finite-volume solver to
obtain the velocity and stress fields in the fluid domain.
We employ the same solver in this work to study the time-
dependent evolution of bulk stress in a dilute suspension.
We perform a surface integral to compute the stresslet
according to Eq. (5) and a volume integral to compute PIFS
according to Eq. (4) in the BF simulations. However, we do
not perform BF simulations to simulate many moving parti-
cles in this computational domain but instead use an imple-
mentation based on the class of IB methods [15,19] to
simulate multiple particles. In this method, the domain grid
does not conform to the particles but covers the entire com-
putation volume, including particle regions. The particles are
defined on a separate Lagrangian mesh that is free to translate
over the underlying Eulerian mesh domain. The governing
equations of flow are solved on the Eulerian mesh including
the particle regions. However, an additional volumetric body
term f/ is added to the momentum equation to force the
regions on the Eulerian mesh that underlie the Lagrangian
particle mesh to move as rigid bodies. The momentum equa-
tion for the IB method is shown below,

Ou; Ou;\  Op 80'{;
R<a+,8> 55t a (13)

The details of the solver and algorithm that we use as well as
the validation tests are described in the paper by Krishnan
et al. [15]. The IB method has a main disadvantage—the
loss of resolution near the particle boundaries due to interpo-
lation of information between the Lagrangian and Eulerian
meshes—consequently, the solid-fluid interface is not sharp.
The region at the interface is neither fully particle nor fully
fluid, and this transition is on the order of the Eulerian mesh
size. This is particularly troublesome for calculations of vis-
coelastic fluids because large polymer stress gradients often
occur near the particle surfaces, and the loss of spatial resolu-
tion from the IB method can lead to inaccurate stress calcula-
tions. This error can be reduced by increasing the Eulerian
mesh resolution, but a refinement by a factor of 2 leads to an
increase in the computation time by a factor of 16 if we keep
the same value of the viscous CFL number. Thus, we have
limitations on the number of mesh elements in the computa-
tion domain for a given maximum computational time, and
this constrains the Wi and the number of particles we can
simulate.
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Another consequence of a “smoothed” solid-fluid inter-
face is that we need a new method to calculate S; and Xj.
The stresslet as defined in Eq. (5) is a surface integral that
requires identifying the particle surface and evaluating the
fluid stresses at that surface. Since the solid-fluid interface is
not sharp, defining a boundary and determining fluid stress
on that boundary is not straightforward. A similar issue
arises when trying to compute PIFS, X;, which requires
assigning each control volume in the domain as fluid or parti-
cle, which is not straightforward for the smoothed particle-
fluid interface. To address the above issue for IB simulations,
Yang and Shagfeh [5] developed a method to calculate PIFS
and stresslet that involved defining the particle surface such
that an equality was satisfied between the bulk shear stress
and the shear stress on the wall averaged over time,

F 1
oy (] (o o)av)
1
+V<j (x2 Rg)o{knde>, (14)
OP1+-+0Py

where A is the top plate or bottom plate area. In this way, the
authors chose the particle surfaces OP;,..., OPy that allowed
them to calculate stresslet and PIFS in IB simulations. We
use a different and more direct approach in this work that
does not require finding the particle surface. We relate the
forces on the walls of the computation domain containing
particles to the volume averaged stress in the domain by fol-
lowing a similar procedure as shown in Appendix A in Yang
et al. [13]. We first consider a force balance on an arbitrary
domain D, as shown in Fig. 3, where the surface S can be
positioned anywhere between the top and bottom walls. The
momentum balance in the fluid phase for Stokes flow is

ap , O
0 o, + ox, ~+fi (15)

where f; is the IB method force density. We consider the
volume integral of Eq. (15) over the volume D and apply the
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divergence theorem
ap | 99
- c1dv =0 16
JD( 8x,-+8xj +f ( )
J (—ps,-,- + oJ,;)njdA + J fdV = 0. (17)
oD D

Because the boundaries are periodic in the vorticity and flow
directions, the only surfaces that contribute to the surface
integral are the top plate and the surface S,

%8 pdA

Top

- J popndA + J popdA + J
Top S

- J 08 pdA + J fdv, (18)
N D

Since the position of § is arbitrary, we repeat over N volumes
separated by Ax, where surface S(x;) spans from —L,/2 to
L,/2 and then multiply by Ax,. We take the limit
N — o0, Ax — 0 and add the results together. For i = 1,

L2/2

QI I R

1 L2/2 L2/2
JJU dxzj fl(G,Xl,x3)d0}dx1dx3,

BTSN
19
and changing the limits of integration,
L1,/2 1,/2 L,/2 o
J dx, J do = J do-J dxy, (20)
—Ly/2 X —Ly/2 —Ly/2

with the knowledge fv f1dV = 0 for freely suspended parti-
cles, then we obtain

Fi

5 = (0h) = (ufi), 1)

where (-) =7 [, ()dV is the volume averaged quantity and

a . Top plate, area A b Surface S =
4 2 2 \
“\ Right
3 il boundary,
L 3 1. | surfaces A area A
! Sub domain D L Sub domain D
Boundary oD Boundary oD

Periodic along 1 and 3

L
Periodic along 1 and 3

FIG. 3. Schematic showing the (a) force balance that relates force on top plate to bulk stress in domain and the (b) force balance that relates pressure to the
thrust on the plane in flow direction. This schematic is taken from Yang er al. [13].
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Fi= [, o/,dA. Tt follows that

Sin = C‘l - <o~§2>>/¢, (22a)

Si2 = —(0fi)/d. (22b)

We can compute the stresslet using either Eq. (22a) or
Eq. (22b), and the PIFS using the equation below, viz,

= (<0§2> - 0{3)/41 (23)

Thus, we can compute per-particle viscosity from the sum of
the stresslet and the PIFS as

1t e R N
7=+ @ —oll). )

Neither Egs. (22a) and (22b) nor Eq. (23) require knowledge
of the position of the particle surface. We only need to
compute volume averages over the Eulerian domain and the
force on the top plate. For the calculation of N in IB simula-
tions, we can use a similar procedure. If we pick i =2 in
Eq. (18) and follow the same averaging procedure, then
we obtain

Jy (022 — p)dA _

N —(p) +(05) — (mh). (25

The normal force depends on (p), which is determined by
the conditions applied at the periodic positions. We go back
to Eq. (16) with the integral over the volume as shown in
Fig. 3 and then we apply the divergence theorem with
surface integrals over right periodic zone and S,

0’8 1dA

Right

OZ—J P5i1dA+JP5i1dA+J
ARight N A

- L 081dA + J fdv. (26)
Picking i = 1 yields
Oz—J pdA-l—deA-i—J o{ldA—Jo{ldA
ARight N ARight N
+ Jf 1dv, 27
J (0 —p)dA = j (o, —p)dA — Jfldv. (28)
ARight N

Since the position of surface S is arbitrary, we average over

A. JAIN AND E. S. G. SHAQFEH

positions of surface S and get

1

ARight

L (@) — A= (o}, —p) = (nf). (29)

We thus obtain (p) from Eq. (29),

1

Right

(p) = (o)) — (uifi) — L (@}, —p)A.  (30)

We substitute the above equation for (p) in Eq. (25),

1

ARight

L (o} - {L (o, — p)iA
= (0h)) — (Th) — (uifi) + (naf). 31)

The left-hand side or right-hand side (rhs) in the above equa-
tion is a measure of the first normal stress difference of the
suspension, Ny, in IB simulations. The per-particle contribu-
tion to the first normal stress coefficient of suspension is thus
calculated using the equation

! <<ofn — o)) = (h — of)) — (ufi) + <Xzf2>>
1 — (»b Wi 5

(32)

where the PIFS contribution is obtained as

Zun_ 1 ((0'{1 —ai)) _.<°'£2 - ‘7£S>>, (33)
Wi ¢ Wi

and the stresslet contribution as

Sun 1 <—<xm> + <xzfz>>_ .

Wi ¢ Wi

D. Validation

In this section, we present a validation of our BF and IB
simulations in transient shear. To validate BF simulations, we
compare the PIFS and stresslet values from numerical simula-
tions at a small Re = 0.05 with the semianalytical expressions
from a new theory that we develop for the time-dependent
evolution of average stress in a dilute suspension valid for
Wi « 1. The shear flow begins at time r = 0. We show the
complete derivation of the semianalytical expressions of PIFS
and stresslet contributions through O(Wi?) at Re = 0 in an
Oldroyd-B fluid in the Appendix. We present the final expres-
sions below. The average stress in a suspension can be written
as a perturbation series in Wi,

(o5) = (o) + Wi(ol") + Wit(al) +....  (35)

The complete expression for the time-dependent evolution of
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(o3} is

<G§/(-))> = Isotropic Terms + 28E;H ()
+2(1 = PE;(1 — exp(—1))
+ 5SPBE;H(7) + Sd(1 — B)E;j(1 — exp(—1)). (36)

For higher order stress terms ( fﬁ) and <0'§j2)>, we find the

time-dependent functional form only and do not compute the
constant coefficients of these time-dependent functions ana-
lytically. The expressions are

(0) = (1 = BypA;(1 — exp(—7) — rexp(—7)),  (37)
2
(o) = U¢{1—exp( 7) — zexp(— r)——exp( r)}

+Cid [ﬁ(l —exp(—71) — rexp(—1))

3

rzexp(—r) + Texp(—r)}

B B
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4
ey

i a (eXp(r)CXP(f/ﬁ))}

+D;j¢d [ﬁ(l —exp(—7) — rexp(—71))
3

S A-pY
D]

(exp(—7/B) — exp(f))}

ﬁg <exp(—7) —exp (— ! +ﬁ1) )}
(1-8) B

+D;i¢p [— (15¥ﬁ) (rexp(—1) — exp(—7) + exp(—Zr))] ,

(38)

where 7 = %, Ej; is the rate of strain tensor, and f is the ratio
of solvent viscosity to the total zero shear viscosity defined
previously. For shear flow, there is no O(Wi) correction to
the transient shear stress of dilute suspensions; therefore,
A;; = 0. We find the values of the coefficients B, C2, and
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D, in the above Eq. (38) by fitting to the transient shear
numerical simulations data at three small Wi = 0.1, 0.2, and
0.3 simultaneously. There is no O(1) or O(Wi) correction to
the PIFS and the first correction comes at O(Wi?). Thus, the
analytical expression for the PIFS has the same functional
form as (crf-j?)), and we find the coefficients by fitting to the
time-dependent numerical PIFS values using nonlinear least
squares regression. The stresslet has a Newtonian contribu-
tion at O(1), and we also need to determine the coefficients
at O(Wi?). We follow the same procedure to find the coeffi-
cients for the stresslet expression by fitting to numerical data.
We show the BF simulation results and the best theoretical
fits for the PIFS in Fig. 4(a) and stresslet in Fig. 4(b). The
values of the fit parameters are B, = 2.486, C;, = —0.537 ,
and D, = —2.152 for the PIFS, and the steady state value of
the PIFS is then given by By + Ci2f + D18 = 0.658 that
agrees with steady state theory of the PIFS derived by
Einarsson et al. [20] as shown in Fig. 5(a). We find the
values of the fit parameters Bj, = —0.029, C, = 0.122, and
D, = —0.628 for the stresslet and Newtonian stresslet
comes out to be S = 2.457. We then compare the steady
state value of stresslet from above equation By, + C2f +
DB = —0.373 with the steady state theory for the particle
stresslet derived by Einarsson et al. [20] in Fig. 5(b) and find
that the two values are again quite close. The above compari-
sons show that the time-dependent behavior in numerical
simulations is in good agreement with theoretical predictions
for the transient response of dilute suspensions in the limit of
small Wi values. There is discrepancy in the PIFS agreement
at small strains for small Wi values, which arises due to the
difference in the nature of flow at time + = 0 between numer-
ical simulations and theory. The numerical simulations start
from the steady state Newtonian flow field, whereas the
theory assumes the start-up from rest at time # = 0.

To validate IB simulations, first we show the comparison
of steady values of relative viscosity 7, of Newtonian suspen-
sions at finite particle concentration obtained from our IB
simulations against theoretical relations—Kreiger—Dougherty

relation [21] 7, = (1 —%)_ZS%M and O(¢”) theory of

Batchelor and Green [22] 7, = 1 4 2.5¢ + 7.6¢" in Fig. 6.
There is excellent quantitative agreement between IB
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FIG. 4. Comparison of PIFS (a) and stresslet (b) contributions with small Wi theory as a function of shear strain for a range of Wi simulated using the
Oldroyd-B model. The parameters of Oldroyd-B model used in transient shear simulations are f = 0.68.
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FIG. 5. Comparison of steady state PIFS (a) and stresslet (b) contributions calculated using fitted parameters B}y, Ci2, and Dy, with the theory of Einarsson
et al. for a range of small Wi simulated using the Oldroyd-B model. The parameters of the Oldroyd-B model used in transient shear simulations are 8 = 0.68.

simulation results and theoretical relations. Next, we compare
the time-dependent evolution of stresses from IB simulations
for a single sphere with BF simulations at Wi = 3 in transient
shear flow. We show the comparison of the PIFS and stress-
let as a function of shear strain between BF and IB simula-
tions in Fig. 7(a) and comparison of the per-particle viscosity
as a function of shear strain between BF and IB simulations
in Fig. 7(b). There is excellent agreement between the IB and
BF simulations, which gives us confidence that our method
for the calculation of the PIFS and stresslet in IB simulations
is reliable and the IB simulations can be used for calculating
the bulk stress in nondilute suspensions.

lll. NUMERICAL RESULTS

A. BF simulations for dilute particle suspensions
in Dai’s Boger fluid

We perform BF simulations for dilute particle suspensions
(i.e., single particles) in a computational domain of size

1.9
===== Kreiger-Dougherty
181 Batchelor-Green
Einstein
1.7 | ™ IBsimulations 1
1.6 1
1571 ]
-

1.4+ 1
1.3+ 1
121 1
1171 ]

1

0 0.05 0.1 0.15 0.2

¢

FIG. 6. Comparison of relative viscosity 7, of Newtonian suspensions
between the IB simulations, the Kreiger—Dougherty relation, the Batchelor—
Green theory, and the Einstein relation.

40a x 40a x 40a at Re = 0.05 with the suspending poly-
meric fluid modeled using both the Oldroyd-B equation and
the Giesekus equation. The parameters of both models are
chosen such that they fit to the steady shear rheology of
the Boger fluid used by Dai et al. [4] (8 =0.68, a =0 for
the Oldroyd-B and g = 0.68, a = 0.0039 for the Giesekus
model). We use this fluid simply as an example of a Boger
fluid to provide model calculations. We show the evolution
of the PIFS and stresslet with shear strain for small
Wi=0.1, 0.2, and 0.3 using the Oldroyd-B model in
Fig. 5, and the PIFS and stresslet for finite values of
Wi=0.3,0.5,0.38, 1, 2, 3, and 4 using the Giesekus model
in Fig. 9. The per-particle viscosity for finite Wi values are
shown in Fig. 8. The simulations are mesh-converged and
time-converged as the results change by less than 8% when
we decrease the mesh size by a factor of 2 and the time step
by a factor of 4. The angular velocity of the sphere is
updated at each time step such that the nondimensional
torque on the sphere is less than 1 x 1073 at all times.

We observe in Fig. 8 that the per-particle viscosity
increases monotonically to steady state for different Wi and
the steady state per-particle viscosity increases with Wi con-
sistent with steady shear simulations [13]. This means the
particles cause the viscosity of the suspension to shear-
thicken although their presence does not change the qualita-
tive evolution of the shear stress in the suspension compared
to the behavior of the suspending fluid. Note that the per-
particle viscosity requires increased strain to reach steady
state at higher values of Wi in Fig. 8. The evolution of the
PIFS and stresslet in Fig. 9 shows that the PIFS increases
monotonically to steady state, but the stresslet shows an over-
shoot to steady state at higher Wi values. The values of the
steady state PIFS increase with Wi but the steady state stress-
let values decrease with Wi, again consistent with simula-
tions found elsewhere [13]. The increase in PIFS offsets the
decrease in the stresslet leading to a net shear thickening of
the suspension. The decrease in stresslet values with Wi can
be understood as the polymer stretch surrounding a given
particle “shields” the particle and thus reduces the local
surface tractions. We believe the same ‘“shielding” effect
leads to nonmonotonicity in the stresslet evolution with strain
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FIG. 7. Comparison of PIFS X, and stresslet Sj, (a) and per-particle viscosity 7711)2 (b) between BF and IB simulations at Wi = 3. The BF simulations were
performed for a single sphere suspended in a box of size 40a x 40a x 40a whereas IB simulations were performed for a single sphere suspended in a box of

size 15a x 20a x 7.5a.

at high Wi numbers. The stresslet values start to increase at
small strains as the suspension behaves like a Newtonian sus-
pension. However, increasing polymer stretch in the fluid
with strain shields the particle surface and reduces local
surface tractions, leading to nonmonotonicity at finite strains.

We also show the per-particle contribution to the first normal
stress difference coefficient | = X112 /Wi + S11_2,/Wi with
shear strain for different Wi values in Fig. 10 and the evolution
of 11 /Wi and S};_5, /Wi contributions in Fig. 11. All three
quantities y, X11_2, /Wi, S1;_2/Wi increase monotonically to
steady state, but the steady state values of l//f and Xq1_2 /Wi
are nonmonotonic with Wi as witnessed elsewhere [13]. Up to
Wi = 2, the particles cause the first normal stress difference
coefficient of the suspension to shear-thicken relative to the sus-
pending fluid. Again, this can be attributed to the increase in
the PIFS contribution with increasing Wi. Beyond Wi = 2,
however, the PIFS contribution starts decreasing with Wi and,

3.2

2.8

2.6

%24

2.2

5 10 15
Shear Strain

FIG. 8. Evolution of per-particle viscosity contribution to shear stress 7],
with shear strain for a range of Wi simulated using the Giesekus model. The
parameters of the Giesekus model used in transient shear simulations are
B =0.68 and a = 0.0039. These parameters model the shear rheology of
Dai’s Boger fluid [4].

combined with the decreasing stresslet contribution, the overall
behavior becomes shear-thinning. The steady state values of
vl 21122 /Wi, and Sy;_2 /Wi are consistent with other simu-
lation results [13].

B. BF and IB simulations for particle suspensions
in the B25 Boger fluid

As presented above, we have performed IB simulations
for a single sphere in a box of size L; = 15a x L,
=20a x Ly = 7.5a in dilute limit with characteristic mesh
size h = a/10 to compare with BF simulations in Fig. 7, and
we achieved excellent agreement. We know from previous
studies that this domain size is sufficiently large to reproduce
“unbound” dilute suspension results [13]. We next present IB
simulation results in the nondilute limit for three different
particle volume fractions ¢ = 2.5%, 5%, and 10% with the
same size computation box of dimensions L, = L3 = 7.5a
and L, = 15a and change the number of particles in the box
to vary the volume fraction (N =5 for ¢ =2.5%, N =10
for ¢ = 5%, and N = 18 for ¢» = 10%). The domain dimen-
sion in the flow gradient direction was chosen to be larger in
order to minimize wall effects. The initial configurations are
randomly generated with the following excluded-volume
constraints: (1) The center of mass of each particle is at least
2.5a. from the center of mass of another particle and (2) the
center of mass of each particle is at least a 2a.y from the
walls at y = +L,/2. We define the effective particle radius
to be the sum of nominal particle radius, “a” and the
Eulerian mesh size, “h” as ar = a + h/2, thus accounting
for the transition region of the interface. The simulations are
performed for a total strain of ¢ > 30 and the transient stress
calculated in simulations is recorded. We run three simula-
tions for a given ¢ with different initial distribution of
spheres and average over those simulations to obtain some-
what smoother average results.

For the multiparticle simulations, we apply a short-range
interparticle force, taken from the study [23], to prevent
simulated particles from overlapping each other or the wall.
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FIG. 9. Evolution of PIFS (a) and stresslet (b) contributions to per-particle viscosity 77, with shear strain for a range of Wi simulated using the Giesekus
model. The parameters of the Giesekus model used in transient shear simulations are f = 0.68 and o = 0.0039.

The form of that force is as follows:

2
h— d)} x;[a]l — xi[b] (39)

Fila, b] = A|MAX| O, s
. 0] { ( n )] Tutal — xlbl]

where a and b denote two rigid surfaces, d is the separation
distance between those surfaces, h is the characteristic mesh
size and also the range of the collision force, and A is a pre-
factor. We use the calculated stress on the wall to compute
bulk shear stress as shown in Eq. (21), and we see less than
5% error between these calculations and those obtained from
rhs in Eq. (21). This can be seen in the calculation of per-
particle viscosity using Eqs. (24a) and (24b) as shown in
Fig. 12 for different particle volume fractions.

We perform BF and IB simulations for dilute and nondilute
particle suspensions in a polymeric fluid, modeled by four-

i = 0.3
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Wi=0.8
Wi=1
Wi=2
e Wi = 3
— \\j = 4
-05 : : ‘
5 10 15
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FIG. 10. Evolution of per-particle contribution to first normal stress differ-
ence coefficient y/{ with shear strain for a range of Wi simulated using the
Giesekus model. The parameters of the Giesekus model used in transient
shear simulations are 8 = 0.68 and oo = 0.0039.

mode Oldroyd-B parameters shown in Table I. The parameters
are obtained from the linear viscoelastic data of the B25 Boger
fluid shown in Sec. IV below as we will compare our simula-
tion results with experiments for this suspending fluid in
Sec. V. The time evolution of per-particle viscosity 77, as a
function of shear strain in the dilute limit and for varying ¢
values at Wi= 3 and Wi = 6 is shown in Fig. 12. The solid
lines show the calculation according to Eq. (24a), and the
dotted lines show the calculation according to Eq. (24b). We
get excellent agreement between the two approaches as
expected although the calculation from Eq. (24b) shows more
fluctuations because the IB force on particles changes rapidly
to prevent them from colliding with other particles. Therefore,
we use Eq. (22a) for the calculation of the stresslet and
Eq. (24a) for the calculation of per-particle viscosity in the rest
of the paper. We note three key points from the simulation
results—the per-particle viscosity (1) from single-particle BF
simulations matches with multiple-particle IB simulation for
2.5% suspension, which implies 2.5% suspension is in dilute
limit since particle-particle hydrodynamic interactions do not
make any difference, (2) evolves monotonically to steady state
with shear strain in BF and IB simulations for all ¢ values,
and (3) steady values increase with ¢ in IB simulations.

We also present the evolution of the per-particle contribu-
tion to the first normal stress difference coefficient y/ using
BF simulations in the dilute limit and IB simulations for
varying ¢ [according to Eq. (32)] at Wi =3 and Wi=6 in
Fig. 13. We note that y/ in IB simulations is independent of
¢ at both Wi =3 and Wi = 6 for all shear strains, and the
values are somewhat smaller compared to BF simulations.
This suggests that a finer Eulerian mesh is needed in IB sim-
ulations to match with BF simulations in the first normal
stress difference and that these are a weak function of
volume fraction.

IV. EXPERIMENTS

We now present experimental measurements of the rheol-
ogy of different suspensions in the B25 Boger fluid.
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FIG. 11. Evolution of PIFS (a) and stresslet (b) contributions to first normal stress difference coefficient y with shear strain for a range of Wi simulated using
Giesekus model. The parameters of Giesekus model used in transient shear simulations are f = 0.68 and a = 0.0039.

A. Materials

The B25 Boger fluid we use in our experiments consists
of a high molecular weight polyisobutylene [(PIB) average
M,, ~ 4.2 x 10° from Sigma-Aldrich] dissolved in kerosene
and mixed with low molecular weight polybutene [(PB)
Indopol H-25 from Ineos Oligomers Technology]. We made
the solution of PIB in kerosene first by dissolving small pieces
of PIB (3.4 wt. %) in kerosene (96.6 wt. %) and then added PB
for a final fluid composition of 92.93 wt. % of PB, 6.83 wt. %
of kerosene, and 0.24 wt. % of PIB. We found the density of
the fluid to be 810 kg/m’. This B25 Boger fluid is similar to
the benchmark Boger M1 fluid [24], although the PIB we
used has a higher M,, (4.2 x 10° versus 3.8 x 10°) [25].

The dispersed phase consists of polyethylene micro-
spheres purchased from Cospheric. The particle diameter
ranges from 32 to 38 um, screened such that 90% are in the
specified size range. The density of the particles is reported
to be 960 kg/mS. The small density mismatch between the
particles and the B25 fluid does not lead to significant
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sedimentation effects given the time scale of the experiments.
Particles settle at most 1 diameter during the course of an
experiment, based on the Stokes drag of the particles. Inertial
effects are also insignificant; the Reynolds number based on
the shear rate and the particle radius is less than 6 x 107,
The particles are also large enough such that Brownian
stresses can be ignored (Peclet number >7 x 107).

B. Rheology of the suspending fluid

We characterized the steady and dynamic shear properties
of the suspending fluid and the suspensions with an ARES-G2
rheometer using the 25 mm diameter cone-and-plate geometry.
All the measurements in the study were made at temperature
T =19.5°C. We show the small amplitude oscillatory shear
data of the B25 fluid at two strain amplitudes ¥y = 10% and
40% in Fig. 14(a). The data for the two strain amplitudes are
identical, which suggests that we are in the linear response
regime of the fluid. We also performed the strain amplitude
sweep at an angular frequency of 1rad/s and found the

— B ¢=2.5% |
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FIG. 12. Evolution of per-particle viscosity 7}, as a function of shear strain for different particle volume fractions ¢ = 2.5%, 5%, and 10% at largest Wi = 3
(a) and Wi =6 (b) in IB simulations. The solid lines show the calculation according to Eq. (24a), and the dotted lines show the calculation according to
Eq. (24b). Also shown in the black solid line is the BF simulation result for dilute suspension at the same Wi values.
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TABLE 1. MM Oldroyd-B parameters for the B25 fluid found by fitting to
linear viscoelastic data and stress relaxation data simultaneously in Fig. 14.

Mode Viscosity (Pas) Relaxation time (s)
1 0.6699 1.0025

2 0.3459 0.1697

3 0.2165 0.0537

4 0.2745 0.0038
Solvent 1.6103

response of fluid to be independent of strain amplitude until
y = 100%. We show the stress relaxation data when a step
strain amplitude of y = 500% is applied to the B25 fluid in
Fig. 14(b). We performed stress relaxation experiments at this
value of strain amplitude to reduce the noise in the data found
at lower values of strain amplitude.

To fit these data, we obtain the best four-mode and
one-mode Oldroyd-B parameters (7,, 4x) by fitting to the
SAOS and the stress relaxation data simultaneously using
nonlinear least squares regression. The parameters are shown
in Tables I and II. We used the Levenberg—Marquardt regres-
sion method to minimize the error between the experimen-
tally measured values and the values determined from linear
viscoelastic theory at the same angular frequencies. We show
the four-mode and one-mode model predictions for the
dynamic viscosity 77" and storage modulus G’ in Fig. 14(a).
We see that the four-mode model predictions agree very well
with the experimental data, but the one-mode model is not
able to capture the increase in storage modulus G’ values at
high angular frequencies. Both the single-mode (SM) and
multimode (MM) models capture the stress relaxation data
reasonably well in Fig. 14(b), and the longest relaxation time
in both models is close.

Next, we show the steady shear measurements of the B25
fluid, viscosity 7, first normal stress difference Nj, and first
normal stress coefficient y; as a function of shear rate in
Fig. 15. The B25 fluid behaves as a Boger fluid with nearly
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constant viscosity and the primary normal stress coefficient.
Thus, the Oldroyd-B model is an appropriate closed-form
constitutive model for characterizing the shear properties of
the fluid in the range of shear rates shown. The four-mode
Oldroyd-B model parameters that we obtained from the
linear viscoelastic data of the B25 fluid overpredict the
steady values of the first normal stress difference N; and
coefficient y, in Fig. 15. So, we find another set of MM
Oldroyd-B parameters by fitting to the steady shear data
alone and report 7,4, A¢ from this fit in Table III. We note
that the longest relaxation time for these parameters is 0.73 s
and thus smaller when compared to the 1 s that we obtained
from the linear data. The difference in fitted parameters can
be expected given that the steady shear measurements probe
the nonlinear response of the polymeric fluid at high shear
rates, whereas SAOS measurements capture the linear
response of the fluid.

Next, we present the transient shear measurements in the
start-up of shear for the B25 fluid as a function of shear
strain for three different applied shear rates in Fig. 16. The
viscosity of the suspending B25 fluid increases monotoni-
cally to steady state for all the shear rates investigated. We
also plot the predictions of the two MM Oldroyd-B models
that we obtained from fitting to the (1) linear viscoelastic
data and (2) steady shear data, in the same figure. The MM
model from the linear viscoelastic data provides a reasonable
prediction of the time evolution of stress in the B25 fluid at a
small shear rate of y = 1s~! or Wi =1, but the agreement
between this model and experimental data worsens at the
highest shear rate studied y = 6s~! or Wi = 6. The MM
model based on the linear data takes longer to reach steady
state compared to the experimental data at higher values of
Wi. The time evolution of the experimental data at the
highest shear rate y = 6s~! is captured very well by the
other MM model obtained from the steady shear data alone
in Table III. This makes some sense because the response of
the fluid becomes nonlinear at high shear rates such as

7 = 657!, and one might expect the MM model from the fit
3
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FIG. 13. Evolution of per-particle first normal stress difference coefficient y{ as a function of shear strain for different particle volume fractions
¢ =2.5%, 5%, and 10% at largest Wi =3 (a) and Wi = 6 (b) in IB simulations. Also shown in the black solid line is the BF simulation result for dilute

suspension at the same Wi values.
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FIG. 14. Experimental frequency sweep (a) and stress relaxation (b) data of the B25 fluid. Also shown are the MM and SM model predictions for both the
frequency sweep and stress relaxation data. The MM fit parameters are shown in Table I and SM parameters are shown in Table II.

to the steady nonlinear data of the B25 fluid to do a better
job at predicting the time-dependent response.

C. Rheology of suspensions

We show the SAOS data of different particle volume frac-
tion suspensions in the B25 fluid at two strain amplitudes
y = 10% and 40% in Fig. 17. The data for the two strain
amplitudes are very close, which suggests that we are in the
linear response regime of the different particle volume frac-
tion suspensions. The dynamic viscosity 7' and the storage
modulus G’ of the suspensions increase with ¢ at all angular
frequencies. To compare to these measurements, we derive a
theory for analytical calculation of 1 and G’ at different par-
ticle volume fraction suspensions in an Oldroyd-B fluid and
show the details of the derivation in the Appendix. A similar
expression has been suggested elsewhere in the literature [1].
The equations for G’ and ' when the suspending fluid is
modeled by a four-mode Oldroyd-B model become

k=4

PN i 40
G ZHW Fl /(@) (40)
7 =0l +£($)] +Z "&" SlLEf@) @D

The function f(¢) is the extra viscosity function for a
Newtonian suspension that includes all hydrodynamic inter-
actions between particles at zero Reynolds number.
For example, f(¢) = 2.5¢ for dilute suspensions ¢ < 1.
The function 1 + f(¢) is a measure of the relative viscosity

TABLE II. SM Oldroyd-B parameters for the B25 fluid found by fitting to
linear viscoelastic data and stress relaxation data simultaneously in Fig. 14.

Mode Viscosity (Pas) Relaxation time (s)
1 1.085 0.926
Solvent 2.0932

7, of Newtonian suspensions. The solid lines in Fig. 17 cor-
respond to linear viscoelastic (LVE) theoretical Eqgs. (40) and
(41) with n, taken from the O(¢>2) theory of Batchelor and
Green [22] for Newtonian nondilute suspensions,
n,=1+25¢p+7.64>. We also plot the LVE theoretical

predictions for another semiempirical 7, relation by Kreiger

and Dougherty [21] 7, = (1 — ;) %

Fig. 17. The Kreiger—-Dougherty relation is a semiempirical
correlation for effective viscosity of solid-liquid suspensions,
which is valid for a full range of particle volume fractions.
This relation reduces to the linear form 7, =1+ 2.5¢ at
very low particle concentrations, and at some characteristic
particle volume fraction ¢,,,,, the relative viscosity becomes
infinite. The quantity ¢,,, is called the packing fraction
since the approach to infinite viscosity is usually ascribed to
the attainment of a close-packed structure. The theory with
two different 7, definitions predict the measured dynamic
viscosity very well at small angular frequencies but shows

in the same
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FIG. 15. Steady shear data of the B25 fluid and predictions of the MM
model from linear data (called MM2 in the plot). This model overpredicts
the first normal stress difference N; and the first normal stress coefficient
v,. So we fit another MM model to steady shear data alone (called MM in
the plot) and show the parameters in Table III.
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TABLE III. MM Oldroyd-B parameters for the B25 fluid found by fitting
to steady shear data alone in Fig. 15.

Relaxation time (s)

Mode Viscosity (Pas)

1 0.1695 0.7380
2 0.1519 0.1271
3 0.1156 0.0204
4 0.0783 0.0009
Solvent 2.4098

somewhat stronger shear-thinning behavior than found in
experiments at higher frequencies. Nonetheless, the agree-
ment is still quite good. The theory predicts experimental
values of the storage modulus G’ fairly accurately for all par-
ticle volume fraction suspensions. Note the theoretical pre-
dictions of the dynamic viscosity and the storage modulus
using the two 7, definitions are within the error of the
measurements.

We also show experimental measurements of the steady
state viscosity 7, the steady state first normal stress differ-
ence N; and the primary normal stress coefficient y, as a
function of shear rate for different particle volume fractions
in Fig. 18. The viscosity shows a plateau at small shear rates
in the limit Wi — 0 for all ¢. The suspensions with
¢ =2.5%, 5%, 10%, and 20% show shear-thickening behav-
ior at high shear rates as opposed to the slight shear-thinning
behavior of the suspending B25 fluid. These observations are
in agreement with the measurements reported in the literature
[4,5]. The first normal stress coefficient of all suspensions
increases with the shear rate modestly, and the values for the
20% suspension are significantly higher than other particle
volume fractions at all shear rates. The difference in
values becomes appreciable at shear rates of 10s~! or higher
for lower particle volume fraction suspensions (i.e., < 20%).

Next, we present the time-dependent evolution of shear
stress for the same particle volume fraction suspensions
¢ =2.5%, 5%, 10%, and 20% in the suspending B25 fluid
at shear rates y = 1, 3, 6, and s in Fig. 19. The evolution
is monotonic to steady state for all particle suspensions just
like the evolution in a suspending Boger fluid although the
time to reach steady state increases with the particle volume
fraction at a given shear rate. As an example, let us look at
the experimental data at a shear rate of 3s~! where the 20%

A. JAIN AND E. S. G. SHAQFEH

suspension does not reach steady state in 40 strain units but
the 2.5% suspension reaches steady state in about 20 strain
units. The time to reach steady state also increases with the
shear rate for a given particle volume fraction in the suspen-
sion. These measurements reinforce the idea that it is impor-
tant to study the transient shear rheology of suspensions in
viscoelastic fluids where it may take anywhere from 20 to
300 strain units to reach steady state.

We also show the evolution of the first normal stress dif-
ference coefficient y; as a function of shear strain for sus-
pensions in Fig. 20. There is significant noise in the data at a
shear rate of 1s~! for all suspensions investigated, but the
signal becomes clearer at higher shear rates. Therefore, we
show measurements for higher shear rates y = 3 and 657!
The first normal stress difference coefficient y, values are
very close for ¢ = 0%, 2.5%, 5%, and 10% for shear rates
y <3 s~! but the value for 20% suspension is higher com-
pared to that of the suspending fluid. At the highest shear
rate investigated, y = 6 s~ the difference between v, values
for ¢ = 20%, 10%, and 0% is clear, but 2.5% and 5% sus-
pensions have values very close to that of the suspending
fluid.

We calculate the per-particle contribution to viscosity and
first normal stress difference coefficient of suspensions from
experimental data for different ¢ values and shear rates
to compare with the BF and IB simulations in Sec. V. We
compute the per-particle contribution to the suspension vis-
cosity and the suspension first normal stress coefficient by
subtracting the fluid contribution from the relevant suspen-
sion quantity and dividing the difference by the particle
volume fraction ¢, as shown below,

¢ _ =0
n n
=, 42)
¢
and
b . $=0
'//1]7 _ l//l l//l (43)
¢
The first normal stress difference coefficient is

73 4
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o g il
0sl? : 08l}? 08l: :
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FIG. 16. Transient shear data of the B25 fluid from experiments at shear rates of 1 (a), 3 (b), and 65! (c). Also shown are the predictions of the MM model
from frequency sweep and stress relaxation data in dots and the MM model from steady shear data alone in dashes.
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FIG. 19. Experimental measurements of the B25 fluid and four other particle volume fraction suspensions with ¢ ranging from 2.5% to 20% in transient shear

flow at shear rates of 1 (a), 3 (b), and 65! (c).
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FIG. 20. Experimental measurements of first normal stress difference coefficient of the B25 fluid and four other particle volume fraction suspensions with ¢

ranging from 2.5% to 20% in transient shear flow at shear rates of 3 (a) and 65! (b).
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FIG. 21. Comparison of per-particle viscosity 7” from experimental data at shear rates of 3 (a) and 6 s™! (b) for ¢ = 2.5%, 5%, and 10% suspensions in the
B25 Boger fluid with single-particle BF simulations at the same largest Wi. The simulation results are shown for the MM Oldroyd-B model in the solid line

and the SM Oldroyd-B model in the dashed line. The parameters of these models are shown in Tables I and II, respectively.
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FIG. 22. Comparison of per-particle contribution to first normal stress dif-
ference coefficient y/ of ¢ = 10% suspension in experiments at a shear rate
of 6 s~ with single-particle BF simulations at the same largest Wi. The sim-
ulation results are shown for the MM and the SM Oldroyd-B models. The
parameters of these models are shown in Tables I and II, respectively.

values of these suspensions are very close to the suspending
fluid at all shear strains as shown in Fig. 20. At a higher
shear rate of 6 s~!, 10% suspension has a stronger signal in
experiments that allows us to compute y/ values and
compare against numerical simulations. The agreement in y/
values between BF simulations and 10% suspension experi-
mental data is reasonable at Wi = 6. The BF simulation
result with the MM Oldroyd-B parameters is closer to the
experimental data compared to the BF simulation result with
SM Oldroyd-B parameters.

Next, we present the direct comparison of the per-particle
viscosity between experiments and the IB simulations for
nondilute particle suspensions having particle volume

7 .
m—BF MM Wi =3
61 meees BESMWi=3 | |
O Expt ¢ =25%
Expt ¢ = 5%
5t O Expt ¢ =10% | |

0 . .
0 10 20 30
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FIG. 24. Comparison of per-particle contribution to the first normal stress
difference coefficient of a suspension y/ from experiments and IB simula-
tions at the shear rate of 65~ or largest Wi = 6. The BF simulation results
are shown in the black solid line in the figure.

fractions ¢ = 2.5%, 5%, and 10% at Wi = 3 and Wi =6 in
Fig. 23. We used the approach that we discussed in Sec. I C
for the calculation of per-particle viscosity and per-particle
first normal stress difference coefficient in IB simulations.
The time-dependent IB simulations provide good quantitative
agreement to the experimental per-particle viscosity data at
Wi = 3, but the steady state values in the simulations are
smaller compared to that of the experiments for ¢ = 5% and
10%. Likewise, the IB simulations for ¢ = 2.5% and 5% at
Wi = 6 show quantitative agreement with transient experi-
mental data except the steady state values are underpredicted
for ¢ = 5%. The IB simulations for 10% significantly under-
predict the per-particle viscosity in experiments at all shear
strains. This is perhaps an indicator that we need a finer

= BF MM Wi =6
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O Exptrate =6/s ¢ =2.5%)| |
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O Expt ¢=10%

0 10 20 30 40
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FIG. 23. Comparison of per-particle viscosity 7” from experiments and TB simulations at the shear rate of 3s~! or largest Wi= 3 (a), and 65! or largest
Wi= 6 (b). We superpose the BF simulation results (shown in the black solid line) at the same Wi values.
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FIG. 25. Comparison of per-particle viscosity from steady shear experi-
ments with steady values from IB simulations for different particle volume
fractions.

Eulerian mesh to resolve stresses near the particle surfaces
at this high Wi value and particle concentration. This is
similar to the situation in previous studies where the
Multiple-particle simulations underpredict the thickening in
experiments for ¢ < 10% in Yang and Shagfeh [5] or under-
predict the steady relative viscosity of viscoelastic particle
suspensions (¢ = 10% and 30%) in experiments at different
Wi values in the study by Vazquez et al. [7].

Despite the lack of quantitative agreement between the IB
simulations and experiments at larger strains and higher ¢
values, the IB simulations show an increase in per-particle
viscosity with particle volume fraction ¢ at a given Wi, just
as we observe in experiments. To reduce the temporal fluctu-
ations in the average values of the per-particle viscosity, we
also performed simulations with 80 spheres in a larger box
of sizes L, = 15a,L, =30a, and Lz =7.5a to obtain
¢ = 10%. However, we had to use coarser Eulerian and
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Lagrangian meshes with this large number of particles to
manage computation time, but we ensured that the ratio of
Lagrangian mesh size to Eulerian mesh size was approxi-
mately the same as before. The Eulerian mesh resolution was
set to be h = a/6.667. We present results of this bigger sim-
ulation Sec. VL.

We also present the comparison of per-particle first
normal stress difference coefficient /| from experiments (for
10% suspension) and IB simulations for different particle
volume fractions at Wi = 6 in Fig. 24. The IB simulations
indicate a weak dependence on ¢; thus, it can be expected
that single-particle BF simulations would do a good job of
predicting v/ in experiments up to 10%. Finally, we present
the comparison of the steady state per-particle viscosity from
experiments and IB simulation results for different particle
volume fractions in Fig. 25. We used the data in Fig. 18(a) to
compute the steady state per-particle viscosity in experiments
as a function of Wi and used the longest relaxation time of
1s~! found above to calculate Wi from the imposed shear
rate. We find that IB simulations are in close agreement with
the experimental data at Wi = 3 for all the three ¢ values
considered. At higher Wi = 6, the agreement is quantitative
for ¢ =2.5% and 5%, but the simulations underpredict the
steady state value in experiments for 10% suspension as seen
in transient shear experiments also. Note the per-particle vis-
cosity values for 5% and 10% suspensions in the steady shear
experiments are slightly smaller compared to the steady values
obtained from long times in transient shear experiments.

VI. MECHANISM OF INCREASE IN 7° WITH
PARTICLE VOLUME FRACTION

In order to understand what causes the increase in
per-particle viscosity with particle volume fraction ¢ at a
given Wi in transient shear experiments of viscoelastic sus-
pensions, we decompose the per-particle viscosity in the IB
simulations into two components—PIFS and stresslet—using
the approach discussed above in Sec. II C. We plot the PIFS

0
-0.1f .
0.2 :
-0.3+ 3
s 04F . .,
2y ’..‘; -: o v, S e

. v o Oy
y 200, sefe, ot QY

N Lo . . RIS B o %
0.5 N & e AN . AR) .

S,,-S

08 =8 | ¢=2.5%, 5sph, h = a/10
Er $= 5%, 10sph, h = a/10
e ¢=10%, 18sph, h = a/10
= [ ¢ = 10%, 80sph, h = a/6.67
= . ! ,
0 10 20 30 40
Shear strain
(b)

FIG. 26. Decomposition of per-particle viscosity n"l’2 in IB simulations into PIFS X, (dotted lines) and stresslet S, (solid lines) at Wi = 3 (a) and stresslet
contribution after Newtonian stresslet is subtracted for different particle volume fractions ¢ = 2.5%, 5%, and 10% at Wi = 3 (b). We use Krieger—Dougherty
relation for the calculation of Newtonian stresslet in nondilute suspensions that is abbreviated by KD in the figure.
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FIG. 27. Decomposition of per-particle viscosity nfz in IB simulations into PIFS X, (dotted lines) and stresslet S;, (solid lines) at Wi = 6 (a) and stresslet
contribution after Newtonian stresslet is subtracted for different particle volume fractions ¢ = 2.5%, 5%, and 10% at Wi = 6. We use the Krieger—Dougherty
relation for the calculation of Newtonian stresslet in nondilute suspensions that is abbreviated by KD in this figure.
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FIG. 30. Surface contours of f{B on spheres for ¢ = 2.5% (a) and ¢ = 10% (b) at Wi= 0 in steady state.
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FIG. 31. Surface contours of £ on spheres for ¢ = 2.5% (a) and ¢ = 10% (b) at Wi= 0 in steady state.

and stresslet contributions as a function of shear strain for
different ¢ suspensions at Wi = 3 in Fig. 26(a) and find that
the PIFS is approximately equal for all suspensions but the
stresslet increases with ¢. This is remarkable as it suggests
that particle-particle interactions do not affect the “extra”
polymer stress in the fluid phase, i.e., the PIFS, as discussed
by Yang and Shaqfeh [5] (for the steady state). This is the
case because the regions that contribute most to the PIFS are
close to the particle surface where the streamlines form
closed trajectories [6]. The particle-particle hydrodynamic
interactions cause the stresslet to change with ¢. We observe
the same behavior at higher Wi = 6 in Fig. 27(a). We also
plot simulation results for ¢ = 10% with 80 spheres in a
bigger computation domain for both Wi values and find that
simulating more particles does indeed smooth the temporal
fluctuations in the IB simulations, but due to the coarser
mesh resolution, the simulations underpredict the PIFS sig-
nificantly. The simulation results for the stresslet computed
using 80 spheres agree with the results calculated on the
smaller computation domain.

The steady state stresslet values in Newtonian suspensions
increase nonlinearly with ¢ as seen in Fig. 6. Since the
numerical values from IB simulations are in excellent agree-
ment with the Kreiger—Dougherty relation, we use this rela-
tion to calculate the relative viscosity of Newtonian
suspensions at finite particle concentration.

One of the objectives of this study is to determine
whether there is a need to simulate multiple particles or it
suffices to perform single-particle simulations to study the
bulk rheology of nondilute particle suspensions in shear
flow. Thus, we need to determine if the per-particle stresslet
can be made independent of ¢, as the PIFS contribution is
already independent of ¢. We know that the Newtonian
stresslet contribution depends nonlinearly on ¢); therefore, we
subtract the Newtonian contribution from the per-particle
stresslet and determine if the remainder (that we refer to as
“elastic” stresslet) is a function of the particle volume frac-
tion. We plot the “elastic” stresslet contribution Sjp — S}’
at Wi=3 in Fig. 26(b) and Wi=6 in Fig. 27(b) for
¢ =2.5%, 5%, and 10% suspensions. The “elastic” stresslet
contribution depends on ¢ (in particular, increases with ¢)
for both values of Wi investigated, which suggests that it is
necessary to simulate multiple particles to capture the nonlin-
ear effect of particle-particle hydrodynamic interactions on
the bulk rheology of nondilute particle suspensions in

viscoelastic fluids. We also present the elastic stresslet contri-
bution from the simulation of 80 spheres (¢ = 10%) in a
bigger computation domain at both Wi values. Note that the
elastic stresslet values are negative for all ¢ and Wi numbers
studied, which simply states that the particle stresslet in
elastic suspending fluids is smaller than in Newtonian fluids
at the same particle volume fraction.

To help visualize the increase in stresslet values with ¢,
we plot the contours of the IB force density, f/% and /8, on
the surface of spheres for ¢ =2.5% and ¢ = 10% at large
strains (when the system has reached steady state) and
Wi = 6 in Figs. 28 and 29. The IB force density is used in
the calculation of stresslet in IB simulations. There are
regions on sphere surface where the magnitude of f/# and /&
is larger for ¢ = 10% compared to ¢ = 2.5% that leads to
higher values of “elastic” stresslet for 10% suspension com-
pared to 2.5% suspension in Fig. 27(b). We also show the
contours of £/ and £I8 at the same particle volume fractions
in Newtonian steady state in Figs. 30 and 31 although the
steady distribution of particles is different in the Newtonian
case compared to Wi = 6. The Newtonian contours show
more regions of large magnitude of /% and £ compared to
the Wi = 6 case, which leads to negative values of elastic
stresslet for both ¢ values at this Wi = 6. Finally, we want to
mention that our simulation results are consistent with the
steady findings of Yang et al. [13] who show that the thick-
ening of the per-particle viscosity with Wi is due to the
increase of PIFS with Wi. We see a similar trend for the
PIFS and stresslet in Figs. 26(a) and 27(a), i.e., steady values
of PIFS increase with Wi and steady values of stresslet
decrease with Wi for all ¢ values.

VIl. CONCLUSION

We performed 3D transient simulations of the bulk shear
rheology of particle suspensions in Boger fluids for a range of
Wi and finite strains and calculated the per-particle extra viscos-
ity of the suspension. We developed a new theory for the time-
dependent evolution of average stress in a dilute suspension
valid for Wi < 1 and found good agreement between single-
particle dilute simulations and theoretical calculations. To
understand the physical mechanism behind the rheology, we
categorize the per-particle viscosity calculations as contributions
from either PIFS or stresslet. In the dilute limit, the PIFS
increases monotonically with shear strain; however, the stresslet
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shows a nonmonotonic evolution to steady state at large Wi.
This, we believe, is due to the shielding effect in elastic fluids
that leads to reduced local surface tractions on the sphere with
increasing polymer stretch in the surrounding fluid. The per-
particle viscosity, however, shows a monotonic evolution to
steady state. We also performed multiple-particle simulations
using the IB method to examine the effect of particle-particle
hydrodynamic interactions on the per-particle viscosity calcula-
tion. Since the solid-fluid interface is not sharp in the IB simula-
tions, we developed and validated a novel method of computing
the PIFS and the stresslet in these simulations. The per-particle
viscosity and the per-particle contribution to the first normal
stress difference coefficient both evolve monotonically to steady
state for different Wi and varying particle volume fraction ¢ sus-
pensions. The steady values of per-particle viscosity increase
with ¢, but the per-particle contribution to the primary normal
coefficient is independent of ¢ (up to 10% particle volume frac-
tion) at the two Wi values investigated in transient shear IB
simulations.

We presented experimental measurements of different ¢
suspensions in a Boger fluid including SAOS, steady shear,
and transient shear measurements using cone-and-plate
geometry. The transient shear measurements show that it
takes longer strains for suspensions to reach steady state with
increase in particle loading ¢ and shear rate. These findings
reinforce the idea that it is important to study the transient
shear rheology of suspensions in viscoelastic fluids where it
may take anywhere from 20 to 300 strain units to reach
steady state. We also developed a theory for the analytical
calculation of 7/ and G’ of different particle volume fraction
suspensions in an Oldroyd-B fluid and found excellent agree-
ment with the experimental measurements. We obtained the
best four-mode Oldroyd-B parameters for the suspending
fluid (by fitting to the SAOS and the stress relaxation data of
the fluid) to use in simulations so that a direct comparison
can be performed with experiments. We achieved excellent
quantitative agreement between experiments and simulations
for different ¢ values at Wi = 3 except that the IB simula-
tions underpredict the steady viscosity for a 10% suspension.
At higher Wi = 6, the IB simulations underpredict the per-
particle viscosity for the 10% suspension at all shear strains
and the steady viscosity for a 5% suspension. This suggests
that we most probably require a finer Eulerian mesh at higher
Wi and higher ¢ values to obtain quantitative agreement with
experiments. Nonetheless, IB simulations show an increase in
per-particle viscosity with ¢ as observed in experiments.

The per-particle viscosity is decomposed into PIFS and
stresslet contributions in the IB simulations to understand what
causes the increase in per-particle viscosity with ¢. We found
that the PIFS is approximately equal for different ¢ suspen-
sions, but the stresslet values increase with ¢. We subtracted
the Newtonian stresslet from the per-particle stresslet to obtain
“elastic” stresslet contribution and found this to be a function
of ¢ as well. The particle-particle hydrodynamic interactions in
nondilute suspensions affect the per-particle stresslet and, in
turn, the per-particle viscosity. Therefore, one needs to perform
multiple-particle simulations to capture the rheology of nondi-
lute viscoelastic suspensions in transient and steady shear flow
and compare successfully against experiments.
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APPENDIX: DERIVATION OF TRANSIENT STRESS
AND LINEAR VISCOELASTICITY IN PARTICLE
SUSPENSIONS

1. Time dependence of the average stress of a
dilute particle suspension in a viscoelastic fluid
(Oldroyd-B) through O(W/?)

A particle is placed in a linear flow that does not change
its principal axes but its magnitude can change in time. The
flow is started at time r = O by step increase. The Oldroyd-B
model polymer constitutive equation in dimensional form is

Do & p 5 sp 5.p E
A Dr = Yaon® — Vuou | + 0oy =2n,E, (A1)

where the substantial derivative is

D 0 0
- - A2
Dt 8t+uk8xk’ (A2)
and the rate of strain tensor is
. oli;
Vi= 5 (A3)
YooK

The polymer viscosity is denoted by 7,, and the solvent vis-
cosity is denoted by n,. The solvent stress in dimensional
form is

&} = — pdyj + 2n,Ey. (A4)

The momentum balance equation at zero Re and the continu-
ity equation is

o, _

& 4651 =0; o 0. (A5)

0
8_~ [
Xk
The boundary condition on surface of particle is

it = U; + e, (A6)
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subject to force-free and torque-free conditions,

JCN)'UI’LJdA = O; Je,-jk)fjc}kmsz =0. (A7)

The total stress in fluid phase is given by the sum of solvent
stress and polymer stress,
Gj=0;+ 6Z (A8)

The far field velocity goes to it; — <7~/U>)Zj where

0=y o=y

J (HdV + J (~)dV] . (A9)
Vi Vp
and

(A10)

()= % va (v

The bulk stress in suspension is the sum of stress in fluid
phase and particle stresslet,

(64) = (G); + S (A11)
The stresslet can be computed as
S; = L XG4 dA (A12)
1 - -
=3 JA,, [XiGunk + %6 jxny] dA (A13)
1 o~ o~
= 2Lp [5if; + %.f;]dA. (A14)
For Newtonian fluid,
& = 2n,Ej, (A15)
(6y); = —(P); + 20, + m){Ey). (A16)

Additionally, we will need the reciprocal theorem for a
non-Newtonian fluid (denoted by superscript NN) with a
Newtonian part (denoted by superscript N) to the stress,

Gy = &) + &, (A17)
The surface traction is defined as
fi=6&yn; . (A18)

I surface of particle
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Then,
J i f,dA — J ii;f, dA = J 7,6uav, (A19)
A, A,

where ()" is the reference solution to the Stokes equations.
Making variables nondimensional,

&’ 7. o
‘[:%’ O"Z: l].’ U:Q’ Mi:I./l—l’
g Y ) ~7’ ya (A20)
Xi Ojj Ojj M
xi:_s O-l”: T = ) ﬁ:_.
a sy my 7
Then, in dimensionless terms,
oo’ oo’ ,
o Y+ Wi (Mk o 7lko-§; 7/1‘/{0'1’1,‘) + O'i)] = 2E,j. (A21)
= —pé; + 2Ej;. (A22)
= ﬁO';- + 1 - ﬁ)crf}. (A23)
a R
—[Bo;, + (1 — ﬁ)crfk] =0 (A24)
8xk
and
as
(o) = <ﬁo-fj + (1 - ﬂ)o-” ) Sij- (A25)

where a is sphere radius and y is some measure of average
(7;)- Now, we expand the equations in a power series in Wi
noting that

(75) = TyH(@). (A26)

In the above equation, I'; is constant and H(7) is a Heaviside
step function. According to regular perturbation theory,

ol = ol + WielV + Witel® + . (A27)
o} = o} + Wic) ) + Wito)? + ..., (A28)
i = u® + Wil” + witul® 4 ..., (A29)
oj =0y + Wiol) + Wital + ..., (A30)
p =p? + wip + wip?® + (A31)
E; = E)) + WiE}) + WPED + ... (A32)
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Solving at O(Wi®) gives

0'5(0) = ZJ exp(—(r — T’))E;Q)(xi, )07, (A33)
0

and this stress term is quasi-Newtonian. The driving force for
the flow is j/,»j — I';H(r) in the far field. Moreover, the
Newtonian flow does not depend on viscosity, and thus we
assume

u® = U (x)H (1) (A34)
and
Ey) = e ()H(D), (A35)

and define
L{H(1)} = JT exp(—(r — U)H(' )07 = 1—exp(—7). (A36)
0

‘We obtain

ol” = 26 (x)L{H()}. (A37)

Substituting polymer stress in momentum balance equation
gives

p®
_ﬂ 8xi
—=0. (A38)

+BVUPH®) + (1 — VUL L{H (7))

We then have

p? = PO%(), (A39)
where
1 _
f(©)=H()+ TﬁL{H(T)} (A40)
and
(0) 0)
_oP +ViU© =0, oU” _ 0. (A41)
Ox; Ox;

The above equations are steady Stokes flow equations for the
Newtonian fluid. Thus,

XiXjXk
U =Tyx — 5/25ym(F]k) L

; 0 S
+5/2sym(r,k>(”’xk Ko X 11y

5r5

> , (A42)

where
sym(T) = 1/2(T; + T'j) (A43)
and
ou© o©
7 = o HO = gH(T; QY = 'H(r) (A44)

Here, wEO) is the vorticity associated with I';. The average

stress at O(Wi?) is given according to

0
<0'l(j)>f =

—(p©);6,f(2) + 2BsymI;H(7) + 2(1

— B)syml';L{H(7)}, (A45)

3
%Sg = (5Bsym(Ty)H(z) + 5(1 — Bsym(TyL{H(2)} ).
(A46)

Thus we obtain (o' )) according to Eq. (A25) as

(o) =Isotropic Terms + 2BE;H(t)+2(1 — B)E;(1 — exp(—7))

+5¢BE;H(1)+ 5¢(1 — BE;;(1 — exp(—71)).

(A47)
At next order O(Wi'V), Eq. (A21) gives
aap(l)
a + Gp(l) — 2E(l) + SP(O)H(T)L{H(Z')} (A48)
where
9e®
S0 = 2032606 1260 (a49)
We assume
(1) (](1)()C )H(l)(‘[) (ASOa)
E,g»l) = ef»;)(xi)H(l)(r), (AS0b)

where H(7) is to be determined. Solving for af " with
initial condition 0” (])(T = 0) gives

ol = 2¢(x)L{H(2)} + SIVL{H(1)L{H (1)} }.  (AS1)
The integration gives
L{H(t)L{H(7)}} = 1 — exp(—1) — rexp(—1). (A52)

Assuming pY = PWfM(z), the conservation of momentum
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gives

oPO»

p(O)
+ —ﬁ)[ o ]L{H(T)L{H(T)}} =0. (A53)
j
By balancing terms we get
av=1"F;
=5 s[H(D)L{H(7)}], (A54)
where Lg is defined as
Ly( () = L exp(— (T —* ) ¢()d7’ (ASS)
and
70 =P oL HO). (A56)

With this solution, the entire problem goes back to the steady
problem at O(Wi")). The momentum conservation gives

op st
—t vZul® 4 # =0, (A57)
X Xj
with uﬁl) — 0 as r — o0. The velocity on the particle surface
is given by

(1)

= U + eox| (A58)

r=1»

where Q" = 0"H®(7) and u!"’ = UVHO(7). Note that
U“) =0 by symmetry. It is dlfflCult to find U(l) or efjl), but
we do not have to calculate these quantities to get the

average stress. We know (e (1)>f = 0; therefore, we obtain

(o} o )>f = Isotropic term + (1

— BY(SEYLIH(DL{H (D)} ). (A59)

We use the reciprocal theorem in Eq. (A19) with the refer-
ence field for disturbance flow as extensional flow past a
sphere and we obtain stresslet according to

a3

7S5 = == B{MuS1") LIHOLIHD} ], (A60)

where y; = E;ZM ijm Where ()" is the reference solution for
extensional flow in this case. We note that the time-
dependent functional form in Eqs. (A59) and (A60) is identi-
cal but the coefficients are different. These coefficients have
been computed in the study [16]. Thus, we obtain bulk stress

A. JAIN AND E. S. G. SHAQFEH

at this order as

(o) = (1 = BdpA;(1 — exp(—7) — texp(—7)),  (A61)
with the coefficients lumped into A;. There is no correction
to shear stress in shear flow at this order as shown by
Einarsson et al. [16]. We move to next order O(Wi®),

p2) p(l)
9o I Gp(z) 0% do
81‘ 6
do P(O)
M M _p(0)
U 8 + ylk O-Iq

+ 70 + 2E).

©0) _p(1) 0y __p(1)
+ Vi on Vo

(A62)

The first three terms on the rhs of above equation can be
called “forcing terms 1 and the next three terms on rhs can
be called “forcing terms 2.” The solvent stress can be written
as

ol = —p@5; + 2EL, (A63)
and the total stress would be
o = Boi® + (1 - Pyol®. (A64)

The momentum balance and continuity equations at this
order give

doyy  oU?
8xk o 8)6,‘

-0, (A65)

with Ul-(z) — (0 as r — oo and Uf ) = slkla);( )xl at r = a plus

no force and no torque conditions. We substitute the time-
dependent functional form of different variables in above Eq.
(A62) and find that there are three different forcing terms,

80.(7(2)
—t ol ob® = SPH(DL{H(1)L{H(7)})
+SJ H@OL{Ly{ H@OL{H(®)} })
+ SILy{H(r)L{H(7)} }L{H(7)} + 2E{7,
(A66)
where
00 0) 6S5(0) (0) ¢p(0) ©) P(O)
§ = U+ gSEY + 8RS (A67a)
k
] 1 ]
o _ | oo’ ey’ 2o 1 9,0 L=B o
i T T 28 €y T 28 e 5 ( )
B e 0) ] 1—
S0 = | 200 a” +2giel) + 28 el —ﬂﬂ . (A67¢)
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EY = e H?(2), (A67d)

where H?(7) is not known. Tt follows then,
ol = SPL{H()L{H(r)L{H(7)} }}

+ sglL{H(r)L{Lﬁ{H(T)L{H(r)} 1

+SIPL{Ls{H(D)L{H(0)} )L{H (1)} } + 2€ L{H®(7)}.
(A68)

We evaluate the Laplace of different terms by performing

2
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integration. Then,
(05, = () LUH(DL{H(:)L{H(7)} })
+ (8§ ) LAH@L{Lg{HOL{H()}} 1)
+ (S LI HOLHOYLIH @)}, (A69)
since <e§j2>>f = 0. The stresslet has the same time-dependent

form as shown in Eq. (A69) with different tensor multipliers
as was the case earlier. The bulk stress at this order is
given by

(a?}@) = Bjj¢p |1 —exp(—7) — rexp(—1) — %exp(—r)}
+ Cid _ﬂ(l —exp(—7) — rexp(—1)) — h exp(—1) + p rexp(—r)]
al 2(1 - B) (1 - B>
r 4
+ Cid Ta—p° (exp(—7) — exp(—r/ﬁ))}
: . (A70)
+ Dyjp | B(1 — exp(—17) — rexp(—7)) — (lfﬁ)z (exp(—z/B) exp(r))]
r 3
+ D¢ _— a [i 5 <exp(—r) — exp (— —1 ;ﬁ r) )}
+ D¢ G fﬁ) (rexp(—7) — exp(—7) + exp(—21))} ,
|
We find coefficients by fitting to numerical simulations at or
this order.
b 2N
% = Jiw £ 100 (AT3)

2. Theory for linear viscoelasticity of suspensions
in Oldroyd-B fluid

We start with dimensional Oldroyd-B polymer constitutive
equation as shown in Eq. (Al). Linear response theory
means Wi < 1 at all scales such that we can discard all non-
linear terms in velocity at the particle or macroscale subject
to the condition that the time it takes to flow a microlength is
still 7'/71. Thus, we obtain

Aot}

ot i

(A71)

Transforming y = yexp(iotr) as we are seeking periodic sol-
ution. The above differential equation becomes the algebraic
equation

Aol + 6% = 2n, B, (A72)

The above equation says that the polymer stress is a convolu-
tion of the rate of strain in time at every point in space, with
the convolution time scaling on A. This means that the fluid
is quasi-Newtonian. Since o’; = 2n,E;; or

& = 2n,Ey, (A74)
the total stress is obtained using
& = — o+ {2773 n Wi"i J B, (A75)
and the deviatoric component of total stress tensor is
dev(6'7!)y = [m n ﬂ] E;. (A76)
ilo+1

The volume average of the deviatoric component of total
stress tensor is related to stress in the fluid phase and average
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of stresslets as

(dev(6%" ™) = (&) + (Si)» (A77)
2n .
<°'l./>f [ ns + o - J< i) (AT8)
The average of stresslets is computed as
1
Sij J S
< 1]> VvV A, y
= o+ 2 Epw. @)
B idw + 1 f

where A, is the area of all particles and f(¢) is the extra vis-
cosity function for a Newtonian fluid at zero Re including all
hydrodynamic interactions, for example, f(¢) =5/2¢ for
¢ < 1. Putting this together,

fotal\\ __ 277
(dev(6y™)) = {2775 o+ 1] (Ej)(1L+f(¢)  (A80)
or
(dev(ay™h) = |21, + 2 V(g4 f), (A8
T T e+ 1)V ’
where (Ej;) is still complex and for oscillatory flow,
(Ej) = (Ej)explior)
= g(éilé‘ﬂ + 6]~16,~1)exp(ia)t). (A82)
Thus, we obtain
tota 1 —iwd
(ol3y = (nernp {m})(l
+ f())yexpliot.) (A83)

We obtain expressions for G’ and G” from the real and imag-
inary parts of Eq. (A83),

A ) (A84)
1—&—()» )2[ +f(P)],
= no[l + f(P)] + (/1 7 [1+f(P)]. (A85)

We apply this for each mode in an MM model and then we
sum the contributions to get the results of Egs. (40) and (41)
in the text.
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