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Abstract—The equations of motion for an incompressible flow with helical symmetry (invari-
ance under combined axial translation and rotation) can be expressed as nonlinear evolution
laws for two scalars: vorticity and along-helix velocity. A metric term related to the pitch of
the helix enters these equations, which reduce to two-dimensional and axisymmetric dynamics
in appropriate limits. We take the vorticity and along-helix velocity component to be piecewise
constant. In addition to this vortex patch, a vortex sheet develops when the along-helix velocity
is nonzero. We obtain a contour dynamics formulation of the full nonlinear equations of motion,
in which the motion of the boundary is computed in a Lagrangian fashion and the velocity field
can be expressed as contour integrals, reducing the dimensionality of the computation. We
investigate the stability properties of a circular vortex patch along the axis of the helix in the
presence of a vortex sheet and along-helix velocity. A linear stability calculation shows that
the system is stable when the initial vortex sheet is zero, but can be stable or unstable in the
presence of a vortex sheet. Using contour dynamics, we examine the nonlinear evolution of the
system, and show that nonlinear effects become important in unstable cases.
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1. INTRODUCTION

Helical tip vortices are commonly found in the wake of rotating bladed devices such as marine
propellers, wind turbines and helicopters. They have been the subject of continuing theoretical
studies, e. g., the recent papers [8, 24, 30]. Far enough downstream of the rotating device, the flow
system is locally helical symmetric, which means that it is locally invariant through a combined
translation and rotation about the same axis. This leads to the question of the dynamics of vortices
under helical symmetry.

In previous work, [2] studied steady helical vortex structures in a swirl flow both theoretically
and numerically; [27] investigated the effect of torsion on the dynamics of a helical vortex filament,
while [17] derived an expression for the velocity field in the case of moderate or small pitch. [9] used
asymptotic expansions of the Biot – Savart law to obtain the velocity field induced by a helical vortex
tube with finite thickness. More recently, [32] found new expressions for the motion of a single helical
vortex, and [23] derived closed-form solutions for self-induced motion of helical structures. A parallel
line of research has examined the time evolution of helical vortices numerically. Direct numerical
simulation (DNS) results for helically symmetric systems were first presented by [4]. This approach
was later used to simulate a three-helix vortex system [36] and also the merger of two identical
vortices [5]. Subsequently [29] examined the evolution of a single helical vortex at different helical
pitch values. The work of [33] proposed a vortex filament approach to describe the interaction
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of a counter-rotating helical pair based on a Lagrangian description, but helical symmetry is not
preserved in the obtained vortex structures.

In this work, we present a contour dynamics method for inviscid vortex patches and sheets with
helical symmetry. Contour dynamics is a Lagrangian technique that reduces the evolution of vortex
patches to the evolution of their boundaries and thus the dimensionality of the system. Contour
dynamics was first proposed by [35] in the case of two-dimensional vortex patches. The reader
is referred to [6] and [26] for reviews of this work. Contour dynamics was subsequently used for
axisymmetric flows [25, 28, 37]. Further physical effects such as magnetic fields [16], swirl [15, 19]
and buoyancy [3] have also been considered. The review [18] summarizes generalizations of contour
dynamics with additional physics.

The idea of applying contour dynamics in helical symmetry is mentioned in [26] and reviewed
in [18], but a detailed description has not been presented previously in the literature. For helically
symmetric flows, [20] found steady vortex structures corresponding to closed contours bounding
regions of uniform axial vorticity. It had been pointed out by [7] that material conservation of
axial vorticity holds when the velocity component parallel to vortex lines is piecewise constant. We
compute velocities by inverting a linear helical operator analytically. In the presence of flow along
the helical vortex axis, a vortex sheet develops along the edge of a vortex patch.

Stability is another fundamental dynamic property of vortices. Much work has been carried out to
develop theoretical stability analysis of helical vortices. The linear stability of a vortex filament was
first studied by [34], who obtained three modes of instability for small displacements. These results
were extended by [10], who further explored the stability of multiple helical vortices. Later, [21]
proposed a model for the stability of equilibrium helical vortex arrays and [22] generalized the
analysis to include vortices embedded in a rotor far wake. The short-wave instability, caused by the
curvature of a helical tube, was studied in a series of works [11–14].

We examine the stability of circular vortex patches centered at the origin in helical symmetry.
A linear stability analysis is carried out that includes a vortex sheet at the boundary of the patch.
The result of [20] of stability in the absence of the sheet is recovered. We then use the contour
dynamics method outlined to examine the initial nonlinear evolution of the patch. We do not
pursue the integration up to times that would show filamentation or other extreme deformation of
the vortices.

In Section 2 we present the governing equations, culminating in two coupled scalar advection
equations, reviewing results given previously in, e. g., [20]. In Section 3 we review how to invert the
relationship between vorticity and streamfunction using a Green’s function approach. In Section 4
we present a formulation of contour dynamics that is, to our knowledge, new. We then examine the
stability of circular basic states in Section 5: a general base flow is obtained and its linear stability
is analyzed, generalizing previous work. We present contour dynamics results for some of these
vortices in Section 6. Finally, conclusions are presented in Section 7, while the Appendices contain
some technical calculations.

2. HELICALLY SYMMETRIC FLOWS

Consider an inviscid and incompressible flow with helical symmetry [7, 20]. This means that the
velocity, vorticity and pressure fields are invariant with respect to the helical vector h, defined in
cylindrical coordinates as

h = h2(ez − εreθ), (2.1)

with h2 = (1 + ε2r2)−1 and ε the pitch of the helix. Helical symmetry also implies that h · ∇ = 0
for any scalar functions of r, φ and t, where φ = θ + εz is the helical coordinate. When ε = 0, the
flow becomes two-dimensional, while ε = ∞ represents the axisymmetric case. The unit vector for
the helical coordinate φ is defined by

eφ = h−1
h× er = h(eθ + εrez). (2.2)

A schematic of the helical coordinate system is shown in Fig. 1. In helical coordinates the gradient
operator acting on functions with helical symmetry reduces to ∇ = er∂/∂r + eφ(rh)

−1∂/∂φ. Since
the velocity and vorticity are divergence-free, we have the following decomposition:

u = h×∇ψ + hv, (2.3)

ω = h×∇ξ + hζ. (2.4)
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The quantities ψ and v depend only on r, φ and time. From this decomposition, the velocity
components in cylindrical coordinates are given by

ur = −
1

r

∂ψ

∂φ
, uθ = h2

(

∂ψ

∂r
− εrv

)

, uz = h2
(

v + εr
∂ψ

∂r

)

. (2.5)

In helical coordinates we obtain

ur =
Dr

Dt
= −

1

r

∂ψ

∂φ
, uφ = rh

Dφ

Dt
= h

∂ψ

∂r
(2.6)

and h · u = h2v.

Fig. 1. Schematic of the helical coordinate system (left) and helical contours along the system (right). The
axial distance between two turns is 2π/ε. Note that the vectors h and eφ lie on the surface of the cylinder
r =constant. The special case considered here has the vorticity ω everywhere tangent to h. The contours
represent the same patch at different positions along the helical axis.

From the definition of vorticity, ω = ∇×u, and (2.3)–(2.4), we can show that ξ = −v and that

Lψ =
1

r

∂

∂r

(

rh2
∂ψ

∂r

)

+
1

r2
∂2ψ

∂φ2
= ω + 2εh4v, (2.7)

where ω = h · ω = h2ζ. Here, the quantities ψ, ω, v are related to the streamfunction, the helical
vorticity and the helical velocity, respectively.

Taking the density ρ to be constant, the incompressible Euler and vorticity equations become

∂u

∂t
+ ω × u = −∇

(

p

ρ
+

1

2
|u|2

)

, (2.8)

∂ω

∂t
+∇× (ω × u) = 0. (2.9)

The above equations could be generalized to a barotropic fluid with pressure a function of density.
In helical components, the nonlinear evolution equations for v and ω become

Dv

Dt
=

∂v

∂t
+ J (ψ, v) = 0, (2.10)

Dω

Dt
=

∂ω

∂t
+ J (ψ, ω) = 2εh4

(

J (ψ, v) − εv
∂v

∂φ

)

, (2.11)

where J(f, g) is the Jacobian in helical coordinates:

J(f, g) =
1

r

(

∂ψ

∂r

∂v

∂φ
−

∂ψ

∂φ

∂v

∂r

)

. (2.12)

It is clear that the quantity v is materially conserved. In the special case when v is piecewise
constant, ω is also materially conserved except where v has a discontinuity.
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3. INVERTING Lψ

Given the relation (2.7) between ω and the helical streamfunction ψ, we now need to invert the
operator Lψ. Then to compute the velocity field, we differentiate ψ with respect to r and ψ and
use (2.6). [20] gave a method for the inversion by decomposing ψ and ω as a Fourier series in φ and
using Green’s functions for each mode. In this section, we use a similar approach, but start with a
direct Green’s function solution that is suitable for a contour dynamics approach.

We write the Green’s function solution to (2.7) as

ψ =

∫

G (r, φ0; r0, φ0)F (r0, φ0) J0 dr0 dφ0. (3.1)

where F (r, φ) = ω + 2εh4v and the area element in helical coordinates is J0 dr0 dh0 with J0 =
r0h(r0) = r0h0. The Green’s function G(r, φ0; r0, φ0) satisfies

LG(r, φ0; r0, φ0) = δ(x− x0) = J−1
0 δ(r − r0)δ(φ − φ0). (3.2)

Using a Fourier series in the helical variable φ leads to a decomposition of G in the form

G(r, r0;φ, φ0) =
∑

m

Ĝm(r; r0)e
im(φ−φ0). (3.3)

Then (2.7) and (3.2) lead to the ordinary differential equations

h

[

d

dr

(

rh2
d

dr

)

−
m2

r

]

Ĝm = h

[

r

1 + ε2r2
G′′

m +
1− ε2r2

(1 + ε2r2)2
G′

m −
m2

r
Gm

]

=
δ(r − r0)

2π
. (3.4)

With Ĝm bounded at origin and infinity, it can be shown that, for m �= 0, Ĝm takes the form

Ĝm(r; r0) = A0

{

rI ′m(εmr)K ′
m(εmr0) r < r0,

rK ′
m(εmr)I ′m(εmr0) r > r0,

(3.5)

where A0 is a function of r0, and Im and Km are the modified Bessel functions of the first and
second kind of order m. Primes denote derivatives with respect to r. The jump condition at r = r0
in (3.4) can be solved to give A0 = ε2r0/(2πh0). We can now rewrite (3.5) as

Ĝm(r; r0) =
ε2rr0
2πh0

{

I ′m(εmr)K ′
m(εmr0) r < r0,

K ′
m(εmr)I ′m(εmr0) r > r0.

(3.6)

For the axisymmetric mode with m = 0, (3.4) becomes

h

[

d

dr
(rh2Ĝ′

0)

]

=
δ(r − r0)

2π
, (3.7)

which we can solve directly to give

Ĝ0(r; r0) =

⎧

⎨

⎩

0 r < r0,
1

2πh0

∫ r

r0

dr1
r1h2(r1)

r > r0.
(3.8)

Note that Ĝ0 does not decay at infinity, although its derivative does.

4. CONTOUR DYNAMICS

We take the boundary of the vortex to be given by f = 0 where f is a scalar function with f > 0
inside the vortex. By assuming that v is piecewise constant, we can take the solutions of (2.10) and
(2.11) in the form

ω = BH[f ] + Ω|∇f |δ[f ], v = CH[f ] + v∞. (4.1)

In (4.1), B gives the helical component of vorticity inside the vortex and C gives the helical
velocity increment inside the vortex compared to the helical velocity component in the far field.
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The function Ω, which evolves in time, is the strength of the vortex sheet. The presence of the vortex
sheet is signaled by the form of (2.11): vorticity is generated when the right-hand side is nonzero.
For piecewise continuous ω and v, this only happens on the boundary, giving a vortex sheet. Other
situations when this happens are, for example, in the presence of jumps in density and swirl, as
discussed in [18]. The functions H and δ are the Heaviside and delta functions, respectively. With
this form, the field f is materially conserved, so that

Df

Dt
= 0. (4.2)

We require the velocity field to decay in the far field. Appendix A shows that helical symmetry
leads to the constraint

v∞ = −

[

ε

2π

∮

S

B

h
dS +

ε2C

π

∮

S

h3 dS +
ε

2π

∮

C

γ dξ

]

, (4.3)

where
∮

S
denotes the surface integral over the vortex,

∮

C
is the contour integral along the vortex

boundary and γ ≡ ΩL/h. The variable ξ is a parameter taken clockwise along the vortex boundary
in the (r, φ) plane, and L is defined in (A.5). For the special case when C and Ω vanish, we find

v∞ = −
ε

2π

∮

S

B

h
dS. (4.4)

From (2.11) and (4.1), the vortex sheet strength is governed by

DΩ

Dt
|∇f |+Ω

D|∇f |

Dt
= 2εh4

[

CJ(ψ, f)−
1

2
ε(C2 + 2Cv∞)

∂f

∂φ

]

. (4.5)

The factor of 1/2 comes from the product of H and δ.

Let (r, φ) =
(

R(ξ, t),Φ(ξ, t)
)

be a parametric representation of the boundary. Then the La-
grangian advection equations for the contour (R,Φ) in helical coordinates are

∂R

∂t
= ur(R,Φ, t),

∂Φ

∂t
=

1

Rh(R)
uφ(R,Φ, t), (4.6)

where ∂/∂t is the Lagrangian derivative taken at constant ξ. A representation of the contour is
shown in Fig. 2.

Fig. 2. Schematic of the contour (R(ξ, t),Φ(ξ, t)) with f > 0 on the inside and f < 0 outside of the patch.
The parameterization ξ is taken clockwise along the patch boundary, and the dots represent the corresponding
spatial discretization.

Following the approach of [16], we find (details are given in Appendix B)

1

|∇f |

D|∇f |

Dt
=

1

L

∂L

∂t
+ ε2h2Rur, (4.7)
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with L(ξ, t) defined in (A.5). Consider Ω as a function of ξ and t; then (4.5) can be written as

∂Ω

∂t
+Ω

(

1

L

∂L

∂t
+ ε2h2R

∂R

∂t

)

=
2εh4

L

[

C

(

−
∂R

∂ξ
uφ +Rh

∂Φ

∂ξ
ur

)

+
1

2
ε(C2 + 2Cv∞)Rh

∂R

∂ξ

]

.

(4.8)
By introducing γ = ΩL/h, (4.8) can be simplified to

∂γ

∂t
= 2εh3

[

C

(

−
∂R

∂ξ
uφ +Rh

∂Φ

∂ξ
ur

)

+
1

2
ε(C2 + 2Cv∞)Rh

∂R

∂ξ

]

. (4.9)

When v is uniform and there is no vortex sheet on the boundary initially, we have C = γ(0) = 0.
Then there will be no vortex sheet generated at later times. It is useful to examine the limits of
this result as ε becomes small or large. In the ε → 0 limit, the right-hand side vanishes, so there is
no Lagrangian evolution of the vortex sheet, as expected. As ε → ∞, ω = h ·ω = −(εr)−1

eθ ·ω, so
that Ω ∼ −ε−1ΩHM . Similarly, v = h−2

h · u = −εreθ · u, and C ∼ −εCHM . As L ∼ LHM in this
limit, (4.8) recovers the result (2.23) of [15].

The approach of [6] can now be applied to obtain a contour dynamics formulation. The stream
function ψ can be decomposed into two parts, ψS and ψH , which are obtained from the vortex
sheet and vortex patch, respectively. In (3.1), the vortex sheet contribution Fs = Ω|∇f |δ(f) leads,
using (A.2), to the following contour integrals for ψS :

∂ψS

∂r
=

∮

C

∂G

∂r
Ω(ξ)L(ξ) dξ,

∂ψS

∂φ
=

∮

C

∂G

∂φ
Ω(ξ)L(ξ) dξ. (4.10)

To obtain the rest of the velocity field, we start with Green’s theorem (A.1) in the variables r0 and
φ0. Defining new functions by

rh
∂P

∂φ0
= r0h0

∂G

∂φ
,

1

r0h0

∂(r0h0Q)

∂r0
=

1

r0h
5
0

∂(r0h0S)

∂r0
=

∂G

∂r
, (4.11)

we find

P (r, φ; r0, φ0) = −
r0h0
rh

∑

m�=0

Ĝm(r; r0)e
im(φ−φ0), (4.12)

Q(r, φ; r0, φ0) =
1

r0h0

∑

m

∫ r ∂Ĝm(r; r1)

∂r
r1h1 dr1e

im(φ−φ0), (4.13)

S(r, φ; r0, φ0) =
1

r0h0

∑

m

∫ r ∂Ĝm(r; r1)

∂r
r1h

5
1 dr1e

im(φ−φ0). (4.14)

There is freedom in the definition of P since its m = 0 component is not specified. From (3.1), one
arrives at the equations

∂ψH

∂r
=

∮

S

∂G

∂r
(B + 2εCh40)r0h0 dr0 dφ0 + 2εv∞

∫

R2

∂G

∂r
r0h

5
0 dr0 dφ0

= B

∮

C

Qr0h0 dφ0 + 2εC

∮

C

Sr0h0 dφ0 + εv∞r, (4.15)

∂ψH

∂φ
=

∮

S

∂G

∂φ
(B + 2εh40C)r0h0 dr0 dφ0 + 2εv∞

∫

R2

∂G

∂φ
r0h

5
0 dr0 dφ0

= −rh

∮

C

P (B + 2εh40C) dr0. (4.16)

Then from (2.6) the corresponding velocity components can be obtained as

ur(r, φ, t) = −
1

r

(

∂ψS

∂φ
+

∂ψH

∂φ

)

, uφ(r, φ, t) = h

(

∂ψS

∂r
+

∂ψH

∂r

)

. (4.17)

Together (4.6), (4.9), (4.10) and (4.15)–(4.17) form a closed set of equations governing the motion
of the boundary.
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5. STABILITY ANALYSIS

In this section we perform a linear stability analysis for a circular vortex patch with radius R0.
The perturbed boundary is r = R0 + η(φ, t). We consider the general case and compare the results
in the absence of a vortex sheet to those of [20].

5.1. Base Flow

We start from a basic state that is a function of r alone. We take the quantities v and ω to be
piecewise constant inside, taking values V0, Q0 and V∞, 0 inside and outside the patch, while Ω0 is
constant along the patch boundary. (This corresponds to Q = Q0 and C = V0 − V∞.) Then (2.7)
can be written as

LΨ1 =
1

r

d

dr

(

rh2
dΨ1

dr

)

= Q0 + 2εh4V0, 0 < r < R0, (5.1)

LΨ2 =
1

r

d

dr

(

rh2
dΨ2

dr

)

= 2εh4V∞, r > R0, (5.2)

which can be solved directly to give

dΨ1

dr
=

Q0r

2
(1 + ε2r2) + V0εr, 0 < r < R0 (5.3)

dΨ2

dr
=

c

r
(1 + ε2r2) + V∞εr, r > R0 (5.4)

with dΨ1/dr bounded at the origin. There is no axial velocity at infinity, so that

lim
r→∞

uz = lim
r→∞

h2
(

V∞ + εr
dΨ2

dr

)

= lim
r→∞

(V∞ + εc) = 0. (5.5)

This leads to

dΨ2

dr
= −

V∞

εr
, r > R0. (5.6)

In this case, uz = 0 identically outside the vortex patch. From (4.3), or alternatively working out
the jump in dΨ/dr directly from R0h

2
0[dΨ/dr]0 = R0Ω with h0 = h(R0), we find the constraint

Ω = −
Q0R0

2
− h20

(

V0εR0 +
V∞

εR0

)

. (5.7)

When there is no vortex sheet on the boundary and the along-helix velocity increment is zero,
i. e., Ω0 = C = 0, one finds continuity of uθ and uz across the boundary at r = R0.

5.2. Perturbation Equations

Denote perturbations with primes.Then from (2.7), (2.10) and (2.11), the linearized perturbed
equations are

1

r

∂

∂r

(

rh2
∂ψ′

∂r

)

+
1

r

∂2ψ′

∂φ2
= 0, (5.8)

∂v′

∂t
+

1

r

dΨ

dr

∂v′

∂φ
= 0, (5.9)

∂ω′

∂t
+

1

r

dΨ

dr

∂ω′

∂φ
= 0. (5.10)

In these equations, ψ′ represents both ψ′
1 and ψ′

2 and so on.

Consider the boundary of the patch described by f = R0 + η(φ, t) − r. From the kinematic
boundary condition (4.2), we can write

0 =
∂η

∂t
+

1

r

∂ψ

∂r

∂η

∂φ
+

1

r

∂ψ

∂φ
(5.11)
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at r = R0 + η, valid both inside and outside the patch. On linearization, the kinetic boundary
conditions become

0 =
∂η

∂t
+

1

r

dΨ1

dr

∂η

∂φ
+

1

r

∂ψ′
1

∂φ
=

∂η

∂t
+

1

r

dΨ2

dr

∂η

∂φ
+

1

r

∂ψ′
2

∂φ
(5.12)

at r = R0.

For the dynamic boundary condition, we start with the momentum equation in the φ-direction

∂uφ
∂t

+ ur
∂uφ
∂r

+
uφ
rh

∂uφ
∂φ

+
uφur
r

= −
1

ρrh

∂p

∂φ
. (5.13)

Substituting from (2.6) leads to

h
∂2ψ

∂t∂r
−

1

r

∂ψ

∂φ

∂

∂r

(

h
∂ψ

∂r

)

+
h

r

∂ψ

∂r

∂2ψ

∂φ∂r
−

h

r2
∂ψ

∂φ

∂ψ

∂r
= −

1

ρrh

∂p

∂φ
. (5.14)

Since the pressure is continuous across the boundary, so is ∂p/∂φ. Then, at the boundary r = R0,
we obtain the linearized dynamic boundary condition

h
∂2ψ′

1

∂t∂r
−

1

r

∂ψ′
1

∂φ

∂

∂r

(

h
dΨ1

dr

)

+
h

r

dΨ1

dr

∂2ψ′
1

∂φ∂r
−

h

r2
∂ψ′

1

∂φ

dΨ1

dr

=h
∂2ψ′

2

∂t∂r
−

1

r

∂ψ′
2

∂φ

∂

∂r

(

h
dΨ2

dr

)

+
h

r

dΨ2

dr

∂2ψ′
2

∂φ∂r
−

h

r2
∂ψ′

2

∂φ

dΨ2

dr
. (5.15)

5.3. Dispersion Relation

Introduce the normal modes with [ω′, ψ′
1, ψ

′
2, η] = [ω̂(r), ψ̂1(r), ψ̂2(r), η̂]e

st+imφ, where m is a
nonnegative integer. Starting with (5.8) for the perturbed helical stream function leads to the
following ordinary differential equations:

1

r

d

dr

(

rh2
dψ̂

dr

)

−
m2

r
ψ̂ = 0, (5.16)

corresponding to the homogeneous version of (3.4). Hence, ψ̂ takes the same form as the

complementary functions used to construct (3.5). For ψ̂1 and ψ̂2 to be bounded at r = 0 and
∞, we require

ψ̂1 = B1rI
′
m(εmr), ψ̂2 = B2rK

′
m(εmr), (5.17)

where B1 and B2 are constants and m > 0. The two boundary conditions (5.12) and (5.15) then
lead to

B2K
′
m(α)

(

s+
im

R0

dΨ1

dr

)

= B1I
′
m(α)

(

s+
im

R0

dΨ2

dr

)

, (5.18)

B1

[(

sh+
imh

R0

dΨ1

dr

)

I − imI ′mF1

]

= B2

[(

sh+
imh

R0

dΨ2

dr

)

K − imK ′
mF2

]

, (5.19)

with all functions evaluated at R0. Here we write F1,2 = h
(

h2Ψ′
1,2/R0 +Ψ′′

1,2

)

, I = I ′m + αI ′′m and

K = K ′
m +αK ′′

m with α = εmR0. We also write I ′m = I ′m(α) and so on. Multiplying (5.18) by (5.19)
leads to the quadratic dispersion relation

−
s2

ε2R2
0h

+ s
im

R0

[

K ′
m

(

2h
dΨ1

dr
I −R0I

′
mF1

)

− I ′m

(

2h
dΨ2

dr
K −R0K

′
mF2

)]

−
m2

R2
0

[

K ′
m

dΨ1

dr

(

h
dΨ1

dr
I −R0I

′
mF1

)

− I ′m
dΨ2

dr

(

h
dΨ2

dr
K −R0K

′
mF2

)]

= 0. (5.20)
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The growth rates in this general case are hence given by the roots of the quadratic as2 + bs+ c = 0.
As is typical for inviscid Hamiltonian systems, the growth rates are either imaginary or complex
with opposite real parts. The roots s will have positive real part if

Δ = K ′2
mI ′2m(F1 − F2)

2 +
4h2

R2
0

h1h2
(

Ψ′
1 −Ψ′

2

)2
+

4h

R0
K ′

mI ′m(h1F2 − h2F1)(Ψ
′
1 −Ψ′

2) < 0, (5.21)

with h1 = h ∗ I ∗K ′
m and h2 = h ∗K ∗ I ′m. Figure 3 shows the resulting stability region for different

wavenumbers, m, and nondimensionalized radius, εR0. It can be observed for all cases that a larger
wavenumber corresponds to a smaller stability region.

When the velocities are continuous across the boundary, i. e., Ψ′
1 = Ψ′

2 at r = R, the dispersion
relation reduces to the linear equation

s = −imQ0

(

1

2
+ ε2R2

0K
′
m(α)I ′m(α)

)

. (5.22)

The linear frequencies Ωm (nondimensionalized appropriately) are

Ωm = −
is

mQ0
= −

(

1

2
+ ε2R2

0K
′
m(α)I ′m(α)

)

. (5.23)

This is the same result as [20]. For α � 1, it tends to the two-dimensional value (m−1 − 1)/2; for
α 	 1, it tends to the axisymmetric values εR0/2m [1]. These results indicate that Re(s) = 0 for
a pure circular helical vortex patch, which is hence linearly neutrally stable. However, nonlinear
evolution may lead to instability. Here we have only discussed vortex patches centered at origin.
Unlike the 2D case, there is no simple basic state for an off-center vortex patch.

Fig. 3. Stability regions of different radial wavenumbers m = 1, 2, · · · , 10 for (a) εR0 = 0.1; (b) εR0 = 0.5; (c)
εR0 = 1; (d) εR0 = 2. The stability regions are the wedge-shaped regions (shaded region) encompassing Ω = 0
pointed to by the arrows.

6. CONTOUR DYNAMICS CALCULATIONS

We now use the contour dynamics method described above to examine the stability of circular
vortex patches. The parameter space is extensive, as C and Ω0 can be varied, along with εR0.
Our goal is to illustrate the method, so we consider only a few cases. An examination of the full
parametric dependence is left for another time.
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We place N = 128 nodes on the boundary to represent the contour. Following the approach
of [3], we use Fourier series in terms of the parameter ξ to interpolate between these nodes using

R(ξ) = Re

⎧

⎨

⎩

N/2−1
∑

k=−N/2

R̂ke
ikξ

⎫

⎬

⎭

, Φ(ξ) = Re

⎧

⎨

⎩

N/2−1
∑

k=−N/2

Φ̂ke
ikξ

⎫

⎬

⎭

, (6.1)

where R̂k and Φ̂k are the Fourier transform of R and Φ, and ξ is equally spaced in [0, 2π). The terms
∂R/∂ξ and ∂Φ/∂ξ can be obtained directly by differentiating (6.1) with respect to ξ. For a given
mode m, the corresponding initial Fourier coefficient is set as η̂m(0). The simulations are performed
with R0 = 1, ε = 1 and Q0 = 1. The quantity v∞ is obtained from the constraint in (4.4). The initial
strength of the vortex sheet, Ω0, is set to be zero for the first three simulations. For the ith node,
we obtain ∂Ri/∂t and ∂Φi/∂t from (4.6) and (4.16)–(4.17), and ∂γi/∂t from (4.9). The contour
integrals are computed using the trapezoidal rule, then R,Φ and γ are advanced in time using a
fourth-order Runge –Kutta method with time step δt = 0.0125. The integrals in (4.13), (4.14) are
calculated with a lower limit 0.0001 to avoid the singularities of modified Bessel functions of the
second kind at the origin.

6.1. No Along-helix Velocity Jump

We first consider the case that there is no jump in the along-helix velocity, i. e., C = 0. No vortex
sheet is generated in the evolution, as discussed in Section 4. Figure 4 shows the time evolution of
vortex patch in the r–φ plane with initial perturbation η̂4(0) = 10−3. The counterclockwise rotation
of the contour is due to the basic state. The contour remains circular in the evolution, so the linear
stability of the patch, as given in Section 5.3, appears to be robust.

We examine the evolution of the normal mode coefficient shown in Fig. 5. Results for the analytic
solution obtained from (5.23) are shown for comparison. The numerical solution follows the linear
solution well initially, but starts to drift as time progresses.

The constraint (4.3) is required by the helical symmetry. In the computation, however, this
constraint is only enforced initially. During the time span plotted in Figs. 4–5, the relative error in
v∞ is 10−4 (not shown), which gives an estimate of the numerical error.

6.2. Jumps in Along-helix Velocity

We now consider a positive velocity jump, C = 1, which doubles the basic state angular velocity
at the edge of the vortex. A vortex sheet is generated when the initial circular patch is perturbed.
Figure 3 shows that this basic state is linearly stable. Figure 6 shows the evolution of the perturbed
circular contour. Again the vortex stays circular. Figure 7 displays the evolution of the coefficient
of mode 4. Again the linear solution is followed by a gradual departure.

Fig. 4. Contour evolution in the r–φ plane with initial perturbation η̂4(0) = 10−3 and velocity jump C = 0.
The star denotes a reference node of the discretization.
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Fig. 5. Time evolution of η̂4(t) with velocity jump C = 0: (a) real part; (b) imaginary part. The analytic
solution is obtained using the linear angular frequency Ω4 = −0.3230 from (5.23).

Fig. 6. Contour evolution in the r–φ plane with initial perturbation η̂4(0) = 10−3 and velocity jump C = 1.
The star denotes a reference node of the discretization.

The strength of the vortex sheet is given by γ = ΩL/h. Figure 8 shows the distribution of γ along
the normalized boundary length at different instants for the case with velocity jump C = 1. Here,

the first node of the discretization corresponds to l̃ = 0 and l̃ = 1 coincides with l̃ = 0. Note that

the same value of l̃ does not generally correspond to the same fluid particle for different instants
since the distance between successive nodes changes with time. It can be seen that the distribution
of γ is smooth and sinusoidal, dominated by mode 4.

We also consider the case with a negative jump, C = −1, when the basic state is at rest outside
the vortex and on its boundary. The vortex patch starts evolving when a perturbation is imposed
to the circular contour, which leads to the generation of the vortex sheet, see (4.9). Figure 9 shows
the corresponding contour evolution. The contour remains circular, and the reference node does not
move. The evolution of the mode amplitude and vortex sheet density is similar to the case C = 1.

6.3. Initial Vortex Sheet

We now consider the case when a uniform vortex sheet is present in the basic state. The initial
vortex sheet strength, Ω0, is 0.2, which corresponds to a linearly unstable vortex. When C = 0, the
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Fig. 7. Time evolution of η̂4(t) with velocity jump C = 1: (a) real part; (b) imaginary part. The analytic
solution is obtained using the linear angular frequency Ω4 = −0.7346 from (5.20).

Fig. 8. Vortex sheet strength, γ = ΩL/h, along the normalized boundary length, l̃, at different instants for
the case with with velocity jump C = 1.

strength of the vortex sheet stays the same from (4.9). Figure 10 shows the corresponding contour
evolution for the case with Ω0 = 0.2 and C = 0. The dominant linear mode 4 is clearly growing.
For small times, its behavior is shown in Fig. 11 and matches the linear prediction well, but for
times greater than 2 or so the evolution starts to differ as nonlinear effects become important.

Finally, we consider the case when a uniform vortex sheet and a positive jump in along-helix
velocity are both present in the basic state. In this case the strength of the vortex sheet evolves in
time. Figure 12 displays the evolution of the coefficient of mode 4 when Ω0 = 0.05. The numerical
solution follows the stable linear solution with a gradual departure. Some numerical noise is observed
at the peaks and valleys of the trajectory, but overall the evolution is smooth.

Figure 13 shows the distribution of γ along the normalized boundary length at different instants
for this case. Compared to the case shown in Fig. 8, it can be seen that the distribution of γ is
shifted from its initial value as time progresses.
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Fig. 9. Contour evolution in the r–φ plane with initial perturbation η̂4(0) = 10−3 and velocity jump C = −1.
The star denotes a reference node of the discretization.

Fig. 10. Contour evolution in the r–φ plane with initial perturbation η̂4(0) = 10−3, vortex sheet strength
Ω0 = 0.2 and no helix-along velocity jump. The star denotes a reference node of the discretization.

7. CONCLUSIONS

In this work we have described contour dynamics for helically symmetric flows. We use a direct
Green’s function solutions for different Fourier modes and express the streamfunction using contour
integrals using Green’s theorem in helical coordinates. The CD algorithm includes the compatibility
condition (4.3), an evolution equation for the vorticity-like variable γ (gamma), and integrals along
the contour to compute the velocity components needed (4.15)–(4.16).

We use the phrase “contour dynamics” to refer to Lagrangian algorithms that track boundary
motion, in which velocities and other quantities can be computed using integrals along contours.
This is the case for the work of [25, 35, 37] in which no vortex sheet is generated, but has been
used to describe subsequent investigations which included further physics [3, 15, 16, 19]. With this
nomenclature, the Birkhoff –Rott equation also corresponds to a CD algorithm, but it is older and
has its own name. This is also true for algorithms for vortex sheets with density differences. The
standard review article on contour dynamics of Pullin [26] mentions the helical case, without giving
any details, so our appellation follows precedent. The current paper is the first to work out the
details.

Two limiting cases, ε → 0 and ε → ∞, recover the two-dimensional and axisymmetric results,
respectively. The Lagrangian evolution of the contour boundary is obtained by considering the
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Fig. 11. Time evolution of η̂4(t) with initial vortex sheet Ω0 = 0.2 and no helix-along velocity jump: (a) real
part; (b) imaginary part. The analytic solution is obtained using the growth rate s4 = 0.9091 − 1.6466i
from (5.20).

Fig. 12. Time evolution of η̂4(t) with velocity jump C = 1 and initial vortex sheet Ω0 = 0.05: (a) real
part; (b) imaginary part. The analytic solution is obtained using the linear angular frequency Ω4 = −0.7855
from (5.20).

contributions from the vortex sheet and the vortex patch. This contour dynamics system is
interesting as it has two evolving variables for a purely hydrodynamic system. We have carried
out a linear stability analysis for a circular vortex patch with helical symmetry including both
a vortex sheet and a velocity jump in the helical direction. While the velocity jump may seem
analogous to Kelvin –Helmholtz instability, the constraints of helical symmetry strongly affect it,
and in particular the presence of a velocity jump does not always lead to instability and ill-posedness
with unbounded growth rates for large wavenumbers. The latter result is not surprising as there is
now a length scale in the problem, namely, ε−1.

We demonstrate the use of the contour dynamics approach by examining the evolution of a
perturbed circular patch numerically. Previous work considered the case with continuous v, in
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Fig. 13. Vortex sheet strength, γ = ΩL/h, along the normalized boundary length, l̃, at different instants for
the case with velocity jump C = 1 and initial vortex sheet Ω0 = 0.05.

which case the patch is neutrally stable. Here we examine the full problem and obtain regions of
linear stability, as shown in Fig. 3. The results agree well with the linear solution for small time,
but for the unstable cases considered, the nonlinear and linear evolution starts to diverge. These
calculations use the full formulation of the CD algorithm, with γ evolving in time. The effects
of the interplay between along-helix velocity and vortex sheet evolution are intriguing and merit
quantification.

APPENDIX A. DERIVATION OF (4.3)

We write Green’s theorem in the plane in the form
∮

S

(

1

rh

∂(rhQ)

∂r
−

1

rh

∂P

∂φ

)

rhdr dφ =

∮

C

(P dr + rhQ dφ). (A.1)

We also use the result
∮

S

Aδ(f)|∇f |dS =

∫

C
AL dξ, (A.2)

where dS = rhdr dφ and the zero contour of the function f defines the contour C. This equation
reduces to the expected results in the two-dimensional and axisymmetric limits.

For an arbitrary contour, consider the integral

Γ =

∮

S

(ω + 2εh40v)rd r dφ =

∮

[ur dr + rhuφ dφ], (A.3)

where the last equality has been obtained using (A.1). Evaluating the integral over a large circle of
radius R and using (4.1), we find

Γ = B

∮

S

r dr dφ+

∫

C

ΩL

h
dξ + 2εC

∮

S

h4r dr dφ+ 2εv∞

∫

SR

h4r drdφ, (A.4)

where S and C are the surface and boundary of the vortex. The metric term L is defined on a curve
(R(ξ),Φ(x)) by

L2(ξ, t) =

(

Rh
∂Φ

∂ξ

)2

+

(

∂R

∂ξ

)2

. (A.5)
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The final term in (A.4) can be computed exactly and has the limit 2πv∞ε−1 as R → ∞. For large r,
the nonzero Fourier modes of ψ decay rapidly, so that

∂ψ

∂r
∼ −

v∞
εr

+
D

r
(1 + ε2r2), (A.6)

while, from (A.3), Γ ∼ 2πD. Substituting the forms for ur and uz into (2.5) shows that, for uz to
decay at large r, we must have D = Γ = 0. Using this result in (A.4) leads to (4.3). The resulting
constraint comes from the fact that zero flow at infinity when the flow at infinity is helical implies
that the circulation vanishes, and does not apply to two-dimensional or axisymmetric flow.

APPENDIX B. DERIVATION OF (4.7)

The contour f is materially conserved, so that (4.2) leads to

0 = ∇f ·∇
Df

Dt
= |∇f | ·

∂|∇f |

∂t
+ |∇f |(u ·∇)|∇f |+∇f · [(∇f ·∇)u]. (B.1)

Hence, we obtain

1

|∇f |

D|∇f |

Dt
= −n · [(n ·∇)u], (B.2)

where n = ∇f/|∇f | = nrer + nφeφ is a unit vector normal to the contour f = 0. Then

−n · [(n ·∇)u] =− nr

(

ur
∂ur
∂r

+
uφ
rh

∂ur
∂φ

−
uφh

r
uθ

)

− nφh

(

ur
∂uθ
∂r

+
uφ
rh

∂uθ
∂φ

+
uφh

r
ur

)

− nφεhr

(

ur
∂uz
∂r

+
uφ
rh

∂uz
∂φ

)

. (B.3)

Relating the tangent to the normal vector using

1

L

∂R

∂ξ
= −nφ,

Rh

L

∂Φ

∂ξ
= nr, (B.4)

and using (A.5), we find

−
1

L

DL

Dt
= nφ

(

−nφ
∂ur
∂r

+
nr

Rh

∂ur
∂φ

)

− nr

(

nr
h2

R
ur − nφ

∂uφ
∂r

+
nr

Rh

∂uφ
∂φ

+ nφ
h2

R
uφ

)

. (B.5)

Combining the continuity equation

∇ · u =
∂ur
∂r

+
ur
r

+
1

rh

∂uφ
∂φ

= 0 (B.6)

with (B.3) and (B.5) yields

1

|∇f |

D|∇f |

Dt
=

1

L

DL

Dt
+ ε2h2Rur. (B.7)

The ε → 0 and ε → ∞ recover the two-dimensional and axisymmetric results, respectively.

The left-hand side of (4.5) can hence be written as

Ωt +Ω
Lt

L
+Ωεh2RRt = Ωt +Ω

Lt

L
− Ω

ht
h
, (B.8)

where we are now using ∂t to designate Lagrangian derivatives since quantities are defined on the
vortex boundary and where we have used the result ht = −ε2Rh3Rt. This leads to (4.7).
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