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28 Abstract:

29 Erysiphe necator is an economically important biotrophic fungal pathogen 

30 responsible for powdery mildew disease on grapevine. Currently, genome 

31 sequences are available for only a few Erysiphe necator isolates from USA. 

32 Based on the combination of Nanopore and Illumina sequencing technologies, 

33 we present here the complete genome assembly for an isolate of En. NAFU1 

34 identified in China. We acquired a total of 15.93 Gb raw reads. These reads 

35 were processed into a 61.12 Mb genome assembly containing 73 contigs with 

36 the N50 of 2.06 Mb and a maximum length of 6.05 Mb. Combining the results 

37 of three gene-prediction modules, i.e. an evidence-based gene modeler 

38 (EVidenceModeler or EVM), an ab initio gene modeler, and a homology-based 

39 gene modeler, we predicted 7235 protein-coding genes in the assembled 

40 genome of En. NAFU1. This information will facilitate studies of genome 

41 evolution and pathogenicity mechanisms of E. necator and other powdery 

42 mildew species through comparative genome sequence analysis and other 
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43 molecular genetic tools. 

44

45 Key words: Erysiphe necator, grapevine, genome, powdery mildew
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47

48

49 Genome Announcement

50

51 Powdery mildew caused by ascomycete fungi in the order of Erysiphales is 

52 an important and widespread disease of numerous plant species including 

53 wheat, barley, bean, rose, rubber, tomato, strawberry and grape (Braun and 

54 Cook 2012; Wu et al. 2018). The Eurasian grape, Vitis vinifera L., is the most 

55 widely cultivated and economically important fruit crop in the world. However, 

56 the Eurasian grape is susceptible to many oomycete and fungal diseases, 

57 including downy mildew caused by Plasmopora viticola, grey mold caused by 

58 Botrytis cinerea, and powdery mildew caused by Erysiphe necator (Gadoury et 

59 al. 2012; Gessler et al. 2011). Among these three types of pathogens, E. 

60 necator does not require specific humidity and temperature conditions for 

61 infection (Dry et al. 2010), therefore powdery mildew is the most frequent 

62 disease of grapevines in many areas. E. necator can infect all green tissues of 

63 a grapevine. Like in other plants, grapevine leaves infected by powdery mildew 
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64 often show reduced photosynthesis and suffer from premature senescence and 

65 abscission (Han et al. 2016). Even a low-level infection can reduce the quality 

66 of berries, which may affect the flavor of wine, table or raisin grapes. Severe 

67 infection can cause berry cracking and dropping, or even result in significant 

68 loss of harvest (Gadoury et al. 2003; Qiu et al. 2015). Despite its importance, 

69 relatively little information is currently available regarding pathogenicity 

70 mechanisms of E. necator as well as other powdery mildew pathogens. Apart 

71 from the genetic intractability of all powdery mildew fungi, the lack of well-

72 assembled genomes for the identification of key effectors of host-adapted 

73 powdery mildew (sub) species or isolates also hinders mechanistic studies of 

74 powdery mildew. 

75 To date, the whole-genome sequences of five isolates of Erysiphe necator 

76 (Branching, C-strain, e1-101, Lodi, and Ranch9) have been reported. There are 

77 apparent sequence differences among the genomes of the five powdery mildew 

78 isolates with different genetic and geographical backgrounds (Jones et al. 

79 2014). Another report indicated that there is sequence polymorphism between 

80 isolates from different regions and hosts in the eastern USA, let alone when the 

81 US isolates are compared with those from southern France and Italy ( Brewer 

82 et al 2010; Frenkel et al. 2012). Viticulture has a long history in China and there 

83 is rich wild grapevine germplasm (Gao et al. 2016) in many different regions of 

84 China. It is conceivable that the long-time grapevine-powdery mildew co-
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85 evolution must have shaped the genomes of powdery mildew pathogens in 

86 these regions. Hence, obtaining the whole-genome sequence of a grapevine 

87 powdery mildew isolate identified in China would provide valuable sequence 

88 information for future investigation of host-adaptation of powdery mildew in 

89 different regions.

90 Here, we reported the genome sequence of an Erysiphe necator isolate 

91 NAFU1 (En. NAFU1), which was isolated from Vitis vinifera cv. Rizamat, 

92 Shaanxi Province in China and maintained on the susceptible grapevine 

93 ‘Thompson Seedless’ (Gao et al. 2016). Spores En. NAFU1 were collected from 

94 infected leaves of grapevine at 10-15 days post-inoculation using a small 

95 vacuum and used for genomic DNA extraction using the CTAB method (Feehan 

96 et al. 2017). About 12 µg of pure DNA with an average size of 20 Kb was used 

97 for genome sequencing by the Oxford Nanopore and Illumina technologies. The 

98 genome sequences of En. NAFU1 were assembled by using a combination of 

99 short-reads (~6,657,136,974 bp) generated by Illumina sequencing 

100 (NOVASeq6000 platform, PE150, read length 150 bp, paired-end reads) and 

101 long-reads (~13,268,751,137 bp) by Oxford Nanopore sequencing 

102 (PromethION) performed at the Biomarker Technologies (Beijing, China). A 

103 total of 13.27 Gb of Nanopore long reads, representing ~217x coverage of the 

104 En. NAFU1 genome, and 6.66 Gb of Illumina NOVASeq6000 short reads 

105 (~109x) were generated. The Nanopore reads of low quality and less than 2,000 
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106 bp were filtered out. NECAT was used to assemble the Nanopore subreads 

107 after filtering, and Pilon was used to correct the assembled sequences using 

108 the second-generation sequence data (Koren et al. 2017; Walker et al. 2014).

109 The final genome assembly of En. NAFU1 is 61.12 Mb in length with 48.5% 

110 GC content. The assembly contains 73 contigs with the N50 length of 2.06 Mb 

111 (the longest contig length is 6.05 Mb) and 98.3% BUSCO completeness (based 

112 on 1315 conserved Ascomycota orthologs). This indicates that the whole-

113 genome assembly of En. NAFU1 is of high quality, which ensures accurate 

114 prediction of the protein-coding genes in its genome. Genscan (Chris and 

115 Samuel 1997), Augustus v2.4 (Stanke and Waack 2003), GlimmerHMM v3.0.4 

116 (Majoros et al. 2004), GeneID v1.4 (Blanco et al. 2007), and SNAP (version 

117 2006-07-28) (Ian 2004) were used for ab initio gene prediction and GeMoMa 

118 v1.3.1 (Keilwagen et al. 2016) was used for homology-based gene prediction. 

119 Finally, EVM v1.1.1 (Haas et al. 2008) was used to integrate the above two 

120 methods to obtain 7235 protein-coding genes. In total, 7,235 protein-coding 

121 genes were predicted with an estimated BUSCO completeness being 96.7%, 

122 and average length of protein-coding gene being 2169 bp. The sequence 

123 features of the genome assembly of En. NAFU1 and other isolates were shown 

124 in Table 1. A comparison with the assembled genomes of other isolates (Jones 

125 et al. 2014) suggests a much deeper sequence depth and higher genome 

126 coverage, with fewer contigs for that of En. NAFU1. 
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127 To ensure a successful infection on their host plants, fungal pathogens 

128 produce a suite of carbohydrate-active enzymes (CAZymes) to digest 

129 polysaccharides of the plant cell wall and send hundreds of secreted effector 

130 proteins into the host cell to suppress plant immunity (Adachi et al. 2020; Yin et 

131 al. 2012). To assess the size of the CAZymes of En. NAFU1, genes encoding 

132 such enzymes were predicted by the webtools at the CAZymes database 

133 (http://www.cazy.org/). A total of 327 CAZyme genes were predicted in the 

134 genome of E. necator NAFU1. These CAZymes belong to five superfamilies, 

135 including 138 (42.2%) glycosyl hydrolases, 96 (29.35%) glycoside transferases, 

136 53 (16.2%) carbohydrate esterases, 26 (7.95%) enzymes with auxiliary 

137 activities, and 14 (4.28%) other carbohydrate-binding proteins. To identify 

138 candidate genes encoding secreted proteins, SignalP v3.0 (Bendtsen et al. 

139 2004) was used for the prediction of an N-terminal signal peptide and TMHMM 

140 (Krogh et al. 2001) was used for the prediction of transmembrane (TM) domains. 

141 A total of 453 genes in the genome were predicted to encode secreted proteins 

142 that contain a signal peptide but no transmembrane domains. Using EffectorP 

143 (Sperschneider et al. 2018), 41 genes were predicted to encode candidate 

144 effector proteins in the genome of En. NAFU1. 

145 The availability of the genome sequence of En. NAFU1 will facilitate 

146 intraspecific as well as interspecific comparative genome analyses of powdery 

147 mildew fungi for investigating how they have co-evolved with their respective 
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148 plant hosts in different habitats. One future study we hope to conduct is to 

149 assess the impact of resistance from various wild Chinese grapevines on the 

150 effector repertoire of En. NAFU1 in comparison with E. necator originated in the 

151 USA and Europe. The En. NAFU1 genome has been deposited at 

152 DDBJ/ENA/GenBank database under the accession number 

153 JAFBAW000000000 (BioProject: PRJNA695796, BioSample: 

154 SAMN17620199). The version described in this paper is version 

155 JAFBAW010000000.
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Genomic feature NAFU1 C-strain Lodi Ranch9 Branching e1-101

Sequencing platform Nanopore Illumina MiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq Illumina HiSeq

BioSample SAMN17620199SAMN02803834SAMN02803901SAMN02803894SAMN02803892SAMN02803896

BioProject PRJNA695796 PRJNA247407 PRJNA248904 PRJNA248903 PRJNA248900 PRJNA248902

Total assembly size (bp) 61,122,667 52,505,057 49,793,988 49,465,130 50,658,153 49,942,550

Coverage 217× 76× 42× 24× 29× 42×

GC content (%) 48.5 39.0 38.9 38.8 38.5 38.8

Number of contigs 73 8,584 8,093 8,274 11,631 7,601

Maximum contig length (bp) 6,053,329 - - - - -

Contig N50 (bp) 2,063,233 16,949 13,724 13,213 12,413 15,756

Contig N90 (bp) 822,440 - - - - -
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Contig L50 9 895 1,073 1,099 1,195 935

Total protein-coding genes 7,235 6,484 - - - -

BUSCO completeness (%) 98.3 - - - - -

Transfer RNAs 244 - - - - -

Ribosomal RNAs 76 - - - - -

Secretomea 453 422

Effectoromeb 196 150 - - - -

236 a Secretome: proteins have signal peptide, but without a transmembrane domain
237 b Effectorome: predicted by software EffectorP
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