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A B S T R A C T

The Oldroyd-B fluid has become the starting point for almost all complex flow calculations and analysis
involving the behavior of dilute polymer solutions. The reasons for this are clear: based on the kinetic theory of
high molecular weight ‘‘phantom’’ chains near equilibrium, the resulting model, in its simplest form, produces
a single mode description of the solution constitutive equation in terms of a single symmetric dyad order
parameter. The physical connection to the individual chains is therefore unambiguous through the end-to-end
configuration tensor. The flow of the fluid resulting from the mathematical solution of the constitutive equation
coupled to Cauchy’s equation of motion and continuity has been examined for decades and its strengths and
weaknesses in predicting the features of non-linear viscometric and non-viscometric polymer solution flows
are well known. Moreover, ‘‘simple’’ extensions (e.g. the FENE-P model) can ameliorate the most serious of
these shortcomings. For example, the multi-mode Oldroyd-B model can provide quantitative predictions of the
linear viscoelasticity of a wide range of polymer solutions. Remarkably, even with all its shortcomings, the
Oldroyd-B fluid has been invaluable in predicting at least qualitatively, features as complex as purely elastic
instabilities, turbulent drag modification, and even the effective rheology of particles suspended in polymer
solutions. While remaining mindful of the model’s shortcomings, any student of these diverse fields may find
the Oldroyd-B fluid an important starting point.

1. Introduction: Reasons the Oldroyd-B fluid is used as a starting
point for understanding complex elastic fluid phenomena

As reviewed repeatedly in this special issue, the Oldroyd-B fluid
(also referred to as the ‘‘OB fluid’’) represents a constitutive equation
coupled to Cauchy’s equation of motion and continuity which originally
arose from Oldroyd’s seminal 1950 paper [1]. Upon perusing that
paper, however, one finds that the derivation is entirely one associated
with the classical mechanics of viscoelastic fluid flow. Thus the OB
fluid is one of a class of many ‘‘Oldroyd fluids’’[1], all which are, from
the view point of mechanics, equally possible descriptions of a given
elastic fluid. One might wonder then why this particular flavor has
formed the basis for so many studies of complex flows of elastic fluids
— including studies of elastic instabilities, polymer-induced turbulent
drag modification, and even particle suspensions in elastic fluids. The
answer lies in at least three related facts: (1) it is a model which
is relatively simple including a single conformation tensor to define
the state of stress in the liquid as a function of only two parameters
(the polymer concentration parameter and the Weissenberg or Deborah
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number); (2) the OB fluid arises from the simplest kinetic theory of
solutions of long chain polymers in flow and (3) experimental studies
have demonstrated that the model can quantitatively describe the non-
linear steady shear rheology of so-called ‘‘Boger’’ fluids [2]. Moreover,
the multimode version of the OB fluid can quantitatively describe the
linear viscoelasticity of a wide range of polymer solutions, even those
which are not strictly ‘‘Boger’’ fluids. We shall discuss these facts in turn
to provide a foundation for understanding the physics that the model
includes as it relates to polymer solutions.

1.1. Kinetic theory of a polymer chain in solution and the Oldroyd-B model

As mentioned above, it is primarily the physical connection of the
Oldroyd-B model to real elastic liquids (i.e polymer solutions) which
makes it a model of choice. Thus, it is appropriate to review that
connection through its derivation from the kinetic theory of polymer so-
lutions. This derivation can be found in much more detail elsewhere [3]
and we provide only a brief review here. A high molecular weight,
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flexible polymer in a ✓ solvent is characterized by a nearly Gaussian
probability of end-to-end vector as its configuration is, to an excellent
approximation, given by a random walk of Nk steps. Thus, Kuhn [4]
originally said that for very flexible, idealized [5] chains, the gross
statistical features were that of a random walk where bk =step size or
Kuhn step size and Nk is the number of Kuhn steps

bkNk = L = lP

where l = length of a monomer (projected along the direction of
chain extension), P = number of monomers in the chain, and L is the
maximum length of the chain. For a freely jointed random walk (no
excluded volume) the distribution function of end to end distance  ( íR)
can be approximated as a Gaussian for R =  íR < bkNk and in the
limit Nk ô ÿ

 ( íR) = ( ˘
⇡
)3 exp(*2R2) (1)

2 = 3_2Nkb2k, < R2 >= Nkb2k, (2)

and the angle brackets refer to the average over  ( íR). Note that the
ratio <R2>

P l2 = Cÿ (where l is the unprojected monomer length) is called
the characteristic ratio and has been tabulated for a given chain. Now
the number of internal configurations available at a given stretch, íR is
proportional to the probability  ( íR), i.e. ⌦ = c ( íR); c = constant, and
from statistical mechanics the entropy, S is given by S = k log⌦. Thus,
the entropic contribution to the free energy W is

W = *TS = *kT log⌦

It follows then that the work necessary to stretch the chain from Ri
to Ri + dRi is (using indicial notation)

)W
)Rk

dRk from ‘‘the principle of
virtual work’’ . Thus, the entropic force acting on the ends of the chain
for a given stretch íR is Fm = *Fm; where Fm is the force one needs
exert to stretch the chain. It follows that

FmdRm = )W
)Rk

dRk and Fi = *kT )(log )
)Ri

(3)

This argument is therefore equivalent to the thermodynamic argu-
ment of Einstein namely that there is an effective force proportional to
the gradient of the log of the probability density. Taking the derivatives
then

Fi = *Fi = *2kT2Ri = * 3kT
Nkb2k

Ri = *HRi (4)

Thus the entropic restoring force is linear in the end to end distance
with spring constant H and this is often referred to as the ‘‘Hookean
spring’’ model. It follows then that in a flow which scales on lengths
larger than the characteristic polymer scale (e.g. radius of gyration) the
entire center of mass and configuration of the chain can be specified
approximately by the equations for the rate of change of the center of
mass íx and the rate of change of íR as:
dxi
dt

= ui(xi) *
kT
2⇣

)
)xi

log (5)

dRi
dt

= RjLij * 4kT2
⇣

Ri *
2kT
⇣

)
)Ri

log , (6)

where we have assumed that the drag coefficient ⇣ is a constant and
where  (íx, íR, t) is the distribution function for both center of mass and
conformation. In the expressions above ui(xi) is the velocity of the fluid
and Lij = )ui

)xj
is the transpose of the velocity gradient tensor. The drag

coefficient ⇣ is equivalent to the drag on ‘‘half’’ the chain, and with
this specification, we have the so-called ‘‘linear dumbbell model’’.
With ⇠ = 4kT2

⇣ , D = kT
2⇣ , and D = 2kT

⇣ the Fokker–Planck equation for
 becomes:
) 
)t

+ )
)xi

[ui(íx) ]*D )2
)xk)xk

[ ]+ )
)Ri

(LijRj )* )
)Ri

[⇠Ri ]*D
)2

)Rk)Rk
( ) = 0

Simplifications are often made at this point including:

• The center of mass Péclet number, Pe ∏ 1 so that Brown-
ian motion of the center of mass can be neglected. Note the
Schmidt number of a high molecular weight polymers is typically
enormous.

• The center of mass probability is homogeneous and equal to np,
the number density of polymers. Thus:

 = np ( íR, t; íx)

where the normalization of the configuration probability  isî  d íR = 1.

With these simplifications we have:
D 
Dt

+ )
)Ri

[LijRj ] * )
)Ri

[⇠Ri ] *D
)2

)Rk)Rk
[ ] = 0, (7)

The extra stress in these polymer solutions can now be determined
approximately using this linear force model via the Kramers–Kirkwood
relationship [6] as:

�Pij = nP kT
⌅
22 < RjRi > *�ij

⇧
(8)

and thus is proportional to an order parameter
⌅
22 < RjRi > *�ij

⇧
.

Note that the Kramers–Kirkwood relationship and the resulting stress is
entirely equivalent to the ‘‘stresslet’’ derivation of the extra stress from
suspension mechanics [7] if one accepts the dumbbell model as two
equal and opposite point forces separated by a spring, or equivalently, a
force dipole. Note since the stress depends only on the second moment
of the conformation distribution, we can multiply the Fokker–Planck
equation by RiRj and integrate over conformation space using the
divergence theorem to obtain:
D < RiRj >

Dt
* Lil < RlRj > *Ljl < RlRi > +1

�
< RiRj >= 2D�ij , (9)

or alternatively,

�
4D < RiRj >

Dt
* Lil < RlRj > *Ljl < RlRi >

5
+ < RiRj >=

Nkb2k
3 �ij ,

(10)

where � = 1
2⇠ . It is worth noting that �, which is now the relaxation

time in the model, is proportional to the time it takes for the chain to
diffuse a distance

t
Nkb2k, i.e. a measure of its equilibrium coil radius.

Finally, using the relation between the second moment and the stress,
we can write a direct equation for �Pij

�[
D�Pij
Dt

*Lik�Pjk *Ljk�Pik] + �Pij = �
(
�Pij +�

P
ij = 2⌘pEij ; ⌘p = npkT �, (11)

where ⌘p is termed the ‘‘polymer viscosity’’, Eij = 1
2
⌅Lij + Lji⇧ is the

rate of strain tensor, and
(
[�] is the upper convected derivative. Eqs. (10)

and (11) are theMaxwell model for the conformation and polymer stress
respectively, with the elasticity of the chain being defined by a single
linear relaxation. Writing the total stress now as:

�ij = *P�ij + 2⌘sEij + �Pij (12)

(i.e. adding a Newtonian contribution to the deviatoric stress character-
ized by a ‘‘solvent’’ viscosity, ⌘s,) and combining with Cauchy’s equa-
tion of motion and continuity, we have the (incompressible) Oldroyd-B
fluid. This is remarkable, because this derivation is seemingly very dif-
ferent than that imagined by Oldroyd some 70 years ago. Thus, as men-
tioned above, the Oldroyd-B fluid becomes the simplest model for high
molecular weight polymer solutions and its predictions can, through the
elements of this derivation, be related to polymer conformation change.
The successes and limitations of the model can therefore be given a
direct physical interpretation and in the present day – especially, since
single molecule studies of high molecular weight polymers have been
accomplished with unprecedented precision (e.g. [8]) in a variety of
flows – the limitations have become common scientific knowledge. We
discuss the predictions of the Oldroyd-B model in simple flows below.
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1.2. The Oldroyd-B model in simple shear flow

Thus as is typically done, we will non-dimensionalize the Oldroyd-
B fluid equations in simple shear flow in the following way (with
⌘T = ⌘S + ⌘P ); Ñ�Pij � ⌘P Ü� = �Pij ; Ñ�ij � ⌘T Ü� = �ij and where ⌧ = Ü�t –
thus we use the inverse shear rate Ü�*1 as a time scale. It follows that

Ñ�ij = * ÑP �ij + 2� ÑEij + (1 * �) Ñ�Pij

where ⌘S
⌘T

= � is a dimensionless polymer concentration parameter. (If,
� = 0, all stress is polymeric and the fluid is usually referred to as the
Maxwell fluid). The dimensionless constitutive equation becomes:

W i[
DÑ�Pij
D⌧

* ÑLil Ñ�Pjl * ÑLjl Ñ�Pil ] + Ñ�Pij = 2 ÑEij (13)

whereW i = � Ü� is theWeissenberg number. From the definition of simple
shear flow then ui = Ü�x2�i1, Lij = Ü��i1�j2, Eij = Ü�

2 [�i1�j2 + �j1�i2],
ÑLij = �i1�j2, and ÑEij = 1

2 (�i1�j2 + �j1�i2). Simple physical arguments
allow one to conclude that the only components of the stress Ñ�Pij that
could be nonzero are Ñ�P11, Ñ�

P
12 = Ñ�P21, and Ñ�P22. Writing then the steady

stress equations:

W i{*�i1 Ñ�Pj2 * �j1 Ñ�
P
i2} + Ñ�Pij = (�i1�j2 + �j1�i2)

It follows solving term by term that:

Ñ�P11 = 2W i; Ñ�P12 = 1; Ñ�P22 = 0,

or, in dimensional terms

�P11 = 2�⌘P Ü�2; �P12 = ⌘P Ü�; �P22 = 0 (14)

for all shear rates. This naturally leads us to the 3 material functions
for shear flow (following from the 3 unique non-zero components of the
stress in shear), �12Ü� = ⌘ (the shear viscosity), �11*�22Ü�2 =  1 (the primary
normal stress coefficient) and �22*�33

Ü�2 =  2 (the second normal stress
coefficient). Thus for the Oldroyd-B fluid

⌘ = ⌘S + ⌘P = ⌘T ,  1 = 2⌘P �,  2 = 0. (15)

and all shear material parameters are constants. At this point, we
mention the multi-mode Oldroyd-B, which is more precisely, a multi-
mode Maxwell model with the addition of a solvent viscosity. Thus,
each polymer stress mode n, �P (n)ij , satisfies its own Maxwell equation,
viz.

�(n)[
D�P (n)ij

Dt
* Lik�P (n)jk * Ljk�P (n)ik ] + �P (n)ij

= �
(

�P (n)ij +�P (n)ij = 2⌘(n)p Eij ; ⌘(n)p = npkT �(n), (16)

with the appropriate series of material parameters, ⌘(n)P and �(n) and
with the total polymer stress a linear combination of the individual
stress components, viz. �Pij = ≥N

n=1 �
P (n)
ij . Thus in simple shear for the

multi-mode Oldroyd-B we have:

�P11 =
N…
n=1

2�(n)⌘(n)P Ü�2; �P12 =
N…
n=1

⌘(n)P Ü�; �P22 = 0, ⌘ = ⌘S +
N…
n=1

⌘(n)P ,

 1 =
N…
n=1

2�(n)⌘(n)P .

(17)

1.3. The Oldroyd-B model in linear viscoelasticity

From the above results it is easy to develop the expressions for the
Oldroyd-B model in ‘‘weak’’ linear oscillatory shear flow – i.e. linear
viscoelasticity. Thus with ui = Ü��i1x2 exp i!t and defining ⌧ = t_� and
Ñ! = �!, we have in the asymptotic limit [9,10] asW i ô 0 but Ñ! Ì O(1)

and Ñ�Pij Ì O(1),

) Ñ�Pij
)⌧

+ Ñ�Pij = 2 ÑEij ; ÑEij =
1
2 (�i1�j2 + �i2�j2) exp i Ñ!⌧

We mention that the asymptotic limit W i ô 0 is equivalent to the
‘‘small amplitude’’ oscillatory shear limit, since for a shear strain � in
a device of a finite shear gap, the appropriate Weissenberg number
can alternatively be written W i = �!� (since Ü� ◊ �!). So � (which is
proportional to the amplitude of oscillation) must be vanishingly small
at any Ñ! if the nonlinearities in the constitutive equation are to be
neglected. Solving for the only non-zero component of the stress, yields
the complex shear stress:

Ñ�P12 = Ñ�P21 =
1

1 + i Ñ! exp i Ñ!⌧ = 1 * i Ñ!
1 + Ñ!2 exp i Ñ!⌧ (18)

From the definition of the complex viscosity, Ñ⌘< = ⌘<
⌘T

= ⌘®*i⌘®®
⌘T

, we have
for the real and imaginary parts:

⌘® = ⌘S +
⌘P

1 + Ñ!2 , ⌘®® =
⌘P Ñ!
1 + Ñ!2 (19)

or alternatively in terms of the moduli

G® = npkT
Ñ!2

1 + Ñ!2 ; G®® = ⌘S! + npkT
Ñ!

1 + Ñ!2 (20)

The multi-mode version of the moduli and complex viscosity follows
immediately as

⌘® = ⌘S +
N…
n=1

⌘(n)P
1 + Ñ!(n)2 , ⌘®® =

N…
n=1

⌘(n)P Ñ!(n)

1 + Ñ!(n)2 (21)

G® = npkT
N…
n=1

Ñ!(n)2

1 + Ñ!(n)2 ; G®® = ⌘S! + npkT
N…
n=1

Ñ!(n)

1 + Ñ!(n)2 (22)

where Ñ!(n) = �(n)!. The advantage for the multi-mode model in linear
viscoelasticity is clear as shown in the comparisons to data below.
Thus, if the correct spectrum is chosen, the multi-mode Oldroyd B
can reproduce either the Rouse [11] or Zimm [12] results from linear
viscoelasticity and therefore can usually reproduce the high frequency
linear viscoelastic behavior of polymer solutions somewhat faithfully.

1.4. Comparison of Oldroyd-B predictions in shear to ‘‘Boger’’ fluid rheol-
ogy

For the reasons discussed in Section 1.1, the Oldroyd-B model is
typically used as a model for dilute polymer solutions. Since it is well
known that the material parameters predicted by the model are not
functions of the shear rate, it is, more precisely, used as a model for
so-called ‘‘Boger fluid’’ rheology. Boger fluids are a class of polymer
solutions originally developed by David Boger [2,13], where a rela-
tively dilute solution of high molecular weight polymer is dissolved
in a very viscous, Newtonian solvent (e.g. solvents at least 1000 times
more viscous than water). Such a mixture has been shown to produce a
fluid that is quite elastic (i.e. relaxation times measured in seconds) and
whose primary normal stress coefficient and shear viscosity are nearly
constant over decades of shear rate. The original fluids were water-
based and thus a typical mixture would consist of corn syrup, water
and high molecular weight polyacrylamide. These are now known as
‘‘Type 1’’, Boger fluids [14] .‘‘Type 2’’ Boger fluids [14] are based on or-
ganic solvents, and typically involve a high molecular weight polymer
(e.g. 106 gg/mol polyisobutylene) dissolved in an oligomeric solvent
of the same or similar molecular structure with a small molecule,
relatively volatile solvent in the mixture to aid the solvation of the high
molecular weight species.

An example of Boger Fluid shear rheology [13] and comparison
to the Oldroyd-B model is show in Figs. 1a and 1b. The Boger fluid
consists of a high molecular weight polyisobutylene [(PIB) average
Mw ˘ 4.2 ù 106 from Sigma-Aldrich] dissolved in kerosene and mixed
with low molecular weight polybutene [(PB) Indopol H-25 from Ineos
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Fig. 1. Single mode and multi-mode fit of Oldroyd-B Model to Boger fluid shear data. (a) LEFT — Linear viscoelastic functions ⌘® and G® with the multimode (MM) and single
mode (SM) model predictions. The MM model includes a four mode fit plus a fit to the solvent viscosity. Data is taken at strains of 0.1 and 0.4. (b) RIGHT — Nonlinear material
parameters for the same Boger fluid with the predictions of the Oldroyd-B model. ‘‘MM2’’ refers to the multi-mode fit corresponding to the linear viscoelastic data in (a). ‘‘MM1’’
is a new fit only to the nonlinear data.
Source: Modified from [15].

Oligomers Technology]. Thus this is a Type 2 Boger fluid. The solution
of PIB in kerosene is made first by dissolving small pieces of PIB
(3.4 wt%) in kerosene (96.6 wt%). The PB is then added for a final fluid
composition of 92.93 wt% of PB, 6.83 wt% of kerosene, and 0.24 wt%
of PIB. This fluid is similar to the benchmark Boger M1 fluid [16]
(although the PIB is of somewhat higher MW) where the M1 fluid was
used to examine the extensional viscosity of polymer solutions with
typical filament stretching data such as that in Fig. 2b below.

The multi-mode model in Fig. 1a is a four mode fit which gives
a longest relaxation time of 1s. The single mode fit gives 0.926s to
the linear viscoelastic data. Examination of these figures allows one
to make three quick conclusions: (a) The multimode fit including four
modes is quantitative for the linear viscoelasticity data over three
decades in frequency while the single mode model badly underpredicts
G® at high frequencies, (2) the same multi-mode Oldroyd B model
over-predicts the primary normal stress coefficient but can be made
quantitative by fitting just the nonlinear viscoelastic data (thus reduc-
ing the longest relaxation time to 0.74 s), and (3) For these Boger
fluids the material parameters  1 and ⌘ are weak functions of shear
with the latter showing a clear shear thinning that is not captured
by the Oldroyd-B model. At least two important physical reasons for
the shear thinning are now clear from an abundant literature on the
subject: both finite extensibility of the polymer chain as well as intra-
chain hydrodynamic interactions (or equivalently a drag coefficient
that depends on configuration) both make the polymer contribution to
the viscosity a function of shear rate in real polymer solutions at values
of W i g 1 [8,17]. In the simplest case of finite chain extensibility, it
is well known from visualizations of DNA (for example) that as the
chain stretches in the flow direction in shear at a point of stretch
even below 50% of its maximum extension, the chain will cease to
stretch and instead rotate its orientation downward toward the flow
axis, thus creating less overall extra dissipation resulting in a ‘‘thinning’’
of the viscosity [8]. Thus in general the Oldroyd-B model is known
to overpredict the streamwise polymer stretch in flow at values of
W i ˘ O(1) and this is also consistent with the reduction in the apparent
relaxation time as determined from the normal stress fits recalling that
�P11 = npkT

⌅
22 < R1R1 > *1

⇧
. Nevertheless, it is apparent that the

linear and nonlinear shear rheology for this class of fluids is at least
qualitatively predicted by the Oldroyd-B model, and, along with its
clear physical interpretation from kinetic theory, these are among the
strongest reasons for it to be employed at least as a first step.

1.5. Oldroyd-B model in extensional flow and associated FENE models

Consider a uniaxial extensional flow characterized by the dimen-
sional rate of strain tensor,

Eij = Ü✏

h
n
l
nj

1 0 0
0 *1_2 0
0 0 *1_2

i
n
m
nk

where Ü✏ is the rate of strain along the line of principal strain, here
defined as ‘‘1’’. If we make time and Lij dimensionless with Ü✏, and
define the Deborah number as De = Ü✏�, the polymer stress within the
steady Oldroyd B model becomes:

De(*2 Ñ�P11) + Ñ�P11 = 2

De( Ñ�P22) + Ñ�P22 = 1

Ñ�P22 = Ñ�P33

i
n
n
m
n
nk

Ñ�P11 =
2

1*2De

Ñ�P22 = Ñ�P33 =
1

1+De

(23)

Clearly at the critical point De = 1_2 we have an unphysical
prediction of a stress singularity and this behavior is intrinsic to the
OB fluid. This stress singularity manifests itself as a singularity in the
Trouton ratio, viz.

Tr =
⌘ext
3⌘T

=
�11 *

1
2 (�22 + �33)
3⌘T Ü✏

Tr = � + (1 * �)
$ 2
1 * 2De * 1

1 +De

%
(24)

Note that the multi-mode version of the Oldroyd-B does not relieve
the singularity as it is governed by the Deborah number based on the
longest relaxation time. At or near the point De ˘ 1_2, it is now
well known, that a real, single polymer molecule undergoes a coil–
stretch transition that is actually very complex in its dynamics [18,19].
Ultimately (in what might be a very long period of time relative to
its relaxation time) the molecule stretches to a large fraction of its
maximum extensibility.

It is easy to show that the aforementioned singularity is a result
of examining the steady equations, since if one alternatively examines
the time dependent (i.e. finite strain) dynamics of the Oldroyd-B model,
we have in dimensional form for the conformation tensor component
< R2

1 >:

d < R2
1 >

dt
* 2 Ü✏ < R2

1 > +1
�
< R2

1 >= 2D
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and we can solve to show:

< R2
1 >=

4
< R2

1 > (0) * 2D
1_� * 2 Ü✏

5
exp(2 Ü✏ * 1_�)t + 2D

1_� * 2 Ü✏ (25)

Clearly for 2 Ü✏*1_� > 0, or (De > 1_2) we get exponential growth of the
configuration and hence the stress. This growth is only bound by the
Hencky strain Ü✏t. Exponential growth to an unbound polymer stretch
is clearly unphysical (see discussion below regarding experiments and
comparison to fine-grained models), and thus a failure of the physical
model upon which the Oldroyd B is based. It is associated with the fact
that the principle of virtual work argument was originally conceived for
small departures from equilibrium, thus producing a linear restoring
force that can be overwhelmed by a linearly increasing rate of chain
stretch by the flow. Thus, there is a simple ‘‘fix’’ that is used almost
universally in flows where there are points of local extensional flow.
Returning to the original linear restoring force which is the physical
foundation for the kinetic theory which yields the Oldroyd-B fluid,
one simply allows the force to ‘‘stiffen’’ as the chain becomes more
stretched, viz.

Fi = * 3kT
Nkb2k

f (R)Ri

where f (R) (with R = Ri) is a stiffening function representing the in-
creased work necessary to deform the chain as it becomes increasingly
stretched (due to the reduction in the entropic states available as the
chain is stretched to a significant fraction of its maximum extensibility).
Statistical mechanics does give us models for f (R) and, for example,
if L = Nkbk is the maximum extension of the chain, then, for freely
jointed chains where all internal modes are allowed to equilibrate [4],
f = [LL*1(R_L)]_3R, and L*1 is the inverse Langevin function (ILF)
where L(x) = coth(x) * 1_x. Since the ILF is not easily expressible in
terms of simple functions, various approximate forms have been used
in the literature, including the Warner spring (or the FENE model) [20]
and Cohen’s Pade approximate to the ILF, [21] which are respectively

fFENE = 1
1 * (R_L)2

fILC*CP = 1 * (R_
˘
3L)2

1 * (R_L)2
, (26)

where ILC refers to the Inverse Langevin Chain. Note that only the latter
is asymptotically correct for both large and small deformations [21],
although both approximations demonstrate the same strength of sin-
gularity (i.e. a pole) as R_L ô 1. Chains which are not freely jointed,
but demonstrate a finite bending modulus along their backbone, are re-
ferred to as worm-like chains (WLC) and one typically, in this instance,
employs the worm-like spring model [22]:

fWLC = L
6R

4
1

(1 * R_L)2
* 1 + 4R

L

5
(27)

to describe their stiffening. This model has been shown to be quantita-
tive for DNA chains, for example. All models are finitely extensible and
therefore avoid the configurational singularity that is in the Oldroyd
B model. However, the average of the first moment of the restoring
force (i.e. the stress) now depends on higher moments of the chain
conformation and hence a closed form constitutive equation is not
immediate without additional approximations, including the common
‘‘pre-averaging’’ approximation [23]:

Fi ˘ * 3kT
Nkb2k

f ( ÉR)Ri; ÉR =
˘
< R2 >

It is beyond the scope of this article to discuss the large body of
literature on the accuracy of this approximation [23,24], but it does
yield a simple modified version of the Oldroyd-B since f ( ÉR), is now a
constant as far as averaging over the distribution function  . Hence,
in the same notation, the equation corresponding to Eq. (10), for the

polymer conformation dyad is:

�
4D < RiRj >

Dt
* Lil < RlRj > *Ljl < RlRi >

5
+ f ( ÉR) < RiRj >=

Nkb2k
3 �ij

(28)

with the corresponding expression for the polymer stress as:

�Pij = nP kT
⌅
22f ( ÉR) < RjRi > *�ij

⇧
= nP kT

L
3

Nkb2k
f ( ÉR) < RjRi > *�ij

M

= *
3⌘P
Nkb2k

(
[< RjRi >] . (29)

If f = fFENE this is referred to as the FENE-P model. There are multi-
mode versions of this as well, although decisions must be made as
to ÉR for each mode since in general the modes in the model before
pre-averaging are nonlinearly coupled. The multi-mode version that is
in most common use is the so-called FENE-PM [25]. It is reasonably
straightforward to demonstrate that for the uniaxial extensional flow,
the FENE-P model gives at steady state for De ∏ 1

< R2
1 >Ì N2

kb
2
k{1*

1
2De +5}, �p11 ˘ 6npkTNkDe, T r ˘ �+(1*�)2Nk

Thus indeed the polymer conformation and Trouton ratio are bound for
values of De past the coil to stretch transition, and are limited by the
maximum extensibility of the chain L = Nkbk.

For comparison to other literature that we will discuss below, it is
worthwhile to mention the typical dimensionless form of Eq. (28); viz

De

L
D< RiRj >

Dt
* ÑLil< RlRj > * ÑLjl< RlRi >

M
+ f ( ÑR)< RiRj > = �ij

(30)

where < RiRj > = 3 < RiRj > _(Nkb2k) and ÑR =
t

< RiRj >. With this
nondimensionalization the FENE-P function is often written:

fFENE = 1
1 * ÑR2_b

(31)

where b = 3L2

Nkbk
. The polymer stress in terms of the dimensionless

second moment is �Pij = nP kT
⌧
f ( ÑR)< RjRi > * �ij

�
.

We can also mention at this point the Giesekus model [26] for com-
parison purposes to the Oldroyd-B and FENE-P. This model, suggested
by Giesekus [26], is not a modification of the OB Fluid, even though
the equations are similar. It is derived by assuming that the drag
coefficient on a given chain is affected by surrounding chains and is
a tensor depending on local mean field polymer stretch. It therefore
is fundamentally, a non-dilute model for polymer solutions. The model,
with the same non-dimensionalization as above, can be written:

De

L
D< RiRj >

Dt
* ÑLil< RlRj > * ÑLjl< RlRi >

M

+ < RiRj > * �ij + ↵
⌧
< RiRj > * �ij

�2
= 0, (32)

where aijajk = a2ik and �
P
ij = nP kT

⌧
< RjRi > * �ij

�
. Note this model

also does not exhibit a stress singularity in extension, but for very
different reasons than the FENE-P. In this case the drag coefficient on
the chain decreases with increasing extension (i.e. represented by the
last quadratic term on the left side of Eq. (32)), and hence by this
model, the chain is increasingly difficult to stretch in extension. The
new parameter ↵ is a dimensionless measure of drag anisotropy and,
by inspection, if ↵ = 0, we recover the OB fluid (i.e. the polymer stress
is again governed by the Maxwell model).

Although, we have introduced the FENE models and the Giesekus
model within the context of ‘‘fixing’’ the extensional stress singularity
inherent in the Oldroyd B model, we should note that both FENE
and Giesekus models demonstrate ‘‘shear thinning’’ of the material
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parameters in simple shear. Thus, one can argue that these models
also ‘‘fix’’ the comparison of the Oldroyd B to the nonlinear shear
data shown in Fig. 1. To be specific, with certain values of the model
parameters, the nonlinear shear viscosity and primary normal stress
coefficient of polymer solutions can be quantitatively reproduced by the
FENE and Giesekus models — and multi-mode versions then reproduce
the linear viscoelasticity. This is actually how the parameters b and ↵
are often chosen in comparing experiments to numerical simulations.
Note that this has the disadvantage of disconnecting these parameters
from kinetic theory and making them true ‘‘fitting’’ parameters. For
example, the value of L = Nkbk is fixed by single molecule theory, but
the resulting b for high molecular weight polymer solutions is much
larger than often used in calculations or in ‘‘fits’’ to rheological data.

1.6. Comparison of Oldroyd-B model in extensional flow to fine-grained
models and experiments

In Fig. 2a, we show typical comparison of the polymer contribution
to the extensional viscosity for the single and multimode Oldroyd-B
model as a function of Hencky strain versus a Kuhn step level model
of a polymer – i.e. a freely-jointed bead-rod chain of 200 links without
hydrodynamic interactions along the backbone. The latter simulation
is accomplished via Brownian dynamics [27]. The Oldroyd B model(s)
show exponential growth of the viscosity at De = 10.65 (which is well
above the critical value) for almost all but the smallest values of strain.
The comparison demonstrates two points: First, the departure of the
Oldroyd-B model from the fine-grained model occurs around Ü✏t ˘ 2 and
the Oldroyd-B actually underpredicts the stress for higher strains, until
Ü✏t ˘ 5 when the finite extensibility of the chain causes the extensional
viscosity to plateau at a high value. The second important conclusion
is that multi-modes are necessary to get quantitative agreement with
the extensional viscosity even for Ü✏t f 2. In this latter case, the longest
relaxation time of the Oldroyd-B model was fixed to that of the bead-
rod chain, then the higher modes were that of the equivalent Rouse
chain [11]. It is clear that at least 5 modes are necessary to obtain
quantitative agreement.

In Fig. 2b, we compare FENE models to the extensional stress mea-
sured in a high molecular weight polystyrene Boger solution [28]using
a filament stretching device. Both single mode and multi-mode FENE
models are included. Note that now the model predictions are such that
the plateau or steady extensional stress is reached for Ü✏t ˘ 6 and the
stress singularity of the Oldroyd-B is indeed relieved. Again, the multi-
mode model does a much better job of predicting the stress at small
strains. However the prediction of the FENE models is not quantitative
at strains in excess of 3. There is now quite a wide literature on
the physical aspects of a polymer model necessary to get quantitative
agreement with extensional data from the filament stretching device
— which as an aside are considered the best such measurements of the
extensional properties of polymer solutions. As described in the review
by McKinley & Sridhar [29], the FENE-P and FENE-PM models ‘‘consis-
tently underpredict the stress growth at intermediate strains and predict
a much more rapid transition to the final steady state’’. Li, Larson, and
Sridhar (2000) [30] as well as Saadat & Khomami [31] demonstrated
unequivocally that hydrodynamic intra-chain interactions and multi-
modes are necessary to attain quantitative agreement with extensional
data in Boger fluids. Note that intra-molecular hydrodynamic inter-
actions, introduce, in a coarse-grained sense, conformation-dependent
drag [27,32,33]. These effects are not present in the OB or FENE-P
models. Moreover, we also now know that the conformation-dependent
drag increases (roughly linearly) with increasing extension if one is
only considering isolated chains [27,32,33]. Thus in fact, the Giesekus
model, based on interchain interactions as discussed above, does the
exact opposite of what is necessary to correct the FENE-P model at large
extension.

We conclude then by noting that using the Oldroyd-B model in flows
where there are stagnation points with significant extensional character

is fraught with difficulties since the model itself, even in multi-mode
form, for De > 1_2 presents a stress singularity at steady state, and
unbound exponential chain stretch as a function of Hencky strain. This
stretch/stress singularity can be removed by introduction of chain finite
extensibility through the pre-averaging approximation and/or through
the addition of the Giesekus drag term via Eq. (32). However neither of
these changes produce a quantitative model for large Hencky strain in
extensional flow of a real polymer solution and care must be taken in
interpreting the results.

2. Predictions of the Oldroyd-B model in elastic instabilities of
viscometric flows with curved streamlines

The Oldroyd-B fluid model has played a central role in studies
of elastic instabilities in simple bulk flows used for measurement of
rheological properties of viscoelastic fluids. This class of shear flows
also has significant practical implications in many polymer processing
applications including single and multilayer film formation, coatings,
and lubrication. To that end, the Oldroyd-B fluid model not only has
been instrumental in discovery of fundamental physics that drives elas-
tic instabilities in viscometric flows but also it has provided invaluable
insight in flows of practical importance that exhibit elastic instability.

Studies in the past two decades have conclusively established that
creeping flow of viscoelastic shear flows with curved streamlines un-
dergo a purely elastic instability, see [34] for a review. Examples
include Taylor–Couette [35–40], Dean and Taylor–Dean Flows [41–
44], cone-and-plate and parallel plates flows [45–48]. The elastic insta-
bility in these flows occurs as a Weissenberg number, W i, defined as
the product of the fluid relaxation time to a shear rate as in Section 1.2,
exceeds a critical value. Note in this context however that the definition
of the W i varied especially in the early literature (and in fact, at times
it has been labeled as a Deborah number), but careful examination
demonstrates that all studies were essentially equivalent — elastic
hoop stresses in curvilinear shear flows could drive elastic instability
past a critical W i that grew as the curvature became small at a fixed
shear rate. Although, the complex spatio-temporal characteristics of the
secondary flow and its nonlinear evolution depend on the flow geom-
etry, the single and multi-mode Oldroyd-B (MMO-B) fluid have been
successfully used not only to clearly elucidate that these purely elastic
instabilities are essentially driven by the adverse gradient of elastic
hoop stress across curved streamlines but also to qualitatively predict
the critical W i for the onset of the instability [34,37,39,40,49,50].
Experimental and theoretical studies of the effect of fluid inertia on
linear stability and non-linear dynamics and pattern formation of this
class of flows has also been examined by systematic variation of the
Elasticity number defined as, E = W i_Re over up to three orders of
magnitude, i.e., 0 < E < 1 to E ∏ 1 [51–64]. To date, most theoretical
studies have been conducted in the Taylor–Couette flow presumably
due to the wealth of available experimental data. Specifically, the linear
stability studies have been mainly based on the Oldroyd-B model while
studies focused on non-linear dynamics and pattern selection have been
conducted with the FENE-P model due to presence of highly localized
structures in the post critical regime that give rise to strong elongational
flows.

2.1. Taylor–Couette flow: Purely elastic and thermoelastic instabilities

Since the instabilities reviewed in this section occur in single phase
inertialess bound flows of incompressible fluids, the nonlinearity inher-
ent in the viscoelastic constitutive equation must be the sole driving
force for occurrence of the instability/flow bifurcation. Hence, the
single and multi-mode Oldroyd-B models are the natural starting point
for theoretical analysis due to their ability to predict the shear rhe-
ology of Boger fluids commonly used in study of purely elastic flow
transitions. In addition, the single mode model only has three material
constants, the solvent and polymer viscosity as well as the longest
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Fig. 2. (a) LEFT — Simulations of the polymer contribution to the extensional viscosity as a function of Hencky strain for a freely-jointed bead rod chain without hydrodynamic
interactions and various multi-mode Oldroyd-B models. [27] (b) RIGHT — Extensional stress data from polystyrene ‘‘Boger’’ fluid as a function of Hencky strain compared to single
and multi-mode FENE models. Note that in the figure, b = 3L2_(Nkb2) in the notation of the present article [27].

fluid relaxation time. This simplifies the linear stability analysis and
facilitates mechanistic understanding of the instability phenomenon
as well as comparison of theoretical predictions with experimental
findings.

Giesekus in 1966 [65] observed a cellular instability in Taylor–
Couette Flow (TC) of a polyisobutylene/decalin shear thinning solution
at Reynolds number of approximately 0.01. Almost 20 years later,
Muller, Larson, and Shaqfeh, experimentally demonstrated that above
a critical W i, the TC flow of a polyisobutylene Boger fluid transitions
from a purely azimuthal shear flow to a banded vortex structure (see
Fig. 3) at vanishingly small Reynolds number, i.e., 0.001 [34,37,39,40].
TheW i in this context was defined asW i = Ü�� where Ü� is the shear rate
in the small gap Couette cell, however, in this literature, it was referred
to as a Deborah number, De. In addition, Larson et al. [39] showed that
this flow transition occurs irrespective of the sole rotation of the inner
or the outer cylinder; hence, providing clear evidence of the existence
of a purely elastic instability in TC flow of dilute polymeric solutions.
Moreover, the instability was reported to give rise to a time-dependent
secondary flow.

Shortly after this discovery many Oldroyd-B based linear stability
studies of viscoelastic TC flow were initiated. The initial analyses [37,
39,40] assumed the instability mode to be axisymmetric partly due to
experimental observations of the initial stages of the secondary flow
by Larson et al. [39]; however, subsequent linear stability analyses
by Avgousti and Beris [66] and Joo and Shaqfeh [41] unequivocally
demonstrated that under isothermal conditions the most dangerous dis-
turbance to the base flow is non-axisymmetric and time-dependent with a
critical W i of O(10). Moreover, the mechanism of the instability based
on energy analysis with the Oldroyd-B model [41] was determined to
be due to the coupling of radial velocity fluctuations to finite hoop
stresses that lead to amplification of the radial perturbations, and a
non-axisymmetric, oscillatory secondary flow.

The eigenvalue problems describing the elastic TC flow instability
in the small gap limit were particularly simple, and for example, for
the axisymmetric mode discovered first [39] the eigenvalue problem
becomes:

�®®®® * 2↵2�®® + ↵4� = *✏W i2↵2⇤�®, �(0) = �(1) = 0 (33)

with � the stream function of the perturbation in the gap of the TC
flow, ‘‘prime’’ denoting differentiation with the gap variable, ⇤ the
eigenvalue, ↵ the axial wavenumber and ✏ the ratio of the gap thickness
to the radius of the Couette cell. Thus the left hand side represents the
viscous forces in the flow and the right hand side is the driving term
associated with elasticity. The right hand side obviously depends on
finite curvature through ✏, and elasticity with the combined parameter
✏W i2 being an Elastic Taylor Number. It drives the fluctuating viscous
flow and has its origin in the terms *Lik�Pjk * Ljk�Pik from the upper
convected derivative. This fact, suggested the instability was a ‘‘hoop

stress’’ instability through the Oldroyd-B model, with a fluctuating
velocity gradient �® acting on the existing hoop stresses in the base
state to enhance the hoop stresses and reinforce the flow. As mentioned
above, this was later verified rigorously via energy analysis [41].

Although early experimental observations [34,37,39,40,67] were
qualitatively in agreement with the theoretical predictions based on
the Oldroyd-B model, later detailed particle imaging velocimetry ex-
periments conducted by Baumert and Muller [35,36] demonstrated that
the primary flow transition leads to a secondary flow state composed of
axisymmetric and stationary toroidal vortices, similar to those seen at the
onset of instability in the Newtonian Taylor–Couette flow. Moreover, it
was shown that the W ic is O(1) [34,37,39,40,49].

Even a cursory perusal of the above summary of the primary flow
transition in TC flow of dilute polymeric solutions reveals puzzling
differences between experimental observations and theoretical predic-
tions — differences that were highlighted by various experimental
studies using different test fluids and cylinder radius ratio. First and
foremost, the Baumert and Muller [35,36] experimentally measured
W ic is approximately 10 times lower than the Oldroyd-B model pre-
dictions [34,37,39,40]. Secondly, the Oldroyd-B based analysis predicts
spatiotemporal characteristics of the secondary flow that are in agree-
ment with earlier experiments findings of Larson et al. [39] but are
in stark contrast to the more detailed experimental observations of
Baumert and Muller [35,36] that were subsequently reproduced by
Groisman et al. [51]. Various explanations have been proposed to ratio-
nalize the disparities between experimental observations and Oldroyd-B
theoretical predictions. Chief among them is the inability of the single
mode Oldroyd-B model to predict the response of Boger fluids to
transient shear and extensional deformations [68]. Predictions based
on the MMO-B and the Multi-mode Giesekus (MMG) models that can
adequately predict the transient shear and extensional deformations of
Boger fluids indicate that although second normal stresses and shear
thinning of first normal stress are stabilizing, the predicted critical W i
is still significantly higher than the experimentally measured W ic [69,
70]. In addition, the spatio-temporal characteristics of the secondary
flow is qualitatively the same as the single-mode Oldroyd-B model, i.e.,
a non-axisymmetric and time dependent flow [69]. Moreover, symmetry
considerations [63], local nonlinear analysis [64], and finite element
time integration of the linearized equations [71] have further shown
that the discrepancy between isothermal analyses and experiments
of Baumert and Muller [35,36] and Groisman et al. [51] cannot be
reconciled.

The influence of energetics on the stability of the viscoelastic TC
flow could be significant since Boger fluids have a very high viscosity
and large activation energies for the fluid viscosity and relaxation time
(Ó 60 kJ/mol [68]). Hence, even a temperature change of the order
of 1 ˝C across the gap can lead to significant inhomogeneities in the
fluid properties, which in turn can induce changes in the hoop stress
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Fig. 3. Purely elastic instability in Taylor–Couette Flow: (a) The Taylor–Couette geometry with inner cylinder rotation; (b) Image of the secondary flow; (c) Schematic depiction
of the banded vortex secondary flow structure [34].

gradient and W ic . In fact, the effects of viscous heating will always be
present to some level in the shear flow of highly elastic fluids with curved
streamlines, particularly, flows with closed streamlines in which the heat
from viscous dissipation is accumulated in the device over long periods
of operation. In fact, Arigo et al. [72] have experimentally demon-
strated that viscous heating can lead to inhomogeneous temperature
distribution in cone-and-plate and parallel-plate flows.

Motivated by the above-mentioned discrepancies and the plausi-
bility of the existence of an inhomogeneous temperature distribution
in this class of flows, Al-Mubaiyedh et al. [70,73] performed a linear
stability analysis of viscoelastic TC flow that included viscous heating
effects in a thermodynamically consistent fashion. Specifically, they
modified the isothermal Oldroyd-B constitutive equation based on the
principle of pseudo-time proposed by Crochet and Naghdi [74] to
account for the fact that the stress–temperature relationship is not
local, i.e., the stress at any point depends on the fluid thermal history.
Their analysis showed that depending on the ratio of the relaxation
time to the thermal diffusion time, characterized by the ratio of W i
to the Peclét number, Pe = d

k_⇢Cp
( kd2
⌘T R1

) (d[í R2 * R1], ⇢, k, Cp,
⌘T [í ⌘s + ⌘p] are the gap size, density, thermal conductivity, specific
heat capacity, pressure, and solution viscosity at the reference temper-
ature, respectively), viscous heating could significantly influence the
onset conditions and the selection of the most dangerous eigenmodes.
Moreover, they discovered that viscous heating leads to a completely
new type of viscoelastic instability, namely, purely thermoelastic in-
stability (Re Ó 0). The energy analysis indicates that mechanism of
this instability is distinct from that of the purely elastic isothermal
instability and arises from the convection of a base state temperature
gradient by radial velocity perturbations. This in combination with
the thermal sensitivity of the fluid gives rise to reduced dissipation
and hence destabilization [75]. The secondary flow corresponding
to the purely thermoelastic instability is stationary and axisymmetric
with an O(1) critical W i. Subsequently, White and Muller [76,77]
experimentally validated these findings by demonstrating that in the
presence of viscous heating the viscoelastic TC instability indeed occurs
at O(1) W ic and the primary flow transition is always to a stationary
and axisymmetric flow state. However, it should be noted that this
favorable comparison is not conclusive as a direct comparison between
the experimentally observed flow transition and theoretical predictions
is validated only after a nonlinear stability analysis is performed to
ascertain the stability of the bifurcating solution. To that end, Al-
Mubaiyedh et al. [78] utilized direct time-dependent simulations to
examine the nonlinear evolution of finite amplitude disturbances of the
purely thermoelastic instability in the postcritical regime. This analysis

revealed that over a wide range of parameter space that includes the ex-
perimental conditions of White and Muller [76] the primary bifurcation
is supercritical and leads to a stationary and axisymmetric toroidal flow
pattern. The consistency of this theoretical finding with experimental
results can be viewed as a triumph of the non-isothermal Oldroyd-B model
in capturing the underlying physics of this complex flow transition.
Finally, it should be noted that the onset time associated with the
evolution of finite amplitude disturbances to the secondary flow state
is comparable to the thermal diffusion time. Hence, the time required
to experimentally observe the secondary flow state is highly dependent
on the thermal diffusivity of the test fluid and cylinder radius ratio.
This observation could be the rationale behind the above-mentioned
discrepancy between different experimental observations.

2.2. Taylor–Couette flow: Inertial effects and pattern formation

The Oldroyd-B model has also been used to examine the effect
of inertia on the linear stability of viscoelastic TC flow by Joo and
Shaqfeh [79], and Avgousti and Beris [66]. These studies have demon-
strated that inertia destabilizes the elastic TC flow if only the inner
cylinder is rotated, while it stabilizes the flow when only the outer
cylinder is rotated. Joo and Shaqfeh [79] have also determined the
mechanism of this stabilization and destabilization phenomenon based
on an energy analysis. The analysis reveals that elastic forces are
destabilizing in both modes of operation. Hence, the Reynolds stresses
are mainly responsible for this phenomenon, namely, in case of in-
ner cylinder rotation, the Reynolds stresses produce energy, therefore
are destabilizing, while for the outer cylinder rotation, the Reynolds
stresses dissipate energy, thus are stabilizing. The predicted destabiliz-
ing effect of inertia is consistent with experimental findings despite the
fact shear thinning effects complicate the precise measurement of the
critical E for flow instability [36,52]. It should be noted this favorable
comparison can be viewed as another example of the success of the
Oldroyd-B model.

The non-isothermal Oldroyd-B fluid has been also been used to
ascertain the influence of fluid inertia on the onset of thermoelastic
instability in TC flow by Thomas et al. [80]. Despite the large param-
eter space of the non-isothermal stability analysis, i.e., (Re,Pe,W i),
the systematic analysis of Thomas, Sureshkumar and Khomami have
conclusively determined that similar to the isothermal case, inertia
destabilizes the flow when the flow is driven by the rotation of the inner
cylinder. These findings are also consistent with experimental findings
of [81].

Comprehensive experimental studies of non-linear dynamics and
pattern formation in viscoelastic TC flow began in the late 90s by
Steinberg and Groisman [55] and Baumert and Muller [57]. Their
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detailed flow visualization studies with Boger fluids as well as shear
thinning dilute polymeric solutions revealed novel flow patterns in the
post-critical regime of inertial E < 1 and elastically dominated flows
E ∏ 1 flows, namely, rotating standing waves (RSWs) or ribbons, dis-
ordered oscillations (DOs), oscillatory strips (OSs), and diwhirls (DWs). In
addition, a very intriguing non-axisymmetric flame pattern that results
from merging of nearby DW-like coherent structures (CS) was observed
at low and high elasticity numbers. Kumar and Graham [58,59] took
the first significant step toward understanding pattern formation in
viscoelastic TC flow via two dimensional steady-state spectral simulations
with the FENE-P model, albeit with a low chain finite extensibility, i.e.,
L Ì 43. Their simulation captured the existence of a spatially localized
CS similar to the experimentally observed DW patterns.

As evident from the above discussion, three-dimensional and time-
dependent simulations are necessary to theoretically determine the pat-
tern selection in the postcritical regime. Specifically, as demonstrated
by Thomas, Sureshkumar and Khomami [61], three-dimensional tran-
sient simulations that allow for the computation of symmetry breaking
of inflow/outflow (I/O) of an ideal RSW are required to capture flow
transitions that lead to the formation of localized solitary vortices that
exhibit narrow regions of strong inflow surrounded by broad regions of
weak outflow. To that end, Thomas, Sureshkumar and Khomami [62]
performed the first successful three-dimensional and time-dependent
simulations of viscoelastic Taylor–Couette with the FENE-P model with
L = 100 using a hi-fidelity fully implicit parallel spectral time-splitting
algorithm and discovered flow patterns with various spatiotemporal
symmetries, namely rotating standing waves (RSWs), disordered oscil-
lations (DOs) and solitary vortex structures referred to as oscillatory
strips (OSs) and diwhirls (DWs). Specifically, for E > 0.1 when the
shear rate (inner cylinder rotation speed) increased above the linear
stability threshold, the circular Couette flow (CCF) becomes unstable to
RSWs implying symmetry between inflow/outflow (I/O) regions. Fur-
ther increase in the shear rate leads to the I/O symmetry breaking and
appearance of DOs and/or flame-like patterns with spectral mechanical
energy transfer similar to that of elastically induced low-Reynolds-number
turbulence (see Fig. 4). However, when the shear rate is decreased from
this chaotic state, the radially inward polymer body force produced by
flow-induced molecular stretching leads to the development of narrow
inflow regions surrounded by much broader weak outflow domains.
This promotes the formation of solitary vortex structures, which can
be stationary and axisymmetric (DWs) or time-dependent (OSs) that
mainly result from merging of vortex pairs. Finally, as the shear rate is
decreased further, DWs decay to CCF flow at values of the W i smaller
than the linear stability threshold (see Fig. 4). These hysteretic flow
transitions with respect to variations in the W i as well as the above-
mentioned predictions of various flow states compare very favorably
with experimental observations [55,57].

2.3. Taylor–Couette flow: Elastic turbulence

Groisman & Steinberg [82] experimentally discovered a flow state
with broad temporal frequency spectra in TC flow of dilute solutions in
the limit of vanishing Re and W ic Ì 5, i.e., extremely large E, dubbed
‘‘elastic turbulence’’ (ET). Specifically, they observed a broad frequency
spectra in the radial velocity with two power-law decay regimes of
slope *1.1 and *2.2 at low and high frequencies, respectively. In
addition, it was shown that the probability density function (PDF) of
the radial velocity at the middle of the gap exhibited a weakly asym-
metric shape instead of the Gaussian distribution observed in inertial
turbulence of TC flow. Thus, due to the steep decay of the velocity
spectrum, ET is essentially a spatially smooth and temporally random
flow, dominated by strong nonlinear interaction of a few large-scale
spatial modes that give rise to O(1) drag enhancement [83].

Numerical simulations of an elastically driven flow transition at
vanishing Re and O(1) values of the W i, have been performed by
Berti et al. [84,85] in a ‘‘toy’’ flow with the Oldroyd-B fluid model.

These 2-dimensional simulations qualitatively capture the experimental
findings of Groisman and Steinberg [82,86,87], however, quantitative
differences exist between the simulation results and experiment. The
authors have attributed these discrepancies to the approximate nature
of the simulated flow and its two-dimensionality. In addition, these
simulations lack the detailed flow–microstructure coupling needed for
elucidating the mechanism of elastically induced turbulence. To that
end, Liu and Khomami [88] performed the first DNS of elastically
induced turbulence for 0.2 f E f 5. These simulations capture
the key features of elastically induced turbulence, namely, the broad
continuous power-law-decay regions spanning more than two orders
of magnitude in frequency with two power-law decay slopes of *1.1
and *2.2, an asymmetric PDF of the radial velocity at the middle of
the gap, and drag enhancement (see Fig. 5 for a direct comparison of
DNS results and experimental findings). Although the aforementioned
simulations capture the key experimental observations of purely elastic
turbulence, particularly at E g 1, DNS of purely elastic turbulence, i.e.,
in the limit of extremely large E remains a grand challenge problem for
the research community engaged in developing first-principle models
and simulations that can predict faithfully the complex spatio-temporal
dynamics of polymeric flows.

2.4. Dean and Taylor–Dean flows

Shortly after the ‘‘discovery’’ that a purely elastic instability was
present in TC flow as driven by hoop stresses, the question naturally
was posed as to whether other curvilinear shear flows would also be
unstable to cellular instabilities as driven by hoop stresses. Following
the literature then in inertially driven instabilities, Joo and Shaqfeh
demonstrated that planar Dean flow (i.e. pressure driven flow around a
curved channel) was subject to purely elastic instability and, moreover,
when combined with shear driven flow, i.e. Taylor–Dean flow, new
elastic instability modes were present [42,43]. Again, the analysis
started with the Oldroyd-B equation. This analysis was important and
unique for at least two reasons: (1) the mode of elastic instability driven
by the parabolic flow was different and was characterized by a different
modal structure (e.g. stationary, axisymmetric) and (2) combinations of
pressure and shear driving force around curved streamlines are present
in a host of practical flows beyond rheometry, e.g. bearing flow, and
thus this result implied the practical implications of the growing body
of research regarding the stability of elastic shear flows with curved
streamlines. Again, in the small gap limit of these Taylor–Dean flows,
for the axisymmetric mode, the eigenvalue problem (in terms again of
the stream function in the flow-gradient plane), takes a simple form
that is informative [42]:

�®®®® *2↵2�®®+↵4� = *✏W i2↵2⇤1�® *✏W i2↵2⇤2�, �(0) = �(1) = 0 (34)

where ⇤1 and ⇤2 are functions of the eigenvalue. In this context the
Weissenberg number again referred to as a Deborah number in this
literature, was defined as the product of the maximum shear rate across
the gap times the relaxation time. If we compare this to the small gap
limit of the TC flow, Eq. (33), we note that the second term on the right
hand side is new. It comes from the substantial derivative in the upper
convected derivative, i.e. uk

)�pij
xk
, and, in fact, drives a new stationary in-

stability mode [42,43]. Energy analysis of this mode [42] demonstrated
that the mode was driven by a velocity fluctuation  acting on the normal
stress gradients in the base state. Again, all of these conclusions stemmed
from analysis of the Oldroyd-B model. Moreover this new mode of
instability scaled with the same parameter ✏W i2 as that characterizing
the elastic TC instability, although in this context, it can be referred to
as an Elastic Dean number. For flows with both shearing and pressured
driven components, the two separate modes associated with the TC
flow and Dean flow are present and the most unstable depends on
the relative strengths of each flow driving force [42]. All of these
instabilities were examined in the laboratory [41] although again the
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Fig. 4. (a) Power spectral density of the radial velocity component as a function of dimensionless frequency at two positions close to the middle (R1 + R2)_2 of the gap, (b)
Space–Time Plots of the Radial Velocity (Blue-Inflow, Red-Outflow) at middle of the gap; E = W ic_Rec = 1_3; Re_Rec = 0.9 [62].

Fig. 5. Power Spectral Density (PSD) of radial velocity fluctuations as a function of frequency at the middle of the gap at W i = 50 (a) DNS, (b) Experiments, curves 1–4 correspond
to W i = 8.5, 13.6, 21.8 and 35, respectively; Probability density functions (PDF) of the radial velocity at the middle of the gap at gap (c) DNS at W i = 50 (d) Experiment, curves
1–4 correspond to the same W i in (b).

predictions from the Oldroyd B model of the onset conditions and the
wavelength of the cellular instability were qualitative not quantitative.
Moreover, subsequently, eccentric cylinder flow or bearing flow was
also examined within the context of the Oldroyd-B model. Indeed the
flow is elastically unstable to a cellular instability very similar to that
of the Taylor–Dean family [89–91].

Much less subsequent work has been done on the Taylor–Dean class
of elastic instabilities (in terms of nonlinear analysis and simulation)
as compared to Taylor–Couette flow. Fan et al. [92] completed elastic
flow computations for fully, developed curved pipe flow, where the
Oldroyd-3-constant model was used to represent the viscoelastic fluid
and this includes the upper-convected Maxwell (UCM) model and the
Oldroyd-B model as special cases. Interestingly, they found an upper
bound on the Deborah number, defined as De = �Um

a where a is the pipe
radius and Um is the mean velocity in the pipe, beyond which no steady
solution could be found. This ‘‘critical’’ Deborah number obeyed the

same relation for different values of the pipe curvature R as suggested
by the elastic Dean number in the Joo & Shaqfeh stability analysis,
namely, for
⌧ aR

�1_2
De g ⌧⇠ aR

1_2⇡
De

�
crit

no steady solutions could be found. In addition, Zilz et al. [44] ex-
amined the pressure driven flow in a serpentine rectangular channel,
and demonstrated that an elastic Dean number did correlate with the
onset of cellular instability for different channels. (Note the elastic
Dean number is one of the class of Pakdel–McKinley numbers [93] as
discussed below, and [44] expressed the geometric dependence of the
critical conditions in that language.) In this same paper, calculations
of the cellular flow in the serpentine channel are made using the
Maxwell model, and the onset to a cellular instability was indeed found
where the onset conditions were in good agreement with the numerical
simulations.
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The influence of energetics on the linear stability of viscoelastic
Dean flow of an Oldroyd-B liquid was investigated by Al-Mubaiyedh
et al. [94]. This was briefly mentioned above in the discussing en-
ergetics of the TC flow. Interestingly the analysis showed that when
the temperatures of inner and outer walls are maintained at constant
equal values, viscous heating does not influence the mode selection,
i.e. the most dangerous disturbance is axisymmetric and stationary as
in the case of isothermal Dean flow. The critical Weissenberg number
does increase with increasing Brinkman number indicating that viscous
heating stabilizes the flow in this case.

2.5. Cone-and-plate and coaxial parallel-plate flows: Purely elastic and
thermoelastic instabilities

The torsional flow between coaxial parallel plates and a cone-and-
plate are pervasive in rheological characterization of viscoelastic fluids.
Hence, determining the critical conditions for flow transitions is these
torsional flows is of utmost importance for accurate measurements of
fluid viscosity and normal stresses. In fact in the mid 80s, appearance
of curious time dependent phenomenon at a critical shear rate, namely,
amplification of oscillations of torque and thrust force with time in
a dilute polymeric solution was interpreted as a sign of a change of
rheological properties of the fluid [95]. Later it was postulated that
these changes occur due to formation of a shear induced network and
the phenomenon was dubbed anti-thixotropy [96].

Larson and Magda [45] experimentally reproduced this
phenomenon with dilute polymeric solutions in both of these tor-
sional flows; however, they ascribed it to occurrence of a purely
elastic instability discovered earlier by Phan-Thien [97,98]. Specifi-
cally, Phan-Thien had carried out an analytical stability analysis with
the Oldroyd-B fluid model in the limit of long-wavelength disturbances
using the von Kármán similarity form. Remarkably the predicted crit-
ical W i for both geometries only depended on S, defined as the ratio
of solvent to the total viscosity (Note that S = � as defined in the
introductory section of this article and is now generally used in this
context). Almost two decades later the precise � and geometry depen-
dence of the critical W i for the cone-and-plate flow was determined by
Olagunju [99,100].

McKinley et al. [46] performed the first flow visualization experi-
ments of a PIB/PB Boger fluid in a cone-and-plate geometry to ascertain
the existence of a purely elastic instability at a critical W i. As seen in
Fig. 6 above a critical W i, indeed an instability is manifested in the
form of Bernoulli spirals that propagate outwards. This nonaxisymmet-
ric flow transition was shown to be overstable in time and subcritical
in shear rate. These experimental observations contradict the long
wavelength solution of Phan-Thein but are in qualitative agreement
with Olagunju’s [99,100] results obtained in the small gap limit and/or
based on a short wavelength perturbation analysis. Specifically, these
analyses show that the instability is of finite wavelength and does not
solely depend on �, but it also depends on the square root of the cone
angle.

The first linear stability analysis of the viscoelastic cone-and-plate
flow was performed by McKinley et al. [48] with the Oldroyd-B and
Chilcott–Rallison constitutive equations, and later by Öztekin et al.
[101] based on a 4-mode Giesekus model with parameters determined
by fitting the rheological data of the test fluid. These analyses revealed
that incorporation of shear thinning and a spectrum of relaxation times
is essential to quantitatively predict the critical W i for the onset of the
instability and the secondary flow state. It is important to note that
the effect of the free surface on the instability of the cone-and-plate flow
had yet to be investigated. We note also that in this literature, McKinley
and coworkers defined a Weissenberg number, W i = Ü�� and a Deborah
number, De = ⌦� where ⌦ is the angular frequency of rotation of the
cone, and presented their stability criteria in terms of a critical value of
the productW iDe. A bit of algebra demonstrates that this is completely

equivalent to the Elastic Taylor and Dean number criteria as discussed
above for TC flow and Dean flow.

Byars et al. [47] performed extensive flow visualization studies
of the coaxial plate and plate flow using two Boger fluids with two
different aspect ratios, defined as the plate radius divided by the
plate separation distance. These studies conclusively demonstrated that
above a critical W i a set of radial vortices appear within the gap (see
Fig. 6). Moreover, they observed a spatial pattern at a finite radius
envelope for a given W i in the form of concentric rings or a nested
Archimedean spiral that propagates outward.

Öztekin and Brown [102] performed a local linear stability analysis
of the coaxial plate and plate flow using the Oldroyd-B fluid model. This
analysis correctly predicted that above a critical W i the torsional flow
transitions to a nested Archimedean spiral flow pattern; however, the
finite envelope nature of the radius mentioned above was not captured
by the analysis. In turn, Byars et al. [47] extended the Oztekin &
Brown [102] analysis by taking into account the effect of shear thinning
of the first normal stress by performing a local linear stability analysis
with the Chilcott–Rallison model. The analysis demonstrated the impor-
tance of the shear thinning of the normal stress in predicting the finite
envelope of unstable values of the critical radius for a given W i. This
observation can be rationalized based on the radial dependence of hoop
stresses. Specifically, at a given W i, one has to move outward from the
center to a critical radius where the base state hoop stresses become
large enough to trigger a purely elastic instability. However, at an even
a larger distance from the center of the plates, the fluid begins to shear
thin. This plus the fact that the radius of curvature increases linearly
with distance from the center of the plates leads to a reduction in
hoop stresses and flow restabilization. This analysis not only correctly
predicts the onset conditions and their localized radial nature but also
captures the secondary flow structure in concert with experiments,
namely, nested spiral vortices that propagate outward. The presence
of a free surface at the edge of the parallel-plate geometry was later
included in a finite domain linear stability analysis by Avagliano and
Phan-Thien based on the Oldroyd-B model. [103,104]. The agreement
between the analysis and experiments is improved when the edge
effects that drive a weak secondary flow are included in the analysis.
This is an important finding as it demonstrates that the weak secondary
flow generated by the free surface at the edge plays an important role in
the finite envelope nature of the critical radius in the incipient secondary
flow as the Oldroyd-B model cannot capture the shear thinning of
the first normal stress that has been considered critical in capturing
this phenomenon. Later, Renardy and Renardy [105] inspired by the
analytical model developed by Olaganju [106], were able to closely
approximate the two-dimensional numerical results of Avagliano and
Phan-Thien [104].

It is perhaps not surprising in retrospect that the mechanism of both
the coaxial parallel plates and cone-and-plate instabilities is essentially
the same as that predicted by Larson et al., in 1990 for the viscoelastic
TC flow [39], i.e., coupling of radial velocity fluctuations to finite
hoop stresses. Pakdel and McKinley [93] used this fact to develop
a general criterion, based on dimensional analysis arguments that is
capable of estimating the occurrence of elastic instabilities in a broad
range of isothermal, single phase viscoelastic flows. Since, the ‘‘Pakdel–
McKinley number (PM)" is based on a measure of elastic stresses and the
characteristic radius of curvature of the flow, it contains the essential
ingredients that drive purely elastic instabilities in flows with curved
streamlines. The basic argument is as follows and starts from the
properties of the Oldroyd-B fluid. If a broad class of curvilinear shear
flows are subject to purely elastic instability, then they can all be
characterized by a critical value of the elastic Taylor number based on
local conditions — or in the previous notation, a critical value of:

PMcrit =
L
�U
R

�p11
⌘T Ü�

M1_2

(35)
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Fig. 6. Purely elastic instability in cone and plate and coaxial Parallel Plate Flows: (a) The cone and plate geometry with a rotating cone (b) The parallel plate geometry with a
rotating upper plate; (c) Image of the secondary flow in the cone–plate geometry [46] (d) Image of the secondary flow in the parallel plate geometry [46].

where U is the local flow velocity, �p11 is the local polymer normal stress
along the flow direction, R is a local radius of curvature, and Ü� is a local
shear rate. This corresponds to making the relaxation time in the second
term in the product that is the elastic Taylor number ✏W i < W i equal
to

�p11
2⌘T Ü�2

(which is proportional to the relaxation time in the Oldroyd-B
model) and then taking the square root. Hence, it is not too surprising
that despite the fact that the numerical value of the PM cannot be
computed based on scaling analysis, the scaling predicts the occurrence
of purely elastic instability in Taylor–Couette, and cone-and- plate
flows, as well as flow between eccentric rotating cylinders. The advance
here is that this criteria can be used even if it is not obvious at all that
the Oldroyd-B captures �p11. While PM cannot capture the criticalW i for
a particular flow or the spatio-temporal characteristics of the secondary
flow, nor can it distinguish between purely elastic instabilities in pure
shearing or mixed kinematic flows where extensional stresses play an
important role in determining the stability of the flow, it provides a
simple and useful means for determining if a complex flow is prone to
purely elastic instabilities.

Rothstein and McKinley [107] have performed a comprehensive
experimental study of the effect of viscous heating on the torsional
steady shearing of monodisperse polystyrene dilute solutions realized
in a cone-and-plate and coaxial parallel plates. The experimental results
are presented in terms of the W i, and the Nahme–Griffith number,
Na = ⌘0H2(�H_RT ) Ü�

kT (where ⌘0 is the zero shear viscosity and R is the
universal gas constant) that measures the magnitude of viscous heat-
ing. More importantly, they demonstrate that the importance of these
two competing effects can be quantified via a thermoelastic number,
defined as ⇥ = �R0

t
⌘0(�H_RT )

kT (where � is the polymer relaxation
time, and R0 is the plate radius), that allows viscoelastic instability in
different fluids and flow geometries be presented in a single stability
diagram. Using this elegant methodology, the thermoelastic number
was systematically changed by variation of the temperature of the test
fluid or the configuration of the test geometry. These comprehensive
experiments clearly demonstrate that when the characteristic time scale
for viscous heating is much longer than the relaxation time of the test
fluid (⇥ ~ O(1)) the critical conditions for the onset of the elastic
instability are in good agreement with the predictions of isothermal
linear stability analyses. As the thermoelastic number approaches a
critical value, the strong temperature gradients induced by viscous

heating reduce the elasticity of the test fluid and delays the onset of
the instability. At even larger values of the thermoelastic parameter
O(10*1), viscous heating stabilizes the flow completely. Overall, these
results are consistent with earlier theoretical findings of Al-Mubaiyedh,
Sureshkumar, and Khomami [94] obtained based on a thermodynam-
ically consistent non-isothermal Oldroyd-B model in the Taylor–Dean
flow. Thus, the dominant mode of the instability does not change in
presence of viscous heating, but the critical W i for the onset of the
instability is increased. It should also be noted that the thermoelastic
mode is still present in the Taylor–Dean and torsional flows but it
does not become dominant until much higher Pe than those observed
in the non-isothermal viscoelastic TC flow. These results along with
the detailed mechanistic analysis of Al-Mubaiyedh et al.[94] indicate
that the critical Pe at which the thermoelastic instability manifests is
dependent on the symmetries of the base flow.

2.6. Cone and plate and coaxial parallel plates flows: Non-linear stability
analysis

Unlike the viscoelastic TC flow, the non-linear dynamics of tor-
sional elastic flows is essentially unexplored with the exception of
Olagunju’s [108] weakly nonlinear stability analysis for the viscoelastic
cone-and-plate flow in the limit of small cone angle. This Oldroyd-
B based analysis reveals that � has a very pronounced effect on the
solution bifurcation. That is for � > 0.02, i.e., the small solvent
viscosity limit, a subcritical Hopf bifurcation in shear rate is observed.
However, for � < 0.02 the flow transition is supercritical. The good
agreement between the theoretical and experimental observations of
McKinley [46,48] in the limit of small cone angle can be viewed as yet
another success of the Oldroyd-B model.

3. Polymer induced turbulent drag modifications as predicted by
the Oldroyd-B model

It is well known that the addition of small amounts of soluble high
molecular weight polymers to inertia-dominated, wall bounded flows
gives rise to a modification of turbulent drag. Specifically, the addition
of minute amount of long chain polymers to rectilinear, unidirectional
wall-bounded turbulence leads to a dramatic decrease in turbulent
friction drag (DR), which saturates at 80% reduction, at the so called
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maximum drag reduction (MDR) asymptote [109–111]. In contrast, ad-
dition of a small amount of polymer to inertially-dominated curvilinear
flows such as TC flow results in significant drag enhancement (DE). In
what follows, the influence of the addition of trace amount of polymers
on drag modifications of pressure driven channel flows, namely, plane
Poiseuille flow, as well as TC flows will be discussed. The review will
be focused on DNS of these flows, punctuated with experimental find-
ings that have been essential to the mechanistic understanding of the
influence of polymer additives on flow dynamics and drag modification.

3.1. Polymer induced drag reduction in plane Poiseuille flow

The development of hi-fidelity numerical techniques for DNS of
viscoelastic turbulent flows in the past three decades has enabled the
investigation of turbulent drag reduction in dilute polymer solutions
using kinetic theory based constitutive equations. To date, DNS studies
have played a crucial role in understanding the interplay between
polymer chain dynamics, i.e., extensional viscosity, relaxation time and
polymer stress, and flow dynamics, namely, turbulent fluctuations and
coherent structures. In fact, DNS studies have been essential in mecha-
nistic understanding of polymer induced turbulent drag modifications,
particularly in light of the lack of experimental techniques to precisely
measure the elastic body forces that drive polymer induced and/or
modification of turbulent dynamics.

DNS studies of turbulent channel flows with the Oldroyd-B model
have been very limited presumably due the dominant nature of biaxial
extensional flow regions between the streaks, thus, necessitating the
use of constitutive equations with bounded extensional viscosity [112].
A noted exception is the DNS studies of Joseph and co-workers [113]
based on the Oldroyd-B model aimed at understanding the mechanism
of onset of polymer induced DR in turbulent channel flows. This study
not only successfully predicted the O(1) critical W i for onset of DR
in concert with experimental findings [114], but also sheds light on
the mechanism that gives rise to the onset of DR based on the elastic
theory of Taber and de Gennes [115]. To that end, it was shown that
the polymer chains store elastic energy from the flow very near the
wall and if this stored energy is released in the same region which
occurs at low W i, DR is not observed. Conversely, they demonstrated
when the W i reaches a critical O(1) value, the elastic energy stored
in the very near-wall region is transported to and in turn released in
the buffer and log layers, showing low to modest drag reduction. The
maximum DR realized in these simulations i.e., Ì 30% is in the low
drag reduction regime (LDR) where the viscoelastic flow has similar
statistical characteristics as the Newtonian flow and the mean velocity
profile remains parallel to that of the Newtonian flow with an upward
shift of the log-region that is enhanced as DR is increased to 30%–40%.
Moreover, the streamwise velocity fluctuations are enhanced, while the
transverse ones are reduced with increasing DR. Despite the limitations
of these simulations to the LDR regime, presumably due to the inability
of the Oldroyd-B model to capture a bounded extensional viscosity, the
favorable comparison of the onset W i and the mechanism leading to
LDR with experiments and more comprehensive studies performed with
constitutive equations that exhibit bounded extensional viscosity [116–
118] is yet another example of triumph of the Oldroyd-B model to capture
the complex polymer induced flow phenomena.

In addition to the LDR regime, experimental studies have identified
a high drag reduction (HDR)) regime [119–121]. In this regime, (40%
< DR < 60%), the slope of the mean velocity profile is dramatically
changed as the slope of the log-law is significantly enhanced with
increasing DR. In addition, the Reynolds shear stress becomes relatively
small. At MDR the Reynolds shear stress becomes extremely small and
the slope of the log-law region reaches the Virk asymptote.

Initial DNS studies, pioneered by Beris and co-workers [116] with
the FENE-P model demonstrated that the extent of DR is a strong
function of the fluid rheology, e.g., the fluid relaxation time and the

maximum chain extensibility [122–125]. Overall, these studies demon-
strated that DR and the accompanying flow modification in the LDR
regime, namely, the O(1) value ofW i for onset of DR, the mean velocity
profile, rms velocity fluctuations and the average spacing between the
streamwise streaks can be predicted in excellent qualitative agreement
with experimental findings. In addition, a few DNS studies successfully
captured the formation of highly correlated and elongated streamwise
low-speed streaks and the rapid reduction in the Reynolds stresses in
the HDR regime as observed experimentally [117,126,127]. However,
as shown by Li, Sureshkumar and Khomami [118], most of these
predictions were made with computational domains that were not
sufficiently long to accurately capture the dynamics of the flow in the
HDR and MDR regimes (see Fig. 7a). To that end, Li et al., [118] were
the first to demonstrate that to accurately capture key features of the
flow dynamics in the HDR and MDR regimes (see Figs. 8 and 9), very
long computational domain lengths of the order of 104 wall units (see
Fig. 7a), large polymer chain extensibility, L, and highW i are required
(See Fig. 7c). Evidently, the level of drag reduction tends to asymptote
at large L and W i. The shape of curves in Fig. 7c suggest that the
influence of L and W i can be decoupled. To this end, Li et al., [118]
developed a relationship for %DR as a function of W i⌧ = �(⌧w_⇢)_⌫0,
L, and Re⌧ = h(⌧w_⇢)0.5_⌫0, where h, ⌧w, ⇢, ⌫0, and � are the channel
half height, wall shear stress, the density, the zero shear rate kinematic
viscosity, and the relaxation time of the solution, respectively,

%DR = 80[1 * e*↵(W i⌧*W i⌧,c )(Re⌧_Re⌧,r)*0.225 ][1 * e*�L] (36)

where ↵ = 0.025, � = 0.0275. W i⌧,c (= 6.25) is the onset friction
Weissenberg number. Re⌧,r is the reference friction Reynolds number,
and it is set to Re⌧,r = 125. The prefactor of 80 is used because at high
W i⌧ and large L, the %DR at MDR asymptotes to 80% at high Reynolds
numbers [111] . This relationship explicitly shows that effective drag
reduction requires large polymer extensibility L and high W i⌧ number.
Li et al., [118] simulations also indicate that almost the same level
of drag reduction can be obtained with FENE-P at L2 = 14,400 and
the Oldroyd-B (L2 ⇤ ÿ) models. This demonstrates that only at high
W i⌧ g 100 and high maximum chain extensibility can MDR be reached.
A close examination of the figure indicates that this scaling accurately
describes the extent of DR in the HDR and MDR regimes. However, in
the LDR regime deviations are observed. This suggests that perhaps in
this regime (i.e., relatively small L values) the influence of L and W i⌧
cannot be decoupled.

Li et al., [118] also observed that at large L2 from the onset of
DR to the MDR regime, W i = W i⌧ (!+

x,rms)peak Ì O(1) in the near wall
region. This suggests that there is an intricate balance between elastic
forces and average rotation speed of the near-wall axial vortices that is
a measure of the average time between upwash and downwash events
and Reynolds stress production. As shown below these findings are
crucial to the mechanistic understanding of MDR.

The above-mentioned studies of polymer induced drag reduction
in plane Poiseuille flow have established the mechanism by which
polymers alter turbulence and give rise to DR from the onset to the
HDR regime. Specifically, it has been shown that polymers suppress
turbulence by counteracting velocity fluctuations in the wall normal
and transverse directions. That is, the modification of near wall quasi-
streamwise vortices leads to substantial polymer forces and torques
that inhibit vortical motion leading to reduction of Reynolds stress
production (see Fig. 10).

In addition, it has conclusively been demonstrated that in the
LDR and HDR regimes, polymers extract energy from the flow as
they are pulled around the near wall vortices either by upwash or
downwash flows. In turn, polymers release energy back to the flow in
the high speed streaks (y+ Ì 5) and as a result enhance streamwise
momentum [117,118,126,127] (see Fig. 11).

Until a decade ago, mechanistic understanding of MDR was one
the most debated topics in viscoelastic unidirectional parallel shear
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Fig. 7. (a) The influence of domain size on computed results in the MDR regime, streamwise two-point correlations (i.e., Ruu and R!x!x) in the buffer layer; (b) Mean streamwise
velocity profiles as a function of distance from the wall at friction Reynolds number, Re⌧ = hU⌧_⌫0 = 395 where U⌧ = (⌧w_⇢)0.5 is the friction velocity, ⌧w is shear stress at the wall;
(c) The influence of polymer chain extensibility, L, and friction Weissenberg number, W i⌧ = �U 2

⌧ _⌫P 0 on the extent of drag reduction [118].

Fig. 8. Overall momentum balance as a function of the extent of DR at Re⌧ = h(⌧w_⇢)0.5_⌫0 = 395. Reynolds stress *uv, polymer stress ⌧p, solvent stress ⌧s [118].

Fig. 9. Representative snapshots of velocity streaks in the x * z plane at y+ Ì 15 in the LDR, HDR, and MDR regimes. In highly drag reduced flows, i.e., HDR and MDR regimes,
highly organized low-speed streaks are observed. Accurately capturing these structures necessitates the use of very long domains, i.e., L+

x g 10, 000 in the HDR regime and
L+
x g 15, 000 in the MDR regime [118]. The dimensionless length in wall units is defined as L+ = LU⌧_⌫.

flows. Many different mechanisms for the occurrence of this intriguing
phenomenon were proposed. These include: (1) the MDR profile is
an edge solution of the Navier–Stokes equations with an effective
viscosity profile beyond which no turbulent solution exists [128], (2)
hibernating turbulence exists very near the boundary between laminar
and turbulent flows [129], (3) MDR occurs when the quasi-streamwise
vortices becomes on the order of the channel height [130], and (4) the
ratio of the convective time scale associated with streamwise vorticity
fluctuations to the vortex rotation time decreases with increasing DR,
and the maximum drag reduction asymptote is reached when these
two time scales become nearly equal. That is the energy extraction

and release cycle gets interrupted. In turn, the flow state becomes
weakly turbulent, in fact, laminar-like and eventually, the system tran-
sitions back to active turbulence and the stochastic cycle repeats [131].
Despite the fact that the mechanism postulated by Li, Sureshkumar,
and Khomami [131] did not received much attention from the re-
search community, it is entirely consistent with the newly proposed
mechanisms for the occurrence of MDR as discussed below.

In the past decade, research focused on uncovering the origin of
MDR has moved past the universality of the Virk asymptote mainly
due the following reasons: (1) there is no a priori physical argument
for a logarithmic relationship other than a simple analogy to the von
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Fig. 10. Vortex structure at various %DR at Re⌧ = 395 [118].

Fig. 11. (a) Cycle of wall turbulence regeneration with energy transfer from the polymers to the flow and vice versa, (b) Polymers extract energy from the flow as they are
pulled around the near wall vortices either by upwash or downwash flows, hence, damping turbulence. In turn, polymers release energy back to the flow in the high-speed streaks
thereby enhancing turbulence [117].

Kármán law, and (2) coefficients in the Virk asymptote are empirically
determined from experimental data. In addition, recent experiments
by Elbing et al. [132] and DNS and critical examination of existing
data by White et al. [133] shows that a logarithmic relationship is
probably inaccurate and the semi-log nature of the plot can be mislead-
ing, i.e., non-logarithmic profiles cannot be clearly distinguished from
logarithmic ones.

Motivated by these new observations, a flurry of studies on un-
derstanding the mechanism of the MDR began in early 2010s. These
studies have discovered that in parallel shear flows, a full transition
road map from inertial turbulence (IT) to a new turbulent-like regime
dubbed elasto-inertial turbulence (EIT) exists [134–139]. Specifically, a
reverse transition route from IT via a laminar base flow to EIT, is real-
ized in pipe flows at a sub-critical Re of O(103) [137,138], where upon
enhancement of elastic forces either by increasing the polymer concen-
tration and/or increasing W i to O(10) the flow first relaminarizes as
the inertial quasi-streamwise vortices are gradually weakened and are
finally eliminated [137–139]. This is reminiscent of the route proposed
by Li, Sureshkumar, and Khomami in 2015 [131]. This relaminarized
state exhibits drag reduction beyond the Maximum Drag Reduction
(MDR) asymptote and subsequently undergoes a secondary instability,
namely, elasto-inertial instability that results in dominant flow struc-
ture consisting of 2D sheets of highly stretched polymers in channel
flows and streamwise elongated streaks in pipe flows [137–139]. An
important advancement toward understanding the EIT dynamics has
been achieved recently by Shekar et al. [140]. Specifically, they have
shown that the trains of weak spanwise-oriented flow structures with
inclined sheets of polymer stretch are related to a new viscoelastic
nonlinear Tollmien–Schlichting attractor, that is nonlinearly sustained
by viscoelastic stresses. Hence, it is not surprising that the EIT regime
appears to have a physical origin that is similar to elastic turbulence as

evidenced by the kinetic energy spectrum decay with scaling of *14/3,
which is distinctly different from the Kolmogorov scaling of *5/3 for
IT but close to the *3.5 scaling for ET [134–136,141,142].

3.2. Polymer induced drag modification in Taylor–Couette flow

In Section 2.2, it was shown the Oldroyd-B model has been suc-
cessfully used to demonstrate that the Reynolds stresses are mainly
responsible for stabilization (in the case of outer cylinder rotation) and
destabilization (in the case of inner cylinder rotation) of the viscoelastic
TC in the presence of fluid inertia. However, this model has not
enjoyed wide spread use in investigating polymer induced phenomenon
in turbulent TC flow due to the presence of elasticity-induced highly
localized structures in the near wall regions that give rise to very strong
elongational flows. The exception being a very few studies focused
on the onset of elastic turbulence in two-dimensional TC flows. Chief
among them is a recent study by Buel et al. [143], that demonstrates
that beyond a critical W i, an elastic instability causes a supercritical
transition from the laminar Taylor–Couette flow to a turbulent flow. In
addition, they demonstrate an increase in flow resistance and temporal
power spectra of the velocity fluctuations that are reminiscent of elastic
turbulence (see Section 2.3 for details).

Liu and Khomami [144] performed the first DNS of turbulent vis-
coelastic TC flow using the FENE-P model with L2 = 14400 and E = 0.02
and demonstrated that upon addition of trace amounts of soluble high
molecular weight macromolecules the Newtonian large-scale Taylor
vortices are replaced by small-scale vortices in the inner and outer wall
regions (see Fig. 12). In turn, it was shown that this flow transition
and a commensurate drag enhancement (DE) of up to 62% are due to
the occurrence of an inertio-elastic Görtler instability in the stationary
outer wall region triggered by very large polymeric normal stresses.
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The DNS of Liu and Khomami [88] in the viscoelastic TC flow for
the range 0.2 f E f 5 underscores the strong competition between
fluid inertia and polymer induced elastic forces in the flow. Thus, a
fundamental question arises, namely, how does the variation of inertial
effects modify flow structures and turbulence characteristics as well as
the flow-microstructure coupling in the inertio-elastic turbulent flow of
viscoelastic TC flow where hoop stresses play a central role in driving
flow transition and nonlinear dynamics?

Some progress toward answering the above-mentioned question has
been made. Specifically, experimental observations of Lee et al. [145]
indicate that polymer additives suppress the centrifugally-driven for-
mation of Görtler vortices (GV) in 1500 < Re < 30000. More re-
cently, Latrache et al. [146] have identified two regimes of turbulence
in the viscoelastic TC fows of shear-thinning PEO-alcohol–water so-
lutions (0.01 < E < 0.05), namely, spatiotemporal intermittency
and inertio-elastic turbulence. In addition, as described above, Liu &
Khomami [144] have shown the occurrence of an inertio-elastic Görtler
instability (IEGV) near the outer wall that leads to the breakdown of
large scale Newtonian TV and a commensurate DE in the viscoelastic
turbulent TC flow at Re = 5000 and E = 0.02. Moreover, the DE in
viscoelastic turbulent TC flow shows a strong curvature dependence,
namely, for a small radius ratio, ⇠ = Ri_Ro the large-scale TV are
destabilized by an elastic/inertio-elastic Görtler instability near the in-
ner/outer wall; while for a large ⇠, well-organized TV occupy the entire
gap due to the stabilizing effects of elasticity [147]. Although, this
curvature dependence can be rationalized in terms of the competition
between elastic hoop stresses, fluid inertia and the important influence
of polymer chain vortex interactions, the flow transition in the limit
of zero curvature, namely, that of the span-wise-rotating plane-Couette
flow with polymer additives is extremely interesting as the flow mainly
consists of large scale roll-cells. Hence, one would expect that the
polymer interactions with large scale roll cells would have the greatest
influence on flow transition and drag properties. To this end, recent
DNS studies of Zhu et al. [148] have demonstrated a reverse transition
pathway from a Newtonian turbulent rotating plane-Couette flow to a
fully re-laminarized DE viscoelastic flow consisting of large-scale and
highly organized roll cells. Evidently, as W i is increased small-scale
vortices gradually weaken and are eventually eliminated. As foreshad-
owed above, the flow physics behind this intriguing flow transition
is intimately related to the polymer chain interactions with vortices,
which in fact, is very similar to that of polymer-induced transition
toward MDR in unidirectional planar flows via the relaminarization
route [135–140].

This finding plus a rigorous energy exchange analysis between
turbulent motions, mean flow, and polymer chains demonstrates the
existence of a universal coupling dynamics between polymer chains and
turbulent vortices in wall-bounded viscoelastic flows. Evidently, realiza-
tion of polymer induced DR or DE depends on the relative magnitude
of DR realized via elimination of small-scale vortices to the DE that
results from polymer chain interaction with large-scale roll cells and
IEGV. This hypothesis is further substantiated by observation of a low
degree of polymer induced DR, i.e. Ì 35% at O(1) values of W i, in the
turbulent plane-Couette flow where small-scale vortices predominately
occupy the near wall region, while the center of the channel is mainly
populated by large scale roll cell like structures [149]. To this end, DNS
of turbulent plane-Couette flow at high W i is of great interest as it
allows further examination of the universal polymer vortex interaction
postulated above.

Motivated by the above-mentioned intriguing phenomena in the
inertio-elastic TC flow, Liu, Khomami and co-workers [150] performed
extensive DNS with the FENE-P model (L = 100) to examine the
flow structure, spectral universality and the turbulence dynamics of
this flow in the inertio-elastic regime. Specifically, a large radius ratio
⇠ = Ri_Ro=0.5, at five Re, ranging from 500 to 8000, corresponding
to a range low to moderate values of E – 0.00375 f E f 0.06 –

Table 1
Percent Drag reduction as a function of elasticity number. (W i = 30, L = 100, ⇠ = 0.5,
⌘s_⌘T = � = 0.9).
E 0.06 0.03 0.01 0.006 0.00375

%DE 33% 52% 54% 60% 43%

were considered. This comprehensive study has shown that as Re is
increased, the turbulence dynamics can be conveniently subdivided
into two distinct regimes: (1) a low Re f 1000 regime where the
flow physics is essentially dominated by nonlinear elastic forces and
the main contribution to transport and mixing of momentum, stress
and energy comes from large-scale flow structures in the bulk region
and the energy spectra decays with a *3.5 slope suggesting spectral
universality of elasticity dominated turbulence, (2) a high Re g 5000
regime where inertial forces govern the flow physics and the flow
dynamics is mainly controlled by small-scale flow structures in the
near-wall region and as expected the energy spectra decays with a slope
of *5/3 (see Fig. 13).

To understand the flow-microstructure coupling and the resulting
flow dynamics modifications, Liu and Khomami and coworkers [88]
carried out a detailed budget analysis of energy exchange between
turbulent motions, mean flow and polymer chains. Specifically, exam-
ination of the mean kinetic energy (MKE) budget demonstrates that
the polymer chains mainly absorb MKE and convert it to mean elastic
potential energy through macromolecular extension driven by the mean
flow. Also, examination of the total kinetic energy budget (TKE) budget
shows that the polymer absorbs TKE from the fluctuating motions near
the wall and then releases it to the near wall small-scale fluctuations to
preserve the global dynamics. Furthermore, the Reynolds shear stress
budget indicates that the elastic stress work has a negative contribution
near the inner wall and slightly away from the outer wall; hence, it
acts to suppress the production of turbulent shear stresses. However, in
the bulk and in the vicinity of the outer-wall, elastic stress work has a
positive contribution that facilitates the production of turbulent shear
stresses. Evidently, increased fluid inertia hinders the generation of
elastic stresses, leading to a monotonic depletion of the elastic-related
nonlinear effects. To this end, a modest non-monotonic increase in DE is
observed as Re is enhanced (see Table 1). As expected, %DE observed is
consistent with earlier studies of Liu and Khomami [144] at E Ì 0.02.
However, the non-monotonic increase in %DE might appear counter
intuitive, since Song et al. [151] found that for most values of the radius
ratio ⇠ elasticity stabilizes well-organized TV that occupy the entire gap.
But, their study was performed at E = 0.02 and � = 0.8 as opposed
to � = 0.9 in their more recent study. Hence, a direct comparison of
the stabilizing effect of elasticity on the TV between these two studies
cannot be conclusively performed. This clearly underscores that to fully
understand the complex competition between elastic and inertial effects
and thoroughly examine the postulated universality of polymer vortex
interactions, a systematic study of drag modifications in the viscoelastic
TC flow by variation of E and the gap width/curvature while keeping
constant � g 0.9 and L g 100 is needed.

The elastically dominated turbulence (EDT) in TC flow displays
principal differences with elasto-inertial turbulence in the channel and
pipe flows due to the persistence of large-scale vortical structures and
the curvilinear streamlines of the TC flow. Evidently, EDT is dominated
by the large-scale streamwise vortical structures while EIT is sustained
by trains of spanwise-oriented flow structures with inclined sheets of
stretched polymer chains [140]. Despite these stark differences in
the flow coherent structures, these two types of elastically dominated
turbulent flows exhibit similarities in the generation of turbulence and
Reynolds stresses. Very recently, Khalid et al. [152] have postulated
that for highly elastic ultra-dilute polymer solutions, a single linearly
unstable branch may underlie transition to ET at zero Re, and to EIT at
moderate Re, implying the existence of continuous pathways connecting
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Fig. 12. (a) Time and ✓-direction averaged vectors of radial (ur) and axial (uz) velocities and contour plots of ur in the r * z plane. (b) Magnified image of (a) for L2 = 14400.
The blue (dark) and red (light) contour regions correspond to radial inflow (ur < 0) and outflow (ur > 0), respectively.

Fig. 13. (a) Time and ✓-direction averaged vectors of radial (ÍurÎ✓,t) and axial (ÍuzÎ✓,t) velocities and contour plots of stream-wise velocity (Í!✓Î✓,t) in (r, z) plane. (b) Instantaneous
vectors of radial (ur) and axial (uz) velocities and contour plots of ur in the r * z plane with ✓ = ⇡_2. (c)&(d) One-dimensional streamwise (c) and span-wise (d) spectra of the
turbulent kinetic energy (Íu® .u®Î_2) normalized by the stream-wise turbulent kinetic energy (Íu®✓u®✓Î_2 sampled at the middle of the gap for various Re.

the turbulent states to each other. Although this postulate is intriguing,
much more detailed analysis is required before conclusive statements
regarding the universality of key features of the flow and energy spectra of
elastically driven turbulence in either the absence or presence of moder-
ate inertia can be made. To this end, Liu, Khomami and co-workers
have very recently carried out extensive DNS in viscoelastic TC to

examine the transition from inertial to elasticity-dominated turbulence
including the intriguing purely elastic turbulent flow state [151].
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4. Oldroyd-B fluid in understanding particle flows and motions in
elastic fluids

4.1. Uniform flow past fixed particles and sedimentation

One of the most celebrated ‘‘failures’’ of the Oldroyd-B model is
associated with the uniform flow past particles at vanishingly small
Reynolds number, and, in retrospect, this has been critical to creating
guiding principles for the model’s application to new problems. It is
now a matter of historical fact, that for uniform flow past rigid, fixed
bodies (most notably spheres and cylinders) at low Reynolds number,
the structure of the flow is such that there exist wake regions of
locally extensional flow where the Oldroyd-B model is inappropriate
to describe the flow of dilute polymer solutions. This follows since
the model demonstrates a critical value of distance downstream of the
rear stagnation point where the local value of the Deborah number
(i.e. the relaxation time times the local extension rate) De g 0.5 and
the accumulated Hencky strain is large such that a ‘‘stress singularity’’
is approached. (Note in this context that the flow Deborah number is
typically defined De = �U

R , where U is the constant flow velocity far
upstream and R is a characteristic length scale for the particle.)The
existence of a critical value of the Deborah number was surmised in
an early paper by Rallison and Hinch [153]. In a paper near that
time, Chilcott and Rallison [154] demonstrated that numerical issues in
calculating the Oldroyd-B flows past spheres or cylinders beyond a crit-
ical value of the flow Deborah number (as experienced by themselves
and other authors), could be alleviated by the introduction of FENE
type models (though in this instance, they used the so called FENE-CR
model [154] which is not one the three discussed in Section 1 of this
article). This issue was thoroughly examined by Bajaj et al. 2007 [155],
where they demonstrated quite convincingly that the polymer stress
becomes singular for the Oldroyd-B fluid in the wake of a circular
cylinder past a critical value of the flow Deborah number (cf. Fig. 14).
Note the critical value of the flow Deborah number was a function
of the polymer concentration parameter � and actually decreased as
more polymer was introduced. One of the key tools that they used to
demonstrate the singularity was configuration solutions in the so-called
‘‘ultra-dilute’’ limit which is the limit � ô 1 where the kinematics
are Newtonian and one simply integrates the conformation equations
along streamlines (this is the method of characteristics applied to the
OB fluid model). Referring to Fig. 14, we see that the singularity is
removed for the FENE-P model, as the polymer spring force stiffens
and the stretch approaches its maximum extensibility. A similar study
was accomplished by Abedijaberi and Khomami [156] fror the analog
problem of single particle sedimentation, demonstrating converged
numerical solutions could be found for flow past a sphere using the
FENE-P model, but the problem became increasingly difficult to solve
(and the stress grew in the wake behind the sphere) as the parameter
L increased. This problem – i.e. that there can be points in a flow
which are extensional in character and in which the Oldroyd-B model
can exhibit unbound conformation stretch and hence stress growth
past a certain critical Deborah number – is referred to as the ‘‘High
Weissenberg Number Problem’’ (HWNP). This problem is exacerbated –
meaning the critical value of the flow Weissenberg or Deborah number
is lower – for other common particulate problems, including flow past a
bubble (i.e. stress free interface [154]) and the flow created by an active
‘‘squirmer’’ particle swimming in an elastic fluid [157] . A somewhat
more generic definition of the HWNP is that there can be thin regions
of high polymer stretch and thus stretch gradient for flows at Deborah
or W eissenberg number which are O(1) and these regions can make
numerical methods non-convergent and/or inaccurate. Note that these
two statements of the HWNP are not the same. There can be thin regions of
high polymer stress and thus high stress gradients even with the FENE-
P models and these can be very difficult to resolve, even if the stress
in the Oldroyd-B model is not singular at a critical point or points in
the flow. After recognizing this problem in the Oldroyd-B model, most

researchers use numerical methods for flows involving particles which
employ the FENE-P model (or, alternatively, the Giesekus model) which
we know remove the possibility of a stress singularity. More recently
use of the Oldroyd-B model for particle flows has had something of a
rebirth, primarily because it has been found that the wake structure
for flow past a rigid particle is not similar for other particle flows –
e.g. uniform flow past a sphere combined with shear flow. In these cases,
we can safely return to the Oldroyd-B model, and it has again been used
to learn a great deal about particle motions in elastic fluids.

Beyond the HWNP, another ‘‘failing’’ of the OB fluid in the solution
of uniform flow past a rigid particle, is that for values of the Deborah
number below the critical value, the drag on the sphere (or cylinder
per unit length) decreases whereas experiments show a monotonic drag
increase. Even after ‘‘regularizing’’ the problem via the FENE-P, this
reduction in drag at small values of De remains but is followed by an in-
crease in drag at higher values of De. Yang and Khomami [158] as well
as Abedijaberi and Khomami [156] completed exhaustive numerical
studies of this problem and demonstrated that experimental values of
the drag coefficient could be well approximated, but only with a multi-
mode FENE model without pre-averaging. Thus the nonlinear coupling
of multi-modes present in a real polymer molecule and absent from
pre-averaged closed constitutive equations is important to correctly
calculate the dissipation and drag in flow past fixed objects.

4.2. Shear flow of freely suspended cylinders/spheres in suspension

One can argue that the three most fundamental flows in the suspen-
sion mechanics of Newtonian fluids are (a) flow past a fixed particle,
(b) motion of a particle under constant body force, and (c) motion of
a freely suspended particle in a shear (or general linear) flow. Each
of these is associated with a different property of a suspension: (a)
the effective permeability of a fixed medium, (b) the average ‘‘slip’’
or separation velocity under applied body force and (c) the effective
rheology of a suspension of freely suspended particles. Batchelor, his
students and co-workers [7,160], in their seminal body of work, demon-
strated the foundational principles of low Reynolds number suspension
mechanics, examining these three flows. As described above, flows (a)
and (b) have been shown to demonstrate the HWNP for the Oldroyd
B fluid, and, as a result progress in understanding the physics of these
two flows was slow. All computational solutions generally use FENE-P
or Giesekus models if a closed form constitutive equation is chosen.
However, the first numerical solutions for single freely suspended
particles in an elastic linear flow (c), were for the Oldroyd-B fluid and
focused on cylinders in simple shear flow [see Hwang et al. [161]].
These two dimensional solutions were accomplished up to values of
the shear Weissenberg number of unity with apparently no convergence
problems. Note that, as reported later for shear flow past a sphere in
Fig. 15, the wake structure is entirely different in this flow relative to
uniform flow past a particle. Because the sphere/cylinder rotates in the
shear flow (to satisfy the no torque condition) there are no stagnation
points near the body. Indeed the flow is divided via a separatrix
into a closed streamline region near the particle, where, a polymer
undergoes periodic sampling of flow which is alternatively uniaxial
and biaxial extension. A polymer in such a flow never experiences
large Hencky strain in any of the extensional regions of the flow, since
the rotation rate of the particle is of the size of the local vorticity.
The first groups to accurately calculate shear flow past a sphere via
the Oldroyd-B model were D’Avino et al. [162], Yang et al. [163],
Einarsson et al. [164], and Koch et al. [165]. D’Avino et al. [162],
originally completed the problem for the Maxwell fluid (i.e. � = 0
in the Oldroyd-B) and focused on the slowing of the rotation rate of
the sphere, below the Newtonian value (the latter is classically one
half the local fluid vorticity) created by elasticity. Yang et al. [163]
completed the problem for finite polymer concentration (� f 1) via
a finite volume scheme up to values of the shear flow Weissenberg
number, W i f 0.5. They also did the so called ‘‘ultra-dilute’’ problem
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Fig. 14. LEFT– Simulated values of the polymer stress in the wake behind a cylinder for the Oldroyd B Model and various FENE-P models as a function of the local Deboarah
number at the stress/stretch maximum. The flow kinematics are such that the solution is ‘‘ultra-dilute’’ (i.e. � = 1) and the flow is therefore Newtonian. Again b = 3L2_(Nkb2k) in
the notation of the present article; RIGHT – Polymer conformation dyad dimensionless < R2

1 > (here denoted by Mxx) as a function of distance in the cylinder wake at a flow
Deborah number of 0.8.[155].

Fig. 15. Simulated components of the polymer conformation dyad Cij = < RiRj > (minus that of the fluid in the absence of the particle) for the Oldroyd-B model for shear flow
past a sphere. The Weissenberg number is 2 and the calculations are completed in the limit as � ô 1, i.e. the flow kinematics are Newtonian. The separatrix and regions of
recirculation are clearly shown.
Source: Adapted from Fig. 9 in [159].

in a similar fashion to Bajaj et al. [155] where the flow is Newtonian,
and the polymer conformation tensor is solved in the Newtonian flow
field (cf. Fig. 15 for the ultra-dilute stress contours). Koch et al. [165]
were the first to demonstrate via the Oldroyd-B model and using the
method of characteristics in the ultra-dilute limit, that a polymer along
any of the streamlines of the Newtonian flow, does not experience a
large Hencky strain at any point. No approach to a singular stress was
demonstrated even for values of W i Ì O(1). Einarsson et al. [164]
used the Oldroyd-B model calculations to verify their retarded motion
expansion (W i ~ 1) of the same problem. Yang and Shaqfeh [159]

later revisited this problem and obtained convergent results for the OB
fluid for all polymer concentrations up to Weissenberg numbers W i f
5. Note that these authors also completed a comparison of the shear
flow problem in the three models: Oldroyd-B, Giesekus, and FENE-P.
These authors came to two important conclusions: (a) that while there
was no indication of a stress singularity, the regions of high polymer
stress were confined to increasingly thinner regions with increasing
Weissenberg number and thus the stress gradients became increasingly
difficult to resolve (i.e. the more general statement of the HWNP was
true for the shear flow problem), and (b) the magnitude of the polymer
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stress and stress gradients were significantly greater for the Oldroyd B
model at values of W i Ì O(1).

The importance all the publications mentioned in the paragraph
above, is that with the numerical solution in hand for the stress field,
the average rheological response of an elastic fluid with the dilute
addition of spherical particles could be theoretically predicted and
compared to experiments. There has been a recent review paper [166]
which focuses on the various measurements (and comparison to pre-
dictions) of the rheological properties of non-colloidal suspensions in
a variety of non-Newtonian matrices including elastic fluids. We will
attempt not to repeat much of the work described in that review. In-
stead, for the purposes of the present article, we will focus on modeling
and how it relates to the OB fluid. Thus, As originally discussed by
Koch and Subramanian [167] and Rallison [168] regarding the second
order fluid, for nonlinear fluid constitutive equations, the contributions
to the change in rheology of a suspension by the particles falls into two
categories: (a) the stresslet contribution, that results from the particles
themselves having a different constitutive equation than the fluid and
(b) the average change in the local stress in the suspending elastic
fluid. The latter contribution is termed the particle induced fluid stress
(PIFS) [159,163]. It averages to zero in Newtonian fluids because of
the linear constitutive equation, but produces a nonzero average for
elastic fluids. All researchers in theoretical or computational modeling
have found that particles in an Oldroyd B fluid produce a ‘‘thickening’’
of both the shear viscosity and primary normal stress coefficient even
for single particles (meaning without particle–particle hydrodynamic
interactions) (cf. Fig. 16). This was found even in the simulations by
Hwang et al. for cylinders [161], where the partitioning of the stress
increase into stresslet and PIFS was not established. While the stresslet
actually decreases with increasing W i the PIFS is found to increase,
and the latter overwhelms the stresslet to produce a net increase
in these two average material properties– the viscosity and primary
normal stress coefficient. Such a thickening is seen in both properties in
experiments, even at particle concentrations as low as 2.5% [169,170]
(cf. Fig. 16). These findings can be viewed as another modern success
of the Oldroyd-B model.

Note that generally the predictions of the aforementioned thick-
ening of the rheological properties within single particle theories/
computations are not quantitative in comparison to experiments [166].
Simulations of single particles in the shear flow of an Oldroyd B fluid
generally under-predict the experimentally measured per particle extra
stress even if the fluid parameters are carefully matched [163,169].
Note that as of the writing of this manuscript, four research groups [15,
169–171] have now examined fully three dimensional, multi-particle
simulations of spheres in an Oldroyd-B fluid to examine concentration
effects on the material properties of non-Brownian suspensions. Three
of these groups [15,170,171] claim quantitative agreement with ex-
perimental data (and note different experiments with different elastic
fluids !) up to W e f 3 using a multi-mode Oldroyd-B model. The ten-
tative finding is that hydrodynamic interactions affect the suspension
properties above volume fractions in the range 0.025 f � f 0.1 but
only through increasing the stresslet at a given Weissenberg number
(i.e. the PIFS seems to be a local property of the polymer fluid interac-
tions) [15] . These conclusions have been reached over a very limited
range of simulation conditions with comparison to existing experiments
and much more needs to be done to examine the rheology over a
broader range of polymer concentration, particle concentration, and
Weissenberg number. For example, it has recently been reported via
numerical simulation (and demonstrated in previous experiments) that
freely suspended spheres in a shear flow can form ‘‘chains’’ in elastic
fluids [172]. However the rheological properties necessary for chaining
is still a subject of debate and appears to require normal stresses and
significant ‘‘shear thinning’’ [172]. Such structures could have a pro-
found effect on the rheology of suspensions, but no chaining apparently
occurs in Boger fluids or was reported in the experiments/multi-particle

simulations discussed above [169]. Moreover, if the flow is changed to
extensional flow then the existing studies with the Oldroyd-B [164,173]
predict ‘‘thickening’’ and then ‘‘thinning’’ as a function of Hencky strain.
A review of the experimental data regarding extensional rheological
measurements in particle suspensions within elastic fluids suggests that
no clear trends or general understanding are available [166]. The
Oldroyd-B fluid has and will have a big role to play in these studies
as they progress, if only to contrast the behavior found in other, more
complex, elastic fluids.

4.3. Particle migration in shear flows of viscoelastic fluids

The cross stream migration of freely suspended particles (i.e. no
external applied forces or torques) in viscoelastic fluids is now a subject
which is very mature and dates from the original experimental work of
Karnis and Mason,1966, [174] who examined migration in scenarios
where the shear rate varied across streamlines. Indeed, the first theoret-
ical predictions of the migration velocity were made using the second
order fluid and were established by perturbations in small Weissenberg
number [174]. Migration was found to be generally toward regions of
low(er) shear and created by normal stress imbalances on either side
of the particle, in a flow in which the shear rate varies. However, at
finite values of the Weissenberg number, employing a very broad and
complete set of numerical simulations, Li et al. [175] demonstrated that
this conclusion was true for the Oldroyd-B fluid, but if the shear thin-
ning was significant enough, migration to the walls could occur, with
even intermediate positions (between wall and centerline) becoming
attractors. This general topic is now seeing renewed interest because of
its use in microfluidic applications [176]. Apparently, the first numer-
ical simulation of this phenomenon was for pressure driven flow in a
channel past a cylinder where the cross stream migration force/velocity
was determined using the Oldroyd-B fluid [177]. Later, calculations
for spheres were accomplished using the ALE technique employing
the Giesekus constitutive equation [178] and an ‘‘immersed force’’
technique [175] for Oldroyd-B and Giesekus constitutive equations. The
recent review paper [174] is quite complete on the subject. Perhaps
one of the most interesting conclusions from this body of work is that
migration can occur with walls even in simple shear flow (i.e. constant
shear rate) induced by the walls. This was predicted and analyzed by
using the Giesekus constitutive equation [179]. In this case, proximity
to the walls induces a ‘‘slip’’ velocity between the particle and fluid,
which in turn creates a normal stress imbalance across the particle and
an elastic ‘‘lift’’ force — and thus ‘‘drift’’ for a particle that is freely
suspended. Such a ‘‘viscoelastic lift’’ can be engendered in alternative
ways as discussed in the next section.

4.4. Combining shear flow and a particle body force – Particle migration,
lift and enhanced drag

Recently, researchers have shown quite clearly in experiments, that
if one applies a body force to a particle while in a shear flow, the
nonlinear coupling of the two in an elastic fluid can create interesting
new phenomena [176,180–182]. The most notable of these is that
mobility of the particle can be changed very significantly, and in
general becomes anisotropic, depending on the principal axes of the
shear flow [183] – even if the shear rate is constant and the flow is
unbound, unlike the situations in the previous subsection. Thus for
example, particle migration across streamlines can be engendered even
if the body force is applied in the direction of the shear flow – or, in
other words – there is a viscoelastic lift force, that, if not balanced by
the applied force results in viscoelastic drift across streamlines. [184].
As another example, the drag on a particle in the direction of the
body force can be greatly exacerbated via the shear flow in an elastic
fluid [180,181,185]. One might think that, problems of this kind, are
not amenable to analysis via the Oldroyd-B fluid because of the severe
HWNP which exists in the case of the applied body force alone —
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Fig. 16. LEFT — Simulated values of the ‘‘extra viscosity’’ for a single sphere as a function of Weissenberg number in the limit of zero polymer concentration (i.e. Newtonian
kinematics) for the Oldroyd-B and Giesekus models [163]. RIGHT — Comparison of the multiparticle simulations using the Oldroyd-B Model and experimental data at 3 particle
volume fractions [170].

Fig. 17. LEFT — Simulations of a sphere settling in the Oldroyd B fluid in the -z direction under simple shear with the flow-gradient plane being z-x. The shear Weissenberg
number is W i = 0.1 and the flow Deborah number De = 1. The Deborah number, De, is defined as De = �U_R where U is the slip velocity between the particle and the fluid
velocity at its center and R is the sphere radius. Note the increased polymer stress on the left of the sphere which has a higher velocity relative to the fluid than the right. RIGHT
— Same simulations except W i = 0.1,De = 2. A substantial stress wake does not form until De g 2 [182].

except of course unless perturbation theory is applied at low values of
the Weissenberg number and Deborah number [181]. However, again,
with the addition of a shear flow and the condition that the particle
is torque free, the rotation of the particle changes the wake structure
around the particle and alleviates all stagnation points from the surface.
Thus it would appear that, for a given shear Weissenberg number, the
value of the Deborah number based on the motion of the particle under
the applied body force at which the HWNP for the Oldroyd-B fluid
occurs can be significantly increased (cf Fig. 17). In this discussion and
that which follows, the Deborah number, De, is defined as De = �U_R
where U is the slip velocity between the particle and the fluid velocity at
its center and R is the sphere radius. Moreover, algorithm development
of viscoelastic flow solvers has recently focused on particle resolved
calculations of suspension flows and the Oldroyd-B model has played a
prominent role in this development [169,186,187].

The effects of the coupling of body force and shear flow was origi-
nally focused on the increase in the resistance (decrease in mobility)
of spheres sedimenting in the vorticity direction of a simple shear

flow as measured in the seminal Taylor–Couette cell experiments by
Gheissary and Van Den Brule [180] There are now measurements of
a reduction by a factor of 5 in sedimentation speed for spheres falling
along the vorticity axis in viscoelastic fluids [185]. The mechanisms of
this mobility reduction were elucidated first via perturbation theory for
small shear Weissenberg number and sedimentation Deborah number
employing the Oldroyd-B fluid [181]. This is again a modern triumph of
the Oldroyd-B model. Later large scale numerical simulations verified
this perturbation theory, and demonstrated that wall effects could be
important, and particle interactions at finite concentration amplified
the effect [185,188–190]. These numerical results generally employed
the FENE-P or Giesekus fluid rheology, but were shown to agree with
the perturbation of the Oldroyd-B fluid for Weissenberg numbers less
than about 0.6 [188].

Even more dramatic than the reduction in particle mobility, are the
drift velocities across streamlines that are produced by the coupling
between applied body forces and fluid shear in viscoelastic fluids. For
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example, these have been successfully used to ‘‘tunably’’ focus parti-
cles in microchannels [176]. Such migration can be created through
combined electrophoresis and pressure driven flow [191,192]. Re-
cently this particular application has been examined theoretically using
perturbation theory and the second order fluid model [192,193]

Finally, suspensions of particles settling or rising (under a gravi-
tational body force for example) in viscoelastic fluids are apparently
almost universally unstable to concentration fluctuations — meaning
they form clusters or streamers even though there are no apparent
attractive forces between the particles [194,195]. The explanation for
this latter phenomenon is apparently again, drift across streamlines in
a shear flow created by a concentration fluctuation [182,190,196]. The
Oldroyd-B fluid has played a role in this understanding. For example,
Zhang et al. [182] did a broad examination of the lift and drag on
rigid spheres and spheres which were shear stress free at their surface
(e.g. undeformed bubbles) in an Oldroyd-B fluid under shear with
a constant particle ‘‘slip’’ velocity relative to the local fluid velocity
(driven for example, by an applied body force). The authors considered
‘‘slip’’ along the vorticity, gradient and flow axis for the rigid particle.
Generally, values of � = 0.3 and 0.9 where considered along with
the pair of condition ranges, (a) W i = 0.1, 0 f De f 2.5 and (b)
De = 0.1, 0 f W i f 3. It was generically found that the force on the
particle in the direction of the slip increased over the Newtonian value
for all directions of slip and values of De. The largest increase in force
(drag) occurred for slip along the gradient direction and the smallest
increase was for slip along the shear flow direction. The force increased
with W i although it began to plateau for W i g 1 and was relatively
insensitive to De. For a bubble, the drag also increased with shear and
was consistent with Tiefenbruck et al. [197,198] calculations for a third
order fluid. In terms of the lift force, the most notable finding was that
for rigid spheres and for spheres with a perfect slip boundary condition
(i.e. a model for an undeformed bubble), the lift force drove particles
toward the direction where the fluid flow increased in the direction
of the slip velocity. This is consistent with the perturbation analysis of
Einarsson et al. [183] and is the direction which implies concentration
instability. This supports the notion that concentration instabilities in
these systems under buoyancy (for example) are driven by lateral drift
associated with concentration driven, shear flow fluctuations. Such a
conclusion would be quite important as it provides a framework to
continue our understanding of particle interactions in elastic fluids as
discussed elsewhere [199] and serves to provide an understanding of
bubble clustering in polymer solutions [200].

5. Summary and conclusion

We conclude by noting that Oldroyd’s seminal 1950 paper [1]
continues to have a vital life in the rheological community for a number
of reasons. First, even though the model was developed originally as
a study in viscoelastic fluid mechanics, its connection to the kinetic
theory of polymer solutions gives it a direct physical connection to
polymer solution dynamics. Moreover the model, in at least its multi-
mode form, can reproduce the linear and nonlinear shear rheology
of Boger fluids. In terms of the single mode formula, the constitutive
equation is closed and the stress depends on a single dyad conformation
tensor. Thus 6 equations are typically solved in addition to Cauchy’s
equations of motion, and this is now relatively easy with modern
computing power. It follows that for shear flows, even time dependent
shear flows, it is a starting point of choice. The difficult issue with the
OB fluid is that it does present a singularity in extensional flow, and
thus, when calculating or trying to understand complex mixed flows
(i.e. those which have regions of extensional character) researchers
often choose the FENE-P or Giesekus constitutive equations to avoid
the High Weissenberg Number Problem. However, the value of the
Oldroyd-B fluid, even if it is examined after FENE-P or Giesekus cal-
culations, has been demonstrated time and time again — in particle
flows, elastic instabilities and even in turbulent drag modification. It

is perilous for a student of complex fluids to ignore analysis based on
the Oldroyd-B fluid in any given elastic flow problem.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

ESGS would like to acknowledge the support by the National Sci-
ence Foundation, United States under Grant No. CBET-1803765 for the
work presented in Section 4 of this manuscript. The computations in
Section 4 were performed on the Shepard and Yellowstone cluster at the
Stanford HPC Center, supported through awards from the National Sci-
ence Foundation, United States, DOD HPCMP, United States, and Office
of Naval Research, United States. This work also used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), United States
cluster Comet to perform simulations through allocation Grant No.
MCB190002. We also acknowledge Anni Zhang for producing Fig. 17
from unpublished data associated with publication [182]. BK would
like to acknowledge the support provided by the National Science
Foundation, United States under award CBET-1602890 for the work
presented in Section 3 of this manuscript. The computations performed
in Section 3 is part of the Frontera computing project at the Texas
Advanced Computing Center. Frontera is made possible by National
Science Foundation, United States award OAC-1818253.

References

[1] J. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc.
Lond. A 200 (1950) 523–541.

[2] D. Boger, A highly elastic constant-viscosity fluid, J. Non-Newton. Fluid Mech.
3 (1978) 87–91.

[3] R.G. Larson, Constitutive Equations for Polymer Melts and Solutions:
Butterworths Series in Chemical Engineering, Butterworth-Heinemann, 2013.

[4] W. Kuhn, F. Grun, Relationships between elastic constants and stretching double
refraction of highly elastic substances, Kolloid Z. 101 (1942) 248–271.

[5] F. Latinwo, C.M. Schroeder, Model systems for single molecule poly-
mer dynamics, Soft Matter 7 (2011) 7907–7913, http://dx.doi.org/10.1039/
C1SM05298E.

[6] H. Kramers, The viscosity of macromolecules in a streaming fluid, Physica 11
(1) (1944) 1–9.

[7] G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid
Mech. 41 (3) (1970) 545–570.

[8] C.M. Schroeder, R.E. Teixeira, E.S. Shaqfeh, S. Chu, Dynamics of DNA in
the flow-gradient plane of steady shear flow: Observations and simulations,
Macromolecules 38 (5) (2005) 1967–1978.

[9] A. Erdélyi, Asymptotic Expansions, no. 3, Courier Corporation, 1956.
[10] E. Hinch, Perturbation methods, 1991.
[11] P.E. Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions

of coiling polymers, J. Chem. Phys. 21 (7) (1953) 1272–1280.
[12] B.H. Zimm, Dynamics of polymer molecules in dilute solution: viscoelasticity,

flow birefringence and dielectric loss, J. Chem. Phys. 24 (2) (1956) 269–278.
[13] D.F. James, Boger fluids, Annu. Rev. Fluid Mech. 41 (2009) 129–142.
[14] I. Garduño, H. Tamaddon-Jahromi, M. Webster, The falling sphere problem and

capturing enhanced drag with boger fluids, J. Non-Newton. Fluid Mech. 231
(2016) 26–48.

[15] A. Jain, E.S. Shaqfeh, Transient and steady shear rheology of particle-laden
viscoelastic suspensions, J. Rheol. 65 (6) (2021) 1269–1295.

[16] T. Sridhar, An overview of the project M1, J. Non-Newton. Fluid Mech. 35
(2–3) (1990) 85–92.

[17] R.G. Larson, The Structure and Rheology of Complex Fluids, vol. 150, Oxford
university press New York, 1999.

[18] T.T. Perkins, D.E. Smith, S. Chu, Single polymer dynamics in an elongational
flow, Science 276 (5321) (1997) 2016–2021.

[19] C.M. Schroeder, E.S. Shaqfeh, S. Chu, Effect of hydrodynamic interactions on
DNA dynamics in extensional flow: Simulation and single molecule experiment,
Macromolecules 37 (24) (2004) 9242–9256.

[20] H.R. Warner Jr., Kinetic theory and rheology of dilute suspensions of finitely
extendible dumbbells, Ind. Eng. Chem. Fundam. 11 (3) (1972) 379–387.

[21] A. Cohen, A Padé approximant to the inverse Langevin function, Rheol. Acta
30 (3) (1991) 270–273.

http://refhub.elsevier.com/S0377-0257(21)00157-9/sb1
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb1
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb1
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb2
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb2
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb2
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb3
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb3
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb3
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb4
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb4
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb4
http://dx.doi.org/10.1039/C1SM05298E
http://dx.doi.org/10.1039/C1SM05298E
http://dx.doi.org/10.1039/C1SM05298E
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb6
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb6
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb6
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb7
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb7
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb7
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb8
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb8
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb8
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb8
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb8
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb9
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb10
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb11
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb11
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb11
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb12
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb12
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb12
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb13
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb14
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb14
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb14
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb14
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb14
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb15
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb15
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb15
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb16
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb16
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb16
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb17
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb17
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb17
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb18
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb18
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb18
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb19
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb19
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb19
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb19
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb19
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb20
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb20
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb20
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb21
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb21
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb21


Journal of Non-Newtonian Fluid Mechanics 298 (2021) 104672

23

E.S.G. Shaqfeh and B. Khomami

[22] J.F. Marko, E.D. Siggia, Stretching dna, Macromolecules 28 (26) (1995)
8759–8770.

[23] R. Keunings, On the Peterlin approximation for finitely extensible dumbbells,
J. Non-Newton. Fluid Mech. 68 (1) (1997) 85–100.

[24] G. Lielens, P. Halin, I. Jaumain, R. Keunings, V. Legat, New closure approxi-
mations for the kinetic theory of finitely extensible dumbbells, J. Non-Newton.
Fluid Mech. 76 (1–3) (1998) 249–279.

[25] L.E. Wedgewood, D.N. Ostrov, R.B. Bird, A finitely extensible bead-spring chain
model for dilute polymer solutions, J. Non-Newton. Fluid Mech. 40 (1) (1991)
119–139.

[26] H. Giesekus, A simple constitutive equation for polymer fluids based on the
concept of deformation-dependent tensorial mobility, J. Non-Newton. Fluid
Mech. 11 (1–2) (1982) 69–109.

[27] P.S. Doyle, E.S. Shaqfeh, Dynamic simulation of freely-draining, flexible bead-
rod chains: Start-up of extensional and shear flow, J. Non-Newton. Fluid Mech.
76 (1–3) (1998) 43–78.

[28] S.H. Spiegelberg, G.H. McKinley, Stress relaxation and elastic decohesion of
viscoelastic polymer solutions in extensional flow, J. Non-Newton. Fluid Mech.
67 (1996) 49–76.

[29] G.H. McKinley, T. Sridhar, Filament-stretching rheometry of complex fluids,
Annu. Rev. Fluid Mech. 34 (1) (2002) 375–415.

[30] L. Li, R.G. Larson, T. Sridhar, Brownian dynamics simulations of dilute
polystyrene solutions, J. Rheol. 44 (2) (2000) 291–322.

[31] A. Saadat, B. Khomami, Molecular based prediction of the extensional rheology
of high molecular weight polystyrene dilute solutions: A hi-fidelity Brownian
dynamics approach, J. Rheol. 59 (6) (2015) 1507–1525.

[32] G. Fuller, L. Leal, The effects of conformation-dependent friction and internal
viscosity on the dynamics of the nonlinear dumbbell model for a dilute polymer
solution, J. Non-Newton. Fluid Mech. 8 (3–4) (1981) 271–310.

[33] V.A. Beck, E.S. Shaqfeh, Ergodicity-breaking and the unraveling dynamics of
a polymer in linear and nonlinear extensional flows, J. Rheol. 51 (3) (2007)
561–574.

[34] E.S. Shaqfeh, Purely elastic instabilities in viscometric flows, Annu. Rev. Fluid
Mech. 28 (1) (1996) 129–185.

[35] B.M. Baumert, S.J. Muller, Flow visualization of the elastic Taylor–Couette
instability in Boger fluids, Rheol. Acta 34 (2) (1995) 147–159.

[36] B.M. Baumert, S.J. Muller, Flow regimes in model viscoelastic fluids in a circular
Couette system with independently rotating cylinders, Phys. Fluids 9 (3) (1997)
566–586.

[37] S.J. Muller, R.G. Larson, E.S. Shaqfeh, A purely elastic transition in
Taylor–Couette flow, Rheol. Acta 28 (6) (1989) 499–503.

[38] S. Muller, E. Shaqfeh, R. Larson, Experimental studies of the onset of oscillatory
instability in viscoelastic Taylor–Couette flow, J. Non-Newton. Fluid Mech. 46
(2–3) (1993) 315–330.

[39] R.G. Larson, E.S. Shaqfeh, S.J. Muller, A purely elastic instability in
Taylor–Couette flow, J. Fluid Mech. 218 (1990) 573–600.

[40] E.S. Shaqfeh, S.J. Muller, R.G. Larson, The effects of gap width and dilute
solution properties on the viscoelastic Taylor–Couette instability, J. Fluid Mech.
235 (1992) 285–317.

[41] Y.L. Joo, E.S. Shaqfeh, Observations of purely elastic instabilities in the
Taylor–Dean flow of a Boger fluid, J. Fluid Mech. 262 (1994) 27–73.

[42] Y.L. Joo, E.S. Shaqfeh, A purely elastic instability in Dean and Taylor–Dean
flow, Phys. Fluids A 4 (3) (1992) 524–543.

[43] Y.L. Joo, E.S. Shaqfeh, Viscoelastic Poiseuille flow through a curved channel:
A new elastic instability, Phys. Fluids A 3 (9) (1991) 2043–2046.

[44] J. Zilz, R. Poole, M. Alves, D. Bartolo, B. Levaché, A. Lindner, Geometric scaling
of a purely elastic flow instability in serpentine channels, J. Fluid Mech. 712
(2012) 203–218.

[45] J. Magda, R. Larson, A transition occurring in ideal elastic liquids during shear
flow, J. Non-Newton. Fluid Mech. 30 (1) (1988) 1–19.

[46] G.H. McKinley, J.A. Byars, R.A. Brown, R.C. Armstrong, Observations on the
elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene
Boger fluid, J. Non-Newton. Fluid Mech. 40 (2) (1991) 201–229.

[47] J.A. Byars, A. Öztekin, R.A. Brown, G.H. Mckinley, Spiral instabilities in the
flow of highly elastic fluids between rotating parallel disks, J. Fluid Mech. 271
(1994) 173–218.

[48] G.H. Mckinley, A. Öztekin, J.A. Byars, R.A. Brown, Self-similar spiral instabil-
ities in elastic flows between a cone and a plate, J. Fluid Mech. 285 (1995)
123–164.

[49] R.G. Larson, Instabilities in viscoelastic flows, Rheol. Acta 31 (3) (1992)
213–263.

[50] R. Larson, S. Muller, E. Shaqfeh, The effect of fluid rheology on the elastic
Taylor–Couette instability, J. Non-Newton. Fluid Mech. 51 (2) (1994) 195–225.

[51] A. Groisman, V. Steinberg, Couette–Taylor flow in a dilute polymer solution,
Phys. Rev. Lett. 77 (8) (1996) 1480.

[52] A. Groisman, V. Steinberg, Solitary vortex pairs in viscoelastic Couette flow,
Phys. Rev. Lett. 78 (8) (1997) 1460.

[53] A. Groisman, V. Steinberg, Elastic vs. inertial instability in a polymer solution
flow, Europhys. Lett. 43 (2) (1998) 165.

[54] A. Groisman, V. Steinberg, Mechanism of elastic instability in Couette flow of
polymer solutions: experiment, Phys. Fluids 10 (10) (1998) 2451–2463.

[55] V. Steinberg, A. Groisman, Elastic versus inertial instability in Couette–Taylor
flow of a polymer solution, Phil. Mag. B 78 (2) (1998) 253–263.

[56] B.M. Baumert, S.J. Muller, Flow regimes in model viscoelastic fluids in a circular
Couette system with independently rotating cylinders, Phys. Fluids 9 (3) (1997)
566–586.

[57] B.M. Baumert, S.J. Muller, Axisymmetric and non-axisymmetric elastic and
inertio-elastic instabilities in Taylor–Couette flow, J. Non-Newton. Fluid Mech.
83 (1–2) (1999) 33–69.

[58] K.A. Kumar, M.D. Graham, Solitary coherent structures in viscoelastic shear
flow: Computation and mechanism, Phys. Rev. Lett. 85 (19) (2000) 4056.

[59] K.A. Kumar, M. D. Graham, Finite-amplitude solitary states in viscoelastic shear
flow: computation and mechanism, J. Fluid Mech. 443 (2001) 301.

[60] D. Thomas, U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Time-dependent
simulations of non-axisymmetric patterns in Taylor–Couette flow of dilute
polymer solutions, J. Non-Newton. Fluid Mech. 138 (2–3) (2006) 111–133.

[61] D. Thomas, R. Sureshkumar, B. Khomami, Pattern formation in Taylor–Couette
flow of dilute polymer solutions: dynamical simulations and mechanism, Phys.
Rev. Lett. 97 (5) (2006) 054501.

[62] D. Thomas, B. Khomami, R. Sureshkumar, Nonlinear dynamics of viscoelas-
tic Taylor–Couette flow: effect of elasticity on pattern selection, molecular
conformation and drag, J. Fluid Mech. 620 (2009) 353.

[63] M. Avgousti, A.N. Beris, Viscoelastic Taylor–Couette flow: Bifurcation analysis
in the presence of symmetries, Proc. R. Soc. Lond. Ser. A 443 (1917) (1993)
17–37.

[64] M. Renardy, Y. Renardy, R. Sureshkumar, A. Beris, Hopf-Hopf and steady-Hopf
mode interactions in Taylor–Couette flow of an upper convected Maxwell liquid,
J. Non-Newton. Fluid Mech. 63 (1) (1996) 1–31.

[65] H. Giesekus, Zur stabilität von strömungen viskoelastischer flüssigkeiten, Rheol.
Acta 5 (3) (1966) 239–252.

[66] M. Avgousti, A.N. Beris, Non-axisymmetric modes in viscoelastic Taylor–Couette
flow, J. Non-Newton. Fluid Mech. 50 (2–3) (1993) 225–251.

[67] S.J. Muller, Elastically-influenced instabilities in Taylor–Couette and other
flows with curved streamlines: a review, Korea-Austr. Rheol. J. 20 (3) (2008)
117–125.

[68] L. Quinzani, G. McKinley, R. Brown, R. Armstrong, Modeling the rheology of
polyisobutylene solutions, J. Rheol. 34 (5) (1990) 705–748.

[69] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Stability of viscoelastic Taylor–
Couette flow: Influence of relaxation spectrum and energetics, in: 70th Annual
Meeting of the Society of Rheology, Monterey, CA, 1998.

[70] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Linear stability of viscoelastic
Taylor–Couette flow: influence of fluid rheology and energetics, J. Rheol. 44
(5) (2000) 1121–1138.

[71] P.J. Northey, R.C. Armstrong, R.A. Brown, Finite-amplitude time-periodic
states in viscoelastic Taylor–Couette flow described by the UCM model, J.
Non-Newton. Fluid Mech. 42 (1–2) (1992) 117–139.

[72] M.T. Arigo, L.E. Becker, G.H. McKinley, Viscous heating and non-isothermal
hydrodynamics in polymer solutions, in: 70th Annual Meeting of the Society of
Rheology, Monterey, CA, 1998.

[73] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Influence of energetics on
the stability of viscoelastic Taylor–Couette flow, Phys. Fluids 11 (11) (1999)
3217–3226.

[74] M.J. Crochet, P.M. Naghdi, A class of simple solids with fading memory,
Internat. J. Engrg. Sci. 7 (12) (1969) 1173–1198.

[75] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, The effect of viscous heating
on the stability of Taylor–Couette flow, J. Fluid Mech. 462 (2002) 111.

[76] J.M. White, S.J. Muller, Viscous heating and the stability of Newtonian and
viscoelastic Taylor–Couette flows, Phys. Rev. Lett. 84 (2000) 5130–5133.

[77] J.M. White, S.J. Muller, Experimental studies on the stability of Newtonian
Taylor–Couette flow in the presence of viscous heating, J. Fluid Mech. 462
(2002) 133–159.

[78] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Nonlinear stability analysis of
viscoelastic Taylor–Couette flow in the presence of viscous heating, Phys. Fluids
14 (3) (2002) 1056–1064.

[79] Y.L. Joo, E.S. Shaqfeh, The effects of inertia on the viscoelastic Dean and
Taylor–Couette flow instabilities with application to coating flows, Phys. Fluids
A 4 (11) (1992) 2415–2431.

[80] D. Thomas, R. Sureshkumar, B. Khomami, Effect of inertia on thermoelastic
flow instability, J. Non-Newton. Fluid Mech. 120 (1–3) (2004) 93–100.

[81] J.M. White, S.J. Muller, Experimental studies on the effect of viscous heating
on the hydrodynamic stability of viscoelastic Taylor–Couette flow, J. Rheol. 47
(6) (2003) 1467–1492.

[82] A. Groisman, V. Steinberg, Elastic turbulence in curvilinear flows of polymer
solutions, New J. Phys. 6 (1) (2004) 29.

[83] V. Steinberg, Elastic turbulence: An experimental view on inertialess random
flow, Annu. Rev. Fluid Mech. 53 (2021) 27–58.

[84] S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Two-dimensional
elastic turbulence, Phys. Rev. E 77 (5) (2008) 055306.

http://refhub.elsevier.com/S0377-0257(21)00157-9/sb22
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb22
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb22
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb23
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb23
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb23
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb24
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb24
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb24
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb24
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb24
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb25
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb25
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb25
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb25
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb25
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb26
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb26
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb26
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb26
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb26
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb27
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb27
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb27
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb27
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb27
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb28
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb28
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb28
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb28
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb28
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb29
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb29
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb29
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb30
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb30
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb30
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb31
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb31
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb31
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb31
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb31
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb32
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb32
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb32
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb32
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb32
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb33
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb33
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb33
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb33
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb33
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb34
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb34
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb34
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb35
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb35
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb35
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb36
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb36
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb36
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb36
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb36
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb37
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb37
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb37
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb38
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb38
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb38
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb38
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb38
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb39
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb39
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb39
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb40
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb40
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb40
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb40
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb40
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb41
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb41
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb41
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb42
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb42
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb42
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb43
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb43
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb43
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb44
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb44
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb44
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb44
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb44
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb45
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb45
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb45
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb46
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb46
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb46
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb46
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb46
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb47
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb47
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb47
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb47
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb47
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb48
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb48
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb48
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb48
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb48
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb49
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb49
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb49
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb50
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb50
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb50
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb51
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb51
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb51
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb52
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb52
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb52
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb53
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb53
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb53
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb54
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb54
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb54
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb55
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb55
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb55
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb56
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb56
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb56
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb56
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb56
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb57
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb57
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb57
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb57
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb57
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb58
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb58
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb58
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb59
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb59
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb59
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb60
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb60
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb60
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb60
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb60
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb61
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb61
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb61
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb61
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb61
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb62
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb62
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb62
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb62
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb62
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb63
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb63
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb63
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb63
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb63
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb64
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb64
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb64
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb64
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb64
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb65
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb65
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb65
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb66
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb66
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb66
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb67
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb67
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb67
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb67
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb67
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb68
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb68
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb68
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb70
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb70
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb70
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb70
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb70
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb71
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb71
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb71
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb71
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb71
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb73
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb73
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb73
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb73
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb73
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb74
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb74
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb74
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb75
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb75
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb75
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb76
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb76
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb76
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb77
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb77
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb77
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb77
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb77
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb78
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb78
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb78
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb78
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb78
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb79
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb79
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb79
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb79
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb79
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb80
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb80
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb80
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb81
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb81
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb81
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb81
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb81
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb82
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb82
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb82
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb83
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb83
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb83
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb84
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb84
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb84


Journal of Non-Newtonian Fluid Mechanics 298 (2021) 104672

24

E.S.G. Shaqfeh and B. Khomami

[85] S. Berti, G. Boffetta, Elastic waves and transition to elastic turbulence in a
two-dimensional viscoelastic Kolmogorov flow, Phys. Rev. E 82 (3) (2010)
036314.

[86] A. Groisman, V. Steinberg, Elastic turbulence in a polymer solution flow, Nature
405 (6782) (2000) 53–55.

[87] A. Groisman, V. Steinberg, Efficient mixing at low Reynolds numbers using
polymer additives, Nature 410 (6831) (2001) 905–908.

[88] N. Liu, B. Khomami, Elastically induced turbulence in Taylor–Couette flow:
direct numerical simulation and mechanistic insight, J. Fluid Mech. 737 (2013).

[89] I.M. Dris, E.S. Shaqfeh, On purely elsatic instabilities in eccentric cylinder flows,
J. Non-Newton. Fluid Mech. 56 (3) (1995) 349–360.

[90] I. Dris, E.S. Shaqfeh, Flow of a viscoelastic fluid between eccentric cylinders:
impact on flow stability, J. Non-Newton. Fluid Mech. 80 (1) (1998) 59–87.

[91] I.M. Dris, E.S. Shaqfeh, Experimental and theoretical observations of elastic
instabilities in eccentric cylinder flows: local versus global instability, J.
Non-Newton. Fluid Mech. 80 (1) (1998) 1–58.

[92] Y. Fan, R.I. Tanner, N. Phan-Thien, Fully developed viscous and viscoelastic
flows in curved pipes, J. Fluid Mech. 440 (2001) 327–357.

[93] P. Pakdel, G.H. McKinley, Elastic instability and curved streamlines, Phys. Rev.
Lett. 77 (12) (1996) 2459.

[94] U. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, Energetic effects on the
stability of viscoelastic Dean flow, J. Non-Newton. Fluid Mech. 95 (2–3) (2000)
277–293.

[95] K. Jackson, K. Walters, R. Williams, A rheometrical study of boger fluids, J.
Non-Newton. Fluid Mech. 14 (1984) 173–188.

[96] T. Sridhar, An overview of the project M1, J. Non-Newton. Fluid Mech. 35
(2–3) (1990) 85–92.

[97] N. Phan-Thien, Cone-and-plate flow of the Oldroyd-B fluid is unstable, J.
Non-Newton. Fluid Mech. 17 (1) (1985) 37–44.

[98] N. Phan-Thien, Coaxial-disk flow of an Oldroyd-B fluid: exact solution and
stability, J. Non-Newton. Fluid Mech. 13 (3) (1983) 325–340.

[99] D.O. Olagunju, L.P. Cook, Secondary flows in cone and plate flow of an
Oldroyd-B fluid, J. Non-Newton. Fluid Mech. 46 (1) (1993) 29–47.

[100] D.O. Olagunju, Elastic instabilities in cone-and-plate flow: small gap theory, Z.
Angew. Math. Phys. 46 (6) (1995) 946–959.

[101] A. Öztekin, R.A. Brown, G.H. McKinley, Quantitative prediction of the vis-
coelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode
Giesekus model, J. Non-Newton. Fluid Mech. 54 (1994) 351–377.

[102] A. Öztekin, R.A. Brown, Instability of a viscoelastic fluid between rotating
parallel disks: analysis of the Oldroyd-B fluid, J. Fluid Mech. 255 (1993) 473.

[103] A. Avagliano, N. Phan-Thien, Torsional flow stability of highly dilute polymer
solutions, J. Non-Newton. Fluid Mech. 84 (1) (1999) 19–44.

[104] A. Avagliano, N. Phan-Thien, Torsional flow: elastic instability in a finite
domain, J. Fluid Mech. 312 (1996) 279–298.

[105] Y. Renardy, M. Renardy, A model equation for axisymmetric stability of
small-gap parallel-plate flows, J. Non-Newton. Fluid Mech. 77 (1–2) (1998)
103–114.

[106] D. Olagunju, On short wave elastic instabilities in parallel plate flow,
ASME-PUBLICATIONS-FED 243 (1997) 243–248.

[107] J.P. Rothstein, G.H. McKinley, Non-isothermal modification of purely elastic
flow instabilities in torsional flows of polymeric fluids, Phys. Fluids 13 (2)
(2001) 382–396.

[108] D.O. Olagunju, Hopf bifurcation in creeping cone-and-plate flow of a
viscoelastic fluid, Z. Angew. Math. Phys. 48 (3) (1997) 361–369.

[109] B.A. Toms, Some observations on the flow of linear polymer solutions through
straight tubes at large Reynolds numbers, in: Proc. of in. Cong. on Rheology,
1948, vol. 135.

[110] J. Lumley, Drag reduction in turbulent flow by polymer additives, J. Polymer
Sci. 7 (1973) 263–290.

[111] P. Virk, Drag reduction in rough pipes, J. Fluid Mech. 45 (2) (1971) 225–246.
[112] A. Roy, A. Morozov, W. van Saarloos, R.G. Larson, Mechanism of polymer

drag reduction using a low-dimensional model, Phys. Rev. Lett. 97 (23) (2006)
234501.

[113] T. Min, J.Y. Yoo, H. Choi, D.D. Joseph, Drag reduction by polymer additives
in a turbulent channel flow, J. Fluid Mech. 486 (2003) 213.

[114] N.S. Berman, Drag reduction of the highest molecular weight fractions of
polyethylene oxide, Phys. Fluids 20 (5) (1977) 715–718.

[115] M. Tabor, P. De Gennes, A cascade theory of drag reduction, Europhys. Lett. 2
(7) (1986) 519.

[116] R. Sureshkumar, A.N. Beris, R.A. Handler, Direct numerical simulation of
the turbulent channel flow of a polymer solution, Phys. Fluids 9 (3) (1997)
743–755.

[117] Y. Dubief, C.M. White, V.E. Terrapon, E.S. Shaqfeh, P. Moin, S.K. Lele, On
the coherent drag-reducing and turbulence-enhancing behaviour of polymers in
wall flows, J. Fluid Mech. 514 (2004) 271.

[118] C.-F. Li, R. Sureshkumar, B. Khomami, Influence of rheological parameters on
polymer induced turbulent drag reduction, J. Non-Newton. Fluid Mech. 140
(1–3) (2006) 23–40.

[119] S. Belcher, N. Jerram, J. Hunt, Adjustment of a turbulent boundary layer to
a’canopy’of roughness elements, J. Fluid Mech. 488 (2003) 369–398.

[120] G. Brethouwer, J. Hunt, F. Nieuwstadt, Micro structure and Lagrangian statistcs
of the scalar field with a mean gradient in isotropic turbulence, J. Fluid Mech.
474 (2003) 193–225.

[121] M. Warholic, H. Massah, T. Hanratty, Influence of drag-reducing polymers on
turbulence: effects of Reynolds number, concentration and mixing, Exp. Fluids
27 (5) (1999) 461–472.

[122] C.D. Dimitropoulos, R. Sureshkumar, A.N. Beris, Direct numerical simulation
of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the
variation of rheological parameters, J. Non-Newton. Fluid Mech. 79 (2–3)
(1998) 433–468.

[123] K.D. Housiadas, A.N. Beris, Polymer-induced drag reduction: Effects of the
variations in elasticity and inertia in turbulent viscoelastic channel flow, Phys.
Fluids 15 (8) (2003) 2369–2384.

[124] E. De Angelis, C. Casciola, R. Piva, DNS of wall turbulence: dilute polymers
and self-sustaining mechanisms, Comput. & Fluids 31 (4–7) (2002) 495–507.

[125] C. Li, V. Gupta, R. Sureshkumar, B. Khomami, Turbulent channel flow of dilute
polymeric solutions: drag reduction scaling and an eddy viscosity model, J.
Non-Newton. Fluid Mech. 139 (3) (2006) 177–189.

[126] P. Ptasinski, B. Boersma, F. Nieuwstadt, M. Hulsen, B. Van den Brule, J. Hunt,
Turbulent channel flow near maximum drag reduction: simulations, experiments
and mechanisms, J. Fluid Mech. 490 (2003) 251.

[127] T. Min, H. Choi, J.Y. Yoo, Maximum drag reduction in a turbulent channel flow
by polymer additives, J. Fluid Mech. 492 (2003) 91.

[128] R. Benzi, E. De Angelis, V.S. L’vov, I. Procaccia, Identification and calculation
of the universal asymptote for drag reduction by polymers in wall bounded
turbulence, Phys. Rev. Lett. 95 (19) (2005) 194502.

[129] L. Xi, M.D. Graham, Active and hibernating turbulence in minimal channel flow
of Newtonian and polymeric fluids, Phys. Rev. Lett. 104 (21) (2010) 218301.

[130] K.R. Sreenivasan, C.M. White, The onset of drag reduction by dilute polymer
additives, and the maximum drag reduction asymptote, J. Fluid Mech. 409
(2000) 149–164.

[131] C.-F. Li, R. Sureshkumar, B. Khomami, Simple framework for understanding
the universality of the maximum drag reduction asymptote in turbulent flow
of polymer solutions, Phys. Rev. E 92 (4) (2015) 043014.

[132] B.R. Elbing, M. Perlin, D.R. Dowling, S.L. Ceccio, Modification of the mean near-
wall velocity profile of a high-Reynolds number turbulent boundary layer with
the injection of drag-reducing polymer solutions, Phys. Fluids 25 (8) (2013)
085103.

[133] C. White, Y. Dubief, J. Klewicki, Re-examining the logarithmic dependence of
the mean velocity distribution in polymer drag reduced wall-bounded flow,
Phys. Fluids 24 (2) (2012) 021701.

[134] D. Samanta, Y. Dubief, M. Holzner, C. Schäfer, A.N. Morozov, C. Wagner,
B. Hof, Elasto-inertial turbulence, Proc. Natl. Acad. Sci. 110 (26) (2013)
10557–10562.

[135] Y. Dubief, V.E. Terrapon, J. Soria, On the mechanism of elasto-inertial
turbulence, Phys. Fluids 25 (11) (2013) 110817.

[136] S. Sid, V. Terrapon, Y. Dubief, Two-dimensional dynamics of elasto-inertial
turbulence and its role in polymer drag reduction, Phys. Rev. Fluids 3 (1)
(2018) 011301.

[137] G.H. Choueiri, J.M. Lopez, B. Hof, Exceeding the asymptotic limit of polymer
drag reduction, Phys. Rev. Lett. 120 (12) (2018) 124501.

[138] J.M. Lopez, G.H. Choueiri, B. Hof, Dynamics of viscoelastic pipe flow at low
Reynolds numbers in the maximum drag reduction limit, J. Fluid Mech. 874
(2019) 699–719.

[139] A. Shekar, R.M. McMullen, S.-N. Wang, B.J. McKeon, M.D. Graham, Critical-
layer structures and mechanisms in elastoinertial turbulence, Phys. Rev. Lett.
122 (12) (2019) 124503.

[140] A. Shekar, R.M. McMullen, B.J. McKeon, M.D. Graham, Self-sustained
elastoinertial Tollmien–Schlichting waves, J. Fluid Mech. 897 (2020).

[141] A. Fouxon, V. Lebedev, Spectra of turbulence in dilute polymer solutions, Phys.
Fluids 15 (7) (2003) 2060–2072.

[142] V. Steinberg, Scaling relations in elastic turbulence, Phys. Rev. Lett. 123 (23)
(2019) 234501.

[143] R. van Buel, C. Schaaf, H. Stark, Elastic turbulence in two-dimensional
Taylor–Couette flows, Europhys. Lett. 124 (1) (2018) 14001.

[144] N. Liu, B. Khomami, Polymer-induced drag enhancement in turbulent Taylor–
Couette flows: direct numerical simulations and mechanistic insight, Phys. Rev.
Lett. 111 (11) (2013) 114501.

[145] J.-J. Lee, C.C. Mei, Stationary waves on an inclined sheet of viscous fluid at high
Reynolds and moderate Weber numbers, J. Fluid Mech. 307 (1996) 191–229.

[146] N. Latrache, O. Crumeyrolle, I. Mutabazi, Transition to turbulence in a flow of
a shear-thinning viscoelastic solution in a Taylor–Couette cell, Phys. Rev. E 86
(5) (2012) 056305.

[147] J. Song, H. Teng, N. Liu, H. Ding, X.-Y. Lu, B. Khomami, The correspondence
between drag enhancement and vortical structures in turbulent Taylor–Couette
flows with polymer additives: a study of curvature dependence, J. Fluid Mech.
881 (2019) 602–616.

[148] Y. Zhu, J. Song, N. Liu, X. Lu, B. Khomami, Polymer-induced flow relaminar-
ization and drag enhancement in spanwise-rotating plane Couette flow, J. Fluid
Mech. 905 (2020) A19.

http://refhub.elsevier.com/S0377-0257(21)00157-9/sb85
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb85
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb85
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb85
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb85
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb86
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb86
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb86
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb87
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb87
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb87
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb88
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb88
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb88
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb89
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb89
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb89
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb90
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb90
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb90
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb91
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb91
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb91
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb91
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb91
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb92
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb92
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb92
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb93
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb93
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb93
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb94
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb94
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb94
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb94
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb94
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb95
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb95
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb95
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb96
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb96
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb96
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb97
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb97
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb97
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb98
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb98
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb98
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb99
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb99
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb99
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb100
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb100
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb100
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb101
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb101
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb101
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb101
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb101
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb102
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb102
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb102
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb103
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb103
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb103
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb104
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb104
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb104
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb105
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb105
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb105
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb105
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb105
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb106
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb106
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb106
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb107
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb107
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb107
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb107
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb107
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb108
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb108
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb108
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb110
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb110
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb110
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb111
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb112
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb112
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb112
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb112
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb112
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb113
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb113
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb113
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb114
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb114
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb114
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb115
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb115
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb115
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb116
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb116
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb116
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb116
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb116
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb117
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb117
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb117
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb117
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb117
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb118
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb118
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb118
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb118
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb118
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb119
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb119
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb119
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb120
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb120
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb120
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb120
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb120
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb121
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb121
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb121
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb121
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb121
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb122
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb123
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb123
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb123
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb123
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb123
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb124
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb124
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb124
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb125
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb125
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb125
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb125
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb125
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb126
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb126
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb126
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb126
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb126
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb127
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb127
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb127
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb128
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb128
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb128
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb128
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb128
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb129
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb129
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb129
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb130
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb130
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb130
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb130
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb130
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb131
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb131
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb131
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb131
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb131
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb132
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb133
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb133
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb133
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb133
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb133
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb134
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb134
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb134
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb134
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb134
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb135
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb135
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb135
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb136
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb136
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb136
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb136
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb136
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb137
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb137
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb137
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb138
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb138
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb138
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb138
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb138
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb139
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb139
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb139
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb139
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb139
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb140
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb140
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb140
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb141
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb141
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb141
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb142
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb142
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb142
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb143
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb143
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb143
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb144
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb144
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb144
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb144
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb144
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb145
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb145
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb145
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb146
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb146
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb146
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb146
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb146
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb147
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb148
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb148
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb148
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb148
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb148


Journal of Non-Newtonian Fluid Mechanics 298 (2021) 104672

25

E.S.G. Shaqfeh and B. Khomami

[149] H. Teng, N. Liu, X. Lu, B. Khomami, Turbulent drag reduction in plane Couette
flow with polymer additives: a direct numerical simulation study, J. Fluid Mech.
846 (2018) 482.

[150] J. Song, F. Lin, N. Liu, X.-Y. Lu, B. Khomami, Direct numerical simulation
of inertio-elastic turbulent Taylor–Couette flow, J. Fluid Mech. 926 (2021)
A37,1–29.

[151] J. Song, Z.-H. Wan, N. Liu, X.-Y. Lu, B. Khomami, A reverse transition route
from inertial to elasticity-dominated turbulence in viscoelastic Taylor–Couette
flow, J. Fluid Mech. 927 (2021) A10,1–12.

[152] M. Khalid, V. Shankar, G. Subramanian, A continuous pathway between the
elasto-inertial and elastic turbulent states in viscoelastic channel flow, 2021,
arXiv preprint arXiv:2103.06794.

[153] J. Rallison, E. Hinch, Do we understand the physics in the constitutive
equation? J. Non-Newton. Fluid Mech. 29 (1988) 37–55.

[154] M. Chilcott, J.M. Rallison, Creeping flow of dilute polymer solutions past
cylinders and spheres, J. Non-Newton. Fluid Mech. 29 (1988) 381–432.

[155] M. Bajaj, M. Pasquali, J.R. Prakash, Coil-stretch transition and the breakdown
of computations for viscoelastic fluid flow around a confined cylinder, J. Rheol.
52 (1) (2008) 197–223.

[156] A. Abedijaberi, B. Khomami, Sedimentation of a sphere in a viscoelastic fluid:
a multiscale simulation approach, J. Fluid Mech. 694 (2012) 78.

[157] K.D. Housiadas, J.P. Binagia, E.S. Shaqfeh, Squirmers with swirl at low
Weissenberg number, J. Fluid Mech. 911 (2021).

[158] B. Yang, B. Khomami, Simulations of sedimentation of a sphere in a viscoelastic
fluid using molecular based constitutive models, J. Non-Newton. Fluid Mech.
82 (2–3) (1999) 429–452.

[159] M. Yang, E.S. Shaqfeh, Mechanism of shear thickening in suspensions of rigid
spheres in Boger fluids. Part I: Dilute suspensions, J. Rheol. 62 (6) (2018)
1363–1377.

[160] J. Hinch, A perspective of Batchelor’s research in micro-hydrodynamics, J. Fluid
Mech. 663 (2010) 8.

[161] W.R. Hwang, M.A. Hulsen, H.E. Meijer, Direct simulations of particle suspen-
sions in a viscoelastic fluid in sliding bi-periodic frames, J. Non-Newton. Fluid
Mech. 121 (1) (2004) 15–33.

[162] G. D’Avino, M.A. Hulsen, F. Snijkers, J. Vermant, F. Greco, P.L. Maffettone,
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I:
Simulation results, J. Rheol. 52 (6) (2008) 1331–1346.

[163] M. Yang, S. Krishnan, E.S. Shaqfeh, Numerical simulations of the rheology
of suspensions of rigid spheres at low volume fraction in a viscoelastic
fluid under shear, J. Non-Newton. Fluid Mech. 233 (2016) 181–197, http://
dx.doi.org/10.1016/j.jnnfm.2016.05.004, URL https://www.sciencedirect.com/
science/article/pii/S0377025716300593.

[164] J. Einarsson, M. Yang, E.S. Shaqfeh, Einstein viscosity with fluid elasticity, Phys.
Rev. Fluids 3 (1) (2018) 013301.

[165] D.L. Koch, E.F. Lee, I. Mustafa, Stress in a dilute suspension of spheres in a
dilute polymer solution subject to simple shear flow at finite Deborah numbers,
Phys. Rev. Fluids 1 (1) (2016) 013301.

[166] R.I. Tanner, Rheology of noncolloidal suspensions with non-Newtonian matrices,
J. Rheol. 63 (4) (2019) 705–717.

[167] D.L. Koch, G. Subramanian, The stress in a dilute suspension of spheres sus-
pended in a second-order fluid subject to a linear velocity field, J. Non-Newton.
Fluid Mech. 138 (2–3) (2006) 87–97.

[168] J. Rallison, The stress in a dilute suspension of liquid spheres in a second-order
fluid, J. Fluid Mech. 693 (2012) 500.

[169] M. Yang, E.S. Shaqfeh, Mechanism of shear thickening in suspensions of rigid
spheres in Boger fluids. Part II: Suspensions at finite concentration, J. Rheol.
62 (6) (2018) 1379–1396.

[170] Y. Matsuoka, Y. Nakayama, T. Kajiwara, Prediction of shear thickening of
particle suspensions in viscoelastic fluids by direct numerical simulation, J.
Fluid Mech. 913 (2021).

[171] A. Vázquez-Quesada, P. Español, R.I. Tanner, M. Ellero, Shear thickening of a
non-colloidal suspension with a viscoelastic matrix, J. Fluid Mech. 880 (2019)
1070–1094.

[172] N. Jaensson, M. Hulsen, P. Anderson, Direct numerical simulation of particle
alignment in viscoelastic fluids, J. Non-Newton. Fluid Mech. 235 (2016)
125–142.

[173] A. Jain, J. Einarsson, E.S. Shaqfeh, Extensional rheology of a dilute
particle-laden viscoelastic solution, Phys. Rev. Fluids 4 (9) (2019) 091301.

[174] G. D’Avino, F. Greco, P.L. Maffettone, Particle migration due to viscoelasticity
of the suspending liquid and its relevance in microfluidic devices, Annu. Rev.
Fluid Mech. 49 (2017) 341–360.

[175] G. Li, G.H. McKinley, A.M. Ardekani, Dynamics of particle migration in channel
flow of viscoelastic fluids, J. Fluid Mech. 785 (2015) 486–505.

[176] A.M. Leshansky, A. Bransky, N. Korin, U. Dinnar, Tunable nonlinear viscoelastic
‘‘focusing’’ in a microfluidic device, Phys. Rev. Lett. 98 (23) (2007) 234501.

[177] E. Carew, P. Townsend, M. Webster, A Taylor–Petrov–Galerkin algorithm for
viscoelastic flow, J. Non-Newton. Fluid Mech. 50 (2–3) (1993) 253–287.

[178] M. Villone, G. D’Avino, M. Hulsen, F. Greco, P. Maffettone, Simulations of
viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow,
J. Non-Newton. Fluid Mech. 166 (23–24) (2011) 1396–1405.

[179] G. d’Avino, P. Maffettone, F. Greco, M. Hulsen, Viscoelasticity-induced migra-
tion of a rigid sphere in confined shear flow, J. Non-Newton. Fluid Mech. 165
(9–10) (2010) 466–474.

[180] G. Gheissary, B. Van Den Brule, Unexpected phenomena observed in particle
settling in non-Newtonian media, J. Non-Newton. Fluid Mech. 67 (1996) 1–18.

[181] K.D. Housiadas, R.I. Tanner, The drag of a freely sedimentating sphere in
a sheared weakly viscoelastic fluid, J. Non-Newton. Fluid Mech. 183 (2012)
52–56.

[182] A. Zhang, W.L. Murch, J. Einarsson, E.S. Shaqfeh, Lift and drag force on a
spherical particle in a viscoelastic shear flow, J. Non-Newton. Fluid Mech. 280
(2020) 104279.

[183] J. Einarsson, B. Mehlig, Spherical particle sedimenting in weakly viscoelastic
shear flow, Phys. Rev. Fluids 2 (6) (2017) 063301.

[184] A. Zhang, W.L. Murch, J. Einarsson, E.S. Shaqfeh, Lift and drag force on a
spherical particle in a viscoelastic shear flow, J. Non-Newton. Fluid Mech. 280
(2020) 104279, http://dx.doi.org/10.1016/j.jnnfm.2020.104279, URL https://
www.sciencedirect.com/science/article/pii/S0377025720300471.

[185] W.L. Murch, S. Krishnan, E.S. Shaqfeh, G. Iaccarino, Growth of viscoelastic
wings and the reduction of particle mobility in a viscoelastic shear flow, Phys.
Rev. Fluids 2 (10) (2017) 103302.

[186] S. Krishnan, E.S. Shaqfeh, G. Iaccarino, Fully resolved viscoelastic particulate
simulations using unstructured grids, J. Comput. Phys. 338 (2017) 313–338.

[187] C. Fernandes, S. Faroughi, O. Carneiro, J.M. Nóbrega, G. McKinley, Fully-
resolved simulations of particle-laden viscoelastic fluids using an immersed
boundary method, J. Non-Newton. Fluid Mech. 266 (2019) 80–94.

[188] S. Padhy, M. Rodriguez, E. Shaqfeh, G. Iaccarino, J. Morris, N. Tonmukayakul,
The effect of shear thinning and walls on the sedimentation of a sphere in an
elastic fluid under orthogonal shear, J. Non-Newton. Fluid Mech. 201 (2013)
120–129.

[189] S. Padhy, E. Shaqfeh, G. Iaccarino, J. Morris, N. Tonmukayakul, Simulations of a
sphere sedimenting in a viscoelastic fluid with cross shear flow, J. Non-Newton.
Fluid Mech. 197 (2013) 48–60.

[190] W.L. Murch, E.S. Shaqfeh, Collective effects in the sedimentation of particles
in a viscoelastic fluid, Phys. Rev. Fluids 5 (7) (2020) 073301.

[191] D. Li, X. Xuan, Electrophoretic slip-tuned particle migration in microchannel
viscoelastic fluid flows, Phys. Rev. Fluids 3 (7) (2018) 074202.

[192] A. Choudhary, D. Li, T. Renganathan, X. Xuan, S. Pushpavanam, Electrokinet-
ically enhanced cross-stream particle migration in viscoelastic flows, J. Fluid
Mech. 898 (2020).

[193] A.S. Khair, J.K. Kabarowski, Migration of an electrophoretic particle in a weakly
inertial or viscoelastic shear flow, Phys. Rev. Fluids 5 (3) (2020) 033702.

[194] E. Allen, P. Uhlherr, Nonhomogeneous sedimentation in viscoelastic fluids, J.
Rheol. 33 (4) (1989) 627–638.

[195] S. Bobroff, R.J. Phillips, Nuclear magnetic resonance imaging investigation of
sedimentation of concentrated suspensions in non-Newtonian fluids, J. Rheol.
42 (6) (1998) 1419–1436.

[196] R. Vishnampet, D. Saintillan, Concentration instability of sedimenting spheres
in a second-order fluid, Phys. Fluids 24 (7) (2012) 073302.

[197] G. Tiefenbruck, L. Leal, A numerical study of the motion of a viscoelastic fluid
past rigid spheres and spherical bubbles, J. Non-Newton. Fluid Mech. 10 (1–2)
(1982) 115–155.

[198] G. Tiefenbruck, L. Leal, A note on the slow motion of a bubble in a viscoelastic
liquid, J. Non-Newton. Fluid Mech. 7 (2–3) (1980) 257–264.

[199] R. Zenit, J. Feng, Hydrodynamic interactions among bubbles, drops, and
particles in non-Newtonian liquids, Annu. Rev. Fluid Mech. 50 (2018).

[200] J.R. Vélez-Cordero, D. Sámano, R. Zenit, Study of the properties of bubbly flows
in Boger-type fluids, J. Non-Newton. Fluid Mech. 175 (2012) 1–9.

http://refhub.elsevier.com/S0377-0257(21)00157-9/sb149
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb149
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb149
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb149
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb149
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb150
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb150
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb150
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb150
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb150
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb151
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb151
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb151
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb151
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb151
http://arxiv.org/abs/2103.06794
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb153
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb153
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb153
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb154
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb154
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb154
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb155
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb155
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb155
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb155
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb155
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb156
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb156
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb156
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb157
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb157
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb157
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb158
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb158
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb158
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb158
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb158
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb159
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb159
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb159
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb159
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb159
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb160
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb160
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb160
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb161
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb161
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb161
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb161
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb161
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb162
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb162
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb162
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb162
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb162
http://dx.doi.org/10.1016/j.jnnfm.2016.05.004
http://dx.doi.org/10.1016/j.jnnfm.2016.05.004
http://dx.doi.org/10.1016/j.jnnfm.2016.05.004
https://www.sciencedirect.com/science/article/pii/S0377025716300593
https://www.sciencedirect.com/science/article/pii/S0377025716300593
https://www.sciencedirect.com/science/article/pii/S0377025716300593
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb164
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb164
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb164
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb165
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb165
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb165
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb165
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb165
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb166
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb166
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb166
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb167
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb167
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb167
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb167
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb167
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb168
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb168
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb168
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb169
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb169
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb169
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb169
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb169
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb170
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb170
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb170
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb170
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb170
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb171
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb171
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb171
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb171
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb171
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb172
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb172
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb172
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb172
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb172
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb173
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb173
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb173
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb174
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb174
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb174
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb174
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb174
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb175
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb175
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb175
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb176
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb176
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb176
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb177
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb177
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb177
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb178
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb178
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb178
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb178
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb178
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb179
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb179
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb179
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb179
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb179
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb180
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb180
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb180
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb181
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb181
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb181
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb181
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb181
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb182
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb182
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb182
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb182
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb182
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb183
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb183
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb183
http://dx.doi.org/10.1016/j.jnnfm.2020.104279
https://www.sciencedirect.com/science/article/pii/S0377025720300471
https://www.sciencedirect.com/science/article/pii/S0377025720300471
https://www.sciencedirect.com/science/article/pii/S0377025720300471
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb185
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb185
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb185
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb185
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb185
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb186
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb186
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb186
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb187
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb187
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb187
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb187
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb187
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb188
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb189
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb189
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb189
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb189
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb189
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb190
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb190
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb190
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb191
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb191
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb191
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb192
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb192
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb192
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb192
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb192
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb193
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb193
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb193
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb194
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb194
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb194
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb195
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb195
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb195
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb195
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb195
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb196
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb196
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb196
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb197
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb197
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb197
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb197
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb197
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb198
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb198
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb198
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb199
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb199
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb199
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb200
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb200
http://refhub.elsevier.com/S0377-0257(21)00157-9/sb200

	The Oldroyd-B fluid in elastic instabilities, turbulence and particle suspensions
	Introduction: Reasons the Oldroyd-B fluid is used as a starting point for understanding complex elastic fluid phenomena
	Kinetic theory of a polymer chain in solution and the Oldroyd-B model
	The Oldroyd-B model in simple shear flow
	The Oldroyd-B model in linear viscoelasticity
	Comparison of Oldroyd-B predictions in shear to ``Boger'' fluid rheology
	Oldroyd-B model in extensional flow and associated FENE models
	Comparison of Oldroyd-B model in extensional flow to fine-grained models and experiments

	Predictions of the Oldroyd-B model in elastic instabilities of viscometric flows with curved streamlines
	Taylor–Couette flow: Purely elastic and thermoelastic instabilities
	Taylor–Couette flow: Inertial effects and pattern formation
	Taylor–Couette flow: Elastic turbulence
	Dean and Taylor–Dean flows
	Cone-and-plate and coaxial parallel-plate flows: Purely elastic and thermoelastic instabilities
	Cone and plate and coaxial parallel plates flows: Non-linear stability analysis

	Polymer induced turbulent drag modifications as predicted by the Oldroyd-B model
	Polymer induced drag reduction in plane Poiseuille flow
	Polymer induced drag modification in Taylor–Couette flow

	Oldroyd-B fluid in understanding particle flows and motions in elastic fluids
	Uniform flow past fixed particles and sedimentation
	Shear flow of freely suspended cylinders/spheres in suspension
	Particle migration in shear flows of viscoelastic fluids
	Combining shear flow and a particle body force – Particle migration, lift and enhanced drag

	Summary and conclusion
	Declaration of competing interest
	Acknowledgments
	References


