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VERTEX OPERATOR SUPERALGEBRAS AND THE
16-FOLD WAY

CHONGYING DONG, SIU-HUNG NG, AND LI REN

ABSTRACT. Let V' be a vertex operator superalgebra with the natural order 2
automorphism ¢. Under suitable conditions on V/, the o-fixed subspace Vj is
a vertex operator algebra and the Vg-module category Cyj is a modular tensor
category. In this paper, we prove that Cy; is a fermionic modular tensor
category and the Miiger centralizer C?,() of the fermion in Cyj is generated by
the irreducible Vg-submodules of the V-modules. In particular, C‘O/a is a super-
modular tensor category and Cy; is a minimal modular extension of C?,(). We
provide a construction of a vertex operator superalgebra V! for each positive
integer [ such that C(Vl)ﬁ is a minimal modular extension of C?,a. We prove
that these modular tensor categories C(Vz)ﬁ are uniquely determined, up to
equivalence, by the congruence class of | modulo 16.

1. INTRODUCTION

Modular (tensor) categories are mathematical formalization of topological phases
of matters, which are also called topological orders [W]. The 2+1D symmetry pro-
tected topological (SPT) orders are recently described by using unitary braided
fusion categories C with the symmetry determined by their Miiger centers £, which
are symmetric fusion categories (cf. [LKWILLKW2] and the references therein). It
follows from [Del[DR] that a Miiger center £ is Tannakian or super-Tannakian, i.e. £
is equivalent to the braided fusion category Rep(G) or Rep(G, z) where G is a finite
group uniquely determined by £ and z is a central order 2 element of G. Modu-
lar tensor categories are exactly those braided fusion categories with trivial Miiger
centers. The category sVec of super vector spaces over C is the smallest super-
Tannakian category. By gauging the minimal topological order with the fermionic
symmetry [Ki], Kitaev discovered the 16-fold way: The braided fusion category
sVec has 16 exactly inequivalent unitary minimal modular extensions, which are
unitary modular tensor categories of dimension 4 containing a full braided fusion
subcategory equivalent to sVec.

Throughout this paper, a super-modular category means a braided fusion cat-
egory over C whose Miiger center is equivalent to sVec as braided fusion cate-
gories. Modular or super-modular categories are assumed to be pseudounitary and
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equipped with the canonical pivotal structures, i.e. the categorical (or quantum)
dimension of each object is a positive number. Motivated by Kitaev’s 16-fold way,
it is conjectured in [BGH] that every super-modular category C has exactly 16 min-
imal modular extensions up to equivalence, i.e. pseudounitary modular categories
of dimension 2dim(C) containing a braided fusion full subcategory equivalent to
C. If C admits a minimal modular extension, it has been proved independently
in [LKW1] that C admits 16 minimal modular extensions. However, the existence
of a minimal modular extension for any super-modular category is still an open
problem.

Rational conformal field theory is closely related to modular categories. Ac-
cording to [Hull[Hu2|, the representation category of a rational Cy-cofinite vertex
operator algebra (VOA) is modular. In fact, it is an open problem whether every
modular category over C can be realized by a VOA. Super-modular categories are
not modular, and so they cannot be realized as the module category of any rational
VOA. One would ask what kind of rational VOA could realize a minimal modular
extension of super-modular category C, and how one can obtain other VOAs whose
module categories are minimal modular extensions of C.

A vertex operator superalgebra V =@, . 1z V, is %Z—graded in this paper. The
Zy-grading V' = Vo @ Vi with V5 = > ., V,, and V] = Zne%JrZ
natural order 2 automorphism o of V' such that oly, = (—1)" for r = 0,1. The
twisted representations and orbifold theory of rational vertex operator superalge-
bras are well-studied in [DZ1l[DZ2]. With suitable assumptions ((Al) and (A2) in
Section M), the Vg-module category Cy; is a modular tensor category, and Vi is a
fermion in Cy; (cf. Lemma [@.1)). In particular, Vi is an order 2 simple current
of V5. We prove in Theorem BTl that the full subcategory C%ﬁ of Cy;, generated
by the simple Vz-submodules of V-modules, are closed under the tensor product
of Cy,. In particular, C?,G is a braided fusion subcategory of Cy, with the fermion

V,, determines a

Vi. Moreover, C?,G is the Miiger centralizer of the fermion Vi in Cy;. Hence, C‘O/a
is super-modular (cf. Lemma [3.2)), and Cy; is a minimal modular extension C?/(,).
The modular category Cyj is also Zs-graded with Cy, = C?,G ® C‘l/ﬁ where C‘l/ﬁ is the
full subcategory of Cy; generated by the irreducible V5-submodules of the o-twisted
V-modules, and dim(C‘l/a) = dim(C%@) (cf. Section B).

Since a nice vertex operator superalgebra V (i.e. satisfying (Al) and (A2))
naturally yields a super-modular category C‘O,G and a minimal modular extension Cy,
one would like to construct other vertex operator superalgebras from V to realize the
16-fold way of the super-modular category C‘O/a. To achieve this goal, we establish
in Theorem [0.6] that if U is a holomorphic vertex operator superalgebra, then V@ U
is a vertex operator superalgebra and C?/(,) equivalent to C?V@U)() as braided fusion
categories. In particular, Cygr), is another minimal modular extension of C‘O/G.

For each positive integer [, there is a nice holomorphic vertex operator superalge-
bra V(I,Z+ %) (cf. [FER], [KW], [LI]). For any nice vertex operator superalgebra
V, the tensor product vertex operator superalgebra V! :=V ® V(I,Z + %) yields
the super-modular category C?V% and its minimal modular extension C(y);. Since

C?V% is equivalent to C‘O/ﬁ as braided fusion categories, Cy; is a minimal modular
extension of C?,G for each positive integer [. We prove in Theorem [[0.3] that Cgy1y,
and C(ym), are equivalent modular categories if and only if m = [ (mod 16) by

computing their Gauss sums and applying [LKWIl Theorems 4.26 and 5.4].
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The results in this paper could hold for Z-graded vertex operator superalgebras
with certain assumptions. This situation will be discussed in another paper. A con-
nection between general orbifold theory for a vertex operator algebra and minimal
modular extensions has recently been investigated in [DNR].

The paper is organized as follows: A review of vertex operator superalgebras
and some of basic results on their representation theory are presented in Section 2
In Section [B] we discuss the tensor product of two vertex operator superalgebras,
and investigate its irreducible representations via the representations of their Zhu’s
superalgebras. We review the modular invariance of the trace functions in the
orbifold theory for the vertex operator superalgebras in Section @l In Section [l
the irreducible Vz-modules of a vertex operator superalgebra V are determined.
In Section [6] we show that the associated representation of SL2(Z) on the trace
functions in the orbifold theory for the vertex operator superalgebras provided in
Section Ml is unitary. Some important relations between the quantum dimensions of
the irreducible V-modules and the irreducible Vz-modules are established in Section
[ Tn Section B we prove that the category Cy;, is Zs-graded, where Cy. and Cy,
are respectively generated by the irreducible Vg-submodules of V-modules and o-
twisted V-modules. We further prove that C%@ is a super-modular category and Cy;
is a minimal modular extension of C‘O/a in Section[@ In Section [I0, we construct a
sequence of vertex operator superalgebras V! for each positive integer I such that
C(v1), is a minimal modular extension of C?/a and these modular categories Cy1y,
are uniquely determined by the congruence class of [ modulo 16.

2. PRELIMINARIES

The various notions of twisted modules for a vertex operator superalgebra fol-
lowing [DZ1], [DZ2] are reviewed in this section. The concepts such as rationality,
regularity, and Cs-cofiniteness from [Z] and [DLM3] are discussed.

A super vector space is a Zy-graded vector space U = Uy @ U;. The vectors in Up
(resp. Uy) are called even (resp. odd). An element w in U; for some ¢ = 0,1 will be
called Zs-homogeneous. In this case, we define @& = 7. We reserve the notation sVec
for the category of finite dimensional super vector spaces over C with morphisms
preserving the Zs-gradings, and equipped with the super braiding.

If W is another super vector space, then Hom (U, W) is also a super vector space
in which Hom(U, W)g and Hom (U, W) are respectively the Zs-graded preserving
and reversing linear maps.

A wvertex operator superalgebra is a %Z—graded super vector space

V=P v.=Ven
nG%Z

with V5 = 32, o, Vo and Vj = ZRE%JFZ V,, satisfying dimV,, < oo for all n, and
Vi = 0 if m is sufficiently small. V' is equipped with a linear map
V — (EndV)[[z, 2 Y],

v—=Y(v,z) = Z V2"t (v, € (End V)3)
neL
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7782 CHONGYING DONG ET AL.

and with two distinguished vectors 1 € Vj, w € V5 satisfying the following condi-
tions for u,v € V, and m,n € Z :

u,v =0  for n sufficiently large;

Y(]_, Z) = Idv;

Y(v,2)1 € V[[z]] and lin%) Y(v,2)1 =v;
z—r

[L(m),L(n)] = (m —n)L(m+n) + B

5 (m® — M) Gpmtn,06;

d
%Y(U’ z) =Y (L(-1)v,2);

L(0)

v, =N

where L(m) = w11, that is,
-3 L
neL

and the Jacobi identity

P (Zl — Z2> Y (u, 21)Y (v, 2) — (—=1)2515 (ZQ — Zl) Y (v, 22)Y (u, 21)

20 —Z0

=210 (M> Y (Y (u, 20)v, 22)
2

holds, where §(z) = 37, ., 2" and (z; — ;)" is expanded as a formal power series
in zj, and u,v € V are Zy-homogeneous. Throughout the paper, zg, 21, 22, etc. are
independent commuting formal variables. A vertex operator superalgebra will be
denoted by V = (V,Y,1,w). In the case V3 = 0, V is a vertex operator algebra
given in [FLM3].

Let V be a vertex operator superalgebra. There is a canonical order 2 linear
automorphism o of V' associated with the structure of super vector space V such
that oly. = (=1)* for i = 0,1. It is easy to show that o1 = 1, ow = w and
oY (v,2)07t = Y(ov,z) for v € V. That means o is an automorphism of vertex
operator superalgebra V', and will be denoted by oy when the clarification is nec-
essary.

Let g = o’ for i = 0,1 and T = o(g). Let V" = {v € V|gv = >™"/Ty} for
r =0T —1. A weak g-twisted V-module M is a vector space equipped with a
linear map

V — (End M)[[2Y/7T,2=1/T)
v Yy(v,2) = Zvn —n-l (v, € End M)

nEZ

which satisfies that forall 0 <r <T -1, u e V", veV, we M,

E unzfnfl;

ner+7Z
ww =0 for [>>0;
Y (1, 2) = Id;
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Z2 — 21

P (zl — z2> Yar(u, 21)Yar (v, 22) — (=1)% 2516 (

Y, Y
o o ) M (v, 22)Yar (u, 1)

_ —r/T _
— z;l (zl ZO) ) (21 ZO) Yur (Y (uw, z0)v, 22)

Z2 zZ2

where we assume that u, v are Zs-homogeneous.
Let o(go) = T’. An admissible g-twisted V-module is a weak g-twisted V-module
M which carries a %ZJr-grading

M = @nG%Z_'_M(n)
satisfying
UnM(n) C M(n+wtv—m—1)

for homogeneous v € V.
An (ordinary) g-twisted V-module is a weak g-twisted V-module

M= @ M,y
AeC
such that dim M, is finite, and for fixed A\, M,, 5 = 0 for all small enough integers
n where My = {w € M|L(0)w = Aw}. We will write wtw = X if w € M.
IfM=@,, 17, M (n) is an admissible g-twisted V-module, the contragredient

module M’ is defined as follows:

M= @ Mn),
neZy
where M (n)* = Homc (M (n), C). The vertex operator Y (a, 2) is defined for a € V
via

(Yar (a,2) f,w) = (f, Yar (e (e7272) Va2 ),

where (f,w) = f(w) is the natural pairing M’ x M — C. It follows from [FHL] and
[X] that (M’,Yas) is an admissible g-twisted V-module. We can also define the
contragredient module M’ for a g-twisted V-module M. In this case, M’ is also a
g-twisted V-module. Moreover, M is irreducible if and only if M’ is irreducible.

A vertex operator superalgebra V is called g-rational, if the category of its admis-
sible g-twisted modules is semisimple. We simply call V rational if V is 1-rational.
V' is called holomorphic if V is rational and V is the only irreducible module of
itself up to isomorphism.

We also need another important concept called Co-cofiniteness [Z]. We say that
a vertex operator superalgebra V is Ca-cofinite if V/Cy(V) is finite dimensional,
where C2(V) = (v_qu|v,u € V). A vertex operator superalgebra V is called regular
if every weak V-module is a direct sum of ordinary irreducible V-modules.

The following results about o'-rationality are given in [DZI] and [DZ2]. Also see
[DLM4] and [DLMT].

Theorem 2.1. Let V be a g-rational vertex operator superalgebra where g = o
and i = 0,1. Then:

(1) Any irreducible admissible g-twisted V-module M is an ordinary g-twisted
V-module. Moreover, there exists a number A € C such that My # 0 and M =
Orne Lz, M. The X is called the conformal weight of M.

(2) There are only finitely many irreducible admissible g-twisted V-modules up
to isomorphism.
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7784 CHONGYING DONG ET AL.

(3) If V is also Cy-cofinite and o'-rational for i = 0,1 then the central charge ¢
and the conformal weight \ of any irreducible o’ -twisted V-module M are rational
numbers.

A vertex operator superalgebra V = @,,¢ %an is said to be of CFT type if V,, =0
for negative n and Vp = C1. We know from |L3] and [ABD] that if V' is a vertex
operator algebra of CFT type, then regularity is equivalent to rationality and Co-
cofiniteness. Moreover, V is regular if and only if the weak module category is
semisimple [DYu|. The same results also hold for vertex operator superalgebras
with similar proof [HA].

We discuss more on V-modules. Let M = @HG%ZJrM(n) be an admissible V-
module. We set Mg = ®pez, M(n) and My = ®pez, M(n + %) From now on we
assume that V' is a simple vertex operator superalgebra and Vi # 0. Then V; is a
simple vertex operator algebra and V7 is an irreducible Vz-module.

Lemma 2.2. Let M = (M, Y) be a nonzero admissible V-module. Then M; # 0
for i = 0,1. Moreover, we can define a linear automorphism o on M such that
ola, = (—=1)" and oY (u, z)0~ ' = Yar(ou, 2) for allu € V.

Proof. Assume M; # 0. For any nonzero u € Vj, there exists n € Z such that
0 # u, M; € M; by Proposition 11.9 of [DLI]. This implies that M; # 0. The
rest of the lemma is clear. ]

Recall from [DLM7] that M is called o-stable if M oo and M are isomorphic
where M oo is a V-module such that M oo = M as vector spaces and Yaso0 (v, 2) =
Yy (ov, z) for all v € V. Lemma asserts that for any admissible V-module M,
M oo and M are isomorphic, or M is o-stable.

We now turn our attention to o-twisted V-module. In this case, an admissible
o-twisted module M has gradation M = ©,cz, M(n). So we cannot use gradation
to divide M into even and odd parts. In this case, we have to use M o o.

Lemma 2.3. Suppose M is an irreducible admissible o-twisted V-module. If M oo
and M are not isomorphic, then M is an irreducible Vi-module. If M o o and M
are isomorphic, then M is a direct sum of two inequivalent irreducible V-modules.
In this case, there exists an involution o € GL(M) such that oYy (v,2)0~ ! =
Yu(ov,z) for v € V and the two irreducible Vg-modules are the two different
etgenspaces of o.

Proof. If M o o and M are not isomorphic, it follows from the proof of Theorem
6.1 of [DM] that M oo and M are isomorphic irreducible Vg-modules. If M o o is
isomorphic to M, we also denote this isomorphism by ¢ without confusion. Then
o : M — M is a linear isomorphism such that oYy (v, 2)0~! = Y (ov, 2) for v in
V by Schur’s Lemma. We can choose o such that 02 = 1. We denote the eigenspace
with eigenvalue (—1)* by M;. Then M; is irreducible Vg-module. The inequivalence
of My and My as Vg-modules follows the same proof of Theorem 5.4 [DY]. ]

We now introduce the notion of an admissible o-twisted super V-module. An
admissible o-twisted V-module M is called an admissible o-twisted super V -module
if M is o-stable. The ordinary o-twisted super V-module can be defined similarly.

Lemma 2.4. If N is an admissible o-twisted V -module which is not a o-stable, then
N @& N oo is an admissible o-twisted super V-module. Moreover, N is irreducible
if and only if N @& N o o is an irreducible admissible o-twisted super V -module.
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Proof. For short, we set N = Noo and M = N @ N. Since N = N as vector
spaces, we can define a linear isomorphism o : M — M by o(w,w’) = (w’,w) for
any w,w’ € N. Obviously, 02 = idj; and one can verify directly that oY (u, 2)o =
Yy (ou, z) for u € V. Therefore, Moo = M and M is an admissible o-twisted super
V-module with

My ={w+owlwe M}, Mj={w—-owlwe M}.

Note that My and N are isomorphic Vg-modules for » = 0,1. If N is irreducible,
then Mgz and My are irreducible Vg-modules by Lemma 231 Let X C M be a
nonzero admissible o-twisted super V-submodule. Then X = Xz + X7. Without
loss, we can assume that Xj is nonzero. Then Xj is a submodule of the irreducible
Vg-module Mg. Thus X5 = Mj. Since V' is simple, for any nonzero u € Vi and any
nonzero w € My we know Y (u, z)w is nonzero by Proposition 11.9 of [DL1]. This
implies X7 is nonzero and equal to M;. So X has to be M and hence M is an
irreducible super V-module. Conversely, if M is super irreducible, take a nonzero
proper admissible o-twisted submodule Z of N. It is easy to see that Z + o(Z) is
a nonzero proper admissible o-twisted super module. This is a contradiction. The
proof is complete. O

In summary, every admissible o-twisted super V-module M of a vertex oper-
ator superalgebra V admits a Zo-grading which is determined by an V-module
isomorphism from M oo on M of order 2.

3. TENSOR PRODUCTS

For the remaining discussion, we investigate the tensor product U ® V of two
vertex operator superalgebras U and V', and its twisted modules, which are not
well-known in literature. The tensor product of vertex operator algebras and their
modules were studied in [FHL], but the super case is slightly more complicated. For
example, the tensor product M ® N of a opy-twisted U-module M and a oy -twisted
V-module N may not be a oygy-twisted U @ V-module. We will use o for any
vertex operator superalgebra if there is no confusion.

Lemma 3.1. Let U,V be verter operator superalgebras. Then
(1) U®YV is also a vertex operator superalgebra with

UV)g=UsgVeg+ UiV, UV);=UsVi+U;V;

and
Y(u®wv,2)(u @v') = (=1)"Y (u, 2)u’ @ Y (v, 2)v
for any Za-homogeneous elements u,uw' € U and v,v" € V.
(2) The map f: U®V — V@ U such that f(u®v) = (=1)®v @ u gives an
isomorphism of vertex operator superalgebras.
(3) If M is a o'-twisted U-module such that M o o = M and N is o'-twisted
V-module with i = 0,1. Then M ® N is a ¢! ® o*-twisted U ® V -module such that

Y(u®v,2)(z©y) = (-1)7Y (4,2)z@Y(v,2)y
uelU,veV andx € M and y € N where as usual T = r if x € Mz. In particular,
the tensor product M @ N of an U-module M and an V-module N is a module of
UaV.

(4) If both U and V' are rational, then any irreducible U®V -module is isomorphic
to M @ N for some irreducible U-module M and some irreducible V-module N.
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7786 CHONGYING DONG ET AL.

(5) If M is a o-twisted super U-module and N is a o-twisted super V-module
then M @ N is a 0 ® o-twisted super U @ V-module with

(M ®N)g=Mg® Ng+ M; ® Ny, (M®N)j=DMy® Ni+ M;® Nj.

Proof. The proofs of (1)—(4) are fairly standard [FHL], and (5) follows from (3). O

We deal with the tensor product of o-twisted modules next. From Lemma [3.1]
we need to understand M ® N where both M and N are not o-stable in terms of
the tensor product of A,(U) and A, (V) studied in [DZ2]. For this purpose, we
need some basic facts on superalgebras and their super modules from [KIJ.

Let A = Aj @ Az be a superalgebra. A super A-module M is defined as a Zo-
graded module M = Mgz & My such that AzMs C M. A is called semisimple if
A is completely reducible super A-module. A is simple if it is semisimple and the
only super ideals are 0 and itself.

There are two types of simple superalgebras Qy, (Q type) and M,, ,, (M type)
for any positive integer k£ and nonnegative integers m,n with m+n > 0. The Q is

defined to be the algebra consisting of 2k x 2k matrices of the form —AB ﬁ )7

where A and B are arbitrary k& X k complex matrices, with B = 0 for the even
part and A = 0 for the odd one. The M,,, is the complex matrix algebra
D g ), where A, B,C and D are com-
plex matrices of dimensions m X m, n X n, m X n and n X m, respectively, with
C = 0,D = 0 for the even part and A = 0, B = 0 for the odd part. Clearly, Qj is
a direct sum of two copies of a full matrix algebra.

One can find the following results in [KIJ.

M (mn4n)x (m+n)- Write each matrix as (

Theorem 3.2. Let A be a finite dimensional superalgebra.

(1) The following are equivalent: (a) A is a semisimple superalgebra, (b) A is a
semisimple associative algebra, (¢) A is a direct sum of simple superalgebras.

(2) Any finite dimensional simple superalgebra over C is of either Q type or M
type.

(3) For k > 0, Qk has a unique irreducible super module of dimension 2k which
s a direct sum of two inequivalent Qr-modules of dimension k.

(4) For m,n > 0 with m +n > 0, M,, ,, has a unique irreducible super module
of dimension m + n which is also irreducible M, ,-module.

Now we discuss the tensor products of superalgebras and their super modules.
For any superalgebra A = Ay ® Aj and a € A;, we define @ := i. Superalgebras
are algebras in sVec, which is a braided tensor category. Therefore, the tensor
product of two superalgebras is a superalgebra. More precisely, if A and B are
superalgebras, then A ® B is a superalgebra with

(A@B)():A@@B()+Ai®31, (A@B)T =A; @ B + A1 ® By

and

(a®b)(a' @) = (—1)""ad’ @ by’
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VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY 7787

for any homogeneous elements a,a’ € A and b,b’ € B. Note that the map f :
A®B— B® Awith fla®b) = (-1)®b®a for a € A and b € B is the braiding of
sVec. By [KI|,

Qm o2y Qn = an,mn; Qk ®Mm,n = Q(m—i—n)ka Mm,n ®Mk,l = Mmk+nl,ml+nk

as superalgebras or algebras in sVec.

We now return to vertex operator superalgebra V. Recall the associative algebra
Ay (V) from [DZ2]. Let O,(V) to be the subspace of V spanned by u o, v for
u,v € V where
(1 + z)wtu

uo, v =Res, Y(u,2)v 5

z
Set
1 wtu
u*, v = Res, Y (u, z)v&
and A, (V) =V/O,(V). Note that the definition of A, (V) is the same as the Zhu’s
algebra for a vertex operator algebra.
The statements (1)—(4) of the following proposition are known in [DZ2], and the
statements (1’)—(4’) can been proved similarly with obvious modifications.

Proposition 3.3. Let V be a vertexr operator superalgebra. Then

(1) Ax (V) is an associative algebra with product induced from *, on V and
identity 1 + O, (V). Moreover, w + O, (V) is a central element.

(1) Ax(V) is a superalgebra with

As(V)r = (Ve +05(V))/06(V) = Vi /O (V) N V.

(2) If M = ®p>oM(n) is an admissible o-twisted V-module with M(0) # 0 then
M(0) is an A, (V)-module such that v+ Ox(V) acts as o(v) where o(v) = Vgt y—1.

(2) If M = ®p>0M(n) is an admissible o-twisted super V -module with M(0) # 0
then M (0) is a super Ay (V)-module such that v+ O, (V) acts as o(v).

(3) The assignment, M — M (0), defines a bijection between inequivalent irre-
ducible admissible o-twisted V -modules and inequivalent irreducible A, (V')-modules.

(3’) The assignment, M — M(0), defines a bijection between inequivalent ir-
reducible admissible o-twisted super V-modules and inequivalent irreducible super
Ay (V)-modules.

(4) If V is o-rational then A,(V) is a finite dimensional semisimple associative
algebra.

(4) If V is o-rational then A, (V) is a finite dimensional semisimple superalge-
bra.

Now we assume that V' is o-rational. Let
{NO NO ... N? N4 N . NP}
be a complete set of inequivalent irreducible o-twisted V-modules, where N, NI =

Nio o are inequivalent for i = 0,...,q and NV 2 NJog for j = ¢+ 1,...,p. Then

q

A, (V) = @(End N (0) & End N (0)) P @ End N7(0)

i=0 j=q+1

For short we denote the End N*(0) @ End N.(0) by A, (V)! for i = =0,...,¢q and
End N7(0) by A,(V)7 for j=q+1,...,p. Then A4,(V) =al_ A,(V)"
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Lemma 3.4. Let V' be a o-rational vertex operator superalgebra. Fori=0,...,q,
A, (V) is a Q type simple superalgebra with the unique irreducible super module
N¥(0) ® N.(0), a direct sum of the inequivalent irreducible A,(V)*-modules N*(0)
and NL(0). If i =q+1,...,p, As(V)® is an M type simple superalgebra with the
unique irreducible super module N*(0).

Proof. By Proposition B3l A, (V) is semisimple. Clearly, if i > ¢, A,(V)® is an
M type simple superalgebra with the unique irreducible super module N%(0). If
i < g, note that N*(0) ® Ni(0) is a super A, (V)-module with (N?(0) & N.(0))»
spanned by (w,(—1)"w) for w € N*(0). Since both (N*(0) & N;(0))s for r = 0,1
are isomorphic irreducible A, (V)% g-modules, we immediately see that N {(0)BNi(0)
is an irreducible super A, (V)-module and A,(V)? is a simple superalgebra of Q
type. The proof is complete. ([l

We now can establish the following results on the tensor product of o-twisted
modules. Let U be another o-rational vertex operator superalgebra and

{Wi/7W;.'/’Wj, |Zl = 07" '7q/7j/ = q/ + 17" '7p/}
is a complete set of inequivalent irreducible o-twisted U-modules.

Theorem 3.5. Let U,V be as above. Then U ® V is o-rational. Moreover, we
have

(1) For i =0,...,¢,i =0,....q, (W & W) ® (N* @& Ni) is a sum of two
isomorphic zrreduczble o-twisted U ® V -modules which are o-stable.

(2) Fori' = 0,....¢,j = q+1,....p, (W" & W) ® N7 is a sum of two
inequivalent irreducible o-twisted U ® V-modules W © N7 and W;J ® NJ. In
particular, (W @ N9) oo = W @ NJ.

(3) For j/ = ¢ +1,...,p,i = 0,...,¢, W' ® (N* ® N) is a sum of two in-
equivalent irreducible o- twisted U @ V-modules W3' @ N* and W7 @ Ni such that
(Wi’ ®N’)oa—Wﬂ ® NE.

(4) Forj =q¢ +1,....0',7=q+1,...,p, W' ® N7 is an irreducible o-twisted
U ® V-module which is o-stable.

(5) Ewery irreducible o-twisted U ® V-module is isomorphic to one of the irre-
ducible o-twisted modules listed in (1)—(4).

Proof. The proof of g-rationality of U ® V is similar to that of Proposition 2.7 of
[DMZ]. (2)—(4) can be verified directly by LemmaB.l For (1), we need A,(U®V).
Using the exact proof of Lemma 2.8 in [DMZ] yields A,(U®V) = A, (U)® As(V).
This gives
A,UeV)= @ AU @4, (V).
0<#'<p’,0<i<p

Note that these tensor product superalgebras are superalgebras with the multiplica-
tion given in the remark after Theorem Using Lemma [3:4] and the tensor prod-
ucts of simple superalgebras we can give a different proof of (2)—(4). We now prove
(1). In this case, i’ < ¢, i < g and A, (U)" @ Ax(V) is isomorphic to the simple
superalgebra M., mn = Momnx2mn, where m = dim w (0) and n = dim N¢(0).
So Ax(U)" @ A,(V)" has a unique irreducible module of dimension 2mn. Since
(W(0)® Wi (0) ® (N{(0) & Ni(0)) is an A, (U)" @ Ag(V)i-module of dimension
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4mn, it has to be a sum of two isomorphic irreducible super A, (U )il ® Ay (V)i
modules. As a result, (Wi + W) @ (N* + Ni) is a sum of two isomorphic irre-
ducible o-twisted U ® V-modules which are o-stable. (5) follows from Proposition
33(3). O

4. MODULAR INVARIANCE

In this section, we review the modular invariance property of the trace functions
in orbifold theory for vertex operator superalgebras from [DZI], [DLMT] and [Z].
We also correct a mistake on the number of irreducible o-twisted V-modules in
[DZ1].

For the discussion of the modular invariance of trace functions, we recall the
vertex operator superalgebra (V,Y[],1,®) associated to a vertex operator superal-
gebra V defined in [Z]. Here & = w — ¢/24 and

Yv,2] =Y (v,e* — 1) = Zv[n]z‘"‘l
neL

for homogeneous v. Write

Y@, 2] = Ln)z"""2
nez
The weight of v € V in (VY] ],1,®) is denoted by wt[v].

In the rest of this paper, we assume that V' = @,,>¢V}, is a simple vertex operator
superalgebra such that

(A1) Vg is regular vertex operator algebra of CEFT type,

(A2) The weight of any irreducible o' -twisted V-module is positive except for V
itself with i = 0, 1.

We remark that Assumption (A2) is not necessary in the discussions on modular
invariance and classification of irreducible Vz-modules. However this assumption is
required for applying some results from [LKWI], where the categories are assumed
to be pseudounitary.

Under the assumptions of (A1) and (A2), V' is o’-rational for i = 0,1 by Theorem
4.1 of [DH] and Cjy-cofinite [ABD]. Using the arguments from [M] and [CM] one
can show, in fact, that V' is regular if and only if Vj is regular.

Denote by .#(g) a complete set of inequivalent irreducible g-twisted V-modules
for g =1,0 and set A (g,h) ={M € #(g)|M oh = M} for g,h = 1,0. Note from
Lemma 22 that .# (1,h) = # (1) for h = 1,0. Also, #(c,1) = .# (o). Then #(g)
and . (g, h) are finite sets.

Let M € #(0cg,0h) and T = o(g). For any homogeneous element v € V, we
denote vyt y—1 by o(v) as usual and set

Zy (v, (g, h), T) = tr,, o(v)ath(O)*C/24 =g/ Z tr, o(v)ohg™
HG%Z+
if either (g,h) # (1,0) or (g,h) = (1,0) and Moo = M. If (g,h) = (1,0) and
Moo 2% M.

1 —c 1 —c n
Zm(v, (g,h), 1) = E try, 0(v+av)qL(0) = EqA /2 Z trM)rF’" o(vtov)g
neE+Zy

By convention, Zy;(v, (g, h),7) := 0 whenever M & .# (og,ch).
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Note that if (g,h) = (1,0) and M oo % M then

1
—(tIM O(U)qL(O)_C/24 + 4T 000 O(U)qL(O)—c/24)

Zy(v,(1,0),7) = 7

=/2tr,, o(v)g" e/
= ZMOU(”; (17 U)v T)'

The insertion of /2 in the definition of Zys(v,(1,0),7) will ensure that the
corresponding S-matrix is unitary (see the discussion in Section [@]).

From [DZ1] we know that Zys(v, (g, h), 7) are holomorphic function on the upper
half plane H with ¢ = 2™ [DZI]. The definition of Z(v,(1,0),7) given in
this paper in the case M oo % M is different from [DZI] where this case was
not considered. This new definition ensures that Z/(v,(1,0),7) is a vector in
the conformal block C(1,0) [DZI]. According to the definition of the conformal
block given in [DZI], Zys(v, (1,0),7) is required to be zero if o(v) = —v. Clearly,
tr,, o(v)g“(©)=¢/24 is not necessarily zero for such M. But Zy (v, (1,0),7) is zero in
our new definition.

Define Zy(v,7) = trao(v)g®®=¢/?* for o*-twisted V-modules M and
s = 0,1. Then Zpy(v,7) = Zp(v,(0,0),7) it M is a V-modules M, Zy(v,7) =

%Z}V[(U, (1,0),7) if M is an irreducible o-twisted V-module such that M 2 Moo
and Zy(v,7) = Zp(v,(1,0),7) if M is an irreducible o-twisted V-module such
that M = M o . We also set xar(7) = tras ¢*(0)=¢/24 which is called the character

of M.
Lemma 4.1. If M € .#(cg,0h) and v € V§ then Zy (v, (g,h),7) =0 for any g, h.

Proof. It M oo = M the result was obtained in Lemma 6.3 of [DZ1]. It remains
to prove the result if M is an irreducible o-twisted V-module M with M oo 22 M.
However, this follows from the preceding discussion. |

Let W be the vector space spanned by Zy(v,(g,h),7) for g,h € {1,0} and
M € #(og,oh). Then, for any given pair (g,h), Zps can be regarded as a
function on V' x H. Now, we define an action of the modular group I' = SLy(Z) on
W such that

ZM|’Y(Ua (gv h)7 T) = (CT + d)7Wt[v] Z]\/[(U7 (97 h)7 ’YT)a

where

. at +b (a b r
V.THCT—i—d’ 7(6 d>€ .

Recall that G = {1,0} acts on .Z (1) and .# (o) such that the action of o on
M is M o 0. We have already known that each G-orbit in .# (1) has exactly one
module by Lemma 221 and each G-orbit in .#(c) has either one or two o-twisted
modules. Note that if two o-twisted modules M and M? are in the same G-orbit,
then Zy (v, (9,h),7) = Zyr2(v,(g,h),7) for all v € V. Let O,: be the collection of
orbit representatives in .# (c*).

The following result is essentially obtained in [DZ1] with suitable modification:

Theorem 4.2. Let V be a vertex operator superalgebra satisfying the assumptions
(A1)—(A2).
(1) {Zm (v, (g, h), T)|M € Ony} is linearly independent.
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(2) There is a representation py : I' — GL(W) such that for g,h € {1,0}

a b
7—(0 d)el’,andMe(’)ag,

Zuly(w,(g.h). 1) = > AN Zn (v, (9°he, g"h%), 7)
Neoo.gahc

where p(y) = ('y](\f} }]L\?) That is,

Zar(v, (g, h),y7) = (e + d)Vl Z VJ(V[};\r)ZN( (g°h®, g°hd), 7).
Neoagahc

(3) The number of G-orbits in M (o) or the number of inequivalent irreducible o-
twisted super modules is equal to the number of inequivalent irreducible V -modules.

Theorem [2](3) gives a correction of Theorem 8.6(2) in [DZI]. Let C(g,h) be
the vector spaces spanned by Zy;(v,(g,h),7) for M € Oy4. Then by Theorem
[L2(2) we know that C(1,0) and C(c,1) have the same dimension by using the
0 1
-1 0
the number of inequivalent irreducible o-twisted modules is always greater than
or equal to the number of inequivalent irreducible modules. Two numbers are
equal if and only if every irreducible o-twisted V-module is o-stable. This result
is different from that in [DLMTY] when V is a vertex operator algebra and g is an
order 2 automorphism. Moreover, if we replace the irreducible o-twisted modules
by the irreducible o-twisted super modules, the result is the same as in the case of
vertex operator algebra.

If V =V is a vertex operator algebra then py is a unitary representation of I'
and the kernel of py is a congruence subgroup of ' [Z[DLN].

We use the free fermion as an example to illustrate Theorem L2 Let A(3 +Z)
be the associative algebra generated by a(m) with m € 5 1 1 7 subject to the relation
a(m)a(n)+a(n)a(m) = 28,,4n,0, and A(3 +Z)* the subalgebra generated by a(m)
with m > 0. Consider C as an A(3+Z)"-module with the trivial action a(m)-1 =0
for m > 0. Then V(3 +Z) = A($+Z) ® (1 42)+ C is the unique irreducible highest
weight A(3 + Z)-module. As vector spaces, V(4 + Z) is isomorphic to the free
exterior algebra A[a(m)|m < 0]. It is well known that V(4 + Z) is a rational, Co-
cofinite vertex operator superalgebra with only one irreducible module V( +Z)
up to isomorphism [KW] and [LI]. Moreover, V(4 + Z) is generated by a(—1/2)
such that Y(a(—1/2),2) =Y, cpa(n+1/2)z7 "1

The vertex operator superalgebra V(% + Z) has two inequivalent irreducible
o-twisted modules. To construct these two o-twisted modules we need another
associative algebra A(Z) generated by a(m) with m € Z satisfying the relation
a(m)a(n) + a(n)a(m) = 20,,4n,0. Let A(Z)" be the subalgebra of A(Z) generated
by a(m) with m > 0. Consider the induced A(Z)-module V(Z) = A(Z) ® o(z)+ C
where C is A(Z)*-module such that a(m)1 = 0 for all m > 0. It is easy to see that
V(Z) is isomorphic to Ala(n)|n € Z,n < 0], in which a(m) acts by multiplication
if m <0 and a(m) acts as j:28a( oy ifm > 0. Let W = Ala(m)|m € Z,m < 0],
and W = W5 @ W7 the decomposition of W into the sum even and odd subspaces.
Then

matrix < . So O, have the same cardinality for ¢ = 0,1. In particular,

V(Z)+ = (14 a(0))W5 @ (15 a(0))Wr
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are irreducible A(Z)-submodules of V(Z) and V(Z) = V(Z); & V(Z)-. More-
over, V(Z)+ are the inequivalent irreducible o-twisted V(% + Z)-modules such that
Y(a(—1/2),2) =3, cza(n)z""1/2 [L2], [DZ2]. 1t is easy to verify that V(Z); oo
is isomorphic to V(Z)_. Furthermore, V(Z) is the unique irreducible o-twisted
super V(% + Z)-module.

Next we want to discuss more on the trace functions Zys(v, (g, h), 7). We know
from the Lemma [Tl that Zys (v, (g, h),7) = 0 if ov = —v. But we can still consider
trar o(v)gH (0 =¢/24 for M € .# (o) such that M and M o ¢ are not isomorphic, and
v € Vi. In general, trys o(v)g%(®)~¢/24 does not vanish. But our result does not tell
anything about such try o(v)g“(®)=¢/24. Now consider the example V(% + Z). Let
v=a(—1/2) € V(3 +Z);. Then wt[v] = % and o(v) = a(0) on the twisted module.
It is easy to compute that

trV(Z)i O(v)qL(O)—c/24 — :|:q1/24 H(l _ qn)

which is a modular form of weight % over I'. This suggests that for an arbitrary
rational vertex operator superalgebra V| an irreducible o-twisted module M and
v € Vi, trar o(v)gH(©=¢/24 is still a modular form of weight wt[v].

The following corollary is immediate.

0

Corollary 4.3. Ify=5 = < 1

_01 > and v € Vg we have:

1
Zu(v,(1,1), ) = N SN2 (v, (1,1),7),

NeO,
1 o
Zu(v,(1,0),—2) = N S50 Zn (v, (0,1),7)

Ne.#(1)

for M € O,, and

(41) ZN(U’(Ua]-)v Z S(U 1)Z (170)77),
MeO,

(4.2) ZN (v, (070)7_ Z SNMZM v, (0,0),7)
Me.#(1)

for any N € #(1). The matriz p(S) = (SJ(\Z:?V)) is called S-matriz of V and is
independent of the choice of vector v € Vj.

Remark 4.4. If V1 = 0 then V = Vj is a vertex operator algebra and ¢ = 1. In this
case, the representation p is unitary and the kernel of p is a congruence subgroup
[DLN].

5. IRREDUCIBLE V5-MODULES

We classify the irreducible Vg-modules in this section and show that every ir-
reducible Vz-module occurs in an irreducible V-module or o-twisted module. The
main idea is to use the S-matrix to classify the irreducible Vg-modules as in [DRX].

By Theorem [£2](3), the number of inequivalent irreducible V-modules is equal to
the number of inequivalent of irreducible o-twisted super V-modules. Let
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{MP°, ..., MP} be a complete set of inequivalent irreducible V-modules with M? =
V and

{NO NO ... N? N4 N NP}
the inequivalent irreducible o-twisted V-modules such that N J and N7 o o are
equivalent for j > ¢. Then M" = M!® M} and N7 = N3 & N7 are direct sum of two
irreducible Vz-modules by Lemmas and23fori=0,...,pand j =q¢+1,...,p.

Theorem 5.1. Let V' be a vertex operator superalgebra satisfying the assumptions
(A1)-(A2). Then

{MéﬂN]7N§|Z:O>7p7j:O7>Q7k:q+177p>‘9:071}
is a complete set of inequivalent irreducible Vz-modules.

Proof. We first prove that {M:|i =0,...,p,s = 0,1} is a complete set of inequiv-
alent Vg-modules. Following [DLM5] we can define associative algebras A, (V)
for n € $Z, such that Ag(V) = A(V) as defined in [KW] and both A,,(V) and
Apyt (V) for any nonnegative integer m are quotient algebras of A,,(V5). Moreover,

P
A, (V) = €D €D End M'(m)
i=0 m<n
as V is rational. Noting that M} = ®n€Z+Mi(%s + n), we see immediately that
M} are inequivalent Vg-modules.

We prove next that {N7, N¥|j =0,...,¢q,k =q+1,...,p,5s = 0,1} is a complete
set of inequivalent Vg-modules. In this case we need to construct associative algebras
Ay (V) for n € Z, following [DLMG6] so that A, o(V) = A5 (V) as defined in [DZ2].
We can then follow the proof given in [DY] to show that {N/, N¥|j=0,...q.k =
qg+1,...,p,s =0, 1} are inequivalent Vg-modules.

Finally we prove that any M¢ and N7 or M{ and NtlC are not isomorphic. From
Proposition [.2] we see that qdimy, Vi = qdimy, V' = 1. Thus V7 is a simple current
[DIX]. This forces V; K M: = M2+1 and Vi K NF = Ntk+_1 and Vi X N7 = N7 as
Vg-modules. Note that the weight difference between Mé and M{ is a half-integer,
and the weight difference between Ng and Nik is an integer. So any M¢ and NtZc or
M{ and N7 fori =0,...,p,7=0,...,¢, k =q+1,...,p and s,t = 0,1 are not
isomorphic. ([l

Our next goal is to prove that the irreducible modules given in Theorem [B5.1] are
complete.

Theorem 5.2. Let V be a vertex operator superalgebra satisfying the assumptions
(A1)-(A2). Then

(M, N’ NF|i=0,...,p,j=0,...,q,k=q+1,...,p,s =0,1}
is a complete list of inequivalent irreducible Vz-modules.

Proof. The main idea in the proof is to use the S-matrix for vertex operator algebra
V5. Observe that for v € Vg,

Zyy(v,7) = %(Zv(v, (0,0),7)+ Zy (v, (0,1),7)).

Thus 1 1 1
ZV(] (U; _;) = §(ZV('Uv (07 U)v _;) + ZV(U7 (U’ 1)’ _;))
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Using (£.2) and Theorem [5.1] we know that

P
ZV(va (Uv O-)a ZSVI\/[’ZML (Uv G)vT)
=0

7wl ZS‘(,J;IZ ZMl v, T) + ZMl(v 7).
By (@I) and Theorem [E1]

Zy (v, (0, 1), — DN S8 Zu(v, (1,0),7)

MeO,
— /2 wilY] ZS‘(;’;U Zni (v, 7) + 70 Z S‘(/?J\ln NI (v,7) + ZN% (v,7)).
J=0 j=q+1
From [ZJ7 ZM};(’U?T% ZNj(va)7 ZN?(U7T) for i = 07"'7pa .7 = 07"'7qa k=
q+1,...,p, r,s = 0,1 are linearly independent vectors in the conformal block

of V5. From [Hu2], 7= "*"/Zy, (v, —1) is a linear combination of Zy (v, ) for the
irreducible Vg-modules W and the coefficient of each Zy (v, 7) in the linear combi-
nation is nonzero. This implies that the list of irreducible Vz-modules in Theorem
Bl is complete. |

6. THE UNITARITY OF p

The representation p given in Section[lis essentially the representation of SLy(Z)
associated with the modular invariance of the trace functions of Vg with respect to
a new basis. In this section, we show that this representation p is unitary, which

means this new basis is orthonormal.
1

1
0 1
to show py(S) and py (T') are unitary matrices. Recall that py (S) and py (T) are
the S and T matrices of V5. The main idea is to use the unitarity of py: to establish
the unitarity of py. For this purpose we need to determine the relation between
pv(S) and py; (S), and py (T') and py, (T).

Recall that Zys(v,7) = tras o(v)gH(©=¢/24 for any irreducible Vg-module M and
v € V5. The S and T matrices of V5 are given defined by

R
Zm (v, T) =T %: Sm,NZN (v, 7).

Since the modular group is generated by S and T' = ( , it is good enough

Zy(v, 7+ 1) = 2™/ 7, (v, 7)

where N runs through the inequivalent irreducible Vg-modules, ¢ is the central
charge of V| A\p; is the lowest weight of M. In particular, the T" matrix of Vj is
diagonal with Th s = e2mi(=c/24+An) which is a root of unity as both ¢ and A/
are rational [DLMT7].

According to Theorem we have three cases (i) M = M{ for i =0,...,p and
s =0,1, (i) M = N7 for j = 0,...,q, (ili) M = N¥ for k = ¢+1,...,p and
s =0,1. We first compute Sy;i y for i =0,...,p and s = 0,1. The computation is
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similar to those given in the proof of Theorem for v e Vy:

—~

Zag (0.~ 1) = 5(Zasi(0,(5,0), = 1) + (-1 Zas (0 (0,1), — 1)

W N S8 Zass (v, (0,0),7)

‘M@

]=O
it N S 2 (v, (1,0),7)
NeO,
Z SN (Zygg (0.7) + Zyy (0,7))
s g L
ZSJ(\; s Zns (0,7)
Jj=
( S L a’l)
+ ML NJ Nj (’U,T) + ZN% (’U, T))
=q+

The following lemma is immediate.

Lemma 6.1. Fori=20,...,p and s = 0,1 we have
(1) Sy M= 151(\;,0])\41 forj=0,....pandt=0,1,

0’1
(2) SM%,NJ' = (\/15) M, 3\]9 fO’I’] =0,.

(3) SM;,Ng:(ig) 1\;713\17 for]—q—l—l ..,p(mdtzo,l.

Next we compute Sy: y. Since N* is an irreducible Vg-module for i = 0,...,q,
by Corollary 3] and the remark preceding Lemma [Tl we immediately have

Zylo.=3) = S50, (1), =)
12 DN S 2o (v, (0,1),7)

7=0
1 P\ (e
= =Y S (2 (0,7) = Zyya (0,7)).
vz e

The discussion above yields

Lemma 6.2. Fori=0,...,q, Syi 3o = Ni M and Syiw = 0 for the other
irreducible Vg-modules W. ‘

Similarly, we have
Lemma 6.3. For i = q—l—l .,p and s,;t = 0,1, Sy = 21) S](\}f]\)/[] for
J=0,...,p, Syi ni = DbHS’](\}LlNJ forj=q+1,....,p and Syiw = 0 for the

other irreducible Vy-modules W.
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Proof. A straightforward calculation using Corollary .3 gives

1 1 1 1
ZN;(Uv_;): §(ZN1'(’U7(170')7_;)+( ) ZNl( (1 1) ))
1 £ o B Fwi[v
= 57D S Zars (v (0. 1),7) + Y S0 2 0,1,
j=0 Jj=q+1
1 ~ (10)
= §TWtM ZSN;?MJ.(ZMJ (v,7) — ZMij (v,7))
j=0
_ FWt[v 1,1
tfo] Z Sy (Zyg (0,7) = Zyys (v,7)).
Jj=q+1
The result follows. |

Theorem 6.4. The representation p given in Theorem is unitary.

Proof. The unitarity of p(S) follows from Lemmas [G.IHG.3] and the unitarity of S
matrix of V5. It remains to show that p(7') is unitary. We have

Zyi(v, (0,0),7+1) :ZM(%(’U,T—Fl)—f—ZN[i(’U T+1)

2m 244\, i sy 244X, i

= e 7’( C/ M )ZML(U 7) 62 Z( C/ Mg )Zn[L ('U 7)
2wi(—c/244X, i

=€ 7’( C/ MG)ZM'i(U7(Oal)7I)

where we have used the fact that A M~ A mit % is an integer. Similarly,

2mi(—c/24+A
(&

Zyi (v, (0,1), 7+ 1) = Mé)ZMi('Ua (0,0),7).

It is easy to see that for ¢ =0,...,pand j=¢q+1,...,p
Zni(v,(1,0), 7+ 1) = 2™/ 7,04 (v, (1, 0),7),

ZNj (U7 (L 1)7 T+ 1) = 6271H£(76/24+)\Nj)ZNj (Uv (17 1)v T)'

The unitarity of p(T") now follows from that fact that ¢ and Ay are rational numbers
[DLMT]. O

7. QUANTUM DIMENSIONS

In this section, we compute the quantum dimensions of the irreducible o’-twisted
V-modules and irreducible Vz-modules, which are the Frobenius-Perron dimensions
of these modules in their underlying fusion categories. The ideas and techniques
used here come from [DJX] and [DRX].

Let V be a vertex operator superalgebra as before and M be an irreducible o'-
twisted module. Recall xs(7) from Section 4. The quantum dimension of M over
V is defined to be

qdimy, M = lim X2 ()
v=0 xv (iy)
using the relation ¢ = e where y is real and positive.
The existence of the quantum dimension for a g-twisted V-module is given below
in terms of the S-matrix and the proof is similar to that of Lemma 4.2 of [DJX] by
using the S-matrix given in Corollary E3l

2miT
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Proposition 7.1. Let V' be a vertex operator superalgebra satisfying (Al)—(A2),
(0,0)

and M an irreducible o -twisted V-module for r = 0,1. Then qdimy M = %
Vv,V

for any irreducible V-module M. If M is an irreducible o-twisted V-module, then

. so) . gL
qdim,, M = \/_S(" — for M = N* fori=0,...,q and qdim,, M = % for other
Vv,V

M. In particular, qdlmVM exists.

We define the global dimension of V' as
glob(V) = Y (qdimy M)>.
Me.#(1)

In the case when V is a vertex operator algebra glob(V) is exactly the global
dimension of V defined in [DJX] and is equal to

SZ
We now compute the quantum dimensions of 1rredu01ble Vg-modules in terms of
quantum dimensions of irreducible V-modules by using Theorem [(.21

Proposition 7.2. We have

(1) qdimy, M7 = qdimy M* fori=0,...,p and r =0,1;

(2) qdimy, N7 = 2qdimy N7 for j =0,...,q;

(3) qdimy, NE = qdim, N* fork=q+1,...,p and s =0,1;

(4) glob(Vg) = 4glob(V);

(5) ZMe//z(g)(qdimv M)? = glob(V);

(6) Y x, (qdimy, X1)? = >y (qdimy, X5)* where X; ranges over the inequiva-
lent irreducible Vg-modules appearing in irreducible o*-twisted V -modules.

In particular, qdim,, W = 2qdimy W for any irreducible o"-twisted module
W. Moreover, qdimy M?, and 2qdimy N7 for j = 0,...,q, and qdimy, N* for
k=q+1,...,p, take values in {2cos = |n > 3} U [2,00).

Proof. (1) By Proposition [[Jl and Lemma we see that
(0,0)

. I VERTA M,V . ;
qdimy, M7 = 5 f 70 = (o,:;) = qdim,, M".
Vo.Vo  Syy

(2) can be proved similarly by using Lemmal6.2l But we give a different proof here:
qdimy, N7 = Tim X2V (@) _ i X (1) xv (i)
y=0 X, (1Y) v=0 xv(iy) X, (iy)
= lim AN (Zy) lim XV(l‘y) = 2qdimy, N7,
y=0 xv(iy) v=0 xv; (1Y)

(3) The proof is similar.
(4) From [DJX] we know that glob(Vj) = S21 is positive. This implies that
Vo Vo
Svi, v, is a real number. It follows from Proposition [l that Sy, (U’U is a real number.

Since qdimy, M is always positive for any irreducible o” tw1sted V-module M, we

see from Proposition [[.I] again that SJ(\Z v ?) is a real number.
Using Proposition [7.I] and Theorem 6.4 yields

p P (0,0) p
_ : V2 _ M,V \2 2 IRy
glOb(V) - Z(qdlmv M ) - Z( S(a’,a) ) S(o’ o Z - S(a,a)) ’
i=0 i=0 PV,V 'A% i=0 0%
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7798 CHONGYING DONG ET AL.

By Lemma 6.1} Sv,v, = %S‘(}T‘f) It follows immediately that glob(V5) = 4 glob(V).
(5) Again by Proposition [[.J] and Theorem

> N L 3 s - ]
(qdimy, M)? = —— (—2 )+ (—=)? (SN = (=)
Met (o) (S\(/;\’/))Q = V2 S\(/,\’/) i=q+1 S\(/,i/)

(6) Note from (1) that

P 1 P
> (adimy, Mi)? = " 2(qdimy, M*)* = 2glob(V).
i=0 s=0 i=0
The result follows now from (4) and Theorem
From [DJX], the quantum dimensions of irreducible Vg-modules lie in {2 cos T|n >
3} U[2,00). From (1)—(3) we see immediately that qdim, M?, 2qdim, N7 for j =
0,...,qand qdim, N* for k = g+1, ..., p take values in {2 cos n > 3}U[2,00). O

8. Zo-GRADING ON THE CATEGORY OF V@—MODULES

For the discussion below, we introduce several module categories. We use Cy
and C{, to denote the V-module category and the o-twisted V-module category,
respectively. Since oly; = idy;, the objects in Cy and Cf, are Vg-modules. We
denote by C(/ﬁ the full abelian subcategory of Cy; generated by the simple V5-
submodules of any o"-twisted V-modules. Let C be any of these categories, the
dimension of C is defined as dimC = _,,(qdim M)? where M runs over the
equivalence classes of simple objects in C. It is clear that glob(V) = dimCy,
glob(V5) = dimCy; = dimC‘O,(j + dimC1 From the discussions in Section [1 we
know that glob(Vg) = 4 glob(V), dlmCV = dimCy, and dimCy, = dimCy.. By
[Hu2], Cy; is a modular tensor category, and dim Cy; coincides with the categorical
dimension of the fusion category of Cys.

Theorem 8.1. The category Coa is a fusion subcategory of Cv; with a complete list
of simple objects given by M2, with j =0,...,p and r =0, 1.

Proof. We need to show that M:X M? fori,j =0,...,p and r,s = 0,1 lies in Cy. .
This is equivalent to that the fusion rules N]W M= =0for W=NFfork=0,...,q
orVV:NtZc fork=q+1,...,pand t =0,1.

From Proposition 4.9 of [DJX] or the Verlinde formula for modular tensor cate-
gories,

adimy, M qdimy, M = qdimy, Mg R M{ = N o adimy, W
w

where W ranges over the inequivalent irreducible Vz-modules. By the assumption
of V, the quantum dimensions are positive. Our idea is to establish

P
. . k
qdimy, M qdimy, M7 =S Y NM;MJ qdimy, M,
k=01t=0,1

which implies that NW ; = 0if W is not any MtZC

LM
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Recall from [Hu2| the Verlinde formula

NUE g SuaiwSuag wSw.n
MM

where W ranges through the inequivalent irreducible Vz-modules. Thus

» .
3 NMR yy aclimy, M

k=0t=0,1
p ) . g
Z Z Z SMZf,WSMg,WSW,M%“ SM%“,V()
k=0t=0,1 W SV()vW SV(),V@

We claim that 77>, EWJVI? Sk, 18 01 W 5 V5, Vy and is 1 otherwise.
(@.0)

Note that EM;C’W = SW,’M;C. Let W = V5. By Lemmal6.I]we have SM}cya = M;’V
for a = 0,1. Using the unitarity of p(S) Theorem gives the claim

2 - 1< 1
Z Z SW,Mtl“SMtE,Vg =3 Z(SJ(JZ%/)Q =5
k=01t=0,1 k=0
The proof for W = MtlC with k > 0 is similar. For W = Ni,Ng7 where i =0, ...,q,
j=q+1,...,pand s = 0,1, the claim follows immediately from Lemmas and
0.9
Finally we have

p ) . g . . ) )
Y Y Smiw S wSwar Snrve  15miveSumivg | 15miviSui vy
el Svy.w Sveve 2 v wSve s 2 Svvidvv

Since Syyi v; = Sni,y, we see that

p S S.
MF . ME, Vg P M1, Vg . P i
> YN adimy MF = =020 — qdimy, M7 qdimy, MY,
k=0t=0,1 e SvsVs SV Vs

as desired. O

Remark 8.2. Similarly, one can show that if M € C{., N € Cy, then M XN € C(/;S
where r 4 s is understood to be modulo 2. Therefore, Cy; is Zo-graded.

9. THE 16-FOLD WAY

We discuss in this section on how the representation theory for vertex operator
superalgebra is related to the 16-fold way conjecture proposed in [BGH].

Let U be a rational, Cs-cofinite, simple vertex operator algebra of CFT type such
that the weight of any irreducible U-module is positive except U itself. Then the
U-module category Cy is a modular tensor category [Hu2] with positive quantum
dimensions. As usual, let cpy v : M XN — N X M be the braiding for U-modules
M, N. Let 6 denote the ribbon structure on Cyy. Then 6, is a scalar multiple of id s
for any simple U-module M. We use the abuse notation 6, to denote such scalar.
A simple U-module F' is called a fermion if F' is a simple current (or invertible
object of Cyr) of order 2 and ¢p p = —idprp. Since qdimy; F' =1, p = —1.

Lemma 9.1. Let V = V5@ Vi be a vertex operator superalgebra satisfying assump-
tions (A1)—(A2) with Vi # 0. Then Vi is a fermion of Cys.
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7800 CHONGYING DONG ET AL.

Proof. Clearly, V7 is a simple current of order 2. Then

£2miL(0)

CVj,Vj = QVi idVﬂXVi - idVIlei = - ide‘XVj

from [Hu2] and [BGH] as Vi = ®pezVi 4 U

Conversely, if U is as before and an U-module F' is a fermion, then V =U & F
has a structure of a vertex operator superalgebra such that V5 = U and V§ = F by
Theorem 1.1 of [CKL]. Therefore, the vertex operator superalgebra V = V5 & V5 in
our sense is completely determined by a fermion Vi in Cy;.

Let B be a braided fusion category. For any family D of objects in B, the Miiger
centralizer Cg(D) is the full subcategory of B consisting of the objects Y in B
such that ¢y x o cxy = idxwy for all X in D. The subcategory C(D) is closed
under the tensor product of B and hence a braided fusion subcategory of B. The
symmetric fusion category Cg(B) is called the Miiger center of B and denoted by
Z5(B). In this paper, a pseudounitary braided fusion category B is called super-
modular if Z5(B) equivalent to category sVec, which is equal to Rep(Zsy) with the
super braiding. In particular, a super-modular category B admits a fermion F' in
Cp(B) with 6 = —1.

Lemma 9.2. Let V = V5@ Vi be a vertex operator superalgebra satisfying assump-
tions (A1)-(A2). Then C%ﬁ = Cey (V1) and is super-modular.

Proof. By Theorem [B1] that C"O,G is a braided fusion subcategory of Cy,. We first
prove that Vj lies in Z5(Cy. ), and hence dim Z5(Cy, ) > 2. Equivalently we need to
show that

Cvy, i © Cui vy = idpimy

for i = 0,...,p and » = 0,1. Since V; is a simple current we know that both
Vi & ME and M:X Vi are isomorphic to M; T As usual we will denote the space of

-
intertwining operator of type (WIQVIB,VQ) by I (W‘QV‘S/VQ) where W7 are modules of the
vertex operator algebra Vj for i = 1,2,3. Then [ ( M“) =CY and I ( M“) =
o M Vi Vi, M}
CY where Y is the restriction of Y defining the V-module structure on M* to V5
and Y(w, 2)u = e*FVY (u, —2)w for u € Vi and w € ML, In this case, Cariy; 18
a linear map from I < Ny’i‘tl) to I (VMi}}> such that ) is mapped to )’ where
7oVl 1y
V' (u, 2)w = e*L=DY(w, —2)u for u,w as before. Similarly, Cyy, i 18 a linear map
Mi_ M
from I (Vf]\?) to I (MT‘ZI) such that Y is mapped to Y. It is trivial to verify

that yl =Y and CVI,M,:—‘L e} CM}.,Vj = ld.]wygvi .
It remains to show that Vz for s = 0,1 are the only simple objects in Z5 (C?,G).
Since Cy; is modular, it follows from Theorem 3.2 of [Mu] that

dim Cy;, = dim G, (Cy,) - dim Cy, .
From the discussion in Section [8 we know that

dim Cy; = 2dim Cy, .
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This forces dim Ce,, (C?,G) = 2. Clearly, 2 (C‘O,G) C Cey, (C{)/G). This implies that
2 < dim Z5(Cy;) < dim Ce,, (Cy;) = 2,
and hence 25(Cy, ) = Ce,_(CY, ). O

We can now formulate the 16-fold way conjecture in [BGH] in the context of
vertex operator algebra. Let B be a super-modular category. A modular category
C, which contains B as a full ribbon subcategory, is called a minimal modular
extension or a modular closure of B if dimC = 2dim B.

Conjecture 9.3. If B is a super-modular category, then B admits a minimal mod-
ular extension. In this case, there are exactly 16 minimal modular extensions of B
up to braided monoidal equivalence.

Under the assumption of the existence of modular closure of super-modular cat-
egory, the second part of the conjecture has been proved in [LKWI| Theorems 4.26
and 5.4].

From Lemma [3.2] and its proof, we immediately obtain:

Theorem 9.4. Let V be a vertex operator superalgebra satisfying (A1)—(A2). Then
Cv, is a minimal modular extension of the super-modular category C?/[,).

In view of Theorem and the 16-fold way conjecture, the following question
arises:

Question 9.5. Does every super-modular category C equivalent to C% for some
0
vertex operator superalgebra V7

Our next goal is to construct a sequence {V™},,>¢ of vertex operator super-
algebras from V' such that C(ym), are minimal modular extension of C‘O,6 and the
equivalence classes of these modular categories C(ym), are characterized by the
congruence class of m modulo 16. We close this section with the following theorem.

Theorem 9.6. Let V,U be vertex operator superalgebras satisfying (A1)—(A2) and
U being holomorphic. Then C%@ and C?U®V)6 are equivalent braided fusion cate-

gories. In particular, Cygy), s a minimal modular extension of C?/a‘

Proof. Note that (U ® V)5 is an algebra object in Cuygv;. Let B = Cey g, (U ®
V)g), the Miiger centralizer of (U ® V)5 in Cy,ev,. In view of [CKM, Proposition
2.65], let Fy : B — Cygy and Fy : B — Cygyv), be the induction functors, that
means

FY)=UeV)Ryey Y, FY)=UeV)Xyey Y
for Y in B. By [CKM| Theorem 2.67], Fy, F are braided tensor functors. Since
Fi(Y)isa (UgV)g-submodule of F(Y') and C?U®V)6 is generated by the (U®V)5-
submodules of super U ® V-modules, F1(Y) € 0bj(Cly gy, ) for Y € B.

Since ( U®V)g =Us V@ U; @ Vi, Us ® X € B for any object X of C?,ﬁ.
Note that the functor Uy® —: Cy, — Cy,ev, is a faithfully full braided tensor
functor, and so is its restriction Fj : C%ﬁ — B. Therefore, the composite functor
F=FF,: C?,G — C?U@)V)é is a braided tensor functor. Since C‘(}G is super-modular,
F is faithfully full by [DMNO) Corollary 3.26].

To show that C{’/ﬁ is braided tensor equivalent to C?U®V)6, it suffices to show that

every irreducible (U ® V)g-module is an image of F'.
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7802 CHONGYING DONG ET AL.

Recall that the inequivalent irreducible super V-modules are M withi = 0, ..., p.
This implies that {M:|i=0,...,p,and r = 0,1} is a complete set of inequivalent
simple objects of C?/(,). Moreover, inequivalent irreducible super U ® V-modules are
U® M"*. Therefore, (U® M")r = Uy @ My + U @ M-
are all the inequivalent irreducible (U ® V')g-modules of C?U®V) .

0

fori=0,...,pand r =0,1

T

For any simple X € obj (C‘O/ﬁ),
FX)=U V)R (U X)
which is isomorphic to Ug® X + Uy ® (Vi X X) as V5 ® Us-modules. Therefore, F/(X)
is the irreducible (V ® U)g-module which contains an irreducible Uz ® Vg-submodule
isomorphic to Ug ® X. Therefore, by the same reason,
F(MY) = (U & M),
as (U ® V)g-modules for i = 1,...,p and r = 0,1. Thus, F : C?,G — C?U®V)6 is an
equivalence. The last statement follows immediately from Theorem ]

The Gauss sum 71(C) of a ribbon fusion category C is defined as

(€)= Y qdim(X)* 0x
Xelrr(C)
where Irr(C) denotes the set of isomorphism classes of simple objects of C, qdim(X)
is the pivotal (or quantum) dimension of the simple object X, and 6x denotes the
scalar of the twist. The Gauss sums and their higher degree generalizations 7, (C)
are invariants of ribbon fusion categories (cf. [NSWJ). In the case of a fermionic
modular category, we follow some idea in [BGN] to prove that the centralizer of the
fermion has zero contribution to the Gauss sum.

Lemma 9.7. Let C be a pseudounitary modular tensor category over C, f a fermion
of C, and C° the Miiger centralizer of f. Then

T1 (CO) == 0

Proof. Let X € Irr(C%). Then Sx 5 = qdim(X) where Sx,y denotes the categorical
trace of ¢y, x o cx y. Since f is an invertible object, the tensor product X ® f of C
is a simple object of C° and qdim(X ® f) = qdim(X). On the other hand, by the
twist equation, we have

which implies Oxg s = —0x. In particular, the action of f on Irr(C) has no fixed
point. Therefore, there exists a subset O of Irr(C?) such that |Jy o{X, X ® f} =
Irr(CY). Thus,

n1(C% = > qdim(X)?-0x — qdim(X ® f)* - Ox = 0. 0
Xeo

10. MINIMAL MODULAR EXTENSIONS OF C?,a

In this section we use the holomorphic vertex operator superalgebras V (I, Z + %)
for I > 1 and Theorem to obtain all the 16 minimal modular extensions of C‘O,G
for any given vertex operator superalgebra V satisfying (A1)—(A2).

The construction of V(I,Z + 1) is well known (see [EFR], [KW], [L1]). Let

H, = @ézl(Cai be a complex vector space equipped with a nondegenerate symmetric

Licensed to Louisiana St Univ, Baton Rouge. Prepared on Mon Dec 6 12:30:10 EST 2021 for download from IP 96.125.26.100.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY 7803

bilinear form (-, -) such that (a;, a;) = 26; ;. Let A(l,Z+1) be the associative algebra
generated by {a(n)|a € H;,n € Z+ %} subject to the relation

[a(n),b(m)]+ = (a;b)0m+n,0-

Let A(l,Z+ 3)* be the subalgebra generated by {a(n)|a € H;,n € Z + 1,n > 0},
and make C a 1-dimensional A(l,Z+ %)"-module so that a;(n)1 = 0 for n > 0. The
induced module

1 1
V({I,Z+ 5) =A(l,Z+ 5) ®A,243)+ C
1
& /\[ai(—n)|n >0,neZ+ 5,i =1,2,...,1] (linearly)

is a holomorphic vertex operator superalgebra generated by ai(—%) fori=1,...,1
and Y (a;(—3),2) = ai(z) = X,czai(—n — 3)z~""1. For example, if [ = 1 then
V(1,Z+ ) is isomorphic to L(3,0) + L(3, 3) as a module for the Virasoro vertex
operator algebra L(1,0). Moreover, V(1,Z + 1) = L(3,0) and V(1,Z + 1); =
L(3,%). If | = 2k is even then V(I,Z + %) is isomorphic to the lattice vertex
operator superalgebra Vzx where Z* is the lattice in R¥ with the standard inner
product.

As usual, we use o to denote the canonical automorphism of V' (I,Z + %) To
construct o-twisted V(I,Z + %)-modules7 we need to consider the cases when [ is

even or odd. If [ = 2k is even, then Hoi can be written as

k k
Hoyp = Chi+ > Cb
i=1 i=1

with (b;,b;) = (b7,0%) = 0, (b;, %) = ;. Let A(2k,Z) be the associative algebra

i1 %) J
generated by {b(n)|b € Hoy,n € Z} subject to the relation

[a’(m)a b(n)br = (a’a b)5m+n,0~

Let A(2k,Z)* be the subalgebra generated by {b;(n),bf(m)|n > 0,m > 0,i =
1,...,k}, and make C a 1-dimensional A(2k,Z)"-module with b;(n)l = 0 and
bf(m)1=0forn >0, m>0,i=1,...,k Consider the induced A(2k,Z)-module

V(2k,Z) = A2k, Z) @ a2k,2)+ C = Albi(—n),b; (—=m) |n,m € Z,n > 0,m > 0].

» Vg

By Proposition 4.3 in [L2], V/(2k, Z) is an irreducible o-twisted V (2k, Z+ 3)-module
such that

Yv (2k,2) (u(—%),z) =u(z) = Zu(n)z_”_l/z
nez

for u € Haj,. Moreover, V(2k,Z) is the only irreducible o-twisted V(2k,Z + 3)-
module up to isomorphism [DZ2]. As a result, V(2k,Z + %)() has 4 inequivalent
irreducible modules V(2k,Z + %);, and V(2k,Z)7 (r = 0,1) of weights 0, %, %, g,
and quantum dimension 1.

If Il =2k + 1 is odd, Hapy1 can be decomposed into:

k k
Hypyr = » Cbi+ Y Cb} +Ce
=1 1=1

Licensed to Louisiana St Univ, Baton Rouge. Prepared on Mon Dec 6 12:30:10 EST 2021 for download from IP 96.125.26.100.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7804 CHONGYING DONG ET AL.

i)Y J
A(2k 4+ 1,Z) be the associative algebra generated by a(n) for a € Hay1 and n €

Z subject to the same relation as before. Let A(2k + 1,Z)% be the subalgebra
generated by

with (bl,bj) = (b* b*) = 0, (bl,b*) = 5i_j,(e,bi) = (e,b;") = 0, (6,6) = 2. Let
)

{b;(n),bf(m),e(m)|m,n € Z,n>0,m>0,i=1,...,k}

and make C a 1-dimensional A(2k + 1,Z)"-module with b;(n)1 = 0 for n > 0 and
bf(m)l=e(m)l=0form>0,i=1,... k. Set

V(2k+1,Z) = A(2k+1,Z) D A(2k+1,2)+ C.
It is easy to see that V(2k 4 1,7Z) is isomorphic to the exterior algebra
W(2k + 1,Z) = Albi(—n),b; (—m),e(—m) |n,m € Z,n > 0,m > 0]

as vector spaces. Let W(2k + 1,Z) = W(2k + 1,Z)5 & W(2k + 1,Z);7 be the
decomposition into the even and odd parity subspaces, and

Vi(2k +1,2) = (14 e(0)W(2k +1,Z)5 @ (1 F e(0))W (2k + 1, Z)1.

Then
VRE+1,2) =V, 2k +1,Z) ® V_(2k + 1,Z)
and V4 (2k+1,Z) are irreducible A(2k + 1, Z)-modules. It follows from Proposition

4.3 in [L2] that V4 (2k+1,Z) are irreducible o-twisted modules for V (2k+1,Z + %)
so that

1 o
Yv(2k+1,2) (U(—§)az) =u(z) = ZU(”)Z 12
nez

for w € Hapy1. Moreover, Vi (2k 4+ 1,Z) are the only inequivalent irreducible o-
twisted modules and are isomorphic irreducible V' (2k + 1,Z + %)()-modules IDZ2].
In this case V/(2k+1, Z+3)g has 3 inequivalent irreducible modules V (2k+1,Z+1);
for r = 0,1 and V, (2k + 1,Z) of weights 0, % and %, and quantum dimensions
1,1 and v/2.

Let V be a vertex operator superalgebra satisfying (A1)-(A2). Set V? =V and
Vi=V(I,Z+ %) ® V for I > 1. According to Theorem [0.6 C(y1), is a minimal
modular extension of C%@ for I > 0. We denote the Virasoro vector of V! by w!
for I > 1 and write Y(w',z) = Y, o5 L'(n)z7"72. Let T} be the corresponding T-
matrix associated to (V!); and set t; = e27i(c+2)/24T) which is the matrix for the
operator ¢2™L'(0) acting on the inequivalent irreducible (V!)g-modules. Then {; is
the T-matrix of the modular tensor category Cy1y,.

The following result is an immediate consequence of Theorem

Lemma 10.1. The inequivalent irreducible o-twisted V'-modules are
VI, Z)® N7, (V(I,Z) ® N) oo, V(LZ) @ N¥|j=0,...,q,k=q+1,...,p}
if | is even, and
{Nl’j,Nl’k,Nl’kOUU =0,...,¢,k=q+1,...,p}
if 1 is odd where V(1,7)® (N7 +NJ o) = 2N and V(I,Z) @ N* = NbF @ Nbk oo,

Licensed to Louisiana St Univ, Baton Rouge. Prepared on Mon Dec 6 12:30:10 EST 2021 for download from IP 96.125.26.100.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY 7805

Corollary 10.2. The inequivalent simple (V!)g-modules from the o-twisted V-
modules are

{V(Z7Z)®N]’(V(Z7Z)®Nk)F‘j:07"'7q7k:q+17"'7p7lr20’1}
if | is even. In this case,

qdimy (V(I,Z) © N7) = qdimy, (N7),  qdimy (V(1, Z) @ N*)z = qdimy, (NF)

0

forj=0,....¢k=q+1,...,p,7=0,1.
If 1 is odd, the inequivalent simple (V')g-modules from the o-twisted V'!-modules
are

(NLi | NUE

ji=0,...,¢,k=q+1,...,p,r=0,1}

and

. j 1 . j . .
qdlm(vl)@(Né’J) = ﬁ - qdimy; (N7), qdlm(vl)ﬁ(Nl’k) =V2. qdimy; (NF)

forj=0,...,¢k=q+1,...,p,r=0,1.

Proof. The set of simple (V!)g-modules from the o-twisted V!-modules follows
immediately from Lemma [[0.]] for any nonzero integer I. Let us denote U' =
V(I,Z+ %). If L is even, then qdim: (V (1, Z)) = qdimg;: (V(1,Z),) =1 for r =0,1.
For j =0,...,q, V(I,Z) ® N7 is an unstable o-twisted V!-module. It follows from
Proposition that

qdimyy, (V(1,Z) ® N7) = 2qdimy (V (1, Z) © N7) = 2 qdimy, (N7) = qdimy, (N7) .
For k=p+1,...,q, V(I,Z) ® N* is o-stable. By Proposition [7.2]
qdimy1y, (V (1, Z) ® N*)z = qdimy (V (1, Z) ® N*) = qdimy, (N*) = qdimy, (NF)

forr=0,1.
If [ is odd, then qdimg:(V(1,2)) = qdimUé(Vi(l,Z)) = /2. For j =0,...,p,

N is a o-stable o-twisted V'-module and

qdimy (V(1,Z) ® (N’ & N2)) = 2 qdimy (N'7) = 2qdim gy, (N}7)

0
for any » = 0,1. On the other hand,

qdimy (V(1,Z) ® (N7 ® Ni)) = v2 - qdimy, (N7 @ NJ) = V2 qdimy, (N7).
Thus, we have

: j . ;
qdlm(vl)(—,(N;’]) = —= qdimy; (N”)

V2

for » = 0, 1. Similarly, for k = p+1,...,q, N"* is a o-unstable o-twisted V!-module
and

qdim 1) (NYF) = 2 qdimy (NYF) = qdimy (NY* @ NJY) = qdimy (V(1,Z) © N¥)
= V2 qdimy, (N*) = V2 qdimy, (Nf)
for r =0, 1. O
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Theorem 10.3. The minimal modular extensions Ciyuy,, Ciym), ofC‘% are braided
equivalent if and only if I and m are congruent modulo 16. In particular, we have
constructed 16 minimal modular extensions of C?,a.

Proof. Since C(ym), has positive quantum dimensions, its spherical pivotal structure
is uniquely determined by the fusion category Cym);. Therefore, Ciyry,, Ciym);
are equivalent braided fusion categories if and only if they are equivalent modular
categories. The later implies they have the same Gauss sums. Therefore, we proceed
to compute the Gauss sum 71(Cy1), ). It follows from Lemma that

nCyn) = > adim(X)*-0x

XEIrr(C( vig )

where Irr(C(V, 6) is the set of inequivalent simple (V!)g-modules from the o-twisted

Vi-modules.
By Corollary [0.2], the inequivalent irreducible (V!)s-modules from the o-twisted
modules are

{V(I,2)®N), V(I,Z);@NE+V (1, 2); @ NE—|j =0,...,q,k = q+1,...,p,r = 0,1}

if I is even. The actions of ¢2™'() on V(1,Z) ® N7 and V (I, Z)g@NE+V(1,Z); ®
lej are respectively are e2™ini+16) and 2wkt 16) for r = 0,1, where Ay; is
the weight of N7. Therefore,

q
T1(Cvny,) = qulm(vl (V(1,Z) @ N7)*. . 2 yi+15)
j 0

+Z Z qdim 1y (V(1, Z)® N¥)2. e2mi(A i+ 1)

r=0 k=q+1

1 14

q
_ 621\-611 qulmvﬁ(N])Q e27ri)\Nj +Z Z qdlmVG(Nfl?)z 627Ti)\Nk

j=0 r=0 k=q+1

Again by Corollary [0.2] the inequivalent irreducible (V!)j-modules from the o-
twisted modules are

{N;’jaNLkU:0,-"aqak:CI+13"'ap,r:071}

if 1 is odd. The actions of e2™L'(0) on N1 ig ¢2mi(Ani+16) and on NU* is e2miAnk+15),
Thus, for r =0, 1,

PG = 323 iy, (V2 20w+
r=0 5=0

b
+ 3 qdimgyy, (NH)? 20wt 55)

k=q+1

:62I’gl ZZ qdlmv (N])Q 27N g + Z 2qd1mv (Nk)Q 2N Nk
r=07j=0 k=q+1
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q 1 P
2mil . ] N . )
=e'16 E qdlmvﬁ(Nj)2 e*mANT 4 E E qdlnrlvf,)(]\f,-]?)2 T iANk
7=0 r=0k=qg+1

2mil

Therefore, 71(Cy1),) = €716 71(Cy;) for any integer [ > 0. As a result, 71(Cy1y,)
= 71(C(ym),) if and only if I = m modulo 16, and there are at least 16 inequivalent
modular categories which are minimal extensions of C‘(}G. By [LKWIl, Theorems
4.26 and 5.4], C%ﬁ has exactly 16 minimal extensions. Thus, Cy), and Ceym),
are equivalent minimal extensions of C%ﬁ if and only if [ = m modulo 16. These
16 minimal extensions of are also inequivalent as braided fusion categories as they
have distinct Gauss sums. |
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