An Object-Oriented Interface to The Sparse
Polyhedral Library

Tobi Popoola' Ravi Shankar’> Anna Rift® Shivani Singh* Eddie C. Davis’
Michelle Mills Strout® and Catherine Olschanowsky’
1.2.3.4.7Department of Computer Science, Boise State University, Boise USA
Email: {'tobipopoola | ?ravishankar | 3annarift | *shivanisingh} @u.boisestate.edu, ’catherineolschan @boisestate.edu
SVulcan Inc., Seattle, USA
Email: eddied@vulcan.com
6Department of Computer Science, University of Arizona, Tucson, USA
Email: mstrout@cs.arizona.edu

Abstract—Many important applications including machine
learning, molecular dynamics, and computational fluid dynamics,
use sparse data. Processing sparse data leads to non-affine loop
bounds and frustrates the use of the polyhedral model for
code transformation. The Sparse Polyhedral Framework (SPF)
addresses limitations of the Polyhedral model by supporting
non-affine constraints in sets and relations using uninterpreted
functions. This work contributes an object-oriented API that
wraps the SPF intermediate representation (IR) and integrates
the Inspector/Executor Generation Library and Omega+ for
precise set and relation manipulation and code generation. The
result is a well-specified definition of a full computation using
the SPF IR. The API provides a single entry point for tools to
interact with the SPF, generate and manipulate polyhedral data
flow graphs, and transform sparse applications.

Index Terms—computation api, intermediate representation,
sparse polyhedral framework, polyhedral dataflow graph

I. INTRODUCTION

Many important applications including machine learning,
molecular dynamics and computational fluid dynamics use
sparse data. To save memory, sparse data is often compressed
by storing only the non-zero values. Index arrays are used
to map the non-zero value back to their coordinates in the
dense space. The index arrays are used in loop bounds while
iterating over the sparse data. These non-affine loop bounds
complicate the use of compiler transformation for performance
optimization.

The polyhedral model is an effective optimization tool for
applications with affine loop bounds. This model represents
computations as sets and relations. Iteration spaces are repre-
sented with sets and data dependences are represented using
relations. This combination of iteration spaces and data depen-
dences provides a partial ordering for the target computation.
Within the partial ordering, the order of execution can be
altered by applying relations to the iteration space. These
relations are referred to as transformations. A limitation to
the polyhedral model is that the constraints within iteration
spaces and transformations must be affine.

The sparse polyhedral framework extends the polyhedral
model by supporting non-affine iteration spaces and transfor-
mations using uninterpreted functions. Uninterpreted functions

are symbolic constants that represent data structures such as
the index arrays in sparse data formats. The SPF provides
much of the same functionality as traditional polyhedral tools:
code generation with CodeGen+ [1] built on Omega [2]]
and precise set and relation operations in the presence of
uninterpreted functions with IEGenLib [3]. However, these
tools are not tightly integrated and each has their own low-
level API to interact with individual components.

The contribution of this work is the Computation APIL
The Computation API provides a precise specification of how
to combine the individual components of the SPF to create
an intermediate representation. This IR can directly produce
Polyhedral Dataflow Graphs (PDFGs) [4] and translates graph
operations defined for PDFGs into relations used by IEGenLib
to perform transformations. In this work, we extend the
PDFG representation to handle non-affine loops with imperfect
nesting and loop carried dependences.

Figure |1| shows an overview of our optimization framework
and where the computation API fits in the process. Spf-
ie highlighted grey in the figure is a tool that automates
translation from source code to our API and is currently under
development. In this work we focus on manually translating
original source code to the computation IR. The computation
IR by itself supports composable transformations by virtue
of the sparse polyhedral framework. Graph operations on a
PDFG generates composable transformations and are applied
to statements in the IR.

Our work overcomes limitations of previous approaches
through a tight integration among CodeGen+, Omega, and
IEGenLib. CHIiLL [5] provides a script based interface for
the SPF and supports non-affine transformations by using
Omega. Omega has limitations on the precision of operations
involving uninterpreted functions, as well as restrictions on
how they must be expressed. Our computation API depends
on IEGenLib [3] for set and relation operations, thereby
overcoming the precision limitations.

The contributions of this paper include:

o A unified standard interface to specify a computation in

the SPF

« Integration with PDFGs

« Extensions to PDFGs to support non-affine loop bounds,
imperfectly nested loops, and loop carried dependences

o Translations between PDFG operations and SPF relations

« Integration between CodeGen+ and IEGenLib

o Support for inlining computations

« Peripheral support for generated code

II. COMPUTATION: A C++ CLASS

The interface to the SPF is implemented as a C++ class
in IEGenLib. The computation class contains all of the in-
formation required to express a computation or a series of
computations. This includes: data spaces, statements, data
dependences, and execution schedules. This section describes
the design and interface for each of these elements. Matrix
vector multiplication is used as a running example throughout
the rest of this paper. Figures [2] & [3|show the dense and sparse
versions.

A. Data Spaces

A data space represents a collection of conceptually unique
memory addresses. A data space of 0 dimensions is equivalent
to a scalar. Each combination of data space name and input
tuple is guaranteed to map to a unique space in memory for the
lifetime of the data space. For example, D(§), guarantees that
for each unique tuple 5'there will be a unique memory location,
and that during the lifetime of D its memory locations will
not overlap with any other live data space’s memory locations.

By default all data spaces are generic. They are used with
the syntax D(5). For example, for a 3 parameter input tuple
i, J, k the data space can be represented as D(i, j, k). This data
space can be written to only once but read from any number of
times. The exception to this rule is for accumulation operations
when a single data location within a data space can be written
to multiple times (+ =, — =, * =, max, min...).

The data spaces represented in the matrix vector multiply
example in are y, A, and z. In the sparse version the index
arrays rowptr and col are also considered data spaces. How-
ever, since they are used within the loop bounds and to access
into another data space they must be constant for the duration
of this computation. Therefore, they are not required as part
of the Computation’s definition.

1 // dense

» Computation* dsComp = new Computation();
3 dsComp->addDataSpace ("Sys$") ;

4+ dsComp—->addDataSpace ("SAS") ;

5 dsComp->addDataSpace ("x") ;

7 // sparse
8§ Computationx spsComp = new Computation () ;
spsComp->addDataSpace ("y") ;
spsComp->addDataSpace ("$AS") ;
11 spsComp->addDataSpace ("x") ;

1

B. Statements

Statements perform read and write operations on data
spaces. We restrict the definition of statements to be basic
blocks. There is a single entry and a single exit from each
block of code represented.

All statements have an iteration domain associated with
them. This iteration domain is a set containing every instance
of the statement and has no particular order. It is typically
expressed as the set of iterators that the statement runs over,
subject to the constraints of their iteration (loop bounds). The
following code block shows how to create a statement using
the Computation API. A statement is written as a string and
the names of the data spaces are delimited with $ symbols, this
can be seen on lines 2 and 5 below for the dense and sparse
cases respectively. The iteration domain is specified as a set
using the IEGenLib syntax, with the exception of delimiting
all data spaces with $, this can be seen on lines 3 and 6 below.

I Stmtx dsO0 = new Stmt (
"Sy$ (1) += SAS(i,]) * $xS(3J);",
"{[i,j]: 0 <= 1 < N && 0 <= j < M}",
5 Stmtx spsO0 = new Stmt (
6 "Sy$ (1) += SAS(k) * Sx$(J)",
7 "{[i,k,3]: 0 <= 1 < N && rowptr(i) <= k <
rowptr (i+1l) && j = S$col(k)}",

C. Data Dependence Relationships

Data dependences exist between statements. They are en-
coded using relations between iteration vectors and data space
vectors. Calculating a closure provides the dependence rela-
tionships between statements and a partial ordering constraint
on the calculation. In our running examples the data reads and
writes can be specified as written below.

8 /x 4th and 5th parameters to Stmt constructor x/

9 // dense

10 ..

1 { // reads

12 {"y", "{[i,31->[1]11}"},

13 {("a", "{[i,31->[1,311}"},
14 {"x", "{[i,31->[J1}1"}

15},

16 { // writes

17 {"y", "{[i,J1->[11}"}
18}

20 // sparse

i.;/ reads

{"y", "{[i,k,3]1->[1]1}"},
{"A", ll{[i,k’j]7>[k]}"},
{("x", "{[i,k,31->[31}1"}

% 1,
7 { // writes

28 {"y", "{[i,k,31->[11}"}
0}

D. Execution Schedules

Execution schedules are determined using scattering func-
tions that are required to respect the data dependence relations.
Scheduling functions take as input the iterators that apply to
the current statement, if any, and output the schedule as an
integer tuple that may be lexicographically ordered with others
to determine correct execution order of a group of statements.
Iterators are commonly used as part of the output tuple,
representing that the value of iterators affects the ordering
of the statement. For example, in the scheduling function

Composable Transformations

original C
code

entry

Computation IR h
\ manual | <

N

Code

Generation \

optimized

- Computation IR C code

PDFG

v

Fig. 1: Optimization Pipeline Overview

Dense matrix vector multiply

1 for (1 = 0; i < N; i++) {
for (3=0; J<M; J++) {
y[i]l += A[i]1[J] » x[]];

Fig. 2: Dense Matrix Vector Multiply

CSR Sparse matrix vector multiply

0; 1 < N;
(k=rowptr[i];
j = collk];

4 y[i] += A[Kk]

1 for (i =
2 for

i++) {

k<rowptr[i+1]; k++) {

* x[31;

Fig. 3: Sparse Matrix Vector Multiply.

{[¢,7]— > [0,14,0, j,0]}, the position of i before j signifies that
the corresponding statement is within a loop over j, which in
turn is within a loop over ¢. Additionally, in a lexicographical
ordering, all instances of the statement with ¢ = 1 will precede
all instances with ¢ = 2, regardless of the value of j.

31 /x 3rd parameter to the Stmt constructor =*/
2 // dense
"{fi,3] ->10,1,0,3,0]}"

34
// sparse
6 "{[i,k,3j]->[0,1,0,k,0,3,0]1}"

Figure [4] shows the complete specification of two compu-
tation, first dense matrix vector multiply followed by sparse
matrix vector multiply.

E. Code Generation

The Computation class interfaces with CodeGen+ [1] for
code generation. CodeGen+ uses Omega sets and relations for
polyhedra scanning. Omega sets and relations have limitations
in the presence of uninterpreted functions. Uninterpreted func-
tions are limited by the prefix rule. This rule states that an
uninterpreted function must be a prefix of the tuple declaration.

Uninterpreted functions cannot have expressions as parame-
ters. Code generation overcomes this limitation by modifying
uninterpreted functions in IEGenLib to be Omega compliant,
while storing a mapping of the original uninterpreted func-
tion to its modified uninterpreted function. The separation of
representations for transformations and code generation allows
precise operations during transformations while still leveraging
the functionality of CodeGen+ for polyhedra scanning.

Figure [3] shows the results of code generation for the sparse
matrix vector multiplication computation defined in Figure [4]
Line 2 of Figure |§] defines a macro for the statement s0, lines 9
- 13 remap the Omega compliant uninterpreted function back
to its original. Lines 15 - 20 are a direct result of polyhedra
scanning from CodeGen+. The Computation implementation
provides all of the supporting definitions for fully functional
code.

III. VISUALIZING A COMPUTATION ON A GRAPH

Visualizing computations as a data flow graph gives perfor-
mance experts a suitable view to reason about transformations
for optimization opportunities. To this end, PDFGs express
regular computations using a combination of the polyhedral
model and dataflow graphs [4]]. The original graphs have cer-
tain limitations: loop carried dependences were not expressed,
and imperfect loop nests were not supported. This section
describes how these limitations were overcome. Additionally,
the creation of PDFGs by traversing the SPF IR is integrated
with the Computation API. After a Computation is created
such as the one in Figure [a function can be called that
outputs the PDFG as a dot file.

In the original PDFG, shaded rectangular boxes represent
data spaces and inverted triangles represent statements. In
the extended PDFG, shaded rectangular boxes represent do-
mains, transparent rectangular boxes represent data spaces
and rounded rectangular boxes represent statements. Edges
represent reads and writes in both the original and extended
PDFG. The extended PDFG does not currently express the
type and size of data spaces in a computation.

Loop carried dependences and imperfect loop nests are
important patterns to consider when deciding which opti-
mizations to apply. Loop carried dependences refer to coding
patterns where one iteration of a loop reads or writes data
produced by another iteration of the same loop. An imperfect

Full Computation Specification SPMV codegen

// dense mvm

Computation* dsComp = new Computation();

TR}

4 // add data spaces

5 dsComp->addDataSpace ("SysS$") ;
6 dsComp->addDataSpace ("SAS") ;
7 dsComp->addDataSpace ("x") ;

9 Stmtx dsO = new Stmt (
10 // source code

1 "Sy$ (i) += $SAS (i,])
12 // iter domain

13 "{[i,J]: 0 <= i < SN$ && 0 <= j < $MS}",
14 // scheduling function

15 "{r+<,j1 ->r0,41,0,3,011",

16 { // data reads

17 {"y", "{[i,31->[111}1"},

18 {"a", "{[i,3]1->[1,31}"},

19 {"x", "{[i,J]1->[31}1"}

20 b
21 {
2 {vvyu,
23 }

240) G
dsComp—>addStmt (ds0) ;

* Sx$(J)i ",

// data writes
"{li,31->[11}"}

27 // sparse mvm

2% Computationx spsComp = new Computation();
3 // add data spaces

;1 spsComp—->addDataSpace ("Sys$") ;

3 spsComp->addDataSpace ("S$SAS") ;

33 spsComp->addDataSpace ("xS") ;

Stmtx spsO0 = new Stmt (
36 "SyS$ (i) += SAS (k) x xSS(7J)",
37 "{[i,k,J]l: 0 <= i < N && rowptr(i) <= k <
rowptr (i+1l) && j = col(k)}",
38 "{[i,%k,j1->[0,1i,0,%k,0,3,01}",
39 {
10 {"y", "{li,k,31->[1]1}"},
41 {"a", "{[i,k,J1->[k1}"},
42 {"x", "{[i,k,J1->[J1}"}
43 }o
44 {
45 {"y", "{li,k,31->[1]}"}

16 }
47);
48 spsComp->addStmt (sps0) ;

Fig. 4: Computation API specification for dense and sparse
matrix vector multiply

loop nest is one that has statements at multiple levels as shown
in Figure [6]

A. Loop Carried Dependences

The existing representation is not capable of visualizing
the presence of a loop carried dependence. Figure [§] shows
the PDFG for the forward solve example in Figure [In the
example, the code contains a loop carried dependence for the
data space u in statements S1 and S2. However, the original
PDFG graph in figure [§] does not visualize the loop carried
dependence.

I #undef sO

> #define sO0(_x0, i, _ x2, k, _ x4, Jj, __X6) vy
(1) += A(k) * x(J)

4+ #undef col (t0)

5 #undef col_0(__tv0, _ tvl, _ tv2, _ tv3)

6 #undef rowptr (t0)

7 #undef rowptr_1(__tv0, __tvl)

s #undef rowptr_2(__tv0, __twvl)

9 #define col (t0) col[tO0]

10 #define col_O(__tv0, _ tvl, __tv2, _ tv3) col(

__tv3)

11 #define rowptr (t0) rowptr[tO]

2 #define rowptr_1(__tv0, __tvl) rowptr(__tvl)

13 #define rowptr_2(___tv0, tvl) rowptr(__tvl +
1)

14

5 for(t2 = 0; t2 <= N-1; t2++) {

16 for(td4 = rowptr_1(tl,t2); td4 <= rowptr_2(tl,

t2)-1; td++) |
17 t6=col_0(tl,t2,t3,td);
18 s0(0,t2,0,t4,0,t6,0);
19 }
20 }

> #undef sO

23 #undef col (t0)

2 #undef col_0(__tv0
25 #undef rowptr (t0)
26 #undef rowptr_1(__tvO0,
#undef rowptr_2 (__tvO0,

tvl tv2 tv3)

r— [A— r—

__tvl)
_ tvl)

2
3

Fig. 5: SPMV codegen

The forward solve example code

1 for (i=0; i<N; i++){
S0: tmp(i) = £(i);
for (3=0; Jj<i; J++){
A Sl: tmp(i) —-= A(i, J)*u(j);
5 }
6 S2: u(i) = tmp(i)/A(i, 1);
7}

Fig. 6: Forward Solve

Figure [7] shows the extended PDFG. The outgoing edge
from the data node u to the statement node S1 at index j shows
the read access in the j-loop. The incoming edge from the
statement node S2 to the data node u at index ¢ shows the write
access in the ¢-loop. This shows a loop carried dependence
over i.

B. Imperfect loop nests

The forward solve example also exhibits an imperfect loop
nest pattern: statements S0 and S2 are in the outer i-loop
while statement S1 is in the inner j loop. The original PDFG
in Figure 8] does not exhibit this pattern. The updated design in
the extended PDFG show in Figure [7] visualizes the imperfect
loop pattern.

All

[i, 1 [l i, 1]

u] fl

[1]\[I [il

Mmam {[0,i]: 1>—0&N ¥-1+N 1>=0}

S1: tmp(i) -= AGi) * u()

({[(),i,1,j,0]:i>=0&&j>=0&&-i+N-1>=0&&1 ‘]-l>=0}1 ({[0,1,2,0,0].1>=0&&-1+N 1>=0)] ({[0,i,0,0,0]:i>=0&&-i+N-1>=0}

S2: u(i) = tmp(i)/A(i i) S0: tmp(i) = f(3))

—_

o«

(il (i

il [i]

tmpl]

Fig. 7: Extended PDFG. This graph is automatically generated from the Computation class and includes loop carried
dependences and irregular loop nests. The lexicographical ordering of the tuples in the set attached to each statement informs

its execution order.

Type - Int
Size:n
50 : tma(i) = i)
Doemain=[{0<=i<n}
Type - Int Type : Int
AL | gz - pon ‘ mpl] | 2PE-

51 :tmp(i) -= Afij] * ulj]
Domain = {0<=i<n && O<=j<i)

Tvpe : Int
Size:n

Type : Int
Size:n

52 - ufi} = Afi.i] ftmp(i)
Domain = {0<=i=n)

Type : Int
ull Size:n

Fig. 8: The Original PDFG for the Forward Solve example.

C. Dot File Graph

The computation API is traversed to generate the extended
PDFG as a directed graph. Loop nests are expressed using a
modified version of polyhedra scanning. Polyhedra scanning
is a top down recursive algorithm for generating code from a
set of iteration domains of statements. Our modified version
of polyhedra scanning uses the same approach but generates
nodes of a directed graph for statements and generate clusters
for statements within the same loop nest.

IV. OPERATIONS ON COMPUTATIONS

Computations are composed of IEGenLib Sets and Rela-
tions. IEGenLib’s functionality is used directly to manipulate
the Computations’ components. The core operations imple-
mented in IEGenLib include inversion, compose, apply, and
related supporting functions. Using these operations we are
able to perform function inlining and loop transformations
within the Computation class.

A. Inlining

Computation inlining handles the complexity of creating
the SPF representation of functions that call other functions.

Instances of Computations need to be reusable in the same
way that functions are reusable.

Each function in the original source code is represented as
a Computation. When a function call is first encountered in
the source, a Computation must be created for it. Then, the
contents of that Computation are inserted (inlined) into the
caller’s Computation that is being constructed. If the same
function is called multiple times, the Computation that has
been generated for it will be reused. The inlining process can
continue to any nesting depth, if a function being called also
calls other functions.

The inlining function is responsible for:

« avoiding naming conflicts between variables in the caller
and callee,

e generating assignment statements for function parame-
ters,

o providing callee return values to the caller and

« updating iteration domains, execution schedules and data
dependences in the inlined statements.

Before inlining, the names of data spaces and iterators in
the callee are prefixed with a unique string to avoid collisions
with the caller’s data spaces, or with other instances of the
same inlined Computation within the same scope. This change
is reflected in the stored source code string of the statement,
as well as other parts of its representation that involve these
names.

To keep things simple, the return values and arguments to an
inlined function are restricted to either names of data spaces or
literals. To pass a more complicated expression into a function,
like A[0] or x+y, it must first be assigned to a temporary
variable which can then be passed in. To preserve the original
calling semantics of the program, when arguments are passed
to a function, statements are generated to declare each of its
parameters equal to the passed in values. No equivalent process
occurs with return values, because they could potentially be
used in a larger variety of contexts (assigned to variables, used
immediately in an expression, or ignored entirely). Therefore,
the inlining process returns the values that are returned by the
inlined function, as strings, to be used however the caller sees

fit.

Iteration domains, execution schedules, and data access
relations are updated to reflect the surrounding context the
statements have been inserted into. For example, if a function
is called within a loop, and the callee itself also contains
a loop, the representation of the innermost statements are
adjusted to reflect that they are now nested under both loops.

B. Loop Transformations as Graph Operations

In this work, we provide fusion and reschedule operations
on the graph. The operations on the graph translates to
transformations performed by our interface API to manipulate
the SPF components.

1) Fusion: This is a transformation that joins two state-
ments from separate loops into a single loop. There are various
categories of loop fusion, including read reduction fusion
and producer-consumer fusion. Read reduction involves fusing
loops that read from the same memory location while producer
consumer fusion involves merging loops where one loop writes
a variable that is then read by the second loop.

Graph operation for fusing two statements together at
a particular level of the execution schedule is denoted as
fuse(S1,52,level) in our IR. S1 and S2 are the statements to
be fused and level indicates what depth to fuse at. Specifying
the depth to fuse at allows for more flexibility in a fusion
operation. After fusion, S2 will be ordered immediately after
S1.

2) Reschedule: The reschedule operation involves mov-
ing a statement to a new location in the graph and con-
sequently changing its execution schedule. Reschedule by
itself is not an optimization, however, it exposes optimization
opportunities. The reschedule graph operation is denoted as
reschedule(S1,.52) in our IR. This will cause statement S1
to be rescheduled to appear before S2.

V. RELATED WORK

Our work differs from other work on optimization using the
polyhedral model because of our focus and support for sparse
or irregular applications. We build on previous work of the
Omega [1]], CHIiLL [6], and sparse polyhedral framework [7]]
projects. This interface provides a new mechanism to opti-
mize applications using the sparse polyhedral framework and
generate fully functional code incrementally within a legacy
scientific application. The structure of the Computation API
lays the groundwork for manipulating data spaces, including
memory layout in the future.

A. Polyhedral Model Tools

Tools such as Polly [8], Pluto [9], Loopy [10], Poly-
Mage [11] use the polyhedral model to transform regular
codes. Polly automatically detects and transforms important
code sections in the LLVM IR, breaking the limitations of
most tools limited to a single source language. PolyMage
is a domain specific language that automates the generation
of efficient implementations of image processing pipelines.
Halide [[12] is another compiler for generating code for im-
age computing algorithms. Halide separates algorithm and

scheduling specification, thereby allowing optimization engi-
neers to write different schedules for optimum performance.
Their work also uses autotuning to generate efficient code by
performing a stochastic search to find good schedules for the
algorithm.

Pluto [9]] is a fully automatic source to source transformation
tool that optimizes programs for parallelism and locality. Pluto
uses integer linear programming to decide on optimal code
using parallelism and locality as part of its cost functions.
Loopy, is a tool that allows a programmer to describe loop
transformation at high level and verifies the transformation
for correctness. Loopy, like Polly is implemented in LLVM.
isl [13]] is a tool for manipulating sets and relations in
the polyhedral model. This tool forms the basis for affine
transformations used in all the tools earlier discussed in this
section [12], [9], [10], [L1].

B. Program Dependence Graphs

PDFGs are based on a line of research started by Ferrante
et. al, [14] with their work on program dependence graphs.
Polyhedral optimizations are proposed in the work on Data
Flow Graph Representations (DFGR) [15], [16]. Our work is
closely related to this project, but polyhedral dataflow graphs
are a view of the polyhedral representation rather than being
a separate IR. [17]

C. Sparse Polyhedral Model Tools

This work takes a slightly different approach than
CHILL [[18]. In CHILL the performance expert writes a trans-
formation recipe directed at a section of code. The script can
include several operations that are a combination of abstract
syntax tree and polyhedral transformations. Our work provides
an interface to build a dataflow graph and control flow graph
representation of the code and then provide an interface to
transform the graph. This provides a visual representation
of the transformations as well as making the polyhedral
transformations more approachable.

VI. CONCLUSION

This work presents an object oriented API to the sparse
polyhedral library. The API provides a standard interface to
fully specify a computation in the Sparse Polyhedral frame-
work from a single entry point. The single entry point is
enabled by tight integration among IEGenLib, CodeGen+,
and PDFGs. PDFGs have been expanded to represent non-
affine loop boundaries, imperfect loop nests, and loop carried
dependences. The API does not currently support early exits,
loops where the bounds are modified within the loop nests,
and loops without bounds such as while loops. In the future
we hope explore techniques such as those from [19] to
overcome limitations of representing unbounded loops and exit
predicates.

We provide support for combining Computations through
inlining. This increases reusability and reliability. The code
generated by a computation encompasses statement macros
and, when needed, variable declarations. This means that in

the future, memory layout decisions for temporary storage can
be made entirely within the SPF.

Future tools will use this API to generate the SPF IR, manip-
ulate it, and produce optimized code from legacy applications
and custom high-level or domain specific languages. Addi-
tionally, this API will be used when iteratively transforming
a computation; the PDFG will be displayed at every step to
guide the performance experts decisions.

[1

—

[2

—

[3

=

[4

=

[5

=

[6

=

[7

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

Chun Chen. Polyhedra scanning revisited. Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 499-508, 2012.

Pugh W Rosser E Shpeisman T Wonnacott D Kelly W, Maslov V. The
Omega Library interface guide. University of Maryland at College Park
Mar 1995, 1995.

Michelle Mills Strout, Geri Georg, and Catherine Olschanowsky. Set
and relation manipulation for the Sparse Polyhedral Framework. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 7760 LNCS:61—
75, 2013.

Eddie C. Davis, Michelle Mills Strout, and Catherine Olschanowsky.
Transforming loop chains via macro dataflow graphs. In Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion, CGO 2018, page 265277, New York, NY, USA, 2018. Association
for Computing Machinery.

Mary Hall, Jacqueline Chame, Jaewook Shin, Chun Chen, Gabe Rudy,
and Malik Murtaza Khan. Loop transformation recipes for code gener-
ation and auto-tuning. In Proceedings of the Workshop on Languages
and Compilers for Parallel Computing (LCPC), 2009.

Nicholas Mitchell, Larry Carter, and Jeanne Ferrante. Localizing non-
affine array references. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages
192-202, Los Alamitos, CA, USA, October 1999. IEEE Computer
Society.

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante,
Barbara Kreaseck, and Catherine Olschanowsky. An approach for code
generation in the sparse polyhedral framework. Parallel Computing,
53(C):32-57, April 2016.

Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbiirger,
Armin GroBlinger, and Louis-Nogl Pouchet. Polly - Polyhedral opti-
mization in LLVM. Proceedings of the First International Workshop on
Polyhedral Compilation Techniques (IMPACT ’11), page None, 2011.
Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A
Practical and Fully Automatic Polyhedral Program Optimization Sys-
tem. PLDI 2008 - 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1-15, 2008.

Kedar S. Namjoshi and Nimit Singhania. Loopy: Programmable and
formally verified loop transformations. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 9837 LNCS(July):383—402, 2016.
Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. PolyMage.
ACM SIGPLAN Notices, 50(4):429-443, mar 2015.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Frédo Durand,
Connelly Barnes, and Saman Amarasinghe. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 519-530, 2013.

Sven Verdoolaege. isl: An integer set library for the polyhedral model.
In Komei Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki
Takayama, editors, Lecture Notes in Computer Science,, pages 299-302.
Springer, September 2010.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319-349, July 1987.

Alina Sbirlea, Jun Shirako, Louis-Noél Pouchet, and Vivek Sarkar. Poly-
hedral optimizations for a data-flow graph language. In Xipeng Shen,
Frank Mueller, and James Tuck, editors, Languages and Compilers for
Parallel Computing, pages 57-72, Cham, 2016. Springer International
Publishing.

[16]

(17]

(18]

[19]

Alina Sbirlea, Louis-Noel Pouchet, and Vivek Sarkar. DFGR an
Intermediate Graph Representation for Macro-Dataflow Programs. In
2014 Fourth Workshop on Data-Flow Execution Models for Extreme
Scale Computing, pages 38—45, Edmonton, AB, Canada, August 2014.
IEEE.

Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo
Schneider, and Torsten Hoefler. Stateful dataflow multigraphs: A
data-centric model for performance portability on heterogeneous ar-
chitectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1—
14, 2019.

Chun Chen, Jacqueline Chame, and Mary Hall. CHIiLL: A framework
for composing high-level loop transformations. Technical Report 08-
897, University of Southern California, June 2008.

Mohamed-Walid Benabderrahmane, Louis-Noél Pouchet, Albert Cohen,
and Cédric Bastoul. The polyhedral model is more widely applicable
than you think. In Compiler Construction, volume LNCS 6011, Berlin,
Heidelberg, 2010. Springer-Verlag.

	Introduction
	Computation: A C++ Class
	Data Spaces
	Statements
	Data Dependence Relationships
	Execution Schedules
	Code Generation

	Visualizing a Computation on a Graph
	Loop Carried Dependences
	Imperfect loop nests
	Dot File Graph

	Operations on Computations
	Inlining
	Loop Transformations as Graph Operations
	Fusion
	Reschedule

	Related Work
	Polyhedral Model Tools
	Program Dependence Graphs
	Sparse Polyhedral Model Tools

	Conclusion
	References

