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Recent discoveries have allowed a mathematical and computational foundation for
understanding the rheology of particles suspended in viscoelastic fluids. We employ these
new tools to understand the extensional rheology of such suspensions. We accomplish this
by first calculating the renormalized particle contribution to the extensional viscosity in
such a suspension in the dilute particle limit over a wide range of extensional Weissenberg
number and Hencky strain. The models we use for the suspending fluids are the simplest
dumbbell models—the Oldroyd-B, FENE-P, and Giesekus models—such that our results
are general for polymer solutions which exhibit strong strain hardening at values of the
Weissenberg number above those which engender the coil-stretch transition, Wi ! 0.5.
We demonstrate that the effect of particles on the “extra elongational viscosity” relative
to the fluid is nonmonotonic in strain (increasing for small strain and then decreasing for
large strain). Thus at a fixed strain, the particle “extra viscosity” relative to the fluid may
increase or decrease with Wi. We demonstrate that this interesting behavior is due to the
interplay between the two contributions of the “particle-induced fluid stress” (PIFS) and
the “stresslet” to the extra viscosity. The contribution of the particle-induced fluid stress
to the suspension viscosity increases at small strain but plateaus and then decreases at
higher values of the strain. Thus, at small strain the local velocity gradients near a particle
increase the polymer stretch, while for greater strain, polymers which have undergone the
coil-stretch transition collapse in the neighborhood of a given particle. On the other hand,
the stresslet contribution to the viscosity relative to the fluid decreases monotonically as
the polymer stretch surrounding a given particle “shields” the particle and thus reduces the
local surface tractions. Beyond Hencky strain of approximately 2 the decreasing value of
the stresslet coupled with the plateauing of the PIFS, causes the overall reduction in the
particle-induced extra viscosity relative to that of the fluid.

DOI: 10.1103/PhysRevFluids.4.091301

I. INTRODUCTION

The presence of strong strain hardening in polymer solutions is one of their most important
rheological characteristics [1–4]. Thus the extensional viscosity of a polymer solution, at sufficiently
large strain rates and Hencky strain, can be orders of magnitude larger than the solvent alone. The
control of processing flows of these materials is essentially dictated by this strain hardening [1–4],
which has historically been associated with the famous coil-stretch transition of the individual
polymer chains [5–7]. In the last 20 years, this connection has been made unambiguous by the
simultaneous measurement of the extensional viscosity of DNA solutions and microscopy of the
molecular configuration [8–13]. Strain hardening and the coil-stretch transition is still a very
active area of research with a number of groups seeking to understand the effect of intermolecular
interactions on the coil-stretch transition. The direct application of these rheological studies ranges

*esgs@stanford.edu

2469-990X/2019/4(9)/091301(11) 091301-1 ©2019 American Physical Society

https://orcid.org/0000-0001-9504-0117
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.091301&domain=pdf&date_stamp=2019-09-09
https://doi.org/10.1103/PhysRevFluids.4.091301


JAIN, EINARSSON, AND SHAQFEH

from extrusion molding to fiber spinning. However a great many of the associated practical materials
contain particle additives; they are hence a suspension in a viscoelastic fluid. These suspensions play
key roles in many energy applications (e.g., fracking fluids) [14], materials design applications (e.g.,
injected composite materials, pastes, and paints) [15], and consumer product applications (liquid
medicines and drugs).

Recently, there have been very significant advances in understanding the shear rheology of
particle suspensions in highly elastic solutions [16–21]. Indeed the most salient experimental feature
in this regard is the strong shear thickening of the suspensions (both in the viscosity and the primary
normal stress coefficient), which is entirely absent in the fluids alone [18,19,22–24]. These advances
include (a) methods for renormalization of the long-range interactions in these suspensions, such
that dilute suspension theory could be applied [18–20,25], (b) the first calculation of the dilute
limiting shear viscosity for a suspension of spheres for “weak flow” using these renormalizations,
(c) accurate large-scale computations of the renormalized shear flow rheological quantities beyond
the weak flow limit [19–21], and (d) qualitative reproduction of the experiments [21]. It is the pur-
pose of this Rapid Communication to apply these advances to an understanding of the extensional
rheology of particle suspensions in a viscoelastic polymer solution. Previous studies [26–28] focus
on two-dimensional inertialess particle suspensions in Newtonian or viscoelastic fluids under planar
elongational flows. In this study, we present three-dimensional (3D) numerical results for a dilute
viscoelastic suspension of spherical particles in uniaxial extension. We perform 3D simulations to
ensure elastic instabilities do not develop during evolution of polymeric flow with time.

II. PROBLEM FORMULATION

A. Bulk stress in a viscoelastic suspension

The general averaging procedure to obtain the macroscopic stress in a suspension of rigid
particles has been discussed in [16,19,20,29,30]. Here, we give a very brief recapitulation of the
method. The bulk stress in a suspension can be obtained by averaging over a sufficiently large
volume with the volume averaged velocity field matching the ensemble averaged velocity field and
this is equivalent to the ensemble average [29] for a statistically homogeneous suspension. Thus the
“bulk” stress defined in terms of the volume average is

σi j = 1
V

∫

V
σi jdV, (1)

where the overbar denotes volume average and V is the total suspension (particles and fluid) volume.
If the stress contributions from the particle phase σ

p
i j and the fluid phase σ

f
i j are separated and

furthermore, if the stress contributions due to suspending fluid without any particles σ
f 0

i j and the
stress contributions due to particles are made distinct, then as shown in [18–20], Eq. (1) becomes

σi j = σ
f 0

i j + n
[∫

V1

(
σ

f
i j − σ

f 0
i j

)
dV +

∫

A1

x jσ
f

iknkdA
]
, (2)

where diluteness has been assumed and the total particle contribution to the stress is obtained by
multiplying the number density of particles n in suspension with the per particle contribution. In the
above equation, V1 is the domain volume that contains a single particle and is large enough such that
any disturbance due to the particle decays far from the particle and at the boundaries of the domain.
The symbol A1 represents a single-particle surface and nk is the unit normal vector pointing out of
the particle surface. The number density n is related to particle volume fraction φ as n = φ

Vp
where

Vp is the volume of a single particle. The per particle contribution to the extension viscosity η
p
E is

then the sum of contributions from the particle-induced fluid stress (PIFS) $i j and the stresslet Si j ,
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viz.,

$i j = 1
Vp

∫

V1

(
σ

f
i j − σ

f 0
i j

)
dV ; Si j = 1

Vp

∫

A1

x jσ
f

iknkdA. (3)

Assuming that the flow is homogeneous, steady uniaxial extensional flow, where the rate of
strain tensor Ei j = ε̇[δi1δ j1 − 1

2 (δi2δ j2 + δi3δ j3)], we can define a per particle contribution to the
extensional viscosity of the suspension η

φ
E through the relation

η
p
E ε̇ =

(
$11 − $22 + $33

2

)
+

(
S11 − S22 + S33

2

)
. (4)

The total suspension viscosity for any dilute volume fraction φ follows directly from Eq. (2) after
the definition of particle viscosity is substituted and the particle number density is replaced by the
volume fraction,

η
φ
E = η

φ=0
E + φη

p
E , (5)

where η
φ=0
E ε̇ = σ

f 0
11 − 1

2 (σ f 0
22 + σ

f 0
33 ) and therefore η

φ=0
E is the extensional viscosity of the suspend-

ing fluid. After rearranging, we obtain an equation for the relative difference between suspension
and suspending fluid extensional viscosity,

η
φ
E

η
φ=0
E

− 1 = φ
η

p
E

η
φ=0
E

, (6)

which can be calculated in dilute simulations by computing the ratio of particle viscosity to fluid
viscosity.

B. Governing equations

We consider a neutrally buoyant sphere placed at the center of a rectangular computation domain
(±L1/2,±L2/2,±L3/2) in a mean flow field ui = (ε̇x,−ε̇y/2,−ε̇z/2) where ε̇ is the extension
rate. The mean flow is imposed on the walls of the domain far from the particle. There is no net
force or torque on the sphere due to the symmetric nature of the imposed flow. The dimensionless
governing equations are

∂u′
i

∂x′
i

= 0; Re

(
∂u′

i

∂t ′ + u′
j
∂u′

i

∂x′
j

)

= −∂ p′

∂x′
i
+

∂σ
f ′

i j

∂x′
j
, (7)

where the prime denotes a nondimensional variable. Length is made dimensionless by particle radius
a, time by inverse extension rate ε̇, velocity by ε̇a, and stress by η0ε̇ where η0 is the zero shear
viscosity of the suspending fluid. The fluid stress is the sum of Newtonian and polymer stress:

σ
f ′

i j = β

(
∂u′

i

∂x′
j
+

∂u′
j

∂x′
i

)

+ τ
p′

i j , (8)

where β is the ratio of Newtonian solvent viscosity to the zero shear viscosity and τ
p′

i j is the
nondimensional polymer stress. The FENE-P equation describing the evolution of the polymer
conformation tensor Ci j is

∂Ci j

∂t ′ + u′
k
∂Ci j

∂x′
k

− Cik
∂u′

j

∂x′
k

− Cjk
∂u′

i

∂x′
k

= − 1
Wi

(
Ci j

1 − Ckk
L2

− δi j

)

, (9)

where the conformation tensor components Ci j and the finite polymer extensibility L are nondi-
mensionalized by the polymer radius of gyration. There are two dimensionless groups: the particle
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Reynolds number defined as Re = ρε̇a2/η0 and the Weissenberg number Wi = λε̇ where λ is the
longest polymer relaxation time. The polymer stress is related to the conformation tensor through

τ
p′

i j = 1 − β

Wi

(
Ci j

1 − Ckk
L2

− δi j

)

. (10)

When L → ∞, the FENE-P equation is equivalent to the Oldroyd-B model. The Giesekus equation,
in the same notation, is

∂Ci j

∂t ′ + u′
k
∂Ci j

∂x′
k

− Cik
∂u′

j

∂x′
k

− Cjk
∂u′

i

∂x′
k

= − 1
Wi

(Ci j − δi j ) − α

Wi
(Cik − δik )(Ck j − δk j ), (11)

where α is the mobility parameter. When α = 0, the equation is again equivalent to the Oldroyd-B
model. To complete a calculation of the full time-dependent problem, for any of these constitutive
equations, we require initial conditions for the velocity and conformation tensor. For the initial
velocity we choose the Newtonian creeping flow solution for flow past a sphere in uniaxial
extensional flow, and for the initial conformation tensor we choose the identity tensor (the dimen-
sionless, equilibrium configuration thus producing no polymer stress). We also impose the boundary
condition on the conformation tensor such that the polymer conformation tensor at the walls of the
domain takes values corresponding to suspending fluid at different strains and Wi. This is allowed
because the simulation domain is taken to be big enough such that there is no disturbance due to
particles at the walls of the domain. We drop the primes in the rest of the Rapid Communication for
convenience and all the variables are assumed to be nondimensional.

C. Numerical simulations

The simulations are run using a massively parallel finite volume solver developed at Stanford and
the details of the solver can be found in [19], and the references therein. The domain grid conforms
to the body of a single sphere and is meshed using tetrahedral elements of size a/60 near the particle
surface and bigger elements of size a/40 far from the particle. The simulations are run in the limit
Re % 1. The domain convergence is tested for all simulations and the results are found to vary
by less than 5% between two domain sizes (40a, 40a, 40a) and (80a, 40a, 40a) where the longest
dimension of the box is in the direction of principal extension of the flow, i.e., the “1” direction.

III. RESULTS AND DISCUSSION

We numerically compute the ratio of the per particle extensional viscosity to the fluid extensional
viscosity as a function of strain for a range of Wi to study the effect of particles on the suspension
viscosity. The ratio can be thought as the “Einstein coefficient” [31,32] for the startup of uniaxial
extensional flow of spheres in a viscoelastic fluid.

A. Small strain results

To gain a physical understanding and test the accuracy of our numerical solutions, we first use
perturbation theory at small strains to calculate the PIFS and stresslet analytically for the Oldroyd-B
model. The polymer conformation tensor, fluid velocity, and pressure are expanded in the small
strain ε in the usual manner:

Ci j = δi j + εC(1)
i j + ε2C(2)

i j + · · · , (12)

ui = u(0)
i + εu(1)

i + ε2u(2)
i + · · · , (13)

p = p(0) + εp(1) + ε2 p(2) + · · · . (14)
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The leading order O(1) flow field is the Newtonian field and the conformation tensor is equal to the
identity tensor. Thus, there is no PIFS at O(1) and the stresslet is given by S(0)

i j = 5Ei j where Ei j
is the average rate of strain tensor in the fluid domain; this is in accord with the famous Einstein
result [31,32]. At O(ε) the conformation tensor is proportional to the rate of strain of the Newtonian
field. Thus, again at this order the deviatoric stress is proportional to the deviatoric Newtonian stress
at O(1) and thus there is an associated pressure correction but no additional velocity correction, viz.,

u(1)
i = 0, (15)

p(1) = 1 − β

Wi
p(0), (16)

C(1)
i j = 2e(0)

i j . (17)

The fluid stress, at this order, is given by

σ (1)
i j = 1 − β

Wi

(
−p(0)δi j + 2e(0)

i j

)
(18)

and the stresslet correction then simply reflects the change in the viscosity:

S(1)
i j = 1 − β

Wi
5Ei j, (19)

and there is no correction to the PIFS. Continuing, then the conformation tensor at O(ε2) is given
by

C(2)
i j = −

e(0)
i j

Wi
− u(0)

m

∂e(0)
i j

∂xm
+ γ̇ (0)

ik e(0)
jk + γ̇ (0)

jk e(0)
ik , (20)

where e(0)
i j is the local strain rate tensor and γ̇ (0)

jk is the local velocity gradient in the Newtonian flow.
The flow field is now non-Newtonian at O(ε2) and rather than determine the correct flow field, one
can determine the stresslet correction using the reciprocal theorem [25]:

S(2)
i j = 1 − β

Wi
3

14
EikEk j − 1 − β

Wi2
5Ei j . (21)

The O(ε2) correction to the PIFS is calculated using the renormalized averaging procedure of [25]

$(2)
i j = 1 − β

Wi
25
7

EikEk j . (22)

We show the comparison of the small strain theory to our transient numerical simulation results for
the stresslet and the PIFS in Fig. 1. The theory and simulations agree well at small strains but the
theoretical prediction for the stresslet departs from the numerical simulations at strains ε ≈ 10−1

and the small strain theory no longer holds. Moreover, in the inset to each figure, we see
that the stresslet ratioed to the fluid stress decreases monotonically with strain, while the PIFS
monotonically increases. This will be important in the physical description of our numerical results
below.

B. Numerical results at finite strain and Weissenberg number

We performed the full 3D simulations to calculate the per particle extra viscosity compared to
the fluid at finite strains and Wi. We modeled the suspending fluid using the FENE-P equation
with parameters β = 0.68, L = 100 and also using the Oldroyd-B equation with the same value
of β = 0.68. The parameters of the Giesekus model used are α = 10−3,β = 0.68. We used the
value of viscosity ratio β = 0.68 in our simulations because the Giesekus model parameters β =
0.68,α = 0.0039 fit the steady shear rheology of the Boger fluid used by Dai et al. [23] as shown
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FIG. 1. Comparison of small strain theory with transient simulations as a function of strain for (a) stresslet
and (b) particle-induced fluid stress. The parameter β = 0.68 for the Oldroyd-B model used in simulations.

in [19]. Each simulation is run for a total strain, ε̇t , of 7. Figure 2 shows the viscosity ratio with
increasing Hencky strain for different models at a range of Wi. We also explore the effect of smaller
β = 0.4 value on the ratio of particle viscosity to suspending fluid viscosity for the Oldroyd-B
model at different Wi. The inset shows the viscosity ratio for the Oldroyd-B model and Wi = 1 at
two different β values. The dotted line is for β = 0.68 and the dashed line is for β = 0.4. We see
that the value of ratio (or Einstein’s coefficient) is close to 2.5 for Wi = 0.1 at all values of strain
for all models studied. Thus, we predict that the viscoelastic suspensions behave like Newtonian
suspensions in the limit of small strain and Wi. However, the viscosity ratio is nonmonotonic in
strain for other values of Wi considered in the study. The nonmonotonicity occurs for all model
parameters studied, i.e., different values of L, α, and viscosity ratio β and more importantly for
all polymer constitutive models. The inset in Fig. 2 shows that the value of the viscosity ratio for

FIG. 2. Ratio of particle viscosity to suspending fluid viscosity with strain for a range of Weissenberg
numbers for the FENE-P, Oldroyd-B, and Giesekus models. The parameters of the FENE-P model are β =
0.68, L = 100, of the Oldroyd-B model are β = 0.68, and of the Giesekus model are α = 10−3, β = 0.68. The
inset also shows the ratio of particle viscosity to fluid viscosity for the Oldroyd-B model and Wi = 1. The two
curves correspond to two different β values. The β value for the dotted curve is equal to 0.68 and the β value
for the dashed curve is equal to 0.4. We see that β does not have a significant effect on the ratio.
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FIG. 3. Ratio of PIFS and stresslet to suspending fluid viscosity with strain for different Wi for the FENE-P
model. The parameters of the FENE-P model used in simulations are β = 0.68, L = 100.

Wi = 1 is unaffected by the value of β and we have also seen very little effect of varying β at other
values of Wi. We believe that this behavior is universal for spherical particles in dilute polymer
solutions subject to (uniaxial) extensional flow. Furthermore, the viscosity ratio computed for both
FENE-P and Oldroyd-B is identical until strains ≈6 after which the value of the finite extensibility
parameter L makes a difference. The Giesekus model demonstrates lower values of the ratio of the
particle viscosity to the fluid viscosity compared to the other two models starting from strains of
about 2, but essentially demonstrates the same qualitative behavior.

The nonmonotonicity in particle viscosity relative to fluid can be attributed to the PIFS and
stresslet contributions to the particle viscosity. Figure 3 shows the ratio of the PIFS and stresslet to
suspending fluid viscosity as a function of strain for different Wi. We see that the ratio of the stresslet
to the fluid viscosity decreases monotonically with strain (as it did in the small strain theory) but the
ratio of PIFS to fluid viscosity is nonmonotonic with strain for all the Wi > 0.1 studied. The ratio
of total particle viscosity to fluid viscosity increases at small strains (Fig. 2) because the increase
in ratio of PIFS to fluid viscosity is stronger and offsets the decrease in the equivalent ratio of the
stresslet. But as the Hencky strain increases, the ratio of the PIFS to the fluid viscosity plateaus and
eventually starts to decrease with strain. This, combined with the monotonic decrease of the stresslet
ratio, causes the total particle viscosity to decrease relative to the fluid at higher strains. Similar
behavior was found for the particle first normal stress coefficient relative to the fluid (including the
particle-induced fluid stress and stresslet) in steady shear flow past an isolated sphere [19]. Thus,
this nonmonotonicity in a material function is likely to be observed in other linear flows and it is
important to understand the physical reasons for its origin.

We develop insight into the PIFS behavior by examining Eulerian contour plots of Ckk − C f 0
kk —

the difference between polymer conformation trace—at each point in the x1-x2 plane and the
polymer conformation trace at a far-field point (i.e., with negligible particle effect). Figure 4 shows
the contour plots of Ckk − C f 0

kk for the FENE-P model at two different values of strain, ε = 2
and ε = 4, and Wi = 0.8. We see that there are regions of large polymer stretch relative to the
fluid, along the principal axis of extension near the particle surface at both the strains considered.
However, at larger strains we also observe the presence of blue regions around the particle where
the polymer is significantly less stretched compared to the polymer stretch in the fluid alone. The
stresslet contribution to the suspension viscosity decreases monotonically relative to the fluid as
the polymer stretch surrounding a given particle “shields” the particle and thus reduces the local
surface tractions. The origin of these regions can be better understood by examining the β → 1
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FIG. 4. Eulerian contours of Ckk − C f 0
kk in the x1-x2 plane for FENE-P model parameters L = 100, β =

0.68, Wi = 0.8 and strain ε = 2 in panel (a) and ε = 4 in panel (b).

limit because, in this limit, the flow is approximately Newtonian at all strains and we can thus
analyze a known flow field as it effects the polymer evolution [18]. This simplification allows us to
characterize the local velocity gradient using a Q-R decomposition [33] and determine the effect of
extension- or rotation-dominated regions near the particle surface.

C. Method of characteristics for small polymer concentration β = 1

We use the method of characteristics [18] to study the polymer response to the local flow field
along different streamlines. There is only “one way coupling” from flow to polymer in the β = 1
limit (meaning the given fixed flow affects the polymer configuration). We solve the set of ordinary
differential equations shown below to obtain the polymer conformation along streamlines:

dxi

ds
= uN

i ;
dt
ds

= 1, (23)

dCi j

ds
= Cik

∂uN
j

∂xk
+ Cjk

∂uN
i

∂xk
− 1

Wi
(Ci j − δi j ), (24)

where uN
i is the Newtonian creeping flow solution for flow past a sphere in uniaxial extensional flow

and s is the integration parameter along the streamline.
We show a streamline trajectory in the inset of Fig. 5 that starts far from the particle, and the

initial conformation tensor on the streamline is the same as the conformation in the fluid alone at
the starting time. We study the evolution of polymer conformation along the same streamline at
different dimensionless starting times denoted by εs for Wi = 0.8. The polymers in the far field get
increasingly stretched as time increases and the initial condition for Eq. (24) is different for different
starting times. The polymers convected towards the particle get stretched by extension-dominated
regions (characterized by D < 0) around the particle as shown by points 1 and 2 in Fig. 5. As the
polymers enter the vorticity-dominated regions around the particle (characterized by D > 0), they
lose their alignment with the principal axis of extension and collapse compared to far-field flow. This
is shown by points 3 and 4 in Fig. 5. Note that the reduction in polymer stretch (stress) during the
collapse (point 4) is far larger than the increase in stretch (stress) through the extension-dominated
region. At large distances from the particle denoted by point 5 in the figure, the polymers attain the
same configuration as the suspending fluid. The magnitude of polymer stretch and collapse increases
as starting times increase because the polymers undergo the coil-stretch transition [5–7] in the far
field as time increases. Nearly fully stretched polymers collapse dramatically in rotation regions

091301-8



EXTENSIONAL RHEOLOGY OF A DILUTE …

FIG. 5. Evolution of polymer conformation trace along the same streamline at different starting times for
Wi = 0.8. Inset shows streamline plotted on top of discriminant D for uniaxial extension flow past a sphere
with D < 0 indicating extension-dominated and D > 0 indicating rotation-dominated regions.

around the particle [34] as shown in Fig. 5. These regions where polymers have significantly smaller
stretch compared to the far field contribute negatively to the PIFS and the size of these regions
grows around the particle as dimensionless time/strain in the experiment increases. This eventually
arrests the growth of the PIFS relative to the fluid, thus it plateaus and decreases at higher strains.
From numerical analysis of our flow fields, we claim that these microstructural origins of polymer
stretch relative to the suspending fluid for β = 1 also hold for other β values where the flow field
is not Newtonian and the polymer conformation has to be tracked along different time-dependent
particle paths for different Wi. The extension- and rotation-dominated regions (characterized by D)
also change with time as the flow evolves for β '= 1 and it is not easy or necessarily correct to
correlate the polymer conformation with the local extension or rotation experienced by the polymer.
Therefore, we present the results only for β = 1.

IV. CONCLUSION

We performed 3D transient simulations of the bulk extensional rheology of dilute particle suspen-
sions for a range of Wi and finite strains and calculated the renormalized per particle extra viscosity
of the suspension. We also calculated the particle-induced fluid stress and stresslet contributions
analytically for small strain and these calculations agree well with numerical simulations at small
strains. We found that the ratio of the per particle extra viscosity to suspending fluid viscosity is
nonmonotonic in strain for all constitutive models and for all values of Wi > 0.5 studied. Thus,
at a fixed strain, the particle viscosity relative to the fluid may increase or decrease with Wi.
The conformation contours show large polymer stretch near the particle in the principal extension
direction at modest strains and regions around the particle where the polymers are significantly
less stretched compared to the far field at high strains when polymers have undergone coil-stretch
transition. These regions grow with strain and thus arrest the PIFS increase relative to the fluid. We
believe the nonmonotonicity in ratio of particle viscosity to fluid viscosity is universal for spherical
particles in dilute polymer solutions subject to (uniaxial) extensional flow. We look forward to
experimental examination of our theoretical predictions in future work.
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