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Covariant codes are quantum codes such that a symmetry transformation on the
logical system could be realized by a symmetry transformation on the physical system,
usually with limited capability of performing quantum error correction (an important
case being the Eastin–Knill theorem). The need for understanding the limits of covari-
ant quantum error correction arises in various realms of physics including fault-tolerant
quantum computation, condensed matter physics and quantum gravity. Here, we ex-
plore covariant quantum error correction with respect to continuous symmetries from
the perspectives of quantum metrology and quantum resource theory, establishing solid
connections between these formerly disparate fields. We prove new and powerful lower
bounds on the infidelity of covariant quantum error correction, which not only extend
the scope of previous no-go results but also provide a substantial improvement over
existing bounds. Explicit lower bounds are derived for both erasure and depolarizing
noises. We also present a type of covariant codes which nearly saturates these lower
bounds.

1 Introduction
Quantum error correction (QEC) is a standard approach to protecting quantum systems against
noises, which for example allows the possibility of practical quantum computing and has been a
central research topic in quantum information [1–3]. The key idea of QEC is to encode the logical
state into a small code subspace in a large physical system and correct noises using the redundancy
in the entire Hilbert space. As a result, the structure of noise must also place restrictions on QEC
codes. This feature was beautifully captured by the Eastin–Knill theorem [4] (see also [5–8]),
which states that any non-trivial local-error-correcting quantum code does not admit transversal
implementations of a universal set of logical gates, ruling out the possibility of realizing fault-
tolerant quantum computation using only transversal gates.

In particular, any finite-dimensional local-error-correcting quantum code only admits a finite
number of transversal logical operations, which forbids the existence of codes covariant with contin-
uous symmetries (discrete symmetries are allowed though [9, 10]). More generally, quantum codes
under symmetry constraints, namely covariant codes, are of great practical and theoretical interest.
In general, a quantum code is covariant with respect to a logical Hamiltonian HL and a physical
Hamiltonian HS if any symmetry transformation e−iHLθ is encoded into a symmetry transfor-
mation e−iHSθ in the physical system. Besides important implications to fault-tolerant quantum
computation, covariant QEC is also closely connected to many other topics in quantum informa-
tion and physics, such as quantum reference frames and quantum clocks [9, 11, 12], symmetries in
the AdS/CFT correspondence [10, 12–18] and approximate QEC in condensed matter physics [19].
Although covariant codes cannot be perfectly local-error-correcting, they can still approximately
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correct errors with the infidelity depending on the number of subsystems, the dimension of each
subsystem, etc. The quantifications of such infidelity in covariant QEC were explored recently,
leading to an approximate, or robust, version of the Eastin–Knill theorem [10, 12], using comple-
mentary channel techniques [20–22]. Note that these existing results only apply to erasure errors
and random phase errors at unknown locations.

In this paper, we investigate covariant QEC from the perspectives of quantum metrology and
quantum resource theory, which not only establishes conceptual and technical links between these
seemingly separate fields, but also leads to a series of improved understandings and bounds on
the performance of covariant QEC. Quantum metrology studies the ultimate limit on parameter
estimation in quantum systems [23–27]. Covariant QEC is naturally a quantum metrological
protocol—estimating the angle of any rotation of the physical system is equivalent to estimating
that of the logical system with protection against noise. There is a no-go theorem in quantum
metrology stating that perfectly error-correcting codes admitting a non-trivial logical Hamiltonian
do not exist if the physical Hamiltonian falls into the Kraus span of the noise channel, which is
known as the HKS condition [28–34]. It is also a sufficient condition of the non-existence of perfectly
covariant QEC codes. When the HKS condition is satisfied, we establish a connection between
the quantum Fisher information (QFI) of quantum channels [30, 34–38] and the performance (or
infidelity) of covariant QEC, which gives rise to the desired lower bound. We could also understand
covariant QEC in terms of the resource theory of asymmetry [39–41] with respect to translations
generated by Hamiltonians, where the covariant QEC procedures may naturally be represented
by free operations. In quantum resource theory, we also have no-go theorems which dictate that
pure resource states cannot be perfectly distilled from generic mixed states [42–44], thereby ruling
out the possibility of perfect covariant QEC. By further analyzing suitable resource monotones, in
particular a type of QFI [44], we derive a lower bound on the infidelity of covariant QEC, which
behaves similarly to the metrological bounds.

Our approaches and results on covariant QEC are innovative and also advantageous compared
to previous ones in many ways. The bounds generalize the no-go theorems for covariant QEC
from local Hamiltonians with erasure errors to generic Hamiltonian and noise structures. In the
special case of erasure noise, our lower bounds improve the previous results in the small infidelity
limit [10]. Furthermore, we demonstrate that there is a type of covariant codes called thermo-
dynamic codes [10, 19] that saturates the lower bound for erasure noise and matches the scaling
of the lower bound for depolarizing noise, while previous bounds only apply to the erasure noise
setting and were not known to be saturable [10].

2 Preliminaries: Covariant codes
A quantum code is a subspace of a physical system S, usually defined by the image of an (usually
isometric) encoding channel ES←L from a logical system L. We call a code ES←L covariant if there
exists a logical Hamiltonian HL and a physical Hamiltonian HS such that

ES←L ◦ UL,θ = US,θ ◦ ES←L, ∀θ ∈ R, (1)

where UL,θ(ρL) = e−iHLθρLe
iHLθ and US,θ(ρS) = e−iHSθρSe

iHSθ are the symmetry transforma-
tions on the logical and physical systems, respectively. We assume that the dimensions of the
physical and logical systems dS and dL are both finite and HL is non-trivial (HL 6∝ 1). For sim-
plicity, we also assume all Hamiltonians in this paper are traceless unless stated otherwise, and we
use ∆HL and ∆HS to denote the difference between the maximum and minimum eigenvalues of
the operators.

We say a quantum code is error-correcting under a noise channel NS , if NS is invertible inside
the code subspace, i.e., if there exists a CPTP map RL←S such that

RL←S ◦ NS ◦ ES←L = 1L. (2)

We assume that the output space of the noise channel NS is still S for simplicity, although our
results also apply to situations where the output system is different. The error-correcting property
of a quantum code is often incompatible with its covariance with respect to continuous symmetries.
One representative example is the non-existence of error-correcting codes which can simultaneously
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correct non-trivial local errors and be covariant with respect to a local HS [4, 9]. However, one may
still consider approximate QEC with covariant codes [10, 12, 19]. Then a question that naturally
arises is how accurate covariant codes can be against certain noises. To characterize the infidelity
of an approximate QEC code, we use the worst-case entanglement fidelity f(Φ1,Φ2) and the Choi
entanglement fidelity [45, 46] defined by

f(Φ1,Φ2) = min
ρ
f((Φ1 ⊗ 1R)(ρ), (Φ2 ⊗ 1R)(ρ)) (3)

and
fChoi(Φ1,Φ2) = f((Φ1 ⊗ 1R)(|γ〉 〈γ|), (Φ2 ⊗ 1R)(|γ〉 〈γ|)) (4)

for two quantum channels Φ1 and Φ2, where the fidelity between two states ρ and σ is given
by f(ρ, σ) = Tr(

√
ρ1/2σρ1/2) [1], and R is a reference system identical to the system Φ1,2 acts

on (which we assume to be L) and the maximally entangled state |γ〉 = 1√
dL

∑
i |i〉L |i〉R. After

optimizing over recovery channels RL←S , we may define the infidelity and the Choi infidelity of a
code ES←L respectively by1

ε(NS , ES←L) = 1− max
RL←S

f2(RL←S ◦ NS ◦ ES←L,1L), (5)

and
εChoi(NS , ES←L) = 1− max

RL←S
f2

Choi(RL←S ◦ NS ◦ ES←L,1L). (6)

Note that the Choi infidelity reflects the “average-case” behavior in the sense that it is directly
related to εavg = 1−maxRL←S

∫
dψ 〈ψ|RL←S ◦ NS ◦ ES←L(|ψ〉 〈ψ|) |ψ〉, where the integral is over

the Haar measure, by εChoi = dL+1
dL

εavg. We will sometimes simply use ε and εChoi to denote
ε(NS , ES←L) and εChoi(NS , ES←L) when the system under consideration is unambiguous. Clearly,
ε ≥ εChoi. We will use Ropt

L←S to represent the optimal recovery channel achieving ε and IL to
denote the effective noise channel RL←S ◦ NS ◦ ES←L in the logical system.

3 Metrological bound
Recently, QEC emerges as a useful tool to enhance the sensitivity of an unknown parameter in
quantum metrology [32–34, 48–57]. A good approximately error-correcting covariant code nat-
urally provides a good quantum sensor to estimate an unknown parameter θ in the symmetry
transformation e−iHSθ. Consider a quantum signal e−iHSθ in the physical system, for example, the
magnetic field in a spin system with HS being the angular momentum operator. The optimal sen-
sitivity is usually limited by the strength of noise in the system. Instead of using the entire system
to probe the signal, one could prepare an encoded probe state using covariant codes where HS is
mapped to HL associated with the logical system. Covariant codes with low infidelity significantly
reduce the noise in the logical system and therefore provide a good sensitivity of the signal.

No-go theorems in quantum metrology [28–34] prevent the existence of perfectly error-correcting
covariant codes in the above scenario. In particular, it was known that given a noise channel
NS(·) =

∑r
i=1KS,i(·)K†S,i and a physical Hamiltonian e−iHSθ, there exists an encoding channel

ES←L and a recovery channel RL←S such that

RL←S ◦ NS ◦ US,θ ◦ ES←L (7)

is a non-trivial unitary channel only if HS 6∈ span{K†S,iKS,j , ∀i, j} [34]. However, the above channel
(Eq. (7)) with respect to any perfectly error-correcting covariant code is simply UL,θ. Therefore,
we conclude that perfectly error-correcting covariant codes do not exist when

HS ∈ span{K†S,iKS,j , ∀i, j}, (8)

which we call the “Hamiltonian-in-Kraus-span” (HKS) condition. One could check that local Hamil-
tonians with non-trivial local errors is a special case of the HKS condition.

1There are other equivalent definitions of the code infidelity in the literature that have a quadratic difference in
terms of scaling with ours, e.g.,

√
1 − f2 in [10] or

√
1 − f in [47].
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Note that the no-go result might be circumvented when the system dimension is infinite. To
be more specific, perfect error-correcting codes that are covariant under U(1) or even an arbitrary
group G can be constructed using quantum systems that transform as the regular representation
of G which are infinite-dimensional when G is infinite and are equivalent to the notions of idealized
clocks or perfect reference frames [9, 10, 12].

3.1 Quantum channel estimation
From the discussion above, we saw that no-go theorems in quantum metrology help us extend the
scope of the Eastin–Knill theorem for covariant codes. As we will see below, a powerful lower
bound for the infidelity of covariant codes could also be derived thanks to recent developments in
quantum channel estimation [29, 30, 34–38].

Here we first review the definitions of QFIs for quantum states and then introduce the extensions
to quantum channels. The QFI is a good measure of the amount of information a quantum state ρθ
carries about an unknown parameter θ, characterized by the the quantum Cramér-Rao bound [58–
61], δθ ≥ 1/

√
NexprF (ρθ), where δθ is the standard deviation of any unbiased estimator of θ,

Nexpr is the number of repeated experiments and F (ρθ) is the QFI of ρθ. The QFI as the quantum
generalization of the classical Fisher information is not unique, due to the noncommutativity of
quantum operators. Two most commonly used QFIs are the symmetric logarithmic derivative
(SLD) QFI and the right logarithmic derivative (RLD) QFI, respectively defined by [58, 59, 62],

FS (ρθ) = Tr(ρθ(LS
θ )2), ∂θρθ = 1

2(LS
θ ρθ + ρθL

S
θ ), (9)

FR(ρθ) = Tr(ρθLR
θ L

R†
θ ), ∂θρθ = ρθL

R
θ , (10)

where the SLD LS
θ is Hermitian and the RLD LR

θ is linear. Note that FR(ρθ) = +∞ if
supp(∂θρθ) 6⊆ supp(ρθ). The QFIs satisfy many nice information-theoretic properties [38], such as
additivity F (ρθ ⊗ σθ) = F (ρθ) + F (σθ) and monotonicity F (N (ρθ)) ≤ F (ρθ) for θ-independent
channel N . Note that the SLD QFI is the smallest monotonic quantum extension from the classical
Fisher information and the quantum Cramér-Rao bound with respect to the SLD QFI is saturable
asymptotically (Nexpr � 1).

In this section, we will focus on the SLD QFI for quantum channels. Discussions on the RLD
QFI for quantum channels will be delayed to Sec. 4 where it is used. Given a quantum channel
Nθ, the (entanglement-assisted) SLD QFI of Nθ [35] is defined by

FS (Nθ) = max
ρ

FS ((Nθ ⊗ 1R)(ρ)), (11)

where R is an unbounded reference system. The regularized SLD QFI for quantum channels also
has a single-letter expression [34]:

F reg
S (Nθ) = lim

N→∞

FS (N⊗Nθ )
N

=
{

4 minh:βθ=0 ‖αθ‖ (S),
+∞ otherwise,

(S): i
r∑
i=1

K†i,θ∂θKi,θ ∈ span{K†i,θKj,θ, ∀i, j},
(12)

where Nθ(·) =
∑r
i=1Ki,θ(·)K†i,θ, h is a Hermitian operator in Cr×r, ‖·‖ is the operator norm and

αθ = (∂θKθ + ihKθ)†(∂θKθ + ihKθ), (13)

βθ = K†θhKθ − iK†θ∂θKθ. (14)

Here KT
θ = (KT

1,θ K
T
2,θ · · · KT

r,θ) ∈ Cd×rd is a block matrix where T means the transpose of a
matrix.

Note that when (S) is violated, F reg
S (Nθ) =∞ because we will have FS (N⊗Nθ ) ∝ N2 [34]. The

regularized SLD QFI is additive (see Appx. A) and could be calculated efficiently using semidefinite
programs (SDP) [29]. It is also monotonic, satisfying F reg

S (Φ1 ◦ (Nθ ⊗ 1) ◦ Φ2) ≤ F reg
S (Nθ) where

Φ1,2 are any parameter-independent channels, due to the monotonicity of the state QFI.
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3.2 Metrological bound
In order to derive a lower bound on the infidelity of covariant codes using the channel QFI, we
note that the channel QFI provides an upper limit to the sensitivity of θ for NS,θ = NS ◦ US,θ,
which cannot be broken using covariant QEC.

Concretely, we consider an encoding scheme based on covariant QEC, where the original system
consists of the physical system S and a noiseless ancillary qubit A and the logical system is a two-
dimensional system C. Suppose the original system is subject to Hamiltonian evolution e−iHSθ

and noise channel NS , then the logical system will be subject to a Z-rotation signal and a rotated
dephasing noise (defined later). Specifically, the Hamiltonian evolution in C is e−i(∆HL)ZCθ/2

where ZC is the Pauli-Z operator and the rotated dephasing noise channel has a noise rate smaller
than the code infidelity. The monotonicity of the channel QFI guarantees that the QFI of the
logical system cannot surpass the QFI of the original system and thus leads to a lower bound on
the code infidelity. The Hamiltonians and noises before and after the covariant encoding scheme
are listed in Fig. 1c.

To roughly estimate the scaling of the lower bound in the small infidelity limit, consider N
logical qubits each under a unitary evolution e−i(∆HL)ZCθ/2 with a noise rate ε. It is known that
the SLD QFI of a noiseless N -qubit GHZ state is (∆HL)2N2 [63]. Taking N = Θ(1/ε), the
total noise can be bounded by a small constant, and the state SLD QFI per qubit is still roughly
Θ((∆HL)2N) = Θ((∆HL)2/ε), which is always no greater than the regularized channel SLD QFI
F reg

S (NS,θ) before QEC. Thus, ε must be lower bounded by Θ((∆HL)2/F reg
S (NS,θ)). In fact, using

the regularized SLD QFI for quantum channels, we can prove the following theorem:

Theorem 1. Consider a covariant code ES←L under a noise channel NS(·) =
∑r
i=1KS,i(·)K†S,i.

If the HKS condition is satisfied, i.e.,

HS ∈ span{K†S,iKS,j , ∀i, j}, (15)

then ε(NS , ES←L) is lower bounded as follows,

ε ≥ `1
(

(∆HL)2

4F reg
S (NS , HS)

)
= (∆HL)2

4F reg
S (NS , HS) +O

((
(∆HL)2

4F reg
S (NS , HS)

)2)
, (16)

where `1(x) = (1+4x−
√

1 + 4x)/(2(1+4x)) = x+O(x2) is a monotonically increasing function and
F reg

S (NS , HS) is the regularized SLD QFI of NS,θ. Specifically, F reg
S (NS , HS) = 4 minh:βS=0 ‖αS‖,

h is a Hermitian operator in Cr×r. αS and βS are Hermitian operators acting on S defined by
αS = K†Sh2KS − H2

S and βS = K†ShKS − HS, where KT = (KT
1 KT

2 · · · KT
r ) ∈ CdS×rdS is a

block matrix.

Note that `1(x) ≤ 1/2 for all x and the lower bound does provide useful information when
ε ≥ 1/2. We remark that, in principle, the regularized SLD QFI on the right-hand side of Eq. (16)
could be replaced by any other type of QFIs because the SLD QFI is the smallest monotonic
quantum extension from the classical Fisher information. However, the regularized SLD QFI will
always lead to the tightest bound using our metrological approach, as we will see later.

3.3 Proof of Theorem 1
The main obstacle to proving Theorem 1 is to relate the infidelity of covariant codes to the QFI of
the effective quantum channel in the logical system. Here we overcome this obstacle and provide a
proof of Theorem 1 by employing entanglement-assisted QEC to reduce NS,θ to rotated dephasing
channels (the composition of dephasing channels and Pauli-Z rotations) whose QFI has simple
mathematical forms, and then connecting the noise rate of the rotated dephasing channels to the
infidelity of the covariant codes (see Fig. 1).

Single-qubit rotated dephasing channels take the form

Dp,φ(ρ) = (1− p)e−i
φ
2Zρei

φ
2Z + pe−i

φ
2ZZρZei

φ
2Z , (17)
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time order

(a)

(b)

Encoding

System 𝑆 ⊗ 𝐴 𝐶
Hamiltonian 𝐻𝑆⊗ 𝕀𝐴 (Δ𝐻𝐿/2)𝑍𝐶

Noise 𝒩𝑆⊗ 𝕀𝐴 𝒟*,12,32 (𝜀′ < 𝜀)

(c)

Figure 1: Reduction of NS,θ = NS ◦US,θ to rotated dephasing channels using entanglement-assisted QEC. (a)
represents the quantum channel RC←SA ◦ (NS,θ ⊗ 1A) ◦ ESA←C with a channel QFI no larger than F (NS,θ).
Because of the covariance of the code, (a) is equivalent to (b) which consists of a Pauli-Z rotation UC,θ and
a θ-independent rotated dephasing channel IC whose noise rate is smaller than ε(NS , ES←L) (see Lemma 1).
The Hamiltonians and noises before and after the encoding are listed in (c).

where Z is the Pauli-Z operator, 0 < p < 1/2 and φ is real. When φ is a function of θ, we could
calculate the regularized SLD QFI of Dp,φθ (see Appx. B in [34] or [64]):

F reg
S (Dp,φθ ) = (1− 2p)2(∂θφθ)2

4p(1− p) , (18)

which are both inversely proportional to the noise rate p when p is small—a crucial feature in
deriving the lower bounds.

Next, we present an entanglement-assisted QEC protocol to reduce NS to rotated dephasing
channels with a noise rate lower than ε(NS , ES←L). Let |0L〉 and |1L〉 be eigenstates respectively
corresponding to the largest and the smallest eigenvalues of HL. Consider the following two-
dimensional entanglement-assisted code

Erep
LA←C(|0C〉) = |0L0A〉 , Erep

LA←C(|1C〉) = |1L1A〉 , (19)

where A is a noiseless ancillary qubit and the superscript rep means “repetition”. The encoding
channel from the two-level system C to SA will simply be ESA←C =

(
ES←L⊗1A

)
◦Erep

LA←C . ESA←C
is still a covariant code whose logical and physical Hamiltonians are

HC = ∆HL

2 · ZC , HSA = HS ⊗ 1A. (20)

The noiseless ancillary qubit will help us suppress off-diagonal noises in the system because any
single qubit bit-flip noise on L could be fully corrected by mapping |iLjA〉 to |jC〉 for all i, j. In
fact, NS will be reduced to a rotated dephasing channel, as shown in the following lemma:

Lemma 1. Consider a noise channel NSA = NS ⊗ 1A. There exists a recovery channel RC←SA
such that the effective noise channel IC = RC←SA ◦NSA ◦ ESA←C is a rotated dephasing channel,
satisfying

IC = DC,ε′,φ′ , (21)

where ε′ ≤ ε(NS , ES←L).

Proof. Consider the following recovery channel

RC←SA = Rrep
C←LA ◦

(
Ropt
L←S ⊗ 1A

)
, (22)
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where

Rrep
C←LA(·) =(|0C〉 〈0L0A|+ |1C〉 〈1L1A|)(·)(|0L0A〉 〈0C |+ |1L1A〉 〈1C |)+

(|0C〉 〈1L0A|+ |1C〉 〈0L1A|)(·)(|1L0A〉 〈0C |+ |0L1A〉 〈1C |)+
dL−1∑
i=2

(|0C〉 〈iL0A|+ |1C〉 〈iL1A|)(·)(|iL0A〉 〈0C |+ |iL1A〉 〈1C |).
(23)

The last term above disappears when dL = 2.
One could check that

IC(|kC〉 〈jC |) =
{
|kC〉 〈jC | , k = j,

(1− 2ε′)eiφ′(k−j) |kC〉 〈jC | , k 6= j,
(24)

which indicates that IC = DC,ε′,φ′ (Eq. (21)). Here,

ε′ ≤ 1− f2(IC ,1C) ≤ 1− f2(Iopt
L ,1L) = ε(NS , ES←L). (25)

where IL = Ropt
L←S ◦ NS ◦ ES←L the first inequality follows from the worst-case entanglement

fidelity for rotated dephasing channels (see Appx. B), and the the second inequality follows from
1C = Rrep

C←LA ◦ E
rep
LA←C and the monotonicity of the fidelity [1].

Lemma 1 shows that NS could be reduced to a rotated dephasing channel IC through
entanglement-assisted QEC. Consider parameter estimation of θ in the quantum channel NS,θ =
NS ◦ US,θ. We have the error-corrected quantum channel

NC,θ = RC←SA ◦
(
NS,θ ⊗ 1A

)
◦ ESA←C = IC ◦ UC,θ, (26)

equal to a rotated dephasing channel with noise rate ε′ and phase φθ = φ′ + ∆HLθ. The mono-
tonicity of the regularized channel SLD QFI implies that

F reg
S (NS,θ) ≥ F reg

S (NC,θ), (27)

where

F reg
S (NS,θ) =

{
F reg

S (NS , HS) HS ∈ span{K†S,iKS,j , ∀i, j},
+∞ otherwise,

(28)

and

F reg
S (NC,θ) = (1− 2ε′)2(∆HL)2

4ε′(1− ε′) . (29)

Using Eq. (27) and ε′ ≤ ε < 1/2, we have

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4F reg
S (NS , HS) . (30)

Theorem 1 then follows from the fact that `1(·) is the inverse function of x = ε(1−ε)
(1−2ε)2 for ε ∈ [0, 1/2).

Moreover, any other types of regularized monotonic QFIs of Dp,φθ have the same values as the
regularized SLD QFI of Dp,φθ [64]. It implies that although the definition of QFI by generalizing the
classical Fisher information is not unique, one cannot derive tighter bounds on the code infidelity
by replacing the regularized SLD QFI with other types of QFIs in this proof.

4 Resource-theoretic bound
Now we demonstrate how quantum resource theory provides another pathway towards character-
izing the limitations of covariant QEC. More specifically, the covariance property of the allowed
operations indicates close connections to the (highly relevant) resource theories of asymmetry, ref-
erence frames, coherence, and quantum clocks [39–41, 44, 65]. In our current context, we work
with a resource theory of coherence (see e.g., [44] for more discussions on the setting) where the
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free (incoherent) states are those with density operators commuting with the physical Hamiltonian
HS , and the free operations are covariant operations CL←S from S to L satisfying

CL←S ◦ US,θ = UL,θ ◦ CL←S , ∀θ ∈ R. (31)

The free (covariant) operations are incoherence-preserving, i.e., map incoherent states to incoherent
states even with the assistance of reference systems [44]. (Note that in [44] covariant operations
are called time-translation invariant operations.)

The following lemma shows that the recovery channelRL←S for a covariant code can be assumed
to be covariant under two conditions: (1) the noise channel and the symmetry transformation
commutes (e.g., satisfied by the erasure and depolarizing channels of interest here); (2) US(θ) =
e−iHSθ and UL(θ) = e−iHLθ share a common period τ (which is not necessarily the fundamental
period), i.e., US,L(τ) = 1S,L. For example, when US(θ) and UL(θ) are both representations of
U(1), τ = 2π is the common period, which is a standard assumption in the theory of quantum
clocks [12, 44].

Lemma 2. Suppose NS ◦ US,θ = US,θ ◦ NS and UL,S(θ) share a common period τ . Then the code
infidelity ε(NS , ES←L) and the Choi code infidelity εChoi(NS , ES←L) stay the same if the recovery
channels are restricted to be covariant operations.

Proof. Let Ropt
L←S be the recovery channel such that 1−f2(Ropt

S←L◦NS ◦ES←L,1L) = ε(NS , ES←L).
Consider the following recovery channel:

Rcov
L←S = 1

τ

∫ τ

0
dθ UL,θ ◦ Ropt

L←S ◦ U
†
S,θ. (32)

We first observe that Rcov
L←S is covariant:

Rcov
L←S ◦ US,θ′ = 1

τ

∫ τ

0
dθ UL,θ ◦ Ropt

L←S ◦ U
†
S,θ−θ′ = UL,θ′ ◦ Rcov

L←S . (33)

Furthermore,

Rcov
L←S ◦ NS ◦ ES←L = 1

τ

∫ τ

0
dθ UL,θ ◦ (Ropt

L←S ◦ NS ◦ ES←L) ◦ U†L,θ, (34)

Using the concavity of f2(Φ,1) with respect to Φ and the monotonicity of the worst-case fi-
delity [45], we have 1 − f2(Rcov

S←L ◦ NS ◦ ES←L,1L) ≤ ε(NS , ES←L). By definition, the equality
holds.

Similarly, one could construct an optimal covariant recovery channel with respect to the Choi
code infidelity by replacing Ropt

L←S with the optimal recovery channel achieving the minimum Choi
infidelity in Eq. (32) and prove its optimality by noting that f2(Φ,1) is linear with respect to the
channel Φ and f(Φ,1) = f(U ◦ Φ ◦ U†,1) for any unitary channel U .

This lemma allows us to formulate covariant QEC as a resource state conversion task, where
one aims to transform noisy physical states to logical states by covariant operations (see Fig. 2a).
It has recently been found that, by analyzing suitable resource monotones (functions of states that
are nonincreasing under free operations), one can prove strong lower bounds on the infidelity of
transforming generic noisy states to pure resource states by any free operation, which underlies the
important task of distillation (see [42, 66, 67] for general results that apply to any well-behaved
resource theory, and [44] for discussions specific to covariant operations). Here, we use the RLD
QFI for quantum states, which is studied as a coherence monotone in [44], to derive bounds on the
performance of covariant QEC. In particular, the RLD QFI satisfies

FR(Rcov
L←S(ρS), HL) ≤ FR(ρS , HS), (35)

for all ρS and covariant operations Rcov
L←S where

FR(ρ,H) = FR(e−iHθρeiHθ) =
{

Tr(Hρ2Hρ−1)− Tr(ρH2) supp(HρH) ⊆ supp(ρ),
+∞ otherwise.

(36)
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≈
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Small RLD QFI Large RLD QFI 
𝑂(1/𝜀)

monotonicity

Figure 2: (a) As a case of the general no-go theorems for quantum resource purification, generic noisy coherent
states cannot be transformed to states within a neighborhood of pure coherent states using covariant operations.
(b) Specifically for covariant quantum error correction, a noisy coherent encoded state (e.g. NS ◦ ES←L(|+L〉))
cannot be transformed to states within a neighborhood of a pure coherent logical state (e.g. |+L〉), that is,
there exist fundamental limits on the overall accuracy of recovery (decoding). As illustrated at the bottom,
our specific bounds on the accuracy are derived from the monotonicity of RLD QFI under covariant operations.
The key intuition is that RLD QFI diverges as the infidelity with the target pure coherent state ε tends to zero,
thus recovery with too small ε is ruled out by the monotonicity of RLD QFI.

Notice that the RLD QFI FR(ρ,H) approaches infinity when ρ is coherent and its purity Tr(ρ2)
approaches one. Let ρS = NS ◦ES←L(ρL) where ρL is a pure coherent state. If the right-hand side
of Eq. (35) is finite, the left-hand side of Eq. (35) must also be finite, and thus a perfectly error-
correcting recovery channel does not exist (see Fig. 2b). That is, the RLD QFI is a distinguished
coherence monotone which can rule out generic noisy-to-pure transformations and further induce
lower bounds on the code infidelity. In fact, the RLD QFI FR(ρ,H) is lower bounded by O(1/ε)
when ρ is ε-close to a pure state |Ψ〉 in terms of infidelity, characterized by the following lemma:

Lemma 3 ([44]). Let ε̃ = 1− 〈Ψ|ρ|Ψ〉.

FR(ρ,H) ≥
(
VH(Ψ)− 3

√
2ε̃(∆H)2

2

)
· 1− 3ε̃+ ε̃2

ε̃
, (37)

where VH(Ψ) = 〈Ψ|H2|Ψ〉 − (〈Ψ|H |Ψ〉)2.

Proof. According to Corollary 1 in Supplementary Note 3 in [44],

FR(ρ,H) ≥ VH(Ψ̃) · 1− 3ε̃+ ε̃2

ε̃
, (38)

where Ψ̃ is the eigenvector of ρ which corresponds to the largest eigenvalues of ρ. Let λmax be the
largest eigenvalue of ρ. Then 〈Ψ|ρ|Ψ〉 = 1− ε̃ ≤ λmax. Moreover,

1− ε̃ = 〈Ψ|ρ|Ψ〉 ≤ 〈Ψ| (λmax |Ψ̃〉 〈Ψ̃|+ ρ− λmax |Ψ̃〉 〈Ψ̃|) |Ψ〉

≤ λmax
∣∣〈Ψ|Ψ̃〉∣∣2 + (1− λmax)(1−

∣∣〈Ψ|Ψ̃〉∣∣2) ≤ λmax
∣∣〈Ψ|Ψ̃〉∣∣2 + ε̃(1−

∣∣〈Ψ|Ψ̃〉∣∣2),
(39)

leading to
∣∣〈Ψ|Ψ̃〉∣∣2 ≥ 1 − 2ε̃. Without loss of generality, assume the largest and the smallest

eigenvalues of H is ∆H
2 and −∆H

2 . Then∣∣VH(Ψ̃)− VH(Ψ)
∣∣ ≤ ∣∣Tr

(
H(|Ψ̃〉 〈Ψ̃| − |Ψ〉 〈Ψ|)H |Ψ̃〉 〈Ψ̃|

)∣∣
+
∣∣Tr
(
(|Ψ̃〉 〈Ψ̃| − |Ψ〉 〈Ψ|)(H2 −H |Ψ̃〉 〈Ψ̃|H

)∣∣
≤
∥∥|Ψ̃〉 〈Ψ̃| − |Ψ〉 〈Ψ|∥∥1

(
〈Ψ|H2|Ψ〉+

∥∥H2 −H |Ψ̃〉 〈Ψ̃|H
∥∥)

≤ 2
√

2ε̃ · 3(∆H)2

4 ,

(40)

where in the second step we use |Tr(AB)| ≤ ‖A‖1 ‖B‖ and in the third step we use∥∥|Ψ̃〉 〈Ψ̃| − |Ψ〉 〈Ψ|∥∥1 = 2
√

1−
∣∣〈Ψ|Ψ̃〉∣∣2 ≤ 2

√
2ε̃. Eq. (37) then follows from Eq. (38) and

Eq. (40).
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Given Lemma 2 and Lemma 3, we are now ready to present our resource-theoretic bound on
the code infidelity. The intuition on the operational level is that the accuracy of the optimal
recovery transformation, which can be understood as a resource conversion task, is limited by the
monotonicity of RLD QFI that diverges as approaching the pure target state (see Fig. 2b). More
specifically, we compare the resource monotone, i.e., the RLD QFI of the decoded coherent state
with that of the original noisy coherent state. The lower bound then follows from the monotonicity
of the RLD QFI and the fact that the RLD QFI of the decoded coherent state is lower bounded
by O(1/ε).

Note that we will also use the RLD QFI for quantum channels defined by [36, 38]

FR(Nθ) =
{∥∥TrS(Nθ)

(
(∂θΓNθ )(ΓNθ )−1(∂θΓNθ )

)∥∥ (R),
+∞ otherwise,

(R): span{∂θKi,θ, ∀i} ⊆ span{Ki,θ, ∀i},
(41)

where Nθ(·) =
∑r
i=1Ki,θ(·)K†i,θ. Here we use the Choi operator of Nθ: ΓNθ = (Nθ ⊗ 1)(Γ),

where Γ = |Γ〉 〈Γ| and |Γ〉 =
∑
i |i〉 |i〉. S(Nθ) denotes the output system of Nθ. FR(Nθ) is also

additive [36]. The result we obtained is the following.

Theorem 2. Consider a covariant code ES←L under a noise channel NS(·) =
∑r
i=1KS,i(·)K†S,i.

If NS commutes with US,θ, UL,S(θ) share a common period and

span{KS,iHS , ∀i} ⊆ span{KS,i, ∀i}, (42)

then ε and εChoi are lower bounded as follows,

ε ≥ `2
(

(∆HL)2

4FR(NS , HS)

)
= (∆HL)2

4FR(NS , HS) +O

((
(∆HL)2

4FR(NS , HS)

)2)
, (43)

and

εChoi ≥ `3
(

Tr(H2
L)

dLFR(NS , HS)

)
= Tr(H2

L)
dLFR(NS , HS) +O

((
Tr(H2

L)
dLFR(NS , HS)

)2)
, (44)

where `2(x) = x + O(x2) is the inverse function of the monotonic increasing function x =
1/((1− 3ε+ ε2)(1− 6

√
2ε)) for ε ∈ [0, 1/72), `3(x) = x+O(x2) is the inverse function of the mono-

tonic increasing function x = 1/((1− 3ε+ ε2)(1− 3dL(∆HL)2

2Tr(H2
L

)
√

2ε)) for ε ∈ [0, 2Tr(H2
L)2

9d2
L

(∆HL)4 ), and
FR(NS , HS) is the RLD QFI of NS,θ. Specifically, FR(NS , HS) =

∥∥TrS
(
ΓNS ,HSSR (ΓNSSR)−1ΓNS ,HSSR

)∥∥,
with ΓNSSR = (NS⊗1R)(ΓSR) and ΓNS ,HSSR = (NS⊗1R)

(
(HS⊗1R)ΓSR

)
−(NS⊗1R)

(
ΓSR(HS⊗1R)

)
,

where ΓSR = |Γ〉SR 〈Γ|SR and |Γ〉SR =
∑
i |i〉S |i〉R.

Proof. Let |+L〉 = |0L〉+|1L〉√
2 . Then according to Lemma 2, there exists a covariant recovery channel

Rcov
L←S such that

1− 〈+L|ρL|+L〉 ≤ ε, (45)

where ρL = (Rcov
L←S ◦ NS ◦ ES←L)(|+L〉 〈+L|). According to Lemma 3,

FR(ρL, HL) ≥ 1− 3ε+ ε2

ε
·
(
VHL(|+L〉 −

3
√

2ε(∆HL)2

2

)
, (46)

where the variance VHL(|+L〉) = 〈+L|H2
L|+L〉 − 〈+L|HL|+L〉2 = (∆HL)2

4 . ε < 1/72 guarantees the
right-hand side is positive. On the other hand, using Eq. (35),

FR(ρL, HL) ≤ FR(ρS , HS) = FR(NS,θ(ES←L(|+L〉 〈+L|))) ≤ FR(NS,θ), (47)

where ρS = (NS ◦ ES←L)(|+L〉 〈+L|) and

FR(NS,θ) =
{
FR(NS , HS) Eq. (42),
+∞ otherwise.

(48)
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Using Eq. (46) and Eq. (47), we have

ε · 1
(1− 3ε+ ε2)(1− 6

√
2ε)
≥ (∆HL)2

4FR(NS , HS) . (49)

Eq. (43) then follows from the fact that `2(·) is the inverse function of x = 1
(1−3ε+ε2)(1−6

√
2ε) .

Similarly, let |γLR〉 = 1√
dL

∑dL
i=1 |i〉L |i〉R. Then according to Lemma 2, there exists a covariant

recovery channel RChoi
L←S such that

1− 〈γLR|ρLR|γLR〉 ≤ εChoi, (50)

According to Lemma 3,

FR(ρLR, HL ⊗ 1R) ≥ 1− 3ε+ ε2

ε
·
(
VHL⊗1R(|γLR〉)−

3
√

2ε(∆HL)2

2

)
≥ 1− 3ε+ ε2

ε
·
(

Tr(H2
L)

dL
− 3
√

2ε(∆HL)2

2

)
.

(51)

The rest of the proof is exactly the same as in the proof of the lower bound on the worst-case
infidelity.

As mentioned before, it is always true that FR(NS,θ) ≥ F reg
S (NS,θ). Moreoever, `3(x) ≤ `2(x) ≤

`1(x) for all x,2 therefore Theorem 1 provides a tighter bound on the code infidelity than Theorem 2.
Note that the resource theory approach operates on the state level, which is fundamentally different
from the metrological approach. The assumptions and quantities involved in the two approaches
are also different. From the proof of Theorem 2, we see that there are three advantages of the
resource-theoretic approach: (1) We can also derive a lower bound on the Choi code infidelity. (2)
We can replace the entanglement-assisted RLD QFI with the one without entanglement assistance
maxρ FR(Nθ(ρ)) in Eq. (43) which might tighten it in certain scenarios. (3) The lower bounds are
state-dependent, e.g., we are allowed to replace FR(NS , HS) with FR((NS ◦ES←L)(|+L〉〈+L|), HS)
in Eq. (43), which may be of independent interest in determining the lower bounds on the code
infidelity for some special types of covariant codes.

5 Local Hamiltonians and local noises
One of the most common scenarios where covariant codes are considered is when S is an n-partite
system, consisting of subsystems S1, S2, . . . , Sn. The physical Hamiltonian and the noise channel
are both local, given by

HS =
n∑
k=1

HSk , NS =
n⊗
k=1
NSk , NSk(·) =

rk∑
i=1

KSk,i(·)K
†
Sk,i

. (52)

In general, it takes exponential time (in the number of subsystems) to solve our lower bounds on
the code infidelity. However, when the Hamiltonians and the noises are local, using the additivity
of channel QFIs, we could directly calculate the lower bounds, requiring only computation of the
channel QFIs in each subsystem. To be specific, for ε-correctable codes under NS , Theorem 1
indicates that when

HSk ∈ span{K†Sk,iKSk,j , ∀i, j}, ∀k, (53)

we have

ε ≥ `1
(

(∆HL)2

4
∑n
k=1 F

reg
S (NSk , HSk)

)
. (54)

2Note that when dL = 2, `2(x) = `3(x).
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Instead of finding bounds for local noise channels NS with certain noise rates, we sometimes
are more interested in the capability of a code to correct single errors (each described by MSk).
Consider the single-error noise channel

MS =
n∑
k=1

qkMSk ,
n∑
k=1

qk = 1, (55)

where qk is the probability that an error MSk occurs on the k-th subsystem. In order to obtain
lower bounds on the code infidelity under noise channels MS , we use the following local noise
channel

NS(δ) =
n⊗
k=1
NSk(δ) =

n⊗
k=1

(
(1− δqk)1 + δqkMSk

)
= (1− δ)1 + δ

n∑
k=1

qkMSk +O(δ2), (56)

whose local noise rates are proportional to a small positive parameter δ. Using the concavity of
f2(Φ,1) with respect to the channel Φ, we have

f2(RL←S ◦ NS(δ) ◦ ES←L,1L) ≥ (1− δ) + δf2(RL←S ◦MS ◦ ES←L,1L) +O(δ2). (57)

Taking the limit δ → 0+, we must have ε(MS , ES←L) ≥ lim infδ→0+
1
δ ·ε(NS(δ), ES←L). Therefore,

for ε-correctable codes under single-error noise channels MS , Theorem 1 indicates that when
Eq. (53) is satisfied,

ε ≥ lim inf
δ→0+

`1

(
(∆HL)2

4δ
∑n
k=1 F

reg
S (NSk(δ), HSk)

)
. (58)

Note that discussions here analogously apply to Theorem 2 due to the additivity of the channel
RLD QFI, although we will only focus on Theorem 1 starting now since it provides the tightest
bound in the following scenarios.

For generic error models with noises on multiple subsystems, e.g., the random phase error
model in [12], the regularized SLD QFI and thus the lower bound on the code infidelity could be
difficult to compute. In Appx. C, we derive an upper bound on the regularized SLD QFI for multi-
error noise channels which is efficiently computable in certain scenarios and provide an example of
multiple erasure errors and local Hamiltonians.

5.1 Erasure noise
Now we present our bounds for the local erasure noise channel N e(ρ) = (1− p)ρ+ p |vac〉 〈vac| on
each subsystem. Here p is the noise rate and we use the vacuum state |vac〉 to represent the state
of the erased subsystems. The Kraus operators for N e are

K1 =
√

1− p1, Ki+1 = √p |vac〉 〈i| , ∀1 ≤ i ≤ d. (59)

Different subsystems can have different noise rates pk and dimensions dk. As derived in Appx. D,
the regularized SLD QFI for erasure noise is

F reg
S (N e, H) = (∆H)2 1− p

p
. (60)

For ε-correctable codes under local erasure noise channel N e
S =

⊗n
k=1N e

Sk
, we have

ε ≥ `1

(
(∆HL)2

4
∑n
k=1

1−pk
pk

(∆HSk)2

)
, (61)

using Eq. (54). For ε-correctable codes under single-error erasure noise channel Me
S =∑n

k=1 qkMe
Sk

whereMe
Sk

(ρSk) = |vac〉 〈vac|Sk ,

ε ≥ `1

(
(∆HL)2

4
∑n
k=1

1
qk

(∆HSk)2

)
, (62)
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using Eq. (58). In particular, when the probability of erasure is uniform on each subsystem, i.e.,
qk = 1

n , we have

ε ≥ `1
(

(∆HL)2

4n
∑n
k=1(∆HSk)2

)
= (∆HL)2

4n
∑n
k=1(∆HSk)2 +O

((
(∆HL)2

4n
∑n
k=1(∆HSk)2

)2)
. (63)

As a comparison, Theorem 1 in [10] says that

ε ≥ (∆HL)2

4n2 maxk(∆HSk)2 . (64)

Our bound Eq. (63) has a clear advantage in the small infidelity limit by improving the maximum
of ∆HSk to their quadratic mean. A direct implication of Eq. (63) is an improved approximate
Eastin–Knill theorem which establishes the infidelity lower bound for covariant codes with respect
to special unitary groups (see Appx. F).

5.2 Depolarizing noise
Next, we present our bounds for local depolarizing noise channel N d(ρ) = (1 − p)ρ + p1d on each
subsystem, which has not been studied before. Again, we assume different subsystems can have
different noise rates pk and dimensions dk. The Kraus operators for N d are

K1 =
√

1− d2 − 1
d2 p1, Ki =

√
p

d2Ui−1, ∀2 ≤ i ≤ d2, (65)

where {U0 = 1, U1, . . . , Ud2
k
−1} is a unitary orthonormal basis in Cd×d.

In order to apply Theorem 1, we need to solve the following SDP

F reg
S (N d, H) = min

h:β=0
4 ‖α‖ , (66)

where β = K†hK−H and α = K†h2K−H2.
When d = 2, as shown in Appx. D, we have F reg

S (N d, H) = (∆H)2 2(1−p)2

p(3−2p) .When all subsystems
are qubits, for ε-correctable codes under local depolarizing noise channels N d

S =
⊗n

k=1N d
Sk
,

ε ≥ `1

 (∆HL)2

4
∑n
k=1

2(1−pk)2

pk(3−2pk) (∆HSk)2

 , (67)

using Eq. (54) and for ε-correctable codes under single-error depolarizing noise channels Md
S =∑n

k=1 qkMd
Sk

whereMd
Sk

(ρSk) = 1

2 ,

ε ≥ `1

(
3(∆HL)2

8
∑n
k=1

1
qk

(∆HSk)2

)
, (68)

using Eq. (58).
The situation is more complicated when d > 2, because the regularized SLD QFI may not have

a closed-form expression. Instead, we show in Appx. E that

F reg
S (N d, H)≤(∆H)2 (1− p)2

p(1+ 2
d2−p)

≤(∆H)2 1− p
p

, (69)

by choosing a special h which satisfies β = 0 to calculate an upper bound on 4 minh:β=0 ‖α‖.
Note that the right-hand side of Eq. (69) is equal to the regularized SLD QFI for erasure channels
Eq. (60). We conclude that Eqs. (61)-(63) hold true for general depolarizing channels as well,
regardless of the dimensions of subsystems. We also remark that the upper bound on the regularized
SLD QFI for depolarizing channels we derived here might be of independent interest in quantum
metrology.
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Note that the channel RLD QFI FR(N d
Sk
, HSk) also upper bounds F reg

S (N d
Sk
, HSk) and has

a closed-form expression. The RLD QFI FR(N d, H) for depolarizing channels could be directly
calculated using

FR(N d, H) =
∥∥TrS(Nd)

(
ΓN

d,H(ΓN
d
)−1ΓN

d,H
)∥∥, (70)

where ΓNd = (N d ⊗ 1)Γ, ΓNd,H = (N d ⊗ 1)(|H〉 〈Γ| − |Γ〉 〈H|) and |H〉 = (H ⊗ 1) |Γ〉. Then

FR(N d, H) = (1− p)2

4(1− d2−1
d2 p)

(∆H)2 + d(1− p)2

p
Tr(H2), (71)

where the second term increases linearly with respect to d, meaning the RLD QFI only provides a
close bound for a small subsystem dimension.

6 Example: Thermodynamic codes
Finally, we provide an example that saturates the lower bound for single-error erasure noise chan-
nels in the small infidelity limit and matches the scaling of the lower bound for single-error de-
polarizing noise channels, while previously only the scaling optimality for erasure channels was
demonstrated [10].

We consider the following two-dimensional thermodynamic code [10, 19, 68]

ES←L(|0L〉) = |g0〉 = |mn〉 , (72)
ES←L(|1L〉) = |g1〉 = |(−m)n〉 , (73)

where

|(±m)n〉 =
(

n
n±m

2

)− 1
2 ∑

j:
∑

k
jk=±m

|j〉 , (74)

and j = (j1, j2, . . . , jn) ∈ {−1, 1}n. The logical subspace is spanned by two Dicke states with
different values of the total angular momentum along the z-axis. We also assume n+m is an even
number and 3 ≤ m� N . It is a covariant code whose physical and logical Hamiltonians are

HS =
n∑
k=1

(σz)Sk , HL = mZL, (75)

where σz = |1〉 〈1| − |−1〉 〈−1|.
Let |g(k)

0,±1〉 = |(m± 1)n−1〉S\Sk |vac〉Sk , |g
(k)
1,±1〉 = |(−m± 1)n−1〉S\Sk |vac〉Sk , which represent

the logical states after an erasure error occurs on Sk, and Π⊥ be the projector onto the orthogonal
subspace of span{|g(k)

0,±1〉 , |g
(k)
1,±1〉 , ∀k}. Consider the erasure noise channel MS = 1

n

∑n
k=1MSk

whereMSk(ρSk) = |vac〉 〈vac|Sk and the recovery channel

RL←S(ρS) =
n∑
k=1

1∑
i,i′=0

∑
j=±1

|gi〉 〈g(k)
i,j | ρS |g

(k)
i′,j〉 〈gi′ |+ Tr(Π⊥ρSΠ⊥) |g0〉 〈g0| , (76)

which maps the state |g(k)
i,±1〉 to |gi〉 for all k. Then we could verify that RL←S ◦ MS ◦ ES←L =

Dp,0 with p = 1
2
(
1 −

√
1− m2

n2

)
. Using the relation between the noise rate p and the worst-case

entanglement fidelity of a dephasing channel (see Appx. B), we must have

ε(MS , ES←L) ≤ 1− f2(RL←S ◦MS ◦ ES←L,1L) (77)

= 1
2

(
1−

√
1− m2

n2

)
= m2

4n2 +O

(
m4

n4

)
. (78)

On the other hand, the lower bound (Eq. (63)) for ε = ε(MS , ES←L) is given by

ε ≥ `1
(
m2

4n2

)
= m2

4n2 +O

(
m4

n4

)
, (79)
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which is saturated asymptotically when m/N → 0.
Next, we consider the single-error depolarizing noise channel MS = 1

n

∑n
k=1MSk where

MSk(ρSk) = 1

2 . It is in general difficult to write down the optimal recovery map explicitly.
Instead, in order to calculate ε(MS , ES←L), we apply Corollary 2 in [20] to calculate an upper
bound on the infidelity of thermodynamic codes in the limit m/N → 0 and we obtain (see details
in Appx. G)

ε(MS , ES←L) ≤ 3m2

4n2 + o

(
m2

n2

)
, (80)

which also matches the scaling of our lower bound for depolarizing noise channels (Eq. (68)), i.e.,
ε(MS , ES←L) ≥ 3m2

8n2 +O
(
m4

n4

)
.

7 Conclusions and outlook
In this paper, we advanced the understanding of covariant QEC by leveraging insights and tech-
niques from quantum metrology and quantum resource theory. We first presented covariant QEC
as a special type of metrological protocol where the sensitivity in parameter estimation could be
linked to the code infidelity. We took inspirations from recent developments in quantum channel
estimation: a no-go theorem [28–34] on the existence of perfect QEC was discovered based on a
relation between Hamiltonians and noises (the HKS condition) which leads to a no-go theorem for
covariant QEC; efficiently computable QFIs of quantum channels were also proposed [34, 36, 38],
which leads to efficiently computable lower bounds for the code infidelity under generic noise chan-
nels. We also demonstrated how covariant QEC can be understood from an operational resource
theory perspective, where the key insight is that there are fundamental limits on the distillation of
pure coherent states using noisy ones [42, 44]. The lower bounds we derived not only have a broad
range of applications, but also improve upon previous lower bounds, which also lead to an improved
approximate Eastin-Knill theorem that may be of particular interest in quantum computation.

In our metrological proof of the infidelity lower bounds, we reduced noisy quantum channels to
rotated dephasing channels using one noiseless ancillary qubit. It in turn provided an entanglement-
assisted metrological protocol for channel estimation which might be of independent interest in
quantum metrology. One implication of it is that known covariant codes might help improve the
lower bounds for the channel QFIs, in situations where they are hard to calculate. Conversely, it
indicates that lower bounds on the code infidelity might be improved if a separation between the
entanglement-assisted QFIs with respect to one noiseless ancillary qubit and those with respect to
an unbounded ancillary system could be identified.

There are still many open questions and future directions in the study of covariant QEC. First,
it is not known, whether the HKS condition, which was shown to be sufficient for the non-existence
of perfect covariant QEC codes, is also necessary. There are some examples of perfect covariant
QEC codes, such as the [[4,2,2]] QEC code under single-qubit erasure noise [10, 69], repetition codes
under bit-flip noise [48–50, 52], but it is not yet clear how to generalize those examples. On the
other hand, when the HKS condition is satisfied, it would also be desirable to obtain a systematic
procedure to construct covariant codes saturating the infidelity lower bounds, at least in terms of
scaling [12]. From the resource theory perspective, it would be interesting to investigate whether
different monotones may induce other useful bounds, and whether invoking the resource theory
of channels (see e.g., [70, 71]) approaches may lead to new insights. It would also be important
to further explore possible implications of the limitations on covariant QEC for physics, where
symmetries naturally play prominent roles in a wide range of scenarios.

Note added. During the completion of this work, an independent work by Kubica and Demkowicz-
Dobrzanski [47] appeared on arXiv, where a lower bound on the infidelity of covariant codes was
also derived using tools from quantum metrology. Note that we employed different techniques
and obtained lower bounds with a quadratic advantage in the small infidelity limit over the one
in [47]. The bound in [47] was recently improved in [72] by quantifying the code inaccuracy using
the diamond norm. Note that our bound still performs better in the small infidelity limit because
1− f2(|ψ〉 , ρ) ≤ 1

2 ‖|ψ〉 〈ψ| − ρ‖1.
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A Additivity of the regularized SLD QFI
Here we prove the additivity of the regularized SLD QFI:

F reg
S (Nθ ⊗ Ñθ) = F reg

S (Nθ) + F reg
S (Ñθ), (81)

for arbitrary quantum channels Nθ and Ñθ.
First, according to the additivity of the state QFI, we must have

F reg
S (Nθ ⊗ Ñθ) ≥ F reg

S (Nθ) + F reg
S (Ñθ). (82)

Thus, we only need to prove

F reg
S (Nθ ⊗ Ñθ) ≤ F reg

S (Nθ) + F reg
S (Ñθ). (83)

We use the following definition of the regularized SLD QFI [29, 30, 34] (which is equivalent to
Eq. (12))

F reg
S (Nθ) =

{
4 minK′:β=0 ‖α‖ , i

∑r
i=1(∂θKi)†Ki ∈ span{K†iKj , ∀i, j},

+∞ otherwise,
(84)

where K′ is any set of Kraus operators representing Nθ, α =
∑r
i=1(∂θK ′i)†(∂θK ′i) and β =

i
∑r
i=1(∂θK ′i)†K ′i. Without loss of generality, assume both F reg

S (Nθ) and F reg
S (Ñθ) are finite,

i.e., i
∑r
i=1(∂θKi)†Ki ∈ span{K†iKj , ∀i, j} and i

∑r̃
i=1(∂θK̃i)†K̃i ∈ span{K̃†i K̃j , ∀i, j}. We first

note that F reg
S (Nθ ⊗ Ñθ) is also finite, because

i
r∑
i=1

r̃∑
j=1

(∂θ(Ki ⊗ K̃j))†(Ki ⊗ K̃j) = i
r∑
i=1

(∂θKi)†Ki ⊗ 1 + i
r̃∑
j=1

1⊗ (∂θK̃j)†K̃j (85)

∈ span{1⊗K†iKj , K̃
†
i K̃j ⊗ 1, ∀i, j}. (86)

According to Eq. (84), there exists K′ and K̃′ such that β = β̃ = 0 and

F reg
S (Nθ) = 4 ‖α‖ , F reg

S (Ñθ) = 4 ‖α̃‖ . (87)

Then ˜̃K ′ij = K ′i ⊗ K̃ ′j is a set of Kraus operators representing Nθ ⊗ Ñθ.

˜̃α =
r∑
i=1

r̃∑
j=1

∂θ( ˜̃Kij)†∂θ( ˜̃Kij) = α⊗ 1 + 1⊗ α̃+ 2β ⊗ β̃ = α⊗ 1 + 1⊗ α̃, (88)

˜̃β = β ⊗ 1 + 1⊗ β̃ = 0. (89)

Therefore F reg
S (Nθ ⊗ Ñθ) ≤ 4

∥∥ ˜̃α
∥∥ = 4 ‖α‖+ 4 ‖α̃‖ = F reg

S (Nθ) + F reg
S (Ñθ).
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B Worst-case entanglement fidelity for rotated dephasing channels
Here we calculate the worst-case entanglement fidelity for rotated dephasing channels (Eq. (17))

Dp,φ(ρ) = (1− p)e−i
φ
2Zρei

φ
2Z + pe−i

φ
2ZZρZei

φ
2Z . (90)

We use the following formula for the worst-case entanglement fidelity [45]:

f2(Dp,φ,1) = min
|ψ〉
〈ψ| (Dp,φ ⊗ 1)(|ψ〉 〈ψ|) |ψ〉 . (91)

Let |ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉, then

(Dp,φ ⊗ 1)(|ψ〉 〈ψ|) =
α00α

∗
00 α00α

∗
01 (1− 2p)e−iφα00α

∗
10 (1− 2p)e−iφα00α

∗
11

α00α
∗
01 α01α

∗
01 (1− 2p)e−iφα01α

∗
10 (1− 2p)e−iφα01α

∗
11

(1− 2p)eiφα10α
∗
00 (1− 2p)eiφα10α

∗
01 α10α

∗
10 α10α

∗
11

(1− 2p)eiφα11α
∗
00 (1− 2p)eiφα11α

∗
01 α11α

∗
10 α11α

∗
11

 . (92)

Then

1− f2(Dp,φ,1) = max
α00,01,10,11

2Re[(1− (1− 2p)e−iφ)](|α00|2 + |α01|2)(|α10|2 + |α11|2)

= 1
2(1− (1− 2p) cosφ) ≥ p.

(93)

C An upper bound on the regularized SLD QFI for multi-error noise
channels

Consider the following types of noise channels and physical Hamiltonians:

MS =
∑
χ∈X

qχMχ, HS =
∑
χ∈X

Hχ. (94)

where qχ > 0,
∑n
χ∈X qχ = 1, X is a collection of sets of subsystems and Mχ and Hχ act on the

corresponding sets of subsystems. For example, in the single-error case, X is the collection of all
local subsystems {{S1}, {S2}, . . . , {Sn}}.

Assume that the HKS condition is satisfied for each χ, i.e., Hχ ∈ span{K†χ,iKχ,j , ∀i, j} and
that the set of Hamiltonians {Hχ}χ∈X commute pairwise, i.e., [Hχ, Hχ′ ] = 0 for all χ, χ′ ∈ X .
We then derive an upper bound of F reg

S (MS , HS) = 4 minh:βS=0 ‖αS‖, where

αS = K†Sh
2KS −H2

S , and βS = K†ShKS −HS . (95)

When the HKS condition is satisfied for each χ, to derive an upper bound on F reg
S (MS , HS),

we can restrict h to be a block diagonal matrix when partitioning the indices of Kraus operators
according to X . Then

αS =
∑
χ

qχK†χh2
χKχ −

(∑
χ

Hχ

)2
, and βS =

∑
χ

qχK†χhχKχ −Hχ. (96)

Let βχ = qχK†χhχKχ −Hχ. Then

F reg
S (MS , HS) = 4 min

h:βS=0
‖αS‖ ≤ 4 min

hχ:βχ=0
‖αS‖

≤ 4 min
hχ:βχ=0

∥∥∥∥∥∑
χ

qχK†χh2
χKχ

∥∥∥∥∥ ≤ 4
∑
χ∈X

min
hχ:βχ=0

∥∥qχK†χh2
χKχ

∥∥ . (97)

The upper bound on the right-hand side of Eq. (97) is efficiently computable when the size of
each set χ is small. However, given X and HS , it is in general not clear how to decompose HS
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into
∑
χ∈X Hχ in order to attain the optimal upper bound, and the upper bound might not be

tight.
Now we provide an example, where we compute the upper bound of the regularized SLD QFI

for t erasure errors and identical local Hamiltonians H. We have

MS =
∑
χ∈X

qχMχ, HS =
n∑
k=1

HSk =
∑
χ∈X

Hχ. (98)

where X is the collection of all size-t sets of subsystems, Mχ is the completely erasure channel
on the corresponding set, qχ = 1/

(
n
t

)
for all χ, Hχ =

∑t
i=1Hχi/

(
n−1
t−1
)
and HSk is identical for

each subsystem which we denote by H. Suppose βχ = qχK†χhχKχ − Hχ, where Kχ,(i1···it) =
(|vac⊗t〉χ 〈i1 · · · it|χ). Then hχ = Hχ/qχ and qχK†χh2

χKχ = H2
χ/qχ. We have

F reg
S (MS , HS) ≤ 4

∑
χ∈X

min
hχ:βχ=0

∥∥qχK†χh2
χKχ

∥∥
= 4 ‖H‖2

(
n

t

)2
t2(

n−1
t−1
)2 = 4 ‖H‖2 n2 = (∆H)2n2,

(99)

It implies that

ε ≥ `1
(

(∆HL)2

4n2(∆H)2

)
, (100)

for arbitrary t, which matches our bound (Eq. (63)) in the t = 1 case. It is unclear though, whether
the bound is tight. Note that a similar bound for t erasure errors were derived in [72].

D Regularized SLD QFI for erasure and single-qubit depolarizing chan-
nels

Here we calculate the SLD QFI for erasure and depolarizing channels. We first calculate
F reg

S (N e, H) where N e = (1− p)ρ+ p |vac〉 〈vac|. Using the Kraus operators in Eq. (59),

β = K†hK−H ⇔ h =
(
h11
1−p 0
0 H−h111

p

)
. (101)

Then

α = K†h2K−H2 = h2
11

1− p + (H − h111)2

p
−H2 = 1− p

p
H2 − 2h11

p
H + h2

11
p(1− p) , (102)

F reg
S (N e, H) = 4 min

h11
‖α‖ = 4 max

ρ
min
h11

Tr(ρα)

= 4 max
ρ

1− p
p

(
Tr(H2ρ)− Tr(ρH)2) = 1− p

p
(∆H)2,

(103)

where we use the minimax theorem [73, 74] in the second step.
We use the formula in Sec. VII(A) in [34] to calculate the regularized SLD QFI F reg

S (N d, H)
for single-qubit depolarizing channels N d(ρ) = (1− p)ρ+ p12 .

F reg
S (N d, H) = (∆H)2 1− w

w
, (104)

where w = 4
(
y2

2y + xy
x+y

)
with x = 1− 3

4p and y = p
4 . Then F

reg
S (N d, H) = (∆H)2 2(1−p)2

p(3−2p) .

Accepted in Quantum 2021-07-29, click title to verify. Published under CC-BY 4.0. 18



E Regularized SLD QFI for general depolarizing channels
Here we prove an upper bound on F reg

S (N d, H) for general depolarizing channels N d(ρ) = (1 −
p)ρ+ p1d with the Kraus operators

K1 =
√
x1, Ki = √yUi−1, ∀2 ≤ i ≤ d2, (105)

where we define x = 1− d2−1
d2 p, y = 1

d2 p.
Any h̃ satisfying β̃ = K†h̃K−H = 0 provides an upper bound on F reg

S (N d, H) through

F reg
S (N d, H) = 4 min

h:β=0
‖α‖ ≤ 4 ‖α‖ |h=h̃. (106)

To find a suitable h̃ which provides a good upper bound on F reg
S (N d, H), we use h̃ which is the

solution of
4 min
h:β=0

Tr(α). (107)

The solution of Eq. (107) is

h̃ = 1
2zd


0

√
xy

x+yTr(HU †1U0) · · ·
√
xy

x+yTr(HU †d2−1U0)
√
xy

x+yTr(HU †0U1) 0 · · · 1
2Tr(HU †d2−1U1)

...
...

. . .
...√

xy

x+yTr(HU †0Ud2−1) 1
2Tr(HU †1Ud2−1) · · · 0

 , (108)

where z = xy
x+y + y(d2−2)

4 and we used the assumption Tr(H) = 0 and

K†h̃2K =
(

1
4z −

y

4z2

(
1
4 −

xy

(x+ y)2

)
− 1
)
H2 + y

4z2d

(
x

x+ y
− 1

2

)2
Tr(H2)1. (109)

Using ‖H2‖ = (∆H)2

4 and Tr(H2) ≤ d
4 (∆H)2,

F reg
S (N d, H) ≤ 4 ‖α‖ ≤ (∆H)2

(
1
4z − 1

)
= (∆H)2 d2(1− p)2

p(d2(1− p) + 2) ≤ (∆H)2
(

1− p
p

)
, (110)

upper bounded by the F reg
S (N d, H) for erasure channels (Eq. (60)).

F Improved approximate Eastin–Knill theorem
Here we derive specific lower bounds on the infidelity of codes covariant with respect to unitary
groups which lead to new approximate Eastin–Knill theorems, following the discussion in [10].

SU(dL)-covariant codes in an n-partite system S are defined by the encoding channels ES←L
which satisfy

ES←L
(
UL(g)(·)U †L(g)

)
=
( n⊗
k=1

USk(g)
)
ES←L(·)

( n⊗
k=1

U †Sk(g)
)
, ∀g ∈ SU(dL), (111)

where USk(g) and UL(g) are unitary representations of SU(dL). It was shown in Theorem 18
in the Supplemental Material of [10] that fixing HL = diag(1, 0, . . . ,−1) and letting HSk be the
corresponding generator acting on the subsystem k, we have

dk ≥
(
dL − 1 + d‖HSk‖e

dL − 1

)
, (112)

where d‖HSk‖e denotes the closest integer no smaller than ‖HSk‖. Using the inequality
(
a+b
a

)
≥

(1 + b
a )a,

dk ≥
(
dL − 1 + d‖HSk‖e

dL − 1

)dL−1
, ⇒

(
exp

(
ln dk
dL − 1

)
− 1
)

(dL − 1) ≥ ‖HSk‖ , (113)

⇒
n∑
k=1

(
exp

(
ln dk
dL − 1

)
− 1
)2

(dL − 1)2 ≥ 1
4
∑
k

(∆HSk)2. (114)
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Then using Eq. (63), we have for any ε ≥ ε(MS , ES←L),

ε ≥ `1

(
1

4n
∑n
k=1

(
exp

( ln dk
dL−1

)
− 1
)2(dL − 1)2

)
. (115)

For large dL = Ω(ln dk),

ε ≥ `1
(

1
4n
∑n
k=1(ln dk)2 +O

(
1

ndL
∑n
k=1 ln dk

))
= 1

4n
∑n
k=1(ln dk)2 +O

(
1

ndL
∑n
k=1 ln dk

+ 1
n2 (

∑n
k=1(ln dk)2)2

)
.

(116)

Compared to Theorem 4 in [10]:

ε ≥
(

1
2nmaxk ln dk

+O

(
1
ndL

))2
= 1

4n2(maxk ln dk)2 +O

(
1

n2dL maxk ln dk

)
, (117)

our bound improves the maximum of ln dk in the denominator to their quadratic mean. Moreover,
it works for not only single-error erasure noise channel MS =

∑n
k=1

1
nMSk where MSk(·) =

|vac〉 〈vac|Sk , but also single-error depolarizing noise channelMS =
∑n
k=1

1
nMSk whereMSk(·) =

1

dk
.

G Infidelity of thermodynamic codes under depolarizing noise
Here we use Corollary 2 from [20] to calculate the infidelity of thermodynamic codes under depo-
larizing noise channels in the limit m/N → 0:

Lemma 4 ([20]). A code defined by its projector P is ε-correctable under a noise channelM(·) =∑r
i=1Ki(·)K†i if and only if PK†iKjP = AijP +PδAijP for some Aij and δAij where Aij are the

components of a density operator, and 1 − f2(A + δA,A) ≤ ε where A(ρ) =
∑
ij AijTr(ρ) |i〉 〈j|

and (A+ δA)(ρ) = A(ρ) +
∑
ij Tr(ρδAij) |i〉 〈j|.

Let P = |g0〉 〈g0|+ |g1〉 〈g1|,M =MS with Kraus operators

Kk,i = 1
2
√
n

(Ui)Sk , i = 0, 1, 2, 3, (118)

where U0, U1, U2, U3 are respectively 1, σx = |1〉 〈−1| + |−1〉 〈1| , σy = −i |1〉 〈−1| + i |−1〉 〈1| , and
σz = |1〉 〈1| − |−1〉 〈−1|.

For m ≥ 3, 〈g0|E|g1〉 = 0 for any operator E acting on at most two qubits. Here we consider
δAij ∝ (|g0〉 〈g0| − |g1〉 〈g1|). That is, let δAij = Bij(|g0〉 〈g0| − |g1〉 〈g1|). A and B are 4n × 4n
matrices

A =


A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

 , B =


B(0,0) B(0,1) B(0,2) B(0,3)

B(1,0) B(1,1) B(1,2) B(1,3)

B(2,0) B(2,1) B(2,2) B(2,3)

B(3,0) B(3,1) B(3,2) B(3,3)

 , (119)

where

A
(i,j)
kk′ = 1

2(〈g0|K†k,iKk′,j |g0〉+ 〈g1|K†k,iKk′,j |g1〉), (120)

B
(i,j)
kk′ = 1

2(〈g0|K†k,iKk′,j |g0〉 − 〈g1|K†k,iKk′,j |g1〉), (121)

so that PK†iKjP = AijP + PδAijP holds.
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A detailed calculation shows that A(i,j) = 0 when i 6= j, B(i,j) = 0 when i+ j 6= 3, and

A(0,0) = 1
4n


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , (122)

A(1,1) = A(2,2) = 1
4n


1 n2−m2

2n(n−1) · · · n2−m2

2n(n−1)
n2−m2

2n(n−1) 1 · · · n2−m2

2n(n−1)
...

...
. . .

...
n2−m2

2n(n−1)
n2−m2

2n(n−1) · · · 1

 , (123)

A(3,3) = 1
4n


1 m2−n

n(n−1) · · · m2−n
n(n−1)

m2−n
n(n−1) 1 · · · m2−n

n(n−1)
...

...
. . .

...
m2−n
n(n−1)

m2−n
n(n−1) · · · 1

 , (124)

B(0,3) = B(3,0) = m

4n2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , B(1,2) = −B(2,1) = i
m

4n21. (125)

Next we note that

f(A,A+ δA) = min
|ψ〉

f((A⊗ 1R)(|ψ〉 〈ψ|), ((A+ δA)⊗ 1R)(|ψ〉 〈ψ|))

= min
pi,ρi,i=0,1

f(A⊗ (p0ρ0 + p1ρ1), p0(A+B)⊗ ρ0 + p1(A−B)⊗ ρ1)

≥ min
pi,ρi,i=0,1

p0f(A,A+B) + p1f(A,A−B) = f(A,A+B),

(126)

where in the second step we define 〈gi|ψ〉 〈ψ|gi〉 = piρi for i = 0, 1, and in the third step we use
the joint concavity of fidelity and in the last step we use f(A+B) = f(A−B). Therefore we must
have

f(A,A+ δA) = f(A,A+B), (127)

by noticing that f(A(|g0〉 〈g0|), (A+δA)(|g0〉 〈g0|)) = f(A,A+B). First note that A(i,i) and B(i,j)

could be diagonalized in the following way:

A(0,0) = 1
4n (n |ψ1〉 〈ψ1|), B(0,3) = B(3,0) = m

4n |ψ1〉 〈ψ1| , (128)

A(1,1) = A(2,2) = 1
4n

(
n2 + 2n−m2

2n |ψ1〉 〈ψ1|+
n2 − 2n+m2

2n(n− 1)

n∑
k=2
|ψk〉 〈ψk|

)
, (129)

A(3,3) = 1
4n

(
m2

n
|ψ1〉 〈ψ1|+

n2 −m2

n(n− 1)

n∑
k=2
|ψk〉 〈ψk|

)
, (130)

where |ψ1〉 = 1√
n

(1 1 · · · 1) and {|ψk〉}k>1 is an arbitrary orthonormal basis of the orthogonal
subspace of |ψ1〉. Since A(i,j) = A(j,i) = B(i,j) = B(j,i) = 0 when i ∈ {1, 2} and j ∈ {0, 3}, we have

f(A,A+B) = f(A(0), A(0) +B(0)) + f(A(1), A(1) +B(1)), (131)

where

(·)(0) =
(

(·)(0,0) (·)(0,3)

(·)(3,0) (·)(3,3)

)
, (·)(1) =

(
(·)(1,1) (·)(1,2)

(·)(2,1) (·)(2,2)

)
. (132)
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We first calculate f(A(0), A(0) +B(0)). We have

(A(0))1/2(A(0) +B(0))(A(0))1/2 =( 1
4
m2

4n2

)(
1
4

m2

4n2

)
⊗ |ψ1〉 〈ψ1|+

(
0 0
0
(
n2−m2

4n2(n−1)
)2)⊗ n∑

k=2
|ψk〉 〈ψk| . (133)

Then

f(A(0), A(0) +B(0)) = Tr
((

(A(0))1/2(A(0) +B(0))(A(0))1/2)1/2)
=
√

1
42 +

(m2

4n2

)2
+ n2 −m2

4n2 = 1
2 −

m2

4n2 +O
(m4

n4

)
.

(134)

In order to calculate f(A(0), A(0) +B(0)), we first note that

(A(1))1/2(A(1) +B(1))(A(1))1/2 =
(

(A(1,1))2 0
0 (A(1,1))2

)
+
(

0 i m4n2A
(1,1)

−i m4n2A
(1,1) 0

)
. (135)

Then we use the Taylor expansion formula for square root of positive matrices:
√

Λ2 + Y =
Λ + χ[Y ]− χ(χ[Y ]2) +O(Y 3) for any positive diagonal matrix Λ and small Y [75], where

χ[(·)]ij = (·)ij
Λi + Λj

. (136)

Let A(1) = Λ such that Λ1 = n2+2n−m2

8n2 and Λk = n2−2n+m2

8n2(n−1) for k > 1, we find that

f(A(1), A(1) +B(1)) = 1
2 −

( m

4n2

)2 n∑
k=1

1
4Λk

+O
(m3

n3

)
= 1

2 −
m2

8n2 +O
(m3

n3

)
. (137)

Therefore

1− f(A,A+ δA)2 = 1− f(A,A+B)2 = 3m2

4n2 +O
(m3

n3

)
, (138)

which serves as an upper bound on the infidelity of thermodynamic codes under depolarizing noise
due to Lemma 4.
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