AMERICAN MATHEMATICAL SOCIETY

Volume 374, Number 11, November 2021, Pages 7779-7810 https://doi.org/10.1090/tran/8454 Article electronically published on July 19, 2021

VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY

CHONGYING DONG, SIU-HUNG NG, AND LI REN

ABSTRACT. Let V be a vertex operator superalgebra with the natural order 2 automorphism σ . Under suitable conditions on V, the σ -fixed subspace $V_{\bar{0}}$ is a vertex operator algebra and the $V_{\bar{0}}\text{-module}$ category $\mathcal{C}_{V_{\bar{0}}}$ is a modular tensor category. In this paper, we prove that $\mathcal{C}_{V_{ar{0}}}$ is a fermionic modular tensor category and the Müger centralizer $\mathcal{C}^0_{V_{\overline{0}}}$ of the fermion in $\mathcal{C}_{V_{\overline{0}}}$ is generated by the irreducible $V_{\bar{0}}$ -submodules of the V-modules. In particular, $\mathcal{C}^0_{V_{\bar{0}}}$ is a supermodular tensor category and $\mathcal{C}_{V_{\overline{0}}}$ is a minimal modular extension of $\mathcal{C}_{V_{\overline{0}}}^0$. We provide a construction of a vertex operator superalgebra V^l for each positive integer l such that $\mathcal{C}_{(V^l)_{\bar{0}}}$ is a minimal modular extension of $\mathcal{C}^0_{V_{\bar{0}}}$. We prove that these modular tensor categories $\mathcal{C}_{(V^l)_{ar{0}}}$ are uniquely determined, up to equivalence, by the congruence class of l modulo 16.

1. Introduction

Modular (tensor) categories are mathematical formalization of topological phases of matters, which are also called topological orders \mathbf{W} . The 2+1D symmetry protected topological (SPT) orders are recently described by using unitary braided fusion categories \mathcal{C} with the symmetry determined by their Müger centers \mathcal{E} , which are symmetric fusion categories (cf. **LKW1 LKW2** and the references therein). It follows from \overline{De} , \overline{DR} that a Müger center \mathcal{E} is Tannakian or super-Tannakian, i.e. \mathcal{E} is equivalent to the braided fusion category Rep(G) or Rep(G, z) where G is a finite group uniquely determined by \mathcal{E} and z is a central order 2 element of G. Modular tensor categories are exactly those braided fusion categories with trivial Müger centers. The category sVec of super vector spaces over $\mathbb C$ is the *smallest* super-Tannakian category. By gauging the minimal topological order with the fermionic symmetry Ki, Kitaev discovered the 16-fold way: The braided fusion category sVec has 16 exactly inequivalent unitary minimal modular extensions, which are unitary modular tensor categories of dimension 4 containing a full braided fusion subcategory equivalent to sVec.

Throughout this paper, a super-modular category means a braided fusion category over C whose Müger center is equivalent to sVec as braided fusion categories. Modular or super-modular categories are assumed to be pseudounitary and

©2021 American Mathematical Society

Received by the editors January 21, 2020, and, in revised form, December 22, 2020. 2020 Mathematics Subject Classification. Primary 17B69.

The first author was partially supported by the Simons foundation 634104 and NSFC grant 11871351.

The second author was partialy supported by NSF grants DMS1001566, DMS1303253, and DMS1501179.

The third author was supported by NSFC grants 11671277, 12071314.

The third author is the corresponding author.

equipped with the canonical pivotal structures, i.e. the categorical (or quantum) dimension of each object is a positive number. Motivated by Kitaev's 16-fold way, it is conjectured in $\boxed{\text{BGH}}$ that every super-modular category $\mathcal C$ has exactly 16 minimal modular extensions up to equivalence, i.e. pseudounitary modular categories of dimension $2\dim(\mathcal C)$ containing a braided fusion full subcategory equivalent to $\mathcal C$. If $\mathcal C$ admits a minimal modular extension, it has been proved independently in $\boxed{\text{LKW1}}$ that $\mathcal C$ admits 16 minimal modular extensions. However, the existence of a minimal modular extension for any super-modular category is still an open problem.

Rational conformal field theory is closely related to modular categories. According to [Hu1], Hu2], the representation category of a rational C_2 -cofinite vertex operator algebra (VOA) is modular. In fact, it is an open problem whether every modular category over $\mathbb C$ can be realized by a VOA. Super-modular categories are not modular, and so they cannot be realized as the module category of any rational VOA. One would ask what kind of rational VOA could realize a minimal modular extension of super-modular category $\mathcal C$, and how one can obtain other VOAs whose module categories are minimal modular extensions of $\mathcal C$.

A vertex operator superalgebra $V=\bigoplus_{n\in\frac{1}{2}\mathbb{Z}}V_n$ is $\frac{1}{2}\mathbb{Z}$ -graded in this paper. The \mathbb{Z}_2 -grading $V=V_{\bar{0}}\oplus V_{\bar{1}}$ with $V_{\bar{0}}=\sum_{n\in\mathbb{Z}}V_n$ and $V_{\bar{1}}=\sum_{n\in\frac{1}{2}+\mathbb{Z}}V_n$ determines a natural order 2 automorphism σ of V such that $\sigma|_{V_{\bar{r}}}=(-1)^r$ for r=0,1. The twisted representations and orbifold theory of rational vertex operator superalgebras are well-studied in $\mathbb{D}\mathbb{Z}1$, $\mathbb{D}\mathbb{Z}2$. With suitable assumptions ((A1) and (A2) in Section \mathbb{Z}_1), the $V_{\bar{0}}$ -module category $\mathcal{C}_{V_{\bar{0}}}$ is a modular tensor category, and $V_{\bar{1}}$ is a fermion in $\mathcal{C}_{V_{\bar{0}}}$ (cf. Lemma \mathbb{Z}_1). In particular, $V_{\bar{1}}$ is an order 2 simple current of $V_{\bar{0}}$. We prove in Theorem \mathbb{Z}_1 that the full subcategory $\mathcal{C}_{V_{\bar{0}}}^0$ of $\mathcal{C}_{V_{\bar{0}}}$, generated by the simple $V_{\bar{0}}$ -submodules of V-modules, are closed under the tensor product of $\mathcal{C}_{V_{\bar{0}}}$. In particular, $\mathcal{C}_{V_{\bar{0}}}^0$ is a braided fusion subcategory of $\mathcal{C}_{V_{\bar{0}}}$ with the fermion $V_{\bar{1}}$. Moreover, $\mathcal{C}_{V_{\bar{0}}}^0$ is the Müger centralizer of the fermion $V_{\bar{1}}$ in $\mathcal{C}_{V_{\bar{0}}}$. Hence, $\mathcal{C}_{V_{\bar{0}}}^0$ is super-modular (cf. Lemma \mathbb{Z}_2), and $\mathcal{C}_{V_{\bar{0}}}$ is a minimal modular extension $\mathcal{C}_{V_{\bar{0}}}^0$. The modular category $\mathcal{C}_{V_{\bar{0}}}$ is also \mathbb{Z}_2 -graded with $\mathcal{C}_{V_{\bar{0}}}=\mathcal{C}_{V_{\bar{0}}}^0\oplus\mathcal{C}_{V_{\bar{0}}}^1$ where $\mathcal{C}_{V_{\bar{0}}}^1$ is the full subcategory of $\mathcal{C}_{V_{\bar{0}}}$ generated by the irreducible $V_{\bar{0}}$ -submodules of the σ -twisted V-modules, and dim($\mathcal{C}_{V_{\bar{0}}}^1$) = dim($\mathcal{C}_{V_{\bar{0}}}^0$) (cf. Section \mathbb{Z}_2).

Since a nice vertex operator superalgebra V (i.e. satisfying (A1) and (A2)) naturally yields a super-modular category $\mathcal{C}^0_{V_0}$ and a minimal modular extension \mathcal{C}_{V_0} , one would like to construct other vertex operator superalgebras from V to realize the 16-fold way of the super-modular category $\mathcal{C}^0_{V_0}$. To achieve this goal, we establish in Theorem 9.6 that if U is a holomorphic vertex operator superalgebra, then $V \otimes U$ is a vertex operator superalgebra and $\mathcal{C}^0_{V_0}$ equivalent to $\mathcal{C}^0_{(V \otimes U)_{\bar{0}}}$ as braided fusion categories. In particular, $\mathcal{C}_{(V \otimes U)_{\bar{0}}}$ is another minimal modular extension of $\mathcal{C}^0_{V_{\bar{0}}}$.

For each positive integer l, there is a nice holomorphic vertex operator superalgebra $V(l, \mathbb{Z} + \frac{1}{2})$ (cf. FFR), KW, L1). For any nice vertex operator superalgebra V, the tensor product vertex operator superalgebra $V^l := V \otimes V(l, \mathbb{Z} + \frac{1}{2})$ yields the super-modular category $C^0_{(V^l)_{\bar{0}}}$ and its minimal modular extension $C_{(V^l)_{\bar{0}}}$. Since $C^0_{(V^l)_{\bar{0}}}$ is equivalent to $C^0_{V_{\bar{0}}}$ as braided fusion categories, $C_{(V^l)_{\bar{0}}}$ is a minimal modular extension of $C^0_{V_{\bar{0}}}$ for each positive integer l. We prove in Theorem 10.3 that $C_{(V^l)_{\bar{0}}}$ and $C_{(V^m)_{\bar{0}}}$ are equivalent modular categories if and only if $m \equiv l \pmod{16}$ by computing their Gauss sums and applying LKW1, Theorems 4.26 and 5.4].

The results in this paper could hold for \mathbb{Z} -graded vertex operator superalgebras with certain assumptions. This situation will be discussed in another paper. A connection between general orbifold theory for a vertex operator algebra and minimal modular extensions has recently been investigated in $\boxed{\text{DNR}}$.

The paper is organized as follows: A review of vertex operator superalgebras and some of basic results on their representation theory are presented in Section 2 In Section . we discuss the tensor product of two vertex operator superalgebras, and investigate its irreducible representations via the representations of their Zhu's superalgebras. We review the modular invariance of the trace functions in the orbifold theory for the vertex operator superalgebras in Section 4. In Section 5. the irreducible V_0 -modules of a vertex operator superalgebra V are determined. In Section \Box we show that the associated representation of $SL_2(\mathbb{Z})$ on the trace functions in the orbifold theory for the vertex operator superalgebras provided in Section I is unitary. Some important relations between the quantum dimensions of the irreducible V-modules and the irreducible $V_{\bar{0}}$ -modules are established in Section 7. In Section 8, we prove that the category $\mathcal{C}_{V_{\bar{0}}}$ is \mathbb{Z}_2 -graded, where $\mathcal{C}_{V_{\bar{0}}}^0$ and $\mathcal{C}_{V_{\bar{0}}}^1$ are respectively generated by the irreducible $V_{\bar{0}}$ -submodules of V-modules and σ twisted V-modules. We further prove that $\mathcal{C}^0_{V_{ar{0}}}$ is a super-modular category and $\mathcal{C}_{V_{ar{0}}}$ sequence of vertex operator superalgebras V^l for each positive integer l such that $\mathcal{C}_{(V^l)_{ar{0}}}$ is a minimal modular extension of $\mathcal{C}^0_{V_{ar{0}}}$ and these modular categories $\mathcal{C}_{(V^l)_{ar{0}}}$ are uniquely determined by the congruence class of l modulo 16.

2. Preliminaries

The various notions of twisted modules for a vertex operator superalgebra following $\boxed{\text{DZ1}}$, $\boxed{\text{DZ2}}$ are reviewed in this section. The concepts such as rationality, regularity, and C_2 -cofiniteness from $\boxed{\text{Z}}$ and $\boxed{\text{DLM3}}$ are discussed.

A super vector space is a \mathbb{Z}_2 -graded vector space $U = U_{\bar{0}} \oplus U_{\bar{1}}$. The vectors in $U_{\bar{0}}$ (resp. $U_{\bar{1}}$) are called even (resp. odd). An element u in $U_{\bar{i}}$ for some i=0,1 will be called \mathbb{Z}_2 -homogeneous. In this case, we define $\tilde{u}=\bar{i}$. We reserve the notation sVec for the category of finite dimensional super vector spaces over \mathbb{C} with morphisms preserving the \mathbb{Z}_2 -gradings, and equipped with the super braiding.

If W is another super vector space, then $\operatorname{Hom}(U,W)$ is also a super vector space in which $\operatorname{Hom}(U,W)_{\bar{0}}$ and $\operatorname{Hom}(U,W)_{\bar{1}}$ are respectively the \mathbb{Z}_2 -graded preserving and reversing linear maps.

A vertex operator superalgebra is a $\frac{1}{2}\mathbb{Z}$ -graded super vector space

$$V = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}} V_n = V_{\bar{0}} \oplus V_{\bar{1}}$$

with $V_{\bar{0}} = \sum_{n \in \mathbb{Z}} V_n$ and $V_{\bar{1}} = \sum_{n \in \frac{1}{2} + \mathbb{Z}} V_n$ satisfying dim $V_n < \infty$ for all n, and $V_m = 0$ if m is sufficiently small. V is equipped with a linear map

$$V \to (\operatorname{End} V)[[z, z^{-1}]],$$

$$v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1} \quad (v_n \in (\operatorname{End} V)_{\tilde{v}})$$

and with two distinguished vectors $\mathbf{1} \in V_0$, $\omega \in V_2$ satisfying the following conditions for $u, v \in V$, and $m, n \in \mathbb{Z}$:

$$u_n v = 0$$
 for n sufficiently large;
$$Y(\mathbf{1},z) = Id_V;$$

$$Y(v,z)\mathbf{1} \in V[[z]] \quad \text{and} \quad \lim_{z \to 0} Y(v,z)\mathbf{1} = v;$$

$$[L(m),L(n)] = (m-n)L(m+n) + \frac{1}{12}(m^3-m)\delta_{m+n,0}c;$$

$$\frac{d}{dz}Y(v,z) = Y(L(-1)v,z);$$

$$L(0)|_{V_n} = n$$

where $L(m) = \omega_{m+1}$, that is,

$$Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-2},$$

and the Jacobi identity

$$\begin{split} z_0^{-1} \delta \left(\frac{z_1 - z_2}{z_0} \right) Y(u, z_1) Y(v, z_2) - (-1)^{\tilde{u}\tilde{v}} z_0^{-1} \delta \left(\frac{z_2 - z_1}{-z_0} \right) Y(v, z_2) Y(u, z_1) \\ &= z_2^{-1} \delta \left(\frac{z_1 - z_0}{z_2} \right) Y(Y(u, z_0) v, z_2) \end{split}$$

holds, where $\delta(z) = \sum_{n \in \mathbb{Z}} z^n$ and $(z_i - z_j)^n$ is expanded as a formal power series in z_j , and $u, v \in V$ are \mathbb{Z}_2 -homogeneous. Throughout the paper, z_0, z_1, z_2 , etc. are independent commuting formal variables. A vertex operator superalgebra will be denoted by $V = (V, Y, \mathbf{1}, \omega)$. In the case $V_{\bar{1}} = 0$, V is a vertex operator algebra given in [FLM3].

Let V be a vertex operator superalgebra. There is a canonical order 2 linear automorphism σ of V associated with the structure of super vector space V such that $\sigma|_{V_i} = (-1)^i$ for i = 0, 1. It is easy to show that $\sigma \mathbf{1} = \mathbf{1}$, $\sigma \omega = \omega$ and $\sigma Y(v,z)\sigma^{-1} = Y(\sigma v,z)$ for $v \in V$. That means σ is an automorphism of vertex operator superalgebra V, and will be denoted by σ_V when the clarification is necessary.

Let $g = \sigma^i$ for i = 0, 1 and T = o(g). Let $V^r = \{v \in V | gv = e^{2\pi i r/T}v\}$ for r = 0, T - 1. A weak g-twisted V-module M is a vector space equipped with a linear map

$$V \to (\operatorname{End} M)[[z^{1/T}, z^{-1/T}]]$$
$$v \mapsto Y_M(v, z) = \sum_{n \in \frac{1}{T}\mathbb{Z}} v_n z^{-n-1} \quad (v_n \in \operatorname{End} M)$$

which satisfies that for all $0 \le r \le T - 1$, $u \in V^r$, $v \in V$, $w \in M$,

$$Y_M(u,z) = \sum_{n \in \frac{r}{T} + \mathbb{Z}} u_n z^{-n-1};$$

$$u_l w = 0 \quad \text{for} \quad l >> 0;$$

$$Y_M(\mathbf{1}, z) = Id_M;$$

$$\begin{split} z_0^{-1} \delta \left(\frac{z_1 - z_2}{z_0} \right) Y_M(u, z_1) Y_M(v, z_2) - (-1)^{\tilde{u}\tilde{v}} z_0^{-1} \delta \left(\frac{z_2 - z_1}{-z_0} \right) Y_M(v, z_2) Y_M(u, z_1) \\ &= z_2^{-1} \left(\frac{z_1 - z_0}{z_2} \right)^{-r/T} \delta \left(\frac{z_1 - z_0}{z_2} \right) Y_M(Y(u, z_0) v, z_2) \end{split}$$

where we assume that u, v are \mathbb{Z}_2 -homogeneous.

Let $o(g\sigma) = T'$. An admissible g-twisted V-module is a weak g-twisted V-module M which carries a $\frac{1}{T'}\mathbb{Z}_+$ -grading

$$M = \bigoplus_{n \in \frac{1}{T'} \mathbb{Z}_+} M(n)$$

satisfying

$$v_m M(n) \subseteq M(n + \operatorname{wt} v - m - 1)$$

for homogeneous $v \in V$.

An (ordinary) g-twisted V-module is a weak g-twisted V-module

$$M = \bigoplus_{\lambda \in \mathbb{C}} M_{\lambda}$$

such that dim M_{λ} is finite, and for fixed λ , $M_{n+\lambda}=0$ for all small enough integers n where $M_{\lambda}=\{w\in M|L(0)w=\lambda w\}$. We will write wt $w=\lambda$ if $w\in M_{\lambda}$.

If $M = \bigoplus_{n \in \frac{1}{T'}\mathbb{Z}_+} M(n)$ is an admissible g-twisted V-module, the contragredient module M' is defined as follows:

$$M' = \bigoplus_{n \in \frac{1}{T'}\mathbb{Z}_+} M(n)^*,$$

where $M(n)^* = \operatorname{Hom}_{\mathbb{C}}(M(n), \mathbb{C})$. The vertex operator $Y_{M'}(a, z)$ is defined for $a \in V$ via

$$\langle Y_{M'}(a,z)f,w\rangle = \langle f, Y_{M}(e^{zL(1)}(e^{\pi i}z^{-2})^{L(0)}a,z^{-1})w\rangle,$$

where $\langle f, w \rangle = f(w)$ is the natural pairing $M' \times M \to \mathbb{C}$. It follows from **FHL** and **X** that $(M', Y_{M'})$ is an admissible g-twisted V-module. We can also define the contragredient module M' for a g-twisted V-module M. In this case, M' is also a g-twisted V-module. Moreover, M is irreducible if and only if M' is irreducible.

A vertex operator superalgebra V is called g-rational, if the category of its admissible g-twisted modules is semisimple. We simply call V rational if V is 1-rational. V is called holomorphic if V is rational and V is the only irreducible module of itself up to isomorphism.

We also need another important concept called C_2 -cofiniteness \mathbb{Z} . We say that a vertex operator superalgebra V is C_2 -cofinite if $V/C_2(V)$ is finite dimensional, where $C_2(V) = \langle v_{-2}u|v, u \in V \rangle$. A vertex operator superalgebra V is called regular if every weak V-module is a direct sum of ordinary irreducible V-modules.

The following results about σ^i -rationality are given in $\boxed{\text{DZ1}}$ and $\boxed{\text{DZ2}}$. Also see $\boxed{\text{DLM4}}$ and $\boxed{\text{DLM7}}$.

Theorem 2.1. Let V be a g-rational vertex operator superalgebra where $g = \sigma^i$ and i = 0, 1. Then:

- (1) Any irreducible admissible g-twisted V-module M is an ordinary g-twisted V-module. Moreover, there exists a number $\lambda \in \mathbb{C}$ such that $M_{\lambda} \neq 0$ and $M = \bigoplus_{n \in \frac{1}{27}\mathbb{Z}_+} M_{\lambda+n}$. The λ is called the conformal weight of M.
- (2) There are only finitely many irreducible admissible g-twisted V-modules up to isomorphism.

(3) If V is also C_2 -cofinite and σ^i -rational for i = 0, 1 then the central charge c and the conformal weight λ of any irreducible σ^i -twisted V-module M are rational numbers.

A vertex operator superalgebra $V = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}} V_n$ is said to be of CFT type if $V_n = 0$ for negative n and $V_0 = \mathbb{C}1$. We know from \square and \square and \square that if V is a vertex operator algebra of CFT type, then regularity is equivalent to rationality and C_2 -cofiniteness. Moreover, V is regular if and only if the weak module category is semisimple \square The same results also hold for vertex operator superalgebras with similar proof \square .

We discuss more on V-modules. Let $M=\oplus_{n\in\frac{1}{2}\mathbb{Z}_+}M(n)$ be an admissible V-module. We set $M_{\bar{0}}=\oplus_{n\in\mathbb{Z}_+}M(n)$ and $M_{\bar{1}}=\oplus_{n\in\mathbb{Z}_+}M(n+\frac{1}{2})$. From now on we assume that V is a simple vertex operator superalgebra and $V_{\bar{1}}\neq 0$. Then $V_{\bar{0}}$ is a simple vertex operator algebra and $V_{\bar{1}}$ is an irreducible $V_{\bar{0}}$ -module.

Lemma 2.2. Let $M = (M, Y_M)$ be a nonzero admissible V-module. Then $M_{\bar{i}} \neq 0$ for i = 0, 1. Moreover, we can define a linear automorphism σ on M such that $\sigma|_{M_{\bar{i}}} = (-1)^i$ and $\sigma Y_M(u, z)\sigma^{-1} = Y_M(\sigma u, z)$ for all $u \in V$.

Proof. Assume $M_{\bar{i}} \neq 0$. For any nonzero $u \in V_{\bar{1}}$, there exists $n \in \mathbb{Z}$ such that $0 \neq u_n M_{\bar{i}} \in M_{\bar{i}+1}$ by Proposition 11.9 of [DL1]. This implies that $M_{\bar{i}+1} \neq 0$. The rest of the lemma is clear.

Recall from DLM7 that M is called σ -stable if $M \circ \sigma$ and M are isomorphic where $M \circ \sigma$ is a V-module such that $M \circ \sigma = M$ as vector spaces and $Y_{M \circ \sigma}(v, z) = Y_M(\sigma v, z)$ for all $v \in V$. Lemma 2.2 asserts that for any admissible V-module M, $M \circ \sigma$ and M are isomorphic, or M is σ -stable.

We now turn our attention to σ -twisted V-module. In this case, an admissible σ -twisted module M has gradation $M = \bigoplus_{n \in \mathbb{Z}_+} M(n)$. So we cannot use gradation to divide M into even and odd parts. In this case, we have to use $M \circ \sigma$.

Lemma 2.3. Suppose M is an irreducible admissible σ -twisted V-module. If $M \circ \sigma$ and M are not isomorphic, then M is an irreducible $V_{\bar{0}}$ -module. If $M \circ \sigma$ and M are isomorphic, then M is a direct sum of two inequivalent irreducible $V_{\bar{0}}$ -modules. In this case, there exists an involution $\sigma \in GL(M)$ such that $\sigma Y_M(v,z)\sigma^{-1} = Y_M(\sigma v,z)$ for $v \in V$ and the two irreducible $V_{\bar{0}}$ -modules are the two different eigenspaces of σ .

Proof. If $M \circ \sigma$ and M are not isomorphic, it follows from the proof of Theorem 6.1 of $\boxed{\mathrm{DM}}$ that $M \circ \sigma$ and M are isomorphic irreducible $V_{\bar{0}}$ -modules. If $M \circ \sigma$ is isomorphic to M, we also denote this isomorphism by σ without confusion. Then $\sigma: M \to M$ is a linear isomorphism such that $\sigma Y_M(v,z)\sigma^{-1} = Y_M(\sigma v,z)$ for v in V by Schur's Lemma. We can choose σ such that $\sigma^2 = 1$. We denote the eigenspace with eigenvalue $(-1)^i$ by $M_{\bar{i}}$. Then $M_{\bar{i}}$ is irreducible $V_{\bar{0}}$ -module. The inequivalence of $M_{\bar{0}}$ and $M_{\bar{1}}$ as $V_{\bar{0}}$ -modules follows the same proof of Theorem 5.4 $\boxed{\mathrm{DY}}$.

We now introduce the notion of an admissible σ -twisted super V-module. An admissible σ -twisted V-module M is called an admissible σ -twisted super V-module if M is σ -stable. The ordinary σ -twisted super V-module can be defined similarly.

Lemma 2.4. If N is an admissible σ -twisted V-module which is not a σ -stable, then $N \oplus N \circ \sigma$ is an admissible σ -twisted super V-module. Moreover, N is irreducible if and only if $N \oplus N \circ \sigma$ is an irreducible admissible σ -twisted super V-module.

Proof. For short, we set $\overline{N}=N\circ\sigma$ and $M=N\oplus\overline{N}$. Since $N=\overline{N}$ as vector spaces, we can define a linear isomorphism $\sigma:M\to M$ by $\sigma(w,w')=(w',w)$ for any $w,w'\in N$. Obviously, $\sigma^2=\mathrm{id}_M$ and one can verify directly that $\sigma Y_M(u,z)\sigma=Y_M(\sigma u,z)$ for $u\in V$. Therefore, $M\circ\sigma\cong M$ and M is an admissible σ -twisted super V-module with

$$M_{\bar{0}} = \{ w + \sigma w | w \in M \}, M_{\bar{1}} = \{ w - \sigma w | w \in M \}.$$

Note that $M_{\bar{r}}$ and N are isomorphic $V_{\bar{0}}$ -modules for r=0,1. If N is irreducible, then $M_{\bar{0}}$ and $M_{\bar{1}}$ are irreducible $V_{\bar{0}}$ -modules by Lemma 2.3. Let $X\subset M$ be a nonzero admissible σ -twisted super V-submodule. Then $X=X_{\bar{0}}+X_{\bar{1}}$. Without loss, we can assume that $X_{\bar{0}}$ is nonzero. Then $X_{\bar{0}}$ is a submodule of the irreducible $V_{\bar{0}}$ -module $M_{\bar{0}}$. Thus $X_{\bar{0}}=M_{\bar{0}}$. Since V is simple, for any nonzero $u\in V_{\bar{1}}$ and any nonzero $w\in M_{\bar{0}}$ we know Y(u,z)w is nonzero by Proposition 11.9 of DL1. This implies $X_{\bar{1}}$ is nonzero and equal to $M_{\bar{1}}$. So X has to be M and hence M is an irreducible super V-module. Conversely, if M is super irreducible, take a nonzero proper admissible σ -twisted submodule Z of N. It is easy to see that $Z+\sigma(Z)$ is a nonzero proper admissible σ -twisted super module. This is a contradiction. The proof is complete.

In summary, every admissible σ -twisted super V-module M of a vertex operator superalgebra V admits a \mathbb{Z}_2 -grading which is determined by an V-module isomorphism from $M \circ \sigma$ on M of order 2.

3. Tensor products

For the remaining discussion, we investigate the tensor product $U \otimes V$ of two vertex operator superalgebras U and V, and its twisted modules, which are not well-known in literature. The tensor product of vertex operator algebras and their modules were studied in FHL, but the *super* case is slightly more complicated. For example, the tensor product $M \otimes N$ of a σ_U -twisted U-module M and a σ_V -twisted V-module N may not be a $\sigma_{U \otimes V}$ -twisted $U \otimes V$ -module. We will use σ for any vertex operator superalgebra if there is no confusion.

Lemma 3.1. Let U, V be vertex operator superalgebras. Then

(1) $U \otimes V$ is also a vertex operator superalgebra with

$$(U\otimes V)_{\bar 0}=U_{\bar 0}\otimes V_{\bar 0}+U_{\bar 1}\otimes V_{\bar 1},\ \ (U\otimes V)_{\bar 1}=U_{\bar 0}\otimes V_{\bar 1}+U_{\bar 1}\otimes V_{\bar 0}$$

and

$$Y(u \otimes v, z)(u' \otimes v') = (-1)^{\tilde{v}\tilde{u}'}Y(u, z)u' \otimes Y(v, z)v'$$

for any \mathbb{Z}_2 -homogeneous elements $u, u' \in U$ and $v, v' \in V$.

- (2) The map $f: U \otimes V \to V \otimes U$ such that $f(u \otimes v) = (-1)^{\tilde{u}\tilde{v}}v \otimes u$ gives an isomorphism of vertex operator superalgebras.
- (3) If M is a σ^i -twisted U-module such that $M \circ \sigma^i \cong M$ and N is σ^i -twisted V-module with i = 0, 1. Then $M \otimes N$ is a $\sigma^i \otimes \sigma^i$ -twisted $U \otimes V$ -module such that

$$Y(u \otimes v, z)(x \otimes y) = (-1)^{\tilde{v}\tilde{x}}Y(u, z)x \otimes Y(v, z)y$$

 $u \in U$, $v \in V$ and $x \in M$ and $y \in N$ where as usual $\tilde{x} = r$ if $x \in M_{\tilde{r}}$. In particular, the tensor product $M \otimes N$ of an U-module M and an V-module N is a module of $U \otimes V$.

(4) If both U and V are rational, then any irreducible $U \otimes V$ -module is isomorphic to $M \otimes N$ for some irreducible U-module M and some irreducible V-module N.

(5) If M is a σ -twisted super U-module and N is a σ -twisted super V-module then $M \otimes N$ is a $\sigma \otimes \sigma$ -twisted super $U \otimes V$ -module with

$$(M\otimes N)_{\bar{0}}=M_{\bar{0}}\otimes N_{\bar{0}}+M_{\bar{1}}\otimes N_{\bar{1}}, \quad (M\otimes N)_{\bar{1}}=M_{\bar{0}}\otimes N_{\bar{1}}+M_{\bar{1}}\otimes N_{\bar{0}}.$$

Proof. The proofs of (1)–(4) are fairly standard [FHL], and (5) follows from (3). \square

We deal with the tensor product of σ -twisted modules next. From Lemma 3.1 we need to understand $M \otimes N$ where both M and N are not σ -stable in terms of the tensor product of $A_{\sigma}(U)$ and $A_{\sigma}(V)$ studied in DZ2. For this purpose, we need some basic facts on superalgebras and their super modules from \mathbb{K} .

Let $\mathcal{A} = \mathcal{A}_{\bar{0}} \oplus \mathcal{A}_{\bar{1}}$ be a superalgebra. A super \mathcal{A} -module M is defined as a \mathbb{Z}_2 -graded module $M = M_{\bar{0}} \oplus M_{\bar{1}}$ such that $\mathcal{A}_{\bar{r}}M_{\bar{s}} \subset M_{\overline{r+s}}$. \mathcal{A} is called semisimple if \mathcal{A} is completely reducible super \mathcal{A} -module. \mathcal{A} is simple if it is semisimple and the only super ideals are 0 and itself.

There are two types of simple superalgebras Q_k (Q type) and $\mathcal{M}_{m,n}$ (\mathcal{M} type) for any positive integer k and nonnegative integers m,n with m+n>0. The Q_k is defined to be the algebra consisting of $2k\times 2k$ matrices of the form $\begin{pmatrix} A & B \\ -B & A \end{pmatrix}$, where A and B are arbitrary $k\times k$ complex matrices, with B=0 for the even part and A=0 for the odd one. The $\mathcal{M}_{m,n}$ is the complex matrix algebra $M_{(m+n)\times(m+n)}$. Write each matrix as $\begin{pmatrix} A & C \\ D & B \end{pmatrix}$, where A,B,C and D are complex matrices of dimensions $m\times m$, $n\times n$, $m\times n$ and $n\times m$, respectively, with C=0,D=0 for the even part and A=0,B=0 for the odd part. Clearly, Q_k is a direct sum of two copies of a full matrix algebra.

One can find the following results in **K**.

Theorem 3.2. Let A be a finite dimensional superalgebra.

- (1) The following are equivalent: (a) A is a semisimple superalgebra, (b) A is a semisimple associative algebra, (c) A is a direct sum of simple superalgebras.
- (2) Any finite dimensional simple superalgebra over \mathbb{C} is of either \mathcal{Q} type or \mathcal{M} type.
- (3) For k > 0, Q_k has a unique irreducible super module of dimension 2k which is a direct sum of two inequivalent Q_k -modules of dimension k.
- (4) For $m, n \geq 0$ with m + n > 0, $\mathcal{M}_{m,n}$ has a unique irreducible super module of dimension m + n which is also irreducible $\mathcal{M}_{m,n}$ -module.

Now we discuss the tensor products of superalgebras and their super modules. For any superalgebra $\mathcal{A} = \mathcal{A}_{\bar{0}} \oplus \mathcal{A}_{\bar{1}}$ and $a \in \mathcal{A}_{\bar{i}}$, we define $\tilde{a} := \bar{i}$. Superalgebras are algebras in sVec, which is a braided tensor category. Therefore, the tensor product of two superalgebras is a superalgebra. More precisely, if \mathcal{A} and \mathcal{B} are superalgebras, then $\mathcal{A} \otimes \mathcal{B}$ is a superalgebra with

$$(\mathcal{A}\otimes\mathcal{B})_{\bar{0}}=\mathcal{A}_{\bar{0}}\otimes\mathcal{B}_{\bar{0}}+\mathcal{A}_{\bar{1}}\otimes\mathcal{B}_{\bar{1}},\,(\mathcal{A}\otimes\mathcal{B})_{\bar{1}}=\mathcal{A}_{\bar{0}}\otimes\mathcal{B}_{\bar{1}}+\mathcal{A}_{\bar{1}}\otimes\mathcal{B}_{\bar{0}}$$

and

$$(a \otimes b)(a' \otimes b') = (-1)^{\tilde{b}\tilde{a'}}aa' \otimes bb'$$

for any homogeneous elements $a, a' \in \mathcal{A}$ and $b, b' \in \mathcal{B}$. Note that the map $f : \mathcal{A} \otimes \mathcal{B} \to \mathcal{B} \otimes \mathcal{A}$ with $f(a \otimes b) = (-1)^{\tilde{a}\tilde{b}}b \otimes a$ for $a \in \mathcal{A}$ and $b \in \mathcal{B}$ is the braiding of sVec. By \mathbb{K} ,

 $Q_m \otimes Q_n \cong \mathcal{M}_{mn,mn}, \quad Q_k \otimes \mathcal{M}_{m,n} \cong Q_{(m+n)k}, \quad \mathcal{M}_{m,n} \otimes \mathcal{M}_{k,l} \cong \mathcal{M}_{mk+nl,ml+nk}$ as superalgebras or algebras in sVec.

We now return to vertex operator superalgebra V. Recall the associative algebra $A_{\sigma}(V)$ from $\boxed{\text{DZ2}}$. Let $O_{\sigma}(V)$ to be the subspace of V spanned by $u \circ_{\sigma} v$ for $u, v \in V$ where

$$u \circ_{\sigma} v = \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\operatorname{wt} u}}{z^{2}}.$$

Set

$$u *_{\sigma} v = \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\operatorname{wt} u}}{z}$$

and $A_{\sigma}(V) = V/O_{\sigma}(V)$. Note that the definition of $A_{\sigma}(V)$ is the same as the Zhu's algebra for a vertex operator algebra.

The statements (1)–(4) of the following proposition are known in $\boxed{DZ2}$, and the statements (1')–(4') can been proved similarly with obvious modifications.

Proposition 3.3. Let V be a vertex operator superalgebra. Then

- (1) $A_{\sigma}(V)$ is an associative algebra with product induced from $*_{\sigma}$ on V and identity $\mathbf{1} + O_{\sigma}(V)$. Moreover, $\omega + O_{\sigma}(V)$ is a central element.
 - (1') $A_{\sigma}(V)$ is a superalgebra with

$$A_{\sigma}(V)_{\bar{r}} = (V_{\bar{r}} + O_{\sigma}(V))/O_{\sigma}(V) \cong V_{\bar{r}}/O_{\sigma}(V) \cap V_{\bar{r}}.$$

- (2) If $M = \bigoplus_{n \geq 0} M(n)$ is an admissible σ -twisted V-module with $M(0) \neq 0$ then M(0) is an $A_{\sigma}(V)$ -module such that $v + O_{\sigma}(V)$ acts as o(v) where $o(v) = v_{\text{wt } v-1}$.
- (2') If $M = \bigoplus_{n \geq 0} M(n)$ is an admissible σ -twisted super V-module with $M(0) \neq 0$ then M(0) is a super $A_{\sigma}(V)$ -module such that $v + O_{\sigma}(V)$ acts as o(v).
- (3) The assignment, $M \to M(0)$, defines a bijection between inequivalent irreducible admissible σ -twisted V-modules and inequivalent irreducible $A_{\sigma}(V)$ -modules.
- (3') The assignment, $M \to M(0)$, defines a bijection between inequivalent irreducible admissible σ -twisted super V-modules and inequivalent irreducible super $A_{\sigma}(V)$ -modules.
- (4) If V is σ -rational then $A_{\sigma}(V)$ is a finite dimensional semisimple associative algebra.
- (4') If V is σ -rational then $A_{\sigma}(V)$ is a finite dimensional semisimple superalgebra.

Now we assume that V is σ -rational. Let

$$\{N^0, N^0_{\sigma}, \dots, N^q, N^q_{\sigma}, N^{q+1}, \dots, N^p\}$$

be a complete set of inequivalent irreducible σ -twisted V-modules, where $N^i, N^i_{\sigma} = N^i \circ \sigma$ are inequivalent for $i=0,\ldots,q$ and $N^j \cong N^j \circ \sigma$ for $j=q+1,\ldots,p$. Then

$$A_{\sigma}(V) = \bigoplus_{i=0}^{q} (\operatorname{End} N^{i}(0) \oplus \operatorname{End} N_{\sigma}^{i}(0)) \bigoplus \bigoplus_{j=q+1}^{p} \operatorname{End} N^{j}(0).$$

For short we denote the End $N^i(0) \oplus \text{End } N^i_{\sigma}(0)$ by $A_{\sigma}(V)^i$ for $i = 0, \dots, q$ and End $N^j(0)$ by $A_{\sigma}(V)^j$ for $j = q + 1, \dots, p$. Then $A_{\sigma}(V) \oplus \bigoplus_{i=0}^p A_{\sigma}(V)^i$.

Lemma 3.4. Let V be a σ -rational vertex operator superalgebra. For $i = 0, \ldots, q$, $A_{\sigma}(V)^i$ is a \mathcal{Q} type simple superalgebra with the unique irreducible super module $N^i(0) \oplus N^i_{\sigma}(0)$, a direct sum of the inequivalent irreducible $A_{\sigma}(V)^i$ -modules $N^i(0)$ and $N^i_{\sigma}(0)$. If $i = q + 1, \ldots, p$, $A_{\sigma}(V)^i$ is an \mathcal{M} type simple superalgebra with the unique irreducible super module $N^i(0)$.

Proof. By Proposition 3.3, $A_{\sigma}(V)^i$ is semisimple. Clearly, if i > q, $A_{\sigma}(V)^i$ is an \mathcal{M} type simple superalgebra with the unique irreducible super module $N^i(0)$. If $i \leq q$, note that $N^i(0) \oplus N^i_{\sigma}(0)$ is a super $A_{\sigma}(V)^i$ -module with $(N^i(0) \oplus N^i_{\sigma}(0))_{\overline{r}}$ spanned by $(w, (-1)^r w)$ for $w \in N^i(0)$. Since both $(N^i(0) \oplus N^i_{\sigma}(0))_{\overline{r}}$ for r = 0, 1 are isomorphic irreducible $A_{\sigma}(V)^i$ -modules, we immediately see that $N^i(0) \oplus N^i_{\sigma}(0)$ is an irreducible super $A_{\sigma}(V)^i$ -module and $A_{\sigma}(V)^i$ is a simple superalgebra of \mathcal{Q} type. The proof is complete.

We now can establish the following results on the tensor product of σ -twisted modules. Let U be another σ -rational vertex operator superalgebra and

$$\{W^{i'}, W^{i'}_{\sigma}, W^{j'} | i' = 0, \dots, q', j' = q' + 1, \dots, p'\}$$

is a complete set of inequivalent irreducible σ -twisted U-modules.

Theorem 3.5. Let U, V be as above. Then $U \otimes V$ is σ -rational. Moreover, we have

- (1) For $i' = 0, \ldots, q', i = 0, \ldots, q$, $(W^{i'} \oplus W^{i'}_{\sigma}) \otimes (N^i \oplus N^i_{\sigma})$ is a sum of two isomorphic irreducible σ -twisted $U \otimes V$ -modules which are σ -stable.
- (2) For $i' = 0, \ldots, q', j = q + 1, \ldots, p$, $(W^{i'} \oplus W^{i'}_{\sigma}) \otimes N^j$ is a sum of two inequivalent irreducible σ -twisted $U \otimes V$ -modules $W^{i'} \otimes N^j$ and $W^{i'}_{\sigma} \otimes N^j$. In particular, $(W^{i'} \otimes N^j) \circ \sigma \cong W^{i'}_{\sigma} \otimes N^j$.
- (3) For $j' = q' + 1, \ldots, p', i = 0, \ldots, q$, $W^{j'} \otimes (N^i \oplus N^i_{\sigma})$ is a sum of two inequivalent irreducible σ -twisted $U \otimes V$ -modules $W^{j'} \otimes N^i$ and $W^{j'} \otimes N^i_{\sigma}$ such that $(W^{j'} \otimes N^i) \circ \sigma \cong W^{j'} \otimes N^i_{\sigma}$.
- (4) For $j' = q' + 1, \ldots, p', j = q + 1, \ldots, p, W^{j'} \otimes N^j$ is an irreducible σ -twisted $U \otimes V$ -module which is σ -stable.
- (5) Every irreducible σ -twisted $U \otimes V$ -module is isomorphic to one of the irreducible σ -twisted modules listed in (1)–(4).

Proof. The proof of σ -rationality of $U \otimes V$ is similar to that of Proposition 2.7 of $\boxed{\mathrm{DMZ}}$. (2)–(4) can be verified directly by Lemma $\boxed{3.1}$. For (1), we need $A_{\sigma}(U \otimes V)$. Using the exact proof of Lemma 2.8 in $\boxed{\mathrm{DMZ}}$ yields $A_{\sigma}(U \otimes V) \cong A_{\sigma}(U) \otimes A_{\sigma}(V)$. This gives

$$A_{\sigma}(U \otimes V) = \bigoplus_{0 \leq i' \leq p', 0 \leq i \leq p} A_{\sigma}(U)^{i'} \otimes A_{\sigma}(V)^{i}.$$

Note that these tensor product superalgebras are superalgebras with the multiplication given in the remark after Theorem 3.2 Using Lemma 3.4 and the tensor products of simple superalgebras we can give a different proof of (2)–(4). We now prove (1). In this case, $i' \leq q'$, $i \leq q$ and $A_{\sigma}(U)^{i'} \otimes A_{\sigma}(V)^{i}$ is isomorphic to the simple superalgebra $\mathcal{M}_{mn,mn} = M_{2mn \times 2mn}$, where $m = \dim W^{i'}(0)$ and $n = \dim N^{i}(0)$. So $A_{\sigma}(U)^{i'} \otimes A_{\sigma}(V)^{i}$ has a unique irreducible module of dimension 2mn. Since $(W^{i'}(0) \oplus W^{i'}_{\sigma}(0)) \otimes (N^{i}(0) \oplus N^{i}_{\sigma}(0))$ is an $A_{\sigma}(U)^{i'} \otimes A_{\sigma}(V)^{i}$ -module of dimension

4mn, it has to be a sum of two isomorphic irreducible super $A_{\sigma}(U)^{i'} \otimes A_{\sigma}(V)^{i}$ -modules. As a result, $(W^{i'} + W^{i'}_{\sigma}) \otimes (N^{i} + N^{i}_{\sigma})$ is a sum of two isomorphic irreducible σ -twisted $U \otimes V$ -modules which are σ -stable. (5) follows from Proposition 3.3(3).

4. Modular Invariance

In this section, we review the modular invariance property of the trace functions in orbifold theory for vertex operator superalgebras from $\boxed{\text{DZ1}}$, $\boxed{\text{DLM7}}$ and $\boxed{\text{Z}}$. We also correct a mistake on the number of irreducible σ -twisted V-modules in $\boxed{\text{DZ1}}$.

For the discussion of the modular invariance of trace functions, we recall the vertex operator superalgebra $(V, Y[\], \mathbf{1}, \tilde{\omega})$ associated to a vertex operator superalgebra V defined in \mathbb{Z} . Here $\tilde{\omega} = \omega - c/24$ and

$$Y[v, z] = Y(v, e^{z} - 1)e^{z \cdot \text{wt } v} = \sum_{n \in \mathbb{Z}} v[n]z^{-n-1}$$

for homogeneous v. Write

$$Y[\tilde{\omega}, z] = \sum_{n \in \mathbb{Z}} L[n] z^{-n-2}.$$

The weight of $v \in V$ in $(V, Y[], \mathbf{1}, \tilde{\omega})$ is denoted by wt[v].

In the rest of this paper, we assume that $V = \bigoplus_{n \geq 0} V_n$ is a simple vertex operator superalgebra such that

- (A1) $V_{\bar{0}}$ is regular vertex operator algebra of CFT type,
- (A2) The weight of any irreducible σ^i -twisted V-module is positive except for V itself with i = 0, 1.

We remark that Assumption (A2) is not necessary in the discussions on modular invariance and classification of irreducible $V_{\bar{0}}$ -modules. However this assumption is required for applying some results from [LKW1], where the categories are assumed to be pseudounitary.

Under the assumptions of (A1) and (A2), V is σ^i -rational for i=0,1 by Theorem 4.1 of \overline{DH} and C_2 -cofinite \overline{ABD} . Using the arguments from \overline{M} and \overline{CM} one can show, in fact, that V is regular if and only if $V_{\overline{0}}$ is regular.

Denote by $\mathcal{M}(g)$ a complete set of inequivalent irreducible g-twisted V-modules for $g=1,\sigma$ and set $\mathcal{M}(g,h)=\{M\in\mathcal{M}(g)|M\circ h\cong M\}$ for $g,h=1,\sigma$. Note from Lemma 2.2 that $\mathcal{M}(1,h)=\mathcal{M}(1)$ for $h=1,\sigma$. Also, $\mathcal{M}(\sigma,1)=\mathcal{M}(\sigma)$. Then $\mathcal{M}(g)$ and $\mathcal{M}(g,h)$ are finite sets.

Let $M \in \mathcal{M}(\sigma g, \sigma h)$ and T = o(g). For any homogeneous element $v \in V$, we denote $v_{\text{wt }v-1}$ by o(v) as usual and set

$$Z_M(v,(g,h),\tau) = \operatorname{tr}_{{}_M} o(v) \sigma h q^{L(0)-c/24} = q^{\lambda-c/24} \sum_{n \in \frac{1}{T}\mathbb{Z}_+} \operatorname{tr}_{{}_{M_{\lambda+n}}} o(v) \sigma h q^n$$

if either $(g,h) \neq (1,\sigma)$ or $(g,h) = (1,\sigma)$ and $M \circ \sigma \cong M$. If $(g,h) = (1,\sigma)$ and $M \circ \sigma \ncong M$.

$$Z_{M}(v,(g,h),\tau) = \frac{1}{\sqrt{2}}\operatorname{tr}_{_{M}}o(v+\sigma v)q^{L(0)-c/24} = \frac{1}{\sqrt{2}}q^{\lambda-c/24}\sum_{n\in\frac{1}{T}\mathbb{Z}_{+}}\operatorname{tr}_{_{M_{\lambda+n}}}o(v+\sigma v)q^{n}$$

By convention, $Z_M(v,(g,h),\tau) := 0$ whenever $M \notin \mathcal{M}(\sigma g, \sigma h)$.

Note that if $(g,h) = (1,\sigma)$ and $M \circ \sigma \ncong M$ then

$$Z_{M}(v,(1,\sigma),\tau) = \frac{1}{\sqrt{2}} (\operatorname{tr}_{M} o(v) q^{L(0)-c/24} + \operatorname{tr}_{M \circ \sigma} o(v) q^{L(0)-c/24})$$

$$= \sqrt{2} \operatorname{tr}_{M} o(v) q^{L(0)-c/24}$$

$$= Z_{M \circ \sigma}(v,(1,\sigma),\tau).$$

The insertion of $\sqrt{2}$ in the definition of $Z_M(v,(1,\sigma),\tau)$ will ensure that the corresponding S-matrix is unitary (see the discussion in Section 6).

From $[\![DZI\!]\!]$ we know that $Z_M(v,(g,h),\tau)$ are holomorphic function on the upper half plane $\mathbb H$ with $q=e^{2\pi i\tau}$ $[\![DZI\!]\!]$. The definition of $Z_M(v,(1,\sigma),\tau)$ given in this paper in the case $M\circ\sigma\ncong M$ is different from $[\![DZI\!]\!]$ where this case was not considered. This new definition ensures that $Z_M(v,(1,\sigma),\tau)$ is a vector in the conformal block $\mathcal C(1,\sigma)$ $[\![\![DZI\!]\!]\!]$. According to the definition of the conformal block given in $[\![\![\![DZI\!]\!]\!]$, $Z_M(v,(1,\sigma),\tau)$ is required to be zero if $\sigma(v)=-v$. Clearly, $\operatorname{tr}_M o(v)q^{L(0)-c/24}$ is not necessarily zero for such M. But $Z_M(v,(1,\sigma),\tau)$ is zero in our new definition.

Define $Z_M(v,\tau)=\operatorname{tr}_M o(v)q^{L(0)-c/24}$ for σ^s -twisted V-modules M and s=0,1. Then $Z_M(v,\tau)=Z_M(v,(\sigma,\sigma),\tau)$ if M is a V-modules $M, Z_M(v,\tau)=\frac{1}{\sqrt{2}}Z_M(v,(1,\sigma),\tau)$ if M is an irreducible σ -twisted V-module such that $M\not\cong M\circ\sigma$ and $Z_M(v,\tau)=Z_M(v,(1,\sigma),\tau)$ if M is an irreducible σ -twisted V-module such that $M\cong M\circ\sigma$. We also set $\chi_M(\tau)=\operatorname{tr}_M q^{L(0)-c/24}$ which is called the character of M.

Lemma 4.1. If $M \in \mathcal{M}(\sigma g, \sigma h)$ and $v \in V_{\bar{1}}$ then $Z_M(v, (g, h), \tau) = 0$ for any g, h.

Proof. If $M \circ \sigma \cong M$ the result was obtained in Lemma 6.3 of $\boxed{\text{DZ1}}$. It remains to prove the result if M is an irreducible σ -twisted V-module M with $M \circ \sigma \ncong M$. However, this follows from the preceding discussion.

Let W be the vector space spanned by $Z_M(v,(g,h),\tau)$ for $g,h \in \{1,\sigma\}$ and $M \in \mathcal{M}(\sigma g,\sigma h)$. Then, for any given pair (g,h), Z_M can be regarded as a function on $V \times \mathbb{H}$. Now, we define an action of the modular group $\Gamma = SL_2(\mathbb{Z})$ on W such that

$$Z_M|_{\gamma}(v,(g,h),\tau) = (c\tau + d)^{-\text{wt}[v]}Z_M(v,(g,h),\gamma\tau),$$

where

$$\gamma:\tau\mapsto\frac{a\tau+b}{c\tau+d},\quad \gamma=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in\Gamma.$$

Recall that $G = \{1, \sigma\}$ acts on $\mathcal{M}(1)$ and $\mathcal{M}(\sigma)$ such that the action of σ on M is $M \circ \sigma$. We have already known that each G-orbit in $\mathcal{M}(1)$ has exactly one module by Lemma 2.2 and each G-orbit in $\mathcal{M}(\sigma)$ has either one or two σ -twisted modules. Note that if two σ -twisted modules M^1 and M^2 are in the same G-orbit, then $Z_{M^1}(v,(g,h),\tau) = Z_{M^2}(v,(g,h),\tau)$ for all $v \in V$. Let \mathcal{O}_{σ^i} be the collection of orbit representatives in $\mathcal{M}(\sigma^i)$.

The following result is essentially obtained in DZ1 with suitable modification:

Theorem 4.2. Let V be a vertex operator superalgebra satisfying the assumptions (A1)–(A2).

(1) $\{Z_M(v,(g,h),\tau)|M\in\mathcal{O}_{\sigma g}\}$ is linearly independent.

(2) There is a representation
$$\rho_V : \Gamma \to GL(W)$$
 such that for $g, h \in \{1, \sigma\}$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \text{ and } M \in \mathcal{O}_{\sigma g},$$

$$Z_{M|\gamma}(v,(g,h),\tau) = \sum_{N \in \mathcal{O}_{\sigma g^{a}h^{c}}} \gamma_{M,N}^{(g,h)} Z_{N}(v,(g^{a}h^{c},g^{b}h^{d}), \ \tau)$$

where $\rho(\gamma) = (\gamma_{M,N}^{(g,h)})$. That is,

$$Z_{M}(v,(g,h),\gamma\tau) = (c\tau + d)^{\text{wt}[v]} \sum_{N \in \mathcal{O}_{\sigma g^{a}h^{c}}} \gamma_{M,N}^{(g,h)} Z_{N}(v,(g^{a}h^{c},g^{b}h^{d}), \ \tau).$$

(3) The number of G-orbits in $\mathcal{M}(\sigma)$ or the number of inequivalent irreducible σ -twisted super modules is equal to the number of inequivalent irreducible V-modules.

Theorem 4.2(3) gives a correction of Theorem 8.6(2) in $\boxed{\text{DZI}}$. Let $\mathcal{C}(g,h)$ be the vector spaces spanned by $Z_M(v,(g,h),\tau)$ for $M\in\mathcal{O}_{\sigma g}$. Then by Theorem 4.2(2) we know that $\mathcal{C}(1,\sigma)$ and $\mathcal{C}(\sigma,1)$ have the same dimension by using the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. So \mathcal{O}_{σ^i} have the same cardinality for i=0,1. In particular, the number of inequivalent irreducible σ -twisted modules is always greater than or equal to the number of inequivalent irreducible modules. Two numbers are equal if and only if every irreducible σ -twisted V-module is σ -stable. This result is different from that in $\boxed{\text{DLM7}}$ when V is a vertex operator algebra and g is an order 2 automorphism. Moreover, if we replace the irreducible σ -twisted modules by the irreducible σ -twisted super modules, the result is the same as in the case of vertex operator algebra.

If $V = V_{\bar{0}}$ is a vertex operator algebra then ρ_V is a unitary representation of Γ and the kernel of ρ_V is a congruence subgroup of Γ Z,DLN.

We use the free fermion as an example to illustrate Theorem 4.2 Let $A(\frac{1}{2}+\mathbb{Z})$ be the associative algebra generated by a(m) with $m\in\frac{1}{2}+\mathbb{Z}$ subject to the relation $a(m)a(n)+a(n)a(m)=2\delta_{m+n,0}$, and $A(\frac{1}{2}+\mathbb{Z})^+$ the subalgebra generated by a(m) with m>0. Consider \mathbb{C} as an $A(\frac{1}{2}+\mathbb{Z})^+$ -module with the trivial action $a(m)\cdot 1=0$ for m>0. Then $V(\frac{1}{2}+\mathbb{Z})=A(\frac{1}{2}+\mathbb{Z})\otimes_{A(\frac{1}{2}+\mathbb{Z})^+}\mathbb{C}$ is the unique irreducible highest weight $A(\frac{1}{2}+\mathbb{Z})$ -module. As vector spaces, $V(\frac{1}{2}+\mathbb{Z})$ is isomorphic to the free exterior algebra $\bigwedge[a(m)\mid m\leq 0]$. It is well known that $V(\frac{1}{2}+\mathbb{Z})$ is a rational, C_2 -cofinite vertex operator superalgebra with only one irreducible module $V(\frac{1}{2}+\mathbb{Z})$ up to isomorphism KW and L1. Moreover, $V(\frac{1}{2}+\mathbb{Z})$ is generated by a(-1/2) such that $Y(a(-1/2),z)=\sum_{n\in\mathbb{Z}}a(n+1/2)z^{-n-1}$.

The vertex operator superalgebra $V(\frac{1}{2}+\mathbb{Z})$ has two inequivalent irreducible σ -twisted modules. To construct these two σ -twisted modules we need another associative algebra $A(\mathbb{Z})$ generated by a(m) with $m \in \mathbb{Z}$ satisfying the relation $a(m)a(n)+a(n)a(m)=2\delta_{m+n,0}$. Let $A(\mathbb{Z})^+$ be the subalgebra of $A(\mathbb{Z})$ generated by a(m) with m>0. Consider the induced $A(\mathbb{Z})$ -module $V(\mathbb{Z})=A(\mathbb{Z})\otimes_{A(\mathbb{Z})^+}\mathbb{C}$ where \mathbb{C} is $A(\mathbb{Z})^+$ -module such that a(m)1=0 for all m>0. It is easy to see that $V(\mathbb{Z})$ is isomorphic to $\bigwedge[a(n)|n\in\mathbb{Z},n\leq 0]$, in which a(m) acts by multiplication if $m\leq 0$ and a(m) acts as $\pm 2\frac{\partial}{\partial a(-m)}$ if m>0. Let $W=\bigwedge[a(m)|m\in\mathbb{Z},m<0]$, and $W=W_{\bar{0}}\oplus W_{\bar{1}}$ the decomposition of W into the sum even and odd subspaces. Then

$$V(\mathbb{Z})_{\pm} = (1 \pm a(0))W_{\bar{0}} \oplus (1 \mp a(0))W_{\bar{1}}$$

are irreducible $A(\mathbb{Z})$ -submodules of $V(\mathbb{Z})$ and $V(\mathbb{Z}) = V(\mathbb{Z})_+ \oplus V(\mathbb{Z})_-$. Moreover, $V(\mathbb{Z})_\pm$ are the inequivalent irreducible σ -twisted $V(\frac{1}{2} + \mathbb{Z})$ -modules such that $Y(a(-1/2),z) = \sum_{n \in \mathbb{Z}} a(n)z^{-n-1/2}$ [L2], [DZ2]. It is easy to verify that $V(\mathbb{Z})_+ \circ \sigma$ is isomorphic to $V(\mathbb{Z})_-$. Furthermore, $V(\mathbb{Z})$ is the unique irreducible σ -twisted super $V(\frac{1}{2} + \mathbb{Z})$ -module.

Next we want to discuss more on the trace functions $Z_M(v,(g,h),\tau)$. We know from the Lemma 4.1 that $Z_M(v,(g,h),\tau)=0$ if $\sigma v=-v$. But we can still consider $\operatorname{tr}_M o(v)q^{L(0)-c/24}$ for $M\in \mathcal{M}(\sigma)$ such that M and $M\circ \sigma$ are not isomorphic, and $v\in V_{\bar{1}}$. In general, $\operatorname{tr}_M o(v)q^{L(0)-c/24}$ does not vanish. But our result does not tell anything about such $\operatorname{tr}_M o(v)q^{L(0)-c/24}$. Now consider the example $V(\frac{1}{2}+\mathbb{Z})$. Let $v=a(-1/2)\in V(\frac{1}{2}+\mathbb{Z})_{\bar{1}}$. Then $\operatorname{wt}[v]=\frac{1}{2}$ and o(v)=a(0) on the twisted module. It is easy to compute that

$$\operatorname{tr}_{V(\mathbb{Z})_{\pm}} o(v) q^{L(0) - c/24} = \pm q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$

which is a modular form of weight $\frac{1}{2}$ over Γ . This suggests that for an arbitrary rational vertex operator superalgebra V, an irreducible σ -twisted module M and $v \in V_{\bar{1}}$, $\operatorname{tr}_M o(v) q^{L(0)-c/24}$ is still a modular form of weight $\operatorname{wt}[v]$.

The following corollary is immediate.

Corollary 4.3. If
$$\gamma = S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $v \in V_{\bar{0}}$ we have:
$$Z_{M}(v, (1, 1), -\frac{1}{\tau}) = \tau^{\text{wt}[v]} \sum_{N \in \mathcal{O}_{\sigma}} S_{M,N}^{(1,1)} Z_{N}(v, (1, 1), \tau),$$
$$Z_{M}(v, (1, \sigma), -\frac{1}{\tau}) = \tau^{\text{wt}[v]} \sum_{N \in \mathcal{M}(1)} S_{M,N}^{(1,\sigma)} Z_{N}(v, (\sigma, 1), \tau)$$

for $M \in \mathcal{O}_{\sigma}$, and

(4.1)
$$Z_N(v,(\sigma,1), -\frac{1}{\tau}) = \tau^{\text{wt}[v]} \sum_{M \in \mathcal{O}_{\sigma}} S_{N,M}^{(\sigma,1)} Z_M(v,(1,\sigma),\tau),$$

(4.2)
$$Z_N(v,(\sigma,\sigma),-\frac{1}{\tau}) = \tau^{\operatorname{wt}[v]} \sum_{M \in \mathscr{M}(1)} S_{N,M}^{(\sigma,\sigma)} Z_M(v,(\sigma,\sigma),\tau)$$

for any $N \in \mathcal{M}(1)$. The matrix $\rho(S) = (S_{M,N}^{(g,h)})$ is called S-matrix of V and is independent of the choice of vector $v \in V_{\bar{0}}$.

Remark 4.4. If $V_{\bar{1}} = 0$ then $V = V_{\bar{0}}$ is a vertex operator algebra and $\sigma = 1$. In this case, the representation ρ is unitary and the kernel of ρ is a congruence subgroup $\boxed{\text{DLN}}$.

5. Irreducible $V_{\bar{0}}$ -modules

We classify the irreducible $V_{\bar{0}}$ -modules in this section and show that every irreducible $V_{\bar{0}}$ -module occurs in an irreducible V-module or σ -twisted module. The main idea is to use the S-matrix to classify the irreducible $V_{\bar{0}}$ -modules as in \overline{DRX} .

By Theorem 4.2(3), the number of inequivalent irreducible V-modules is equal to the number of inequivalent of irreducible σ -twisted super V-modules. Let

 $\{M^0,\dots,M^p\}$ be a complete set of inequivalent irreducible V-modules with $M^0=V$ and

$$\{N^0, N^0_{\sigma}, \dots, N^q, N^q_{\sigma}, N^{q+1}, \dots, N^p\}$$

the inequivalent irreducible σ -twisted V-modules such that N^j and $N^j \circ \sigma$ are equivalent for j>q. Then $M^i=M^i_{\bar 0}\oplus M^i_{\bar 1}$ and $N^j=N^j_{\bar 0}\oplus N^j_{\bar 1}$ are direct sum of two irreducible $V_{\bar 0}$ -modules by Lemmas 2.2 and 2.3 for $i=0,\ldots,p$ and $j=q+1,\ldots,p$.

Theorem 5.1. Let V be a vertex operator superalgebra satisfying the assumptions (A1)–(A2). Then

$$\{M_{\bar{s}}^i, N^j, N_{\bar{s}}^k \mid i = 0, \dots, p, j = 0, \dots, q, k = q + 1, \dots, p, s = 0, 1\}$$

is a complete set of inequivalent irreducible $V_{\bar{0}}$ -modules.

Proof. We first prove that $\{M_{\bar{s}}^i | i=0,\ldots,p,s=0,1\}$ is a complete set of inequivalent $V_{\bar{0}}$ -modules. Following $\boxed{\text{DLM5}}$ we can define associative algebras $A_n(V)$ for $n \in \frac{1}{2}\mathbb{Z}_+$ such that $A_0(V) = A(V)$ as defined in $\boxed{\text{KW}}$ and both $A_m(V)$ and $A_{m+\frac{1}{2}}(V)$ for any nonnegative integer m are quotient algebras of $A_m(V_{\bar{0}})$. Moreover,

$$A_n(V) = \bigoplus_{i=0}^p \bigoplus_{m \le n} \operatorname{End} M^i(m)$$

as V is rational. Noting that $M_{\bar{s}}^i = \bigoplus_{n \in \mathbb{Z}_+} M^i(\frac{1}{2}s + n)$, we see immediately that $M_{\bar{s}}^i$ are inequivalent $V_{\bar{0}}$ -modules.

We prove next that $\{N^j, N^k_{\bar{s}} \mid j=0,\ldots,q, k=q+1,\ldots,p, s=0,1\}$ is a complete set of inequivalent $V_{\bar{0}}$ -modules. In this case we need to construct associative algebras $A_{\sigma,n}(V)$ for $n\in\mathbb{Z}_+$ following [DLM6] so that $A_{\sigma,0}(V)=A_{\sigma}(V)$ as defined in [DZ2]. We can then follow the proof given in [DY] to show that $\{N^j, N^k_{\bar{s}} \mid j=0,\ldots q, k=q+1,\ldots,p,s=0,1\}$ are inequivalent $V_{\bar{0}}$ -modules.

Finally we prove that any $M^i_{\bar s}$ and N^j or $M^i_{\bar s}$ and $N^k_{\bar t}$ are not isomorphic. From Proposition 7.2, we see that $\operatorname{qdim}_{V_{\bar 0}} V_{\bar 1} = \operatorname{qdim}_{V} V = 1$. Thus $V_{\bar 1}$ is a simple current DJX. This forces $V_{\bar 1} \boxtimes M^i_{\bar s} = M^i_{\bar s+1}$ and $V_{\bar 1} \boxtimes N^k_{\bar t} = N^k_{\bar t+1}$ and $V_{\bar 1} \boxtimes N^j = N^j$ as $V_{\bar 0}$ -modules. Note that the weight difference between $M^i_{\bar 0}$ and $M^i_{\bar 1}$ is a half-integer, and the weight difference between $N^k_{\bar 0}$ and $N^k_{\bar 1}$ is an integer. So any $M^i_{\bar s}$ and $N^k_{\bar t}$ or $M^i_{\bar s}$ and N^j for $i=0,\ldots,p,\ j=0,\ldots,q,\ k=q+1,\ldots,p$ and s,t=0,1 are not isomorphic.

Our next goal is to prove that the irreducible modules given in Theorem 5.1 are complete.

Theorem 5.2. Let V be a vertex operator superalgebra satisfying the assumptions (A1)–(A2). Then

$$\{M_{\bar{s}}^i, N^j, N_{\bar{s}}^k \mid i = 0, \dots, p, j = 0, \dots, q, k = q + 1, \dots, p, s = 0, 1\}$$

is a complete list of inequivalent irreducible $V_{\bar{0}}$ -modules.

Proof. The main idea in the proof is to use the S-matrix for vertex operator algebra $V_{\bar{0}}$. Observe that for $v \in V_{\bar{0}}$,

$$Z_{V_{\bar{0}}}(v,\tau) = \frac{1}{2}(Z_{V}(v,(\sigma,\sigma),\tau) + Z_{V}(v,(\sigma,1),\tau)).$$

Thus

$$Z_{V_{\bar{0}}}(v, -\frac{1}{\tau}) = \frac{1}{2}(Z_{V}(v, (\sigma, \sigma), -\frac{1}{\tau}) + Z_{V}(v, (\sigma, 1), -\frac{1}{\tau})).$$

Using (4.2) and Theorem 5.1 we know that

$$\begin{split} Z_{V}(v,(\sigma,\sigma),-\frac{1}{\tau}) &= \tau^{\text{wt}[v]} \sum_{i=0}^{p} S_{V,M^{i}}^{(\sigma,\sigma)} Z_{M^{i}}(v,(\sigma,\sigma),\tau) \\ &= \tau^{\text{wt}[v]} \sum_{i=0}^{p} S_{V,M^{i}}^{(\sigma,\sigma)} (Z_{M_{\bar{0}}^{i}}(v,\tau) + Z_{M_{\bar{1}}^{i}}(v,\tau)). \end{split}$$

By (4.1) and Theorem 5.1

$$Z_{V}(v,(\sigma,1),-\frac{1}{\tau}) = \tau^{\text{wt}[v]} \sum_{M \in \mathcal{O}_{\sigma}} S_{V,M}^{(\sigma,1)} Z_{M}(v,(1,\sigma),\tau)$$

$$= \sqrt{2}\tau^{\text{wt}[v]} \sum_{j=0}^{q} S_{V,N^{j}}^{(\sigma,1)} Z_{N^{j}}(v,\tau) + \tau^{\text{wt}[v]} \sum_{j=q+1}^{p} S_{V,N^{j}}^{(\sigma,1)} (Z_{N_{\bar{0}}^{j}}(v,\tau) + Z_{N_{\bar{1}}^{j}}(v,\tau)).$$

From $[\mathbb{Z}]$, $Z_{M_{\bar{s}}^i}(v,\tau)$, $Z_{N^j}(v,\tau)$, $Z_{N^j_{\bar{s}}}(v,\tau)$ for $i=0,\ldots,p,\ j=0,\ldots,q,\ k=q+1,\ldots,p,\ r,s=0,1$ are linearly independent vectors in the conformal block of $V_{\bar{0}}$. From $[\mathbb{H}\mathbf{u}\mathbb{Z}]$, $\tau^{-\operatorname{wt}[v]}Z_{V_{\bar{0}}}(v,-\frac{1}{\tau})$ is a linear combination of $Z_W(v,\tau)$ for the irreducible $V_{\bar{0}}$ -modules W and the coefficient of each $Z_W(v,\tau)$ in the linear combination is nonzero. This implies that the list of irreducible $V_{\bar{0}}$ -modules in Theorem [5.1] is complete.

6. The unitarity of ρ

The representation ρ given in Section \square is essentially the representation of $SL_2(\mathbb{Z})$ associated with the modular invariance of the trace functions of V_0 with respect to a new basis. In this section, we show that this representation ρ is unitary, which means this new basis is orthonormal.

Since the modular group is generated by S and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, it is good enough to show $\rho_V(S)$ and $\rho_V(T)$ are unitary matrices. Recall that $\rho_{V_0}(S)$ and $\rho_{V_0}(T)$ are the S and T matrices of V_0 . The main idea is to use the unitarity of ρ_{V_0} to establish the unitarity of ρ_V . For this purpose we need to determine the relation between $\rho_V(S)$ and $\rho_{V_0}(S)$, and $\rho_V(T)$ and $\rho_{V_0}(T)$.

 $\rho_V(S)$ and $\rho_{V_{\bar{0}}}(S)$, and $\rho_V(T)$ and $\rho_{V_{\bar{0}}}(T)$. Recall that $Z_M(v,\tau) = \operatorname{tr}_M o(v) q^{L(0)-c/24}$ for any irreducible $V_{\bar{0}}$ -module M and $v \in V_{\bar{0}}$. The S and T matrices of $V_{\bar{0}}$ are given defined by

$$Z_M(v, -\frac{1}{\tau}) = \tau^{\text{wt}[v]} \sum_N S_{M,N} Z_N(v, \tau).$$

$$Z_M(v,\tau+1) = e^{2\pi i(-c/24 + \lambda_M)} Z_M(v,\tau)$$

where N runs through the inequivalent irreducible $V_{\bar{0}}$ -modules, c is the central charge of V, λ_M is the lowest weight of M. In particular, the T matrix of $V_{\bar{0}}$ is diagonal with $T_{M,M} = e^{2\pi i (-c/24 + \lambda_M)}$ which is a root of unity as both c and λ_M are rational DLM7.

According to Theorem 5.2 we have three cases (i) $M=M^i_{\bar{s}}$ for $i=0,\ldots,p$ and s=0,1, (ii) $M=N^j$ for $j=0,\ldots,q$, (iii) $M=N^k_{\bar{s}}$ for $k=q+1,\ldots,p$ and s=0,1. We first compute $S_{M^i_{\bar{s}},N}$ for $i=0,\ldots,p$ and s=0,1. The computation is

similar to those given in the proof of Theorem 5.2 for $v \in V_{\bar{0}}$:

$$\begin{split} Z_{M_{\overline{s}}^i}(v,-\frac{1}{\tau}) &= \frac{1}{2}(Z_{M^i}(v,(\sigma,\sigma),-\frac{1}{\tau}) + (-1)^s Z_{M^i}(v,(\sigma,1),-\frac{1}{\tau})) \\ &= \frac{1}{2}\tau^{\text{wt}[v]} \sum_{j=0}^p S_{M^i,M^j}^{(\sigma,\sigma)} Z_{M^j}(v,(\sigma,\sigma),\tau) \\ &\quad + \frac{(-1)^s}{2}\tau^{\text{wt}[v]} \sum_{N\in\mathcal{O}_\sigma} S_{M^i,N}^{(\sigma,1)} Z_N(v,(1,\sigma),\tau) \\ &= \frac{1}{2}\tau^{\text{wt}[v]} \sum_{j=0}^p S_{M^i,M^j}^{(\sigma,\sigma)} (Z_{M_0^j}(v,\tau) + Z_{M_1^j}(v,\tau)) \\ &\quad + \frac{(-1)^s}{\sqrt{2}}\tau^{\text{wt}[v]} \sum_{j=0}^q S_{M^i,N^j}^{(\sigma,1)} Z_{N^j}(v,\tau) \\ &\quad + \frac{(-1)^s}{2}\tau^{\text{wt}[v]} \sum_{j=q+1}^p S_{M^i,N^j}^{(\sigma,1)} (Z_{N_0^j}(v,\tau) + Z_{N_1^j}(v,\tau)). \end{split}$$

The following lemma is immediate.

Lemma 6.1. For i = 0, ..., p and s = 0, 1 we have

(1)
$$S_{M^i_{\bar{s}},M^j_{\bar{s}}} = \frac{1}{2} S_{M^i,M^j}^{(\sigma,\sigma)}$$
 for $j=0,\ldots,p$ and $t=0,1,$

(2)
$$S_{M_{\bar{s}}^i,N^j} = \frac{(-1)^s}{\sqrt{2}} S_{M^i,N^j}^{(\sigma,1)}$$
 for $j = 0, \dots, q$

(2)
$$S_{M_{\bar{s}}^i,N^j}^{i} = \frac{(-1)^s}{\sqrt{2}} S_{M^i,N^j}^{(\sigma,1)}$$
 for $j = 0, \dots, q$,
(3) $S_{M_{\bar{s}}^i,N_{\bar{t}}^j}^{i} = \frac{(-1)^s}{2} S_{M^i,N^j}^{(\sigma,1)}$ for $j = q+1,\dots,p$ and $t = 0,1$.

Next we compute $S_{N^i,N}$. Since N^i is an irreducible $V_{\bar{0}}$ -module for $i=0,\ldots,q$, by Corollary 4.3 and the remark preceding Lemma 4.1, we immediately have

$$\begin{split} Z_{N^i}(v,-\frac{1}{\tau}) &= \frac{1}{\sqrt{2}} Z_{N^i}(v,(1,\sigma),-\frac{1}{\tau}) \\ &= \frac{1}{\sqrt{2}} \tau^{\text{wt}[v]} \sum_{j=0}^p S_{N^i,M^j}^{(1,\sigma)} Z_{M^j}(v,(\sigma,1),\tau) \\ &= \frac{1}{\sqrt{2}} \tau^{\text{wt}[v]} \sum_{i=0}^p S_{N^i,M^j}^{(1,\sigma)} (Z_{M_0^j}(v,\tau) - Z_{M_1^j}(v,\tau)). \end{split}$$

The discussion above yields

Lemma 6.2. For $i = 0, \ldots, q$, $S_{N^i, M^j_z} = \frac{(-1)^s}{\sqrt{2}} S_{N^i, M^j}^{(1,\sigma)}$ and $S_{N^i, W} = 0$ for the other irreducible $V_{\bar{0}}$ -modules W.

Similarly, we have

Lemma 6.3. For i = q + 1, ..., p and $s, t = 0, 1, S_{N_{\bar{s}}^i, M_{\bar{s}}^j} = \frac{(-1)^t}{2} S_{N_{i,M^j}}^{(1,\sigma)}$ for $j=0,\ldots,p,\; S_{N^i_{\bar{s}},N^j_{\bar{t}}}=rac{(-1)^{s+t}}{2}S^{(1,1)}_{N^i,N^j}\; for\; j=q+1,\ldots,p\; and\; S_{N^i_{\bar{s}},W}=0\; for\; the$ other irreducible $V_{\bar{0}}$ -modules

Proof. A straightforward calculation using Corollary 4.3 gives

$$\begin{split} Z_{N_{\bar{s}}^i}(v,-\frac{1}{\tau}) &= \frac{1}{2}(Z_{N^i}(v,(1,\sigma),-\frac{1}{\tau}) + (-1)^s Z_{N^i}(v,(1,1),-\frac{1}{\tau})) \\ &= \frac{1}{2}\tau^{\text{wt}[v]} \sum_{j=0}^p S_{N^i,M^j}^{(1,\sigma)} Z_{M^j}(v,(\sigma,1),\tau) + \frac{(-1)^s}{2}\tau^{\text{wt}[v]} \sum_{j=q+1}^p S_{N^i,N^j}^{(1,1)} Z_{N^j}(v,(1,1),\tau) \\ &= \frac{1}{2}\tau^{\text{wt}[v]} \sum_{j=0}^p S_{N^i,M^j}^{(1,\sigma)} (Z_{M_{\bar{0}}^j}(v,\tau) - Z_{M_{\bar{1}}^j}(v,\tau)) \\ &+ \frac{(-1)^s}{2}\tau^{\text{wt}[v]} \sum_{j=q+1}^p S_{N^i,N^j}^{(1,1)} (Z_{N_{\bar{0}}^j}(v,\tau) - Z_{N_{\bar{1}}^j}(v,\tau)). \end{split}$$

The result follows.

Theorem 6.4. The representation ρ given in Theorem 4.2 is unitary.

Proof. The unitarity of $\rho(S)$ follows from Lemmas 6.1-6.3 and the unitarity of S matrix of $V_{\bar{0}}$. It remains to show that $\rho(T)$ is unitary. We have

$$\begin{split} Z_{M^i}(v,(\sigma,\sigma),\tau+1) &= Z_{M^i_{\bar{0}}}(v,\tau+1) + Z_{M^i_{\bar{1}}}(v,\tau+1) \\ &= e^{2\pi i (-c/24 + \lambda_{M^i_{\bar{0}}})} Z_{M^i_{\bar{0}}}(v,\tau) - e^{2\pi i (-c/24 + \lambda_{M^i_{\bar{0}}})} Z_{M^i_{\bar{1}}}(v,\tau) \\ &= e^{2\pi i (-c/24 + \lambda_{M^i_{\bar{0}}})} Z_{M^i}(v,(\sigma,1),\tau) \end{split}$$

where we have used the fact that $\lambda_{M_{\bar{0}}^i} - \lambda_{M_{\bar{1}}^i} + \frac{1}{2}$ is an integer. Similarly,

$$Z_{M^i}(v,(\sigma,1),\tau+1) = e^{2\pi i(-c/24 + \lambda_{M_0^i})} Z_{M^i}(v,(\sigma,\sigma),\tau).$$

It is easy to see that for i = 0, ..., p and j = q + 1, ..., p

$$Z_{N^i}(v,(1,\sigma),\tau+1) = e^{2\pi i(-c/24+\lambda_{N^i})} Z_{N^i}(v,(1,\sigma),\tau),$$

$$Z_{N^j}(v,(1,1),\tau+1) = e^{2\pi i(-c/24+\lambda_{N^j})} Z_{N^j}(v,(1,1),\tau).$$

The unitarity of $\rho(T)$ now follows from that fact that c and λ_{N^i} are rational numbers DLM7.

7. Quantum dimensions

In this section, we compute the quantum dimensions of the irreducible σ^i -twisted V-modules and irreducible $V_{\overline{0}}$ -modules, which are the Frobenius-Perron dimensions of these modules in their underlying fusion categories. The ideas and techniques used here come from \overline{DJX} and \overline{DRX} .

Let V be a vertex operator superalgebra as before and M be an irreducible σ^i twisted module. Recall $\chi_M(\tau)$ from Section 4. The quantum dimension of M over V is defined to be

$$\operatorname{qdim}_{V} M = \lim_{y \to 0} \frac{\chi_{M}(iy)}{\chi_{V}(iy)}$$

using the relation $q = e^{2\pi i \tau}$ where y is real and positive.

The existence of the quantum dimension for a g-twisted V-module is given below in terms of the S-matrix and the proof is similar to that of Lemma 4.2 of $\boxed{\text{DJX}}$ by using the S-matrix given in Corollary $\boxed{4.3}$

Proposition 7.1. Let V be a vertex operator superalgebra satisfying (A1)–(A2), and M an irreducible σ^r -twisted V-module for r=0,1. Then $\operatorname{qdim}_V M=\frac{S_N^{(\sigma,\sigma)}}{S_N^{(\sigma,\sigma)}}$ for any irreducible V-module M. If M is an irreducible σ -twisted V-module, then $\operatorname{qdim}_{V} M = \frac{S_{M,V}^{(1,\sigma)}}{\sqrt{2}S_{V,V}^{(\sigma,\sigma)}} \text{ for } M = N^{i} \text{ for } i = 0, \dots, q \text{ and } \operatorname{qdim}_{V} M = \frac{S_{M,V}^{(1,\sigma)}}{S_{V,V}^{(\sigma,\sigma)}} \text{ for other}$ M. In particular, $\operatorname{qdim}_{V} M$ exists.

We define the global dimension of V as

$$\operatorname{glob}(V) = \sum_{M \in \mathscr{M}(1)} (\operatorname{qdim}_V M)^2.$$

In the case when V is a vertex operator algebra, glob(V) is exactly the global dimension of V defined in $\boxed{\text{DJX}}$ and is equal to $\frac{1}{S_{V,V}^2}$.

We now compute the quantum dimensions of irreducible $V_{\bar{0}}$ -modules in terms of quantum dimensions of irreducible V-modules by using Theorem 5.2

Proposition 7.2. We have

- (1) $\operatorname{qdim}_{V_{\bar{0}}} M_{\bar{r}}^{i} = \operatorname{qdim}_{V} M^{i} \text{ for } i = 0, \dots, p \text{ and } r = 0, 1;$
- (2) $\operatorname{qdim}_{V_{\bar{0}}}^{V_{\bar{0}}} N^{j} = 2 \operatorname{qdim}_{V} N^{j} \text{ for } j = 0, \dots, q;$ (3) $\operatorname{qdim}_{V_{\bar{0}}} N^{k}_{\bar{s}} = \operatorname{qdim}_{V} N^{k} \text{ for } k = q + 1, \dots, p \text{ and } s = 0, 1;$
- (4) $\operatorname{glob}(V_{\bar{0}}) = 4 \operatorname{glob}(V);$
- (5) $\sum_{M \in \mathcal{M}(\sigma)} (\operatorname{qdim}_V M)^2 = \operatorname{glob}(V);$
- (6) $\sum_{X_1} (\operatorname{qdim}_{V_0} X_1)^2 = \sum_{X_2} (\operatorname{qdim}_{V_0} X_2)^2$ where X_i ranges over the inequivalent irreducible $V_{\bar{0}}$ -modules appearing in irreducible σ^i -twisted V-modules.

In particular, $\operatorname{qdim}_{V_{\bar{0}}}W = 2\operatorname{qdim}_{V}W$ for any irreducible σ^{r} -twisted module W. Moreover, $\operatorname{qdim}_V M^i$, and $\operatorname{2}\operatorname{qdim}_V N^j$ for $j=0,\ldots,q$, and $\operatorname{qdim}_V N^k$ for $k=q+1,\ldots,p, \ take \ values \ in \ \{2\cos\frac{\pi}{n} \mid n\geq 3\} \cup [2,\infty).$

Proof. (1) By Proposition 7.1 and Lemma 6.1 we see that

$$\operatorname{qdim}_{V_{\bar{0}}} M_{\bar{r}}^{i} = \frac{S_{M_{\bar{r}}^{i}, V_{\bar{0}}}}{S_{V_{\bar{0}}, V_{\bar{0}}}} = \frac{S_{M^{i}, V}^{(\sigma, \sigma)}}{S_{V_{\bar{V}}, V}^{(\sigma, \sigma)}} = \operatorname{qdim}_{V} M^{i}.$$

(2) can be proved similarly by using Lemma 6.2. But we give a different proof here:

$$\begin{aligned} \operatorname{qdim}_{V_{\bar{0}}} N^j &= \lim_{y \to 0} \frac{\chi_{N^j}(iy)}{\chi_{V_0}(iy)} = \lim_{y \to 0} \frac{\chi_{N^j}(iy)}{\chi_{V}(iy)} \frac{\chi_{V}(iy)}{\chi_{V_0}(iy)} \\ &= \lim_{y \to 0} \frac{\chi_{N^j}(iy)}{\chi_{V}(iy)} \lim_{y \to 0} \frac{\chi_{V}(iy)}{\chi_{V_{\bar{0}}}(iy)} = 2 \operatorname{qdim}_{V} N^j. \end{aligned}$$

- (3) The proof is similar.
- (4) From $\boxed{\text{DJX}}$ we know that $\text{glob}(V_{\bar{0}}) = \frac{1}{S_{V_{\bar{0}},V_{\bar{0}}}^2}$ is positive. This implies that $S_{V_{\bar{0}},V_{\bar{0}}}$ is a real number. It follows from Proposition 7.1 that $S_{V,V}^{(\sigma,\sigma)}$ is a real number. Since $\operatorname{qdim}_V M$ is always positive for any irreducible σ^r -twisted V-module M, we see from Proposition 7.1 again that $S_{M,V}^{(\sigma^{1-r},\sigma)}$ is a real number.

Using Proposition 7.1 and Theorem 6.4 yields

$$\operatorname{glob}(V) = \sum_{i=0}^p (\operatorname{qdim}_V M^i)^2 = \sum_{i=0}^p (\frac{S_{M^i,V}^{(\sigma,\sigma)}}{S_{VV}^{(\sigma,\sigma)}})^2 = (\frac{1}{S_{VV}^{(\sigma,\sigma)}})^2 \sum_{i=0}^p (S_{M^i,V}^{(\sigma,\sigma)})^2 = (\frac{1}{S_{VV}^{(\sigma,\sigma)}})^2.$$

By Lemma 6.1, $S_{V_{\bar{0}}V_{\bar{0}}} = \frac{1}{2}S_{V,V}^{(\sigma,\sigma)}$. It follows immediately that $glob(V_{\bar{0}}) = 4 glob(V)$. (5) Again by Proposition 7.1 and Theorem 6.4

$$\sum_{M \in \mathcal{M}(\sigma)} (\operatorname{qdim}_{V} M)^{2} = \frac{2}{(S_{V,V}^{(\sigma,\sigma)})^{2}} \sum_{i=0}^{q} (\frac{S_{N^{i},V}^{(1,\sigma)}}{\sqrt{2}})^{2} + (\frac{1}{S_{V,V}^{(\sigma,\sigma)}})^{2} \sum_{i=q+1}^{p} (S_{N^{i},V}^{(1,\sigma)})^{2} = (\frac{1}{S_{V,V}^{(\sigma,\sigma)}})^{2}.$$

(6) Note from (1) that

$$\sum_{i=0}^p \sum_{s=0}^1 (\operatorname{qdim}_{V_{\bar{0}}} M^i_{\bar{s}})^2 = \sum_{i=0}^p 2 (\operatorname{qdim}_V M^i)^2 = 2\operatorname{glob}(V).$$

The result follows now from (4) and Theorem 5.2.

From $\boxed{\text{DJX}}$, the quantum dimensions of irreducible $V_{\overline{0}}$ -modules lie in $\{2\cos\frac{\pi}{n}|n\geq 3\}\cup[2,\infty)$. From (1)–(3) we see immediately that $\operatorname{qdim}_V M^i$, $2\operatorname{qdim}_V N^j$ for $j=0,\ldots,q$ and $\operatorname{qdim}_V N^k$ for $k=q+1,\ldots,p$ take values in $\{2\cos\frac{\pi}{n}|n\geq 3\}\cup[2,\infty)$. \square

8. \mathbb{Z}_2 -grading on the category of $V_{\bar{0}}$ -modules

For the discussion below, we introduce several module categories. We use C_V and C_V^{σ} to denote the V-module category and the σ -twisted V-module category, respectively. Since $\sigma|_{V_0^-} = \mathrm{id}_{V_0^-}$, the objects in C_V and C_V^{σ} are V_0^- -modules. We denote by $C_{V_0^-}^r$ the full abelian subcategory of $C_{V_0^-}$ generated by the simple V_0^- -submodules of any σ^r -twisted V-modules. Let C be any of these categories, the dimension of C is defined as $\dim C = \sum_M (\operatorname{qdim} M)^2$ where M runs over the equivalence classes of simple objects in C. It is clear that $\operatorname{glob}(V) = \dim C_V$, $\operatorname{glob}(V_0^-) = \dim C_{V_0^-}^0 + \dim C_{V_0^-}^1$. From the discussions in Section C, we know that $\operatorname{glob}(V_0^-) = 4 \operatorname{glob}(V)$, $\dim C_V = \dim C_V^\sigma$, and $\dim C_{V_0^-}^0 = \dim C_{V_0^-}^1$. By C_V^- is a modular tensor category, and C_V^- coincides with the categorical dimension of the fusion category of $C_{V_0^-}$.

Theorem 8.1. The category $C_{V_0}^0$ is a fusion subcategory of C_{V_0} with a complete list of simple objects given by $M_{\bar{r}}^j$, with j = 0, ..., p and r = 0, 1.

Proof. We need to show that $M^i_{\bar{r}} \boxtimes M^j_{\bar{s}}$ for $i,j=0,\ldots,p$ and r,s=0,1 lies in $\mathcal{C}^0_{V_{\bar{0}}}$. This is equivalent to that the fusion rules $N^W_{M^i_{\bar{r}},M^j_{\bar{s}}}=0$ for $W=N^k$ for $k=0,\ldots,q$ or $W=N^k_{\bar{t}}$ for $k=q+1,\ldots,p$ and t=0,1.

From Proposition 4.9 of DJX or the Verlinde formula for modular tensor categories,

$$\operatorname{qdim}_{V_{\bar{0}}} M_{\bar{r}}^{i} \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{s}}^{j} = \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{r}}^{i} \boxtimes M_{\bar{s}}^{j} = \sum_{W} N_{M_{\bar{r}}^{i}, M_{\bar{s}}^{j}}^{W} \operatorname{qdim}_{V_{\bar{0}}} W$$

where W ranges over the inequivalent irreducible $V_{\bar{0}}$ -modules. By the assumption of V, the quantum dimensions are positive. Our idea is to establish

$$\operatorname{qdim}_{V_{\bar{0}}} M_{\bar{r}}^{i} \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{s}}^{j} = \sum_{k=0}^{p} \sum_{t=0,1} N_{M_{\bar{t}}^{i}, M_{\bar{s}}^{j}}^{M_{\bar{t}}^{k}} \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{t}}^{k}$$

which implies that $N^W_{M^i_{\bar{\pi}},M^j_{\bar{\pi}}}=0$ if W is not any $M^k_{\bar{t}}.$

Recall from Hu2 the Verlinde formula

$$N_{M_{\bar{t}}^{i},M_{\bar{s}}^{j}}^{M_{\bar{t}}^{k}} = \sum_{W} \frac{S_{M_{\bar{\tau}}^{i},W} S_{M_{\bar{s}}^{j},W} \overline{S}_{W,M_{\bar{t}}^{k}}}{S_{V_{0},W}}$$

where W ranges through the inequivalent irreducible $V_{\bar{0}}$ -modules. Thus

$$\begin{split} &\sum_{k=0}^{p} \sum_{t=0,1} N_{M_{\tilde{t}}^{i},M_{\tilde{s}}^{j}}^{M_{\tilde{t}}^{k}} \operatorname{qdim}_{V_{\tilde{0}}} M_{\tilde{t}}^{k} \\ &= \sum_{k=0}^{p} \sum_{t=0,1} \sum_{W} \frac{S_{M_{\tilde{\tau}}^{i},W} S_{M_{\tilde{s}}^{j},W} \overline{S}_{W,M_{\tilde{t}}^{k}}}{S_{V_{\tilde{0}},W}} \frac{S_{M_{\tilde{t}}^{k},V_{\tilde{0}}}}{S_{V_{\tilde{0}},V_{\tilde{0}}}} \end{split}$$

We claim that $\sum_{k=0}^{p} \sum_{t=0,1} \overline{S}_{W,M_x^k} S_{M_x^k,V_0^k}$ is 0 if $W \neq V_0$, V_1 and is $\frac{1}{2}$ otherwise.

Note that $\overline{S}_{M_{\bar{t}}^k,W}=S_{W',M_{\bar{t}}^k}$. Let $W=V_{\bar{a}}$. By Lemma 6.1 we have $S_{M_{\bar{t}}^k,V_{\bar{a}}}=\frac{S_{M^k,V}^{(\sigma,\sigma)}}{2}$ for a=0,1. Using the unitarity of $\rho(S)$ Theorem 6.4 gives the claim

$$\sum_{k=0}^p \sum_{t=0.1} \overline{S}_{W,M_{\tilde{t}}^k} S_{M_{\tilde{t}}^k,V_0} = \frac{1}{2} \sum_{k=0}^p (S_{M^k,V}^{(\sigma,\sigma)})^2 = \frac{1}{2}.$$

The proof for $W=M_{\bar{t}}^k$ with k>0 is similar. For $W=N^i,N_{\bar{s}}^j$, where $i=0,\ldots,q,$ $j=q+1,\ldots,p$ and s=0,1, the claim follows immediately from Lemmas [6.2] and [6.3]

Finally we have

$$\sum_{k=0}^{p} \sum_{t=0} \sum_{1} \sum_{W} \frac{S_{M_{r}^{i},W} S_{M_{s}^{j},W} \overline{S}_{W,M_{t}^{k}}}{S_{V_{0},W}} \frac{S_{M_{t}^{k},V_{0}}}{S_{V_{0},V_{0}}} = \frac{1}{2} \frac{S_{M_{r}^{i},V_{0}} S_{M_{s}^{j},V_{0}}}{S_{V_{0},V_{0}} S_{V_{0},V_{0}}} + \frac{1}{2} \frac{S_{M_{r}^{i},V_{1}} S_{M_{s}^{j},V_{1}}}{S_{V_{0},V_{1}} S_{V_{0},V_{0}}}.$$

Since $S_{M_{\bar{r}}^i,V_{\bar{1}}} = S_{M_{\bar{r}}^i,V_{\bar{0}}}$ we see that

$$\sum_{k=0}^{p} \sum_{t=0,1} N_{M_{\bar{\tau}}^{i},M_{\bar{s}}^{j}}^{M_{\bar{t}}^{k}} \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{t}}^{k} = \frac{S_{M_{\bar{\tau}}^{i},V_{\bar{0}}}}{S_{V_{\bar{0}},V_{\bar{0}}}} \frac{S_{M_{\bar{s}}^{j},V_{\bar{0}}}}{S_{V_{\bar{0}},V_{\bar{0}}}} = \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{\tau}}^{i} \operatorname{qdim}_{V_{\bar{0}}} M_{\bar{s}}^{j},$$

as desired. \Box

Remark 8.2. Similarly, one can show that if $M \in \mathcal{C}^r_{V_{\bar{0}}}$, $N \in \mathcal{C}^s_{V_{\bar{0}}}$ then $M \boxtimes N \in \mathcal{C}^{r+s}_{V_{\bar{0}}}$ where r+s is understood to be modulo 2. Therefore, $\mathcal{C}_{V_{\bar{0}}}$ is \mathbb{Z}_2 -graded.

9. The 16-fold way

We discuss in this section on how the representation theory for vertex operator superalgebra is related to the 16-fold way conjecture proposed in BGH.

Let U be a rational, C_2 -cofinite, simple vertex operator algebra of CFT type such that the weight of any irreducible U-module is positive except U itself. Then the U-module category C_U is a modular tensor category Hu2 with positive quantum dimensions. As usual, let $c_{M,N}: M \boxtimes N \to N \boxtimes M$ be the braiding for U-modules M, N. Let θ denote the ribbon structure on C_U . Then θ_M is a scalar multiple of id_M for any simple U-module M. We use the abuse notation θ_M to denote such scalar. A simple U-module F is called a fermion if F is a simple current (or invertible object of C_U) of order 2 and $c_{F,F} = -\mathrm{id}_{F\boxtimes F}$. Since $\mathrm{qdim}_U F = 1$, $\theta_F = -1$.

Lemma 9.1. Let $V = V_{\bar{0}} \oplus V_{\bar{1}}$ be a vertex operator superalgebra satisfying assumptions (A1)–(A2) with $V_{\bar{1}} \neq 0$. Then $V_{\bar{1}}$ is a fermion of $C_{V_{\bar{0}}}$.

Proof. Clearly, $V_{\bar{1}}$ is a simple current of order 2. Then

$$c_{V_{\bar{1}},V_{\bar{1}}} = \theta_{V_{\bar{1}}} \operatorname{id}_{V_{\bar{1}} \boxtimes V_{\bar{1}}} = e^{2\pi i L(0)} \operatorname{id}_{V_{\bar{1}} \boxtimes V_{\bar{1}}} = -\operatorname{id}_{V_{\bar{1}} \boxtimes V_{\bar{1}}}$$

from Hu2 and BGH as
$$V_{\bar{1}} = \bigoplus_{n \in \mathbb{Z}} V_{\frac{1}{2}+n}$$
.

Conversely, if U is as before and an U-module F is a fermion, then $V = U \oplus F$ has a structure of a vertex operator superalgebra such that $V_{\bar{0}} = U$ and $V_{\bar{1}} = F$ by Theorem 1.1 of [CKL]. Therefore, the vertex operator superalgebra $V = V_{\bar{0}} \oplus V_{\bar{1}}$ in our sense is completely determined by a fermion $V_{\bar{1}}$ in $C_{V_{\bar{0}}}$.

Let \mathcal{B} be a braided fusion category. For any family \mathcal{D} of objects in \mathcal{B} , the Müger centralizer $C_{\mathcal{B}}(\mathcal{D})$ is the full subcategory of \mathcal{B} consisting of the objects Y in \mathcal{B} such that $c_{Y,X} \circ c_{X,Y} = \mathrm{id}_{X \boxtimes Y}$ for all X in \mathcal{D} . The subcategory $C_{\mathcal{B}}(\mathcal{D})$ is closed under the tensor product of \mathcal{B} and hence a braided fusion subcategory of \mathcal{B} . The symmetric fusion category $C_{\mathcal{B}}(\mathcal{B})$ is called the Müger center of \mathcal{B} and denoted by $\mathcal{Z}_2(\mathcal{B})$. In this paper, a pseudounitary braided fusion category \mathcal{B} is called supermodular if $\mathcal{Z}_2(\mathcal{B})$ equivalent to category sVec, which is equal to $\mathrm{Rep}(\mathbb{Z}_2)$ with the super braiding. In particular, a super-modular category \mathcal{B} admits a fermion F in $C_{\mathcal{B}}(\mathcal{B})$ with $\theta_F = -1$.

Lemma 9.2. Let $V = V_{\bar{0}} \oplus V_{\bar{1}}$ be a vertex operator superalgebra satisfying assumptions (A1)–(A2). Then $\mathcal{C}^0_{V_{\bar{0}}} = \mathcal{C}_{\mathcal{C}_{V_{\bar{0}}}}(V_{\bar{1}})$ and is super-modular.

Proof. By Theorem 8.1 that $C_{V_{\bar{0}}}^0$ is a braided fusion subcategory of $C_{V_{\bar{0}}}$. We first prove that $V_{\bar{1}}$ lies in $\mathcal{Z}_2(C_{V_{\bar{0}}}^0)$, and hence dim $\mathcal{Z}_2(C_{V_{\bar{0}}}^0) \geq 2$. Equivalently we need to show that

$$c_{V_{\bar{1}},M_{\bar{r}}^i} \circ c_{M_{\bar{r}}^i,V_{\bar{1}}} = \mathrm{id}_{M_{\bar{r}}^i \boxtimes V_{\bar{1}}}$$

for $i=0,\ldots,p$ and r=0,1. Since $V_{\bar{1}}$ is a simple current we know that both $V_{\bar{1}}\boxtimes M^i_{\bar{r}}$ and $M^i_{\bar{r}}\boxtimes V_{\bar{1}}$ are isomorphic to $M^i_{\bar{r}+1}$. As usual we will denote the space of intertwining operator of type $\binom{W^3}{W^1,W^2}$ by $I\binom{W^3}{W^1,W^2}$ where W^j are modules of the vertex operator algebra $V_{\bar{0}}$ for i=1,2,3. Then $I\binom{M^i_{\bar{r}+1}}{M^i_{\bar{r}},V_{\bar{1}}}=\mathbb{C}\mathcal{Y}$ and $I\binom{M^i_{\bar{r}+1}}{V_{\bar{1}},M^i_{\bar{r}}}=\mathbb{C}\mathcal{Y}$ where Y is the restriction of Y defining the V-module structure on M^i to $V_{\bar{1}}$ and $\mathcal{Y}(w,z)u=e^{zL(-1)}Y(u,-z)w$ for $u\in V_{\bar{1}}$ and $w\in M^i_{\bar{r}}$. In this case, $c_{M^i_{\bar{r}},V_{\bar{1}}}$ is a linear map from $I\binom{M^i_{\bar{r}+1}}{M^i_{\bar{r}},V_{\bar{1}}}$ to $I\binom{M^i_{\bar{r}+1}}{V_{\bar{1}},M^i_{\bar{r}}}$ such that \mathcal{Y} is mapped to \mathcal{Y}' where $\mathcal{Y}'(u,z)w=e^{zL(-1)}\mathcal{Y}(w,-z)u$ for u,w as before. Similarly, $c_{V_{\bar{1}},M^i_{\bar{r}}}$ is a linear map from $I\binom{M^i_{\bar{r}+1}}{V_{\bar{1}},M^i_{\bar{r}}}$ to $I\binom{M^i_{\bar{r}+1}}{M^i_{\bar{r}},V_{\bar{1}}}$ such that Y is mapped to \mathcal{Y} . It is trivial to verify that $\mathcal{Y}'=Y$ and $c_{V_{\bar{1}},M^i_{\bar{r}}}\circ c_{M^i_{\bar{r}},V_{\bar{1}}}=\mathrm{id}_{M^i_{\bar{r}}\boxtimes V_{\bar{1}}}$.

It remains to show that $V_{\bar{s}}$ for s=0,1 are the only simple objects in $\mathcal{Z}_2(\mathcal{C}_{V_{\bar{0}}}^0)$. Since $\mathcal{C}_{V_{\bar{0}}}$ is modular, it follows from Theorem 3.2 of Mul that

$$\dim \mathcal{C}_{V_{\bar{0}}} = \dim C_{\mathcal{C}_{V_{\bar{0}}}}(\mathcal{C}_{V_{\bar{0}}}^0) \cdot \dim \mathcal{C}_{V_{\bar{0}}}^0.$$

From the discussion in Section 8 we know that

$$\dim \mathcal{C}_{V_{\bar{0}}} = 2\dim \mathcal{C}_{V_{\bar{0}}}^0.$$

This forces dim $C_{\mathcal{C}_{V_{\bar{0}}}}(\mathcal{C}_{V_{\bar{0}}}^0) = 2$. Clearly, $\mathcal{Z}_2(\mathcal{C}_{V_{\bar{0}}}^0) \subset C_{\mathcal{C}_{V_{\bar{0}}}}(\mathcal{C}_{V_{\bar{0}}}^0)$. This implies that

$$2 \leq \dim \mathcal{Z}_2(\mathcal{C}_{V_{\bar{0}}}^0) \leq \dim C_{\mathcal{C}_{V_{\bar{0}}}}(\mathcal{C}_{V_{\bar{0}}}^0) = 2,$$

and hence
$$\mathcal{Z}_2(\mathcal{C}^0_{V_{\bar{0}}}) = C_{\mathcal{C}_{V_{\bar{0}}}}(\mathcal{C}^0_{V_{\bar{0}}}).$$

We can now formulate the 16-fold way conjecture in $\boxed{\text{BGH}}$ in the context of vertex operator algebra. Let $\mathcal B$ be a super-modular category. A modular category $\mathcal C$, which contains $\mathcal B$ as a full ribbon subcategory, is called a *minimal modular extension* or a *modular closure* of $\mathcal B$ if $\dim \mathcal C = 2 \dim \mathcal B$.

Conjecture 9.3. If \mathcal{B} is a super-modular category, then \mathcal{B} admits a minimal modular extension. In this case, there are exactly 16 minimal modular extensions of \mathcal{B} up to braided monoidal equivalence.

Under the assumption of the existence of modular closure of super-modular category, the second part of the conjecture has been proved in **[LKW1]**, Theorems 4.26 and 5.4].

From Lemma 9.2 and its proof, we immediately obtain:

Theorem 9.4. Let V be a vertex operator superalgebra satisfying (A1)–(A2). Then $C_{V_{\bar{0}}}$ is a minimal modular extension of the super-modular category $C_{V_{\bar{0}}}^0$.

In view of Theorem 9.4 and the 16-fold way conjecture, the following question arises:

Question 9.5. Does every super-modular category C equivalent to $C_{V_{\bar{0}}}^0$ for some vertex operator superalgebra V?

Our next goal is to construct a sequence $\{V^m\}_{m\geq 0}$ of vertex operator superalgebras from V such that $\mathcal{C}_{(V^m)_{\bar{0}}}$ are minimal modular extension of $C^0_{V_{\bar{0}}}$ and the equivalence classes of these modular categories $\mathcal{C}_{(V^m)_{\bar{0}}}$ are characterized by the congruence class of m modulo 16. We close this section with the following theorem.

Theorem 9.6. Let V, U be vertex operator superalgebras satisfying (A1)–(A2) and U being holomorphic. Then $C^0_{V_0^-}$ and $C^0_{(U \otimes V)_0^-}$ are equivalent braided fusion categories. In particular, $C_{(U \otimes V)_0^-}$ is a minimal modular extension of $C^0_{V_0^-}$.

Proof. Note that $(U \otimes V)_{\bar{0}}$ is an algebra object in $\mathcal{C}_{U_{\bar{0}} \otimes V_{\bar{0}}}$. Let $\mathcal{B} = C_{\mathcal{C}_{U_{\bar{0}}} \otimes V_{\bar{0}}}((U \otimes V)_{\bar{0}})$, the Müger centralizer of $(U \otimes V)_{\bar{0}}$ in $\mathcal{C}_{U_{\bar{0}} \otimes V_{\bar{0}}}$. In view of [CKM], Proposition 2.65], let $F_0: \mathcal{B} \to \mathcal{C}_{U \otimes V}$ and $F_1: \mathcal{B} \to \mathcal{C}_{(U \otimes V)_{\bar{0}}}$ be the induction functors, that means

$$F_0(Y) = (U \otimes V) \boxtimes_{U_{\bar{0}} \otimes V_{\bar{0}}} Y, \quad F_1(Y) = (U \otimes V)_{\bar{0}} \boxtimes_{U_{\bar{0}} \otimes V_{\bar{0}}} Y$$

for Y in \mathcal{B} . By [CKM, Theorem 2.67], F_0 , F_1 are braided tensor functors. Since $F_1(Y)$ is a $(U \otimes V)_{\bar{0}}$ -submodule of $F_0(Y)$ and $C^0_{(U \otimes V)_{\bar{0}}}$ is generated by the $(U \otimes V)_{\bar{0}}$ -submodules of super $U \otimes V$ -modules, $F_1(Y) \in \text{obj}(C^0_{(U \otimes V)_{\bar{0}}})$ for $Y \in \mathcal{B}$.

Since $(U \otimes V)_{\bar{0}} = U_{\bar{0}} \otimes V_{\bar{0}} \oplus U_{\bar{1}} \otimes V_{\bar{1}}$, $U_{\bar{0}} \otimes X \in \mathcal{B}$ for any object X of $\mathcal{C}^0_{V_{\bar{0}}}$. Note that the functor $U_{\bar{0}} \otimes -: \mathcal{C}_{V_{\bar{0}}} \to \mathcal{C}_{U_{\bar{0}} \otimes V_{\bar{0}}}$ is a faithfully full braided tensor functor, and so is its restriction $F_2 : \mathcal{C}^0_{V_{\bar{0}}} \to \mathcal{B}$. Therefore, the composite functor $F = F_1 F_2 : \mathcal{C}^0_{V_{\bar{0}}} \to \mathcal{C}^0_{(U \otimes V)_{\bar{0}}}$ is a braided tensor functor. Since $\mathcal{C}^0_{V_{\bar{0}}}$ is super-modular, F is faithfully full by DMNO, Corollary 3.26].

To show that $C^0_{V_{\bar{0}}}$ is braided tensor equivalent to $C^0_{(U \otimes V)_{\bar{0}}}$, it suffices to show that every irreducible $(U \otimes V)_{\bar{0}}$ -module is an image of F.

Recall that the inequivalent irreducible super V-modules are M^i with $i=0,\ldots,p$. This implies that $\{M^i_{\bar{r}}\mid i=0,\ldots,p, \text{ and } r=0,1\}$ is a complete set of inequivalent simple objects of $\mathcal{C}^0_{V_{\bar{0}}}$. Moreover, inequivalent irreducible super $U\otimes V$ -modules are $U\otimes M^i$. Therefore, $(U\otimes M^i)_{\bar{r}}=U_{\bar{0}}\otimes M^i_{\bar{r}}+U_{\bar{1}}\otimes M^i_{\bar{1}-r}$ for $i=0,\ldots,p$ and r=0,1 are all the inequivalent irreducible $(U\otimes V)_{\bar{0}}$ -modules of $\mathcal{C}^0_{(U\otimes V)_{\bar{0}}}$.

For any simple $X \in \text{obj}(\mathcal{C}^0_{V_{\bar{0}}})$,

$$F(X) = (U \otimes V)_{\bar{0}} \boxtimes (U_{\bar{0}} \otimes X)$$

which is isomorphic to $U_{\bar{0}} \otimes X + U_{\bar{1}} \otimes (V_{\bar{1}} \boxtimes X)$ as $V_{\bar{0}} \otimes U_{\bar{0}}$ -modules. Therefore, F(X) is the irreducible $(V \otimes U)_{\bar{0}}$ -module which contains an irreducible $U_{\bar{0}} \otimes V_{\bar{0}}$ -submodule isomorphic to $U_{\bar{0}} \otimes X$. Therefore, by the same reason,

$$F(M^i_{\bar{r}}) \cong (U \otimes M^i)_{\bar{r}}$$

as $(U \otimes V)_{\bar{0}}$ -modules for $i=1,\ldots,p$ and r=0,1. Thus, $F:\mathcal{C}^0_{V_{\bar{0}}} \to \mathcal{C}^0_{(U \otimes V)_{\bar{0}}}$ is an equivalence. The last statement follows immediately from Theorem 9.4

The Gauss sum $\tau_1(\mathcal{C})$ of a ribbon fusion category \mathcal{C} is defined as

$$\tau_1(\mathcal{C}) = \sum_{X \in \operatorname{Irr}(\mathcal{C})} \operatorname{qdim}(X)^2 \cdot \theta_X$$

where $\operatorname{Irr}(\mathcal{C})$ denotes the set of isomorphism classes of simple objects of \mathcal{C} , $\operatorname{qdim}(X)$ is the pivotal (or quantum) dimension of the simple object X, and θ_X denotes the scalar of the twist. The Gauss sums and their higher degree generalizations $\tau_n(\mathcal{C})$ are invariants of ribbon fusion categories (cf. NSW). In the case of a fermionic modular category, we follow some idea in $\overline{\operatorname{BGN}}$ to prove that the centralizer of the fermion has zero contribution to the Gauss sum.

Lemma 9.7. Let C be a pseudounitary modular tensor category over \mathbb{C} , f a fermion of C, and C^0 the Müger centralizer of f. Then

$$\tau_1(\mathcal{C}^0) = 0$$

Proof. Let $X \in \operatorname{Irr}(\mathcal{C}^0)$. Then $S_{X,f} = \operatorname{qdim}(X)$ where $S_{X,Y}$ denotes the categorical trace of $c_{Y,X} \circ c_{X,Y}$. Since f is an invertible object, the tensor product $X \otimes f$ of \mathcal{C} is a simple object of C^0 and $\operatorname{qdim}(X \otimes f) = \operatorname{qdim}(X)$. On the other hand, by the twist equation, we have

$$\theta_{X\otimes f}\operatorname{qdim}(X\otimes f) = \theta_X\theta_f S_{X,f},$$

which implies $\theta_{X\otimes f} = -\theta_X$. In particular, the action of f on $Irr(\mathcal{C})$ has no fixed point. Therefore, there exists a subset \mathcal{O} of $Irr(\mathcal{C}^0)$ such that $\bigcup_{X\in\mathcal{O}}\{X,X\otimes f\} = Irr(\mathcal{C}^0)$. Thus,

$$\tau_1(\mathcal{C}^0) = \sum_{X \in \mathcal{O}} \operatorname{qdim}(X)^2 \cdot \theta_X - \operatorname{qdim}(X \otimes f)^2 \cdot \theta_X = 0.$$

10. Minimal modular extensions of $\mathcal{C}^0_{V_0}$

In this section we use the holomorphic vertex operator superalgebras $V(l, \mathbb{Z} + \frac{1}{2})$ for $l \geq 1$ and Theorem [9.6] to obtain all the 16 minimal modular extensions of $C_{V_0}^0$ for any given vertex operator superalgebra V satisfying (A1)–(A2).

The construction of $V(l, \mathbb{Z} + \frac{1}{2})$ is well known (see FFR, KW, L1). Let $H_l = \bigoplus_{i=1}^{l} \mathbb{C}a_i$ be a complex vector space equipped with a nondegenerate symmetric

bilinear form (\cdot, \cdot) such that $(a_i, a_j) = 2\delta_{i,j}$. Let $A(l, \mathbb{Z} + \frac{1}{2})$ be the associative algebra generated by $\{a(n) \mid a \in H_l, n \in \mathbb{Z} + \frac{1}{2}\}$ subject to the relation

$$[a(n), b(m)]_{+} = (a, b)\delta_{m+n,0}.$$

Let $A(l, \mathbb{Z} + \frac{1}{2})^+$ be the subalgebra generated by $\{a(n) \mid a \in H_l, n \in \mathbb{Z} + \frac{1}{2}, n > 0\}$, and make \mathbb{C} a 1-dimensional $A(l, \mathbb{Z} + \frac{1}{2})^+$ -module so that $a_i(n)1 = 0$ for n > 0. The induced module

$$V(l, \mathbb{Z} + \frac{1}{2}) = A(l, \mathbb{Z} + \frac{1}{2}) \otimes_{A(l, \mathbb{Z} + \frac{1}{2})^{+}} \mathbb{C}$$

$$\cong \bigwedge [a_{i}(-n)|n > 0, n \in \mathbb{Z} + \frac{1}{2}, i = 1, 2, \dots, l] \text{ (linearly)}$$

is a holomorphic vertex operator superalgebra generated by $a_i(-\frac{1}{2})$ for $i=1,\ldots,l$ and $Y(a_i(-\frac{1}{2}),z)=a_i(z)=\sum_{n\in\mathbb{Z}}a_i(-n-\frac{1}{2})z^{-n-1}$. For example, if l=1 then $V(1,\mathbb{Z}+\frac{1}{2})$ is isomorphic to $L(\frac{1}{2},0)+L(\frac{1}{2},\frac{1}{2})$ as a module for the Virasoro vertex operator algebra $L(\frac{1}{2},0)$. Moreover, $V(1,\mathbb{Z}+\frac{1}{2})_{\bar{0}}=L(\frac{1}{2},0)$ and $V(1,\mathbb{Z}+\frac{1}{2})_{\bar{1}}=L(\frac{1}{2},\frac{1}{2})$. If l=2k is even then $V(l,\mathbb{Z}+\frac{1}{2})$ is isomorphic to the lattice vertex operator superalgebra $V_{\mathbb{Z}^k}$ where \mathbb{Z}^k is the lattice in \mathbb{R}^k with the standard inner product.

As usual, we use σ to denote the canonical automorphism of $V(l, \mathbb{Z} + \frac{1}{2})$. To construct σ -twisted $V(l, \mathbb{Z} + \frac{1}{2})$ -modules, we need to consider the cases when l is even or odd. If l = 2k is even, then H_{2k} can be written as

$$H_{2k} = \sum_{i=1}^{k} \mathbb{C}b_i + \sum_{i=1}^{k} \mathbb{C}b_i^*$$

with $(b_i, b_j) = (b_i^*, b_j^*) = 0, (b_i, b_j^*) = \delta_{i,j}$. Let $A(2k, \mathbb{Z})$ be the associative algebra generated by $\{b(n) \mid b \in H_{2k}, n \in \mathbb{Z}\}$ subject to the relation

$$[a(m), b(n)]_{+} = (a, b)\delta_{m+n,0}.$$

Let $A(2k,\mathbb{Z})^+$ be the subalgebra generated by $\{b_i(n), b_i^*(m) \mid n \geq 0, m > 0, i = 1, \ldots, k\}$, and make \mathbb{C} a 1-dimensional $A(2k,\mathbb{Z})^+$ -module with $b_i(n)1 = 0$ and $b_i^*(m)1 = 0$ for $n \geq 0, m > 0, i = 1, \ldots, k$. Consider the induced $A(2k,\mathbb{Z})$ -module

$$V(2k,\mathbb{Z}) = A(2k,\mathbb{Z}) \otimes_{A(2k,\mathbb{Z})^+} \mathbb{C} \cong \Lambda[b_i(-n),b_i^*(-m) \,|\, n,m \in \mathbb{Z}, n > 0, m \geq 0].$$

By Proposition 4.3 in [L2], $V(2k,\mathbb{Z})$ is an irreducible σ -twisted $V(2k,\mathbb{Z}+\frac{1}{2})$ -module such that

$$Y_{V(2k,\mathbb{Z})}(u(-\frac{1}{2}),z) = u(z) = \sum_{n \in \mathbb{Z}} u(n)z^{-n-1/2}$$

for $u \in H_{2k}$. Moreover, $V(2k,\mathbb{Z})$ is the only irreducible σ -twisted $V(2k,\mathbb{Z}+\frac{1}{2})$ -module up to isomorphism $\boxed{\mathbf{DZ2}}$. As a result, $V(2k,\mathbb{Z}+\frac{1}{2})_{\bar{0}}$ has 4 inequivalent irreducible modules $V(2k,\mathbb{Z}+\frac{1}{2})_{\bar{r}}$, and $V(2k,\mathbb{Z})_{\bar{r}}$ (r=0,1) of weights $0,\frac{1}{2},\frac{k}{8},\frac{k}{8}$, and quantum dimension 1.

If l = 2k + 1 is odd, H_{2k+1} can be decomposed into:

$$H_{2k+1} = \sum_{i=1}^{k} \mathbb{C}b_i + \sum_{i=1}^{k} \mathbb{C}b_i^* + \mathbb{C}e$$

with $(b_i, b_j) = (b_i^*, b_j^*) = 0$, $(b_i, b_j^*) = \delta_{i,j}$, $(e, b_i) = (e, b_i^*) = 0$, (e, e) = 2. Let $A(2k+1, \mathbb{Z})$ be the associative algebra generated by a(n) for $a \in H_{2k+1}$ and $n \in \mathbb{Z}$ subject to the same relation as before. Let $A(2k+1, \mathbb{Z})^+$ be the subalgebra generated by

$$\{b_i(n), b_i^*(m), e(m) \mid m, n \in \mathbb{Z}, n \ge 0, m > 0, i = 1, \dots, k\}$$

and make \mathbb{C} a 1-dimensional $A(2k+1,\mathbb{Z})^+$ -module with $b_i(n)1=0$ for $n\geq 0$ and $b_i^*(m)1=e(m)1=0$ for $m>0,\ i=1,\ldots,k$. Set

$$V(2k+1,\mathbb{Z}) = A(2k+1,\mathbb{Z}) \otimes_{A(2k+1,\mathbb{Z})^+} \mathbb{C}.$$

It is easy to see that $V(2k+1,\mathbb{Z})$ is isomorphic to the exterior algebra

$$W(2k+1,\mathbb{Z}) = \Lambda[b_i(-n), b_i^*(-m), e(-m) \mid n, m \in \mathbb{Z}, n > 0, m \ge 0]$$

as vector spaces. Let $W(2k+1,\mathbb{Z}) = W(2k+1,\mathbb{Z})_{\bar{0}} \oplus W(2k+1,\mathbb{Z})_{\bar{1}}$ be the decomposition into the even and odd parity subspaces, and

$$V_{\pm}(2k+1,\mathbb{Z}) = (1 \pm e(0))W(2k+1,\mathbb{Z})_{\bar{0}} \oplus (1 \mp e(0))W(2k+1,\mathbb{Z})_{\bar{1}}.$$

Then

$$V(2k+1,\mathbb{Z}) = V_{+}(2k+1,\mathbb{Z}) \oplus V_{-}(2k+1,\mathbb{Z})$$

and $V_{\pm}(2k+1,\mathbb{Z})$ are irreducible $A(2k+1,\mathbb{Z})$ -modules. It follows from Proposition 4.3 in $\mathbb{L}2$ that $V_{\pm}(2k+1,\mathbb{Z})$ are irreducible σ -twisted modules for $V(2k+1,\mathbb{Z}+\frac{1}{2})$ so that

$$Y_{V(2k+1,\mathbb{Z})}(u(-\frac{1}{2}),z) = u(z) = \sum_{n \in \mathbb{Z}} u(n)z^{-n-1/2}$$

for $u \in H_{2k+1}$. Moreover, $V_{\pm}(2k+1,\mathbb{Z})$ are the only inequivalent irreducible σ -twisted modules and are isomorphic irreducible $V(2k+1,\mathbb{Z}+\frac{1}{2})_{\bar{0}}$ -modules $\boxed{DZ2}$. In this case $V(2k+1,\mathbb{Z}+\frac{1}{2})_{\bar{0}}$ has 3 inequivalent irreducible modules $V(2k+1,\mathbb{Z}+\frac{1}{2})_{\bar{r}}$ for r=0,1 and $V_{+}(2k+1,\mathbb{Z})$ of weights $0,\frac{1}{2}$ and $\frac{2k+1}{16}$, and quantum dimensions 1,1 and $\sqrt{2}$.

Let V be a vertex operator superalgebra satisfying (A1)–(A2). Set $V^0=V$ and $V^l=V(l,\mathbb{Z}+\frac{1}{2})\otimes V$ for $l\geq 1$. According to Theorem [9.6], $\mathcal{C}_{(V^l)_{\bar{0}}}$ is a minimal modular extension of $\mathcal{C}_{V_{\bar{0}}}^0$ for $l\geq 0$. We denote the Virasoro vector of V^l by ω^l for $l\geq 1$ and write $Y(\omega^l,z)=\sum_{n\in\mathbb{Z}}L^l(n)z^{-n-2}$. Let T_l be the corresponding T-matrix associated to $(V^l)_{\bar{0}}$ and set $\mathfrak{t}_l=e^{2\pi i(c+\frac{l}{2})/24}T_l$ which is the matrix for the operator $e^{2\pi i L^l(0)}$ acting on the inequivalent irreducible $(V^l)_{\bar{0}}$ -modules. Then \mathfrak{t}_l is the T-matrix of the modular tensor category $\mathcal{C}_{(V^l)_{\bar{0}}}$.

The following result is an immediate consequence of Theorem 3.5.

Lemma 10.1. The inequivalent irreducible σ -twisted V^l -modules are

$$\{V(l,\mathbb{Z})\otimes N^j, (V(l,\mathbb{Z})\otimes N^j)\circ\sigma, V(l,\mathbb{Z})\otimes N^k\mid j=0,\ldots,q, k=q+1,\ldots,p\}$$

if l is even, and

$$\{N^{l,j}, N^{l,k}, N^{l,k} \circ \sigma \mid j = 0, \dots, q, k = q + 1, \dots, p\}$$

 $if \ l \ is \ odd \ where \ V(l,\mathbb{Z}) \otimes (N^j + N^j \circ \sigma) = 2N^{l,j} \ \ and \ V(l,\mathbb{Z}) \otimes N^k = N^{l,k} \oplus N^{l,k} \circ \sigma.$

Corollary 10.2. The inequivalent simple $(V^l)_{\bar{0}}$ -modules from the σ -twisted V^l -modules are

$$\{V(l,\mathbb{Z})\otimes N^{j}, (V(l,\mathbb{Z})\otimes N^{k})_{\bar{r}} | j=0,\ldots,q, k=q+1,\ldots,p, r=0,1\}$$

if l is even. In this case,

$$\operatorname{qdim}_{(V^l)_0}(V(l,\mathbb{Z})\otimes N^j)=\operatorname{qdim}_{V_0}(N^j),\quad \operatorname{qdim}_{(V^l)_0}(V(l,\mathbb{Z})\otimes N^k)_{\bar{r}}=\operatorname{qdim}_{V_0}(N^k_{\bar{r}})$$

for
$$j = 0, \dots, q, k = q + 1, \dots, p, r = 0, 1$$
.

If l is odd, the inequivalent simple $(V^l)_{\bar{0}}$ -modules from the σ -twisted V^l -modules are

$$\{N_{\bar{r}}^{l,j}, N^{l,k} \mid j = 0, \dots, q, k = q+1, \dots, p, r = 0, 1\}$$

and

$$\mathrm{qdim}_{(V^l)_{\bar{0}}}(N^{l,j}_{\bar{r}}) = \frac{1}{\sqrt{2}} \cdot \mathrm{qdim}_{V_{\bar{0}}}(N^j), \quad \mathrm{qdim}_{(V^l)_{\bar{0}}}(N^{l,k}) = \sqrt{2} \cdot \mathrm{qdim}_{V_{\bar{0}}}(N^k_{\bar{r}})$$

for
$$j = 0, \dots, q, k = q + 1, \dots, p, r = 0, 1$$
.

Proof. The set of simple $(V^l)_{\bar{0}}$ -modules from the σ -twisted V^l -modules follows immediately from Lemma [10.1] for any nonzero integer l. Let us denote $U^l = V(l, \mathbb{Z} + \frac{1}{2})$. If l is even, then $\mathrm{qdim}_{U^l}(V(l, \mathbb{Z})) = \mathrm{qdim}_{U^l_{\bar{0}}}(V(l, \mathbb{Z})_{\bar{r}}) = 1$ for r = 0, 1. For $j = 0, \ldots, q$, $V(l, \mathbb{Z}) \otimes N^j$ is an unstable σ -twisted V^l -module. It follows from Proposition [7.2] that

$$\operatorname{qdim}_{(V^l)_{\bar{0}}}(V(l,\mathbb{Z})\otimes N^j) = 2\operatorname{qdim}_{V^l}(V(l,\mathbb{Z})\otimes N^j) = 2\operatorname{qdim}_{V}(N^j) = \operatorname{qdim}_{V_{\bar{0}}}(N^j)\,.$$

For $k = p + 1, \dots, q$, $V(l, \mathbb{Z}) \otimes N^k$ is σ -stable. By Proposition 7.2,

$$\operatorname{qdim}_{(V^l)_{\bar{0}}}(V(l,\mathbb{Z})\otimes N^k)_{\bar{r}}=\operatorname{qdim}_{V^l}(V(l,\mathbb{Z})\otimes N^k)=\operatorname{qdim}_{V}(N^k)=\operatorname{qdim}_{V_{\bar{0}}}(N^k_{\bar{r}})$$
 for $r=0,1.$

If l is odd, then $\operatorname{qdim}_{U^l}(V(l,\mathbb{Z})) = \operatorname{qdim}_{U^l_{\bar{0}}}(V_{\pm}(l,\mathbb{Z})) = \sqrt{2}$. For $j = 0, \ldots, p$, $N^{l,j}$ is a σ -stable σ -twisted V^l -module and

$$\operatorname{qdim}_{V^l}(V(l,\mathbb{Z})\otimes (N^j\oplus N^j_\sigma))=2\operatorname{qdim}_{V^l}(N^{l,j})=2\operatorname{qdim}_{(V^l)_{\bar{o}}}(N^{l,j}_{\bar{r}})$$

for any r = 0, 1. On the other hand,

$$\operatorname{qdim}_{V^l}(V(l,\mathbb{Z})\otimes (N^j\oplus N^j_\sigma))=\sqrt{2}\cdot \operatorname{qdim}_V(N^j\oplus N^j_\sigma)=\sqrt{2}\operatorname{qdim}_{V_{\bar{0}}}(N^j)\,.$$

Thus, we have

$$\operatorname{qdim}_{(V^l)_{\bar{0}}}(N^{l,j}_{\bar{r}}) = \frac{1}{\sqrt{2}}\operatorname{qdim}_{V_{\bar{0}}}(N^j)$$

for r=0,1. Similarly, for $k=p+1,\ldots,q,$ $N^{l,k}$ is a σ -unstable σ -twisted V^l -module and

$$\operatorname{qdim}_{(V^l)_{\bar{0}}}(N^{l,k}) = 2\operatorname{qdim}_{V^l}(N^{l,k}) = \operatorname{qdim}_{V^l}(N^{l,k} \oplus N^{l,k}_{\sigma}) = \operatorname{qdim}_{V^l}(V(l,\mathbb{Z}) \otimes N^k)$$
$$= \sqrt{2} \cdot \operatorname{qdim}_{V}(N^k) = \sqrt{2} \cdot \operatorname{qdim}_{V_{\bar{v}}}(N^{\bar{v}})$$

for
$$r=0,1$$
.

Theorem 10.3. The minimal modular extensions $C_{(V^1)_{\bar{0}}}$, $C_{(V^m)_{\bar{0}}}$ of $C_{V_{\bar{0}}}^0$ are braided equivalent if and only if l and m are congruent modulo 16. In particular, we have constructed 16 minimal modular extensions of $C_{V_{\bar{0}}}^0$.

Proof. Since $C_{(V^m)_{\bar{0}}}$ has positive quantum dimensions, its spherical pivotal structure is uniquely determined by the fusion category $C_{(V^m)_{\bar{0}}}$. Therefore, $C_{(V^l)_{\bar{0}}}$, $C_{(V^m)_{\bar{0}}}$ are equivalent braided fusion categories if and only if they are equivalent modular categories. The later implies they have the same Gauss sums. Therefore, we proceed to compute the Gauss sum $\tau_1(C_{(V^l)_{\bar{0}}})$. It follows from Lemma 9.7 that

$$\tau_1(\mathcal{C}_{(V^l)_{\bar{0}}}) = \sum_{X \in \operatorname{Irr}(\mathcal{C}^1_{(V^l)_{\bar{0}}})} \operatorname{qdim}(X)^2 \cdot \theta_X$$

where $\operatorname{Irr}(\mathcal{C}^1_{(V^l)_{\bar{0}}})$ is the set of inequivalent simple $(V^l)_{\bar{0}}$ -modules from the σ -twisted V^l -modules.

By Corollary 10.2, the inequivalent irreducible $(V^l)_{\bar{0}}$ -modules from the σ -twisted modules are

$$\{V(l,\mathbb{Z})\otimes N^{j}, V(l,\mathbb{Z})_{\bar{0}}\otimes N^{k}_{\bar{r}}+V(l,\mathbb{Z})_{\bar{1}}\otimes N^{k}_{1-r} | j=0,\ldots,q, k=q+1,\ldots,p, r=0,1\}$$

if l is even. The actions of $e^{2\pi i L^l(0)}$ on $V(l,\mathbb{Z}) \otimes N^j$ and $V(l,\mathbb{Z})_{\bar{0}} \otimes N^k_{\bar{r}} + V(l,\mathbb{Z})_{\bar{1}} \otimes N^k_{\bar{1}-r}$ are respectively are $e^{2\pi i(\lambda_{N^j} + \frac{l}{16})}$ and $e^{2\pi i(\lambda_{N^k} + \frac{l}{16})}$ for r = 0, 1, where λ_{N^j} is the weight of N^j . Therefore,

$$\tau_{1}(\mathcal{C}_{(V^{l})_{\bar{0}}}) = \sum_{j=0}^{q} \operatorname{qdim}_{(V^{l})_{\bar{0}}} (V(l, \mathbb{Z}) \otimes N^{j})^{2} \cdot e^{2\pi i (\lambda_{N^{j}} + \frac{l}{16})} \\
+ \sum_{r=0}^{1} \sum_{k=q+1}^{p} \operatorname{qdim}_{(V^{l})_{\bar{0}}} (V(l, \mathbb{Z}) \otimes N^{k})_{\bar{r}}^{2} \cdot e^{2\pi i (\lambda_{N^{k}} + \frac{l}{16})} \\
= e^{\frac{2\pi i l}{16}} \left(\sum_{j=0}^{q} \operatorname{qdim}_{V_{\bar{0}}} (N^{j})^{2} e^{2\pi i \lambda_{N^{j}}} + \sum_{r=0}^{1} \sum_{k=q+1}^{p} \operatorname{qdim}_{V_{\bar{0}}} (N_{\bar{r}}^{k})^{2} e^{2\pi i \lambda_{N^{k}}} \right) \\
= e^{\frac{2\pi i l}{16}} \tau_{1}(\mathcal{C}_{V_{\bar{0}}}).$$

Again by Corollary [10.2], the inequivalent irreducible $(V^l)_{\bar{0}}$ -modules from the σ -twisted modules are

$$\{N_{\bar{r}}^{l,j}, N^{l,k} | j = 0, \dots, q, k = q+1, \dots, p, r = 0, 1\}$$

if l is odd. The actions of $e^{2\pi i L^l(0)}$ on $N_{\bar{r}}^{l,j}$ is $e^{2\pi i (\lambda_{N^j} + \frac{l}{16})}$ and on $N^{l,k}$ is $e^{2\pi i (\lambda_{N^k} + \frac{l}{16})}$. Thus, for r = 0, 1,

$$\tau_{1}(\mathcal{C}_{(V^{l})_{\bar{0}}}) = \sum_{r=0}^{1} \sum_{j=0}^{q} \operatorname{qdim}_{(V^{l})_{\bar{0}}} (N_{\bar{r}}^{l,j})^{2} e^{2\pi i (\lambda_{N^{j}} + \frac{l}{16})} \\
+ \sum_{k=q+1}^{p} \operatorname{qdim}_{(V^{l})_{\bar{0}}} (N^{l,k})^{2} e^{2\pi i (\lambda_{N^{k}} + \frac{l}{16})} \\
= e^{\frac{2\pi i l}{16}} \left(\sum_{r=0}^{1} \sum_{j=0}^{q} \frac{1}{2} \operatorname{qdim}_{V_{\bar{0}}} (N^{j})^{2} e^{2\pi i \lambda_{N^{j}}} + \sum_{k=q+1}^{p} 2 \operatorname{qdim}_{V_{\bar{0}}} (N_{\bar{r}}^{k})^{2} e^{2\pi i \lambda_{N^{k}}} \right)$$

$$\begin{split} &= e^{\frac{2\pi i l}{16}} \left(\sum_{j=0}^q \operatorname{qdim}_{V_0} (N^j)^2 \, e^{2\pi i \lambda_{N^j}} + \sum_{r=0}^1 \sum_{k=q+1}^p \operatorname{qdim}_{V_0} (N^k_{\vec{r}})^2 \, e^{2\pi i \lambda_{N^k}} \right) \\ &= e^{\frac{2\pi i l}{16}} \, \tau_1(\mathcal{C}_{V_0}) \, . \end{split}$$

Therefore, $\tau_1(\mathcal{C}_{(V^l)_0}) = e^{\frac{2\pi i l}{16}} \tau_1(\mathcal{C}_{V_0^-})$ for any integer $l \geq 0$. As a result, $\tau_1(\mathcal{C}_{(V^l)_0}) = \tau_1(\mathcal{C}_{(V^m)_0})$ if and only if $l \equiv m$ modulo 16, and there are at least 16 inequivalent modular categories which are minimal extensions of $\mathcal{C}_{V_0^-}^0$. By LKW1, Theorems 4.26 and 5.4], $\mathcal{C}_{V_0^-}^0$ has exactly 16 minimal extensions. Thus, $\mathcal{C}_{(V^l)_0^-}$ and $\mathcal{C}_{(V^m)_0^-}$ are equivalent minimal extensions of $\mathcal{C}_{V_0^-}^0$ if and only if $l \equiv m$ modulo 16. These 16 minimal extensions of are also inequivalent as braided fusion categories as they have distinct Gauss sums.

References

- [ABD] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and C₂-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402, DOI 10.1090/S0002-9947-03-03413-5. MR²052955
- [ADJR] Chunrui Ai, Chongying Dong, Xiangyu Jiao, and Li Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5963–5981, DOI 10.1090/tran/7302. MR3812115
- [BDM] Katrina Barron, Chongying Dong, and Geoffrey Mason, Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002), no. 2, 349–384, DOI 10.1007/s002200200633. MR1903649
- [BGH] Paul Bruillard, César Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric
 C. Rowell, and Zhenghan Wang, Fermionic modular categories and the 16-fold way, J.
 Math. Phys. 58 (2017), no. 4, 041704, 31, DOI 10.1063/1.4982048. MR3641612
- [BGN] Paul Bruillard, César Galindo, Siu-Hung Ng, Julia Y. Plavnik, Eric C. Rowell, and Zhenghan Wang, Classification of super-modular categories by rank, Algebr. Represent. Theory 23 (2020), no. 3, 795–809, DOI 10.1007/s10468-019-09873-9. MR4109138
- [CM] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645, 2018.
- [CKL] Thomas Creutzig, Shashank Kanade, and Andrew R. Linshaw, Simple current extensions beyond semi-simplicity, Commun. Contemp. Math. 22 (2020), no. 1, 1950001, 49, DOI 10.1142/S0219199719500019. MR4064909
- [CKM] T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, [arXiv:1705.05017, 2021.
- [C] S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152–173. MR0168663
- [DMNO] Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177, DOI 10.1515/crelle.2012.014. MR3039775
- [De] P. Deligne, Catégories tannakiennes (French), The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195. MR 1106898
- [DPR90] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991), DOI 10.1016/0920-5632(91)90123-V. Recent advances in field theory (Annecy-le-Vieux, 1990). MR[1128130]
- [D1] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265, DOI 10.1006/jabr.1993.1217. MR1245855
- [D2] Chongying Dong, Twisted modules for vertex algebras associated with even lattices, J. Algebra 165 (1994), no. 1, 91–112, DOI 10.1006/jabr.1994.1099. MR1272580
- [DH] Chongying Dong and Jianzhi Han, On rationality of vertex operator superalgebras, Int. Math. Res. Not. IMRN 16 (2014), 4379–4399, DOI 10.1093/imrn/rnt077. MR3250038

- [DJX] Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441–6469, DOI 10.1090/S0002-9947-2013-05863-1. MR3105758
- [DL1] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993, DOI 10.1007/978-1-4612-0353-7. MR1233387
- [DL2] Chongying Dong and James Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra 110 (1996), no. 3, 259–295, DOI 10.1016/0022-4049(95)00095-X. MR1393116
- [DLM1] Chongying Dong, Haisheng Li, and Geoffrey Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), no. 3, 671–707. MR1408523
- [DLM2] C. Dong, H. Li and G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 18 (1996), 913–921.
- [DLM3] Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166, DOI 10.1006/aima.1997.1681. MR[1488241]
- [DLM4] Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600, DOI 10.1007/s002080050161. MR1615132
- [DLM5] Chongying Dong, Haisheng Li, and Geoffrey Mason, Vertex operator algebras and associative algebras, J. Algebra 206 (1998), no. 1, 67–96, DOI 10.1006/jabr.1998.7425.
 MR[1637252]
- [DLM6] Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices 8 (1998), 389– 397, DOI 10.1155/S1073792898000269. MR1628239
- [DLM7] Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56, DOI 10.1007/s002200000242. MR1794264
- [DLN] Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121–2166, DOI 10.2140/ant.2015.9.2121. MR3435813
- [DM] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321, DOI 10.1215/S0012-7094-97-08609-9. MR1430435
- [DMZ] Chongying Dong, Geoffrey Mason, and Yongchang Zhu, Discrete series of the Virasoro algebra and the moonshine module, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 295–316. MRI278737
- [DNR] C. Dong, S.-H. Ng and L. Ren, Orbifolds and minimal modular extensions, preprint.
- [DRX] Chongying Dong, Li Ren, and Feng Xu, On orbifold theory, Adv. Math. 321 (2017), 1–30, DOI 10.1016/j.aim.2017.09.032. MR3715704
- [DY] Chongying Dong and Gaywalee Yamskulna, Vertex operator algebras, generalized doubles and dual pairs, Math. Z. 241 (2002), no. 2, 397–423, DOI 10.1007/s002090200421.
 MR[1935493]
- [DYu] Chongying Dong and Nina Yu, Z-graded weak modules and regularity, Comm. Math. Phys. 316 (2012), no. 1, 269–277, DOI 10.1007/s00220-012-1543-7. MR2989460
- [DZ1] Chongying Dong and Zhongping Zhao, Modularity in orbifold theory for vertex operator superalgebras, Comm. Math. Phys. 260 (2005), no. 1, 227–256, DOI 10.1007/s00220-005-1418-2. MR2175996
- [DZ2] Chongying Dong and Zhongping Zhao, Twisted representations of vertex operator superalgebras, Commun. Contemp. Math. 8 (2006), no. 1, 101–121, DOI 10.1142/S0219199706002040. MR2208812
- [DR] Sergio Doplicher and John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157–218, DOI 10.1007/BF01388849. MR[1010160]
- [ENO] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math.
 (2) 162 (2005), no. 2, 581–642, DOI 10.4007/annals.2005.162.581. MR2183279
- [FFR] Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E_8^{(1)}$, Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991, DOI 10.1090/conm/121. MR1123265

- [FHL] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64, DOI 10.1090/memo/0494. MR1142494
- [FLM1] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator calculus, Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 150–188. MR915822
- [FLM2] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR996026
- [HA] Jianzhi Han and Chunrui Ai, Three equivalent rationalities of vertex operator superalgebras, J. Math. Phys. 56 (2015), no. 11, 111701, 7, DOI 10.1063/1.4935164. MR3421054
- [HMT] Akihide Hanaki, Masahiko Miyamoto, and Daisuke Tambara, Quantum Galois theory for finite groups, Duke Math. J. 97 (1999), no. 3, 541–544, DOI 10.1215/S0012-7094-99-09720-X. MR1682988
- [Hu1] Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911, DOI 10.1142/S0219199708003083. MR2468370
- [Hu2] Yi-Zhi Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103–154, DOI 10.1142/S0219199708002727. MR2387861
- [HKL] Yi-Zhi Huang, Alexander Kirillov Jr., and James Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), no. 3, 1143– 1159, DOI 10.1007/s00220-015-2292-1. MR3339173
- [HL1] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786, DOI 10.1007/BF01587908. MR1383584
- [HL2] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, II, Selecta Math. (N.S.) 1 (1995), no. 4, 699–756, 757–786, DOI 10.1007/BF01587908. MR1383584
- [HL3] Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141–171, DOI 10.1016/0022-4049(95)00049-3. MR1344848
- [KW] Victor Kac and Weiqiang Wang, Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 161–191, DOI 10.1090/conm/175/01843. MR1302018
- [KI] Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005, DOI 10.1017/CBO9780511542800. MR2165457
- [Ki] Alexei Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), no. 1, 2–111, DOI 10.1016/j.aop.2005.10.005. MR[2200691]
- [KO] Alexander Kirillov Jr. and Viktor Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of \$12 conformal field theories, Adv. Math. 171 (2002), no. 2, 183-227, DOI 10.1006/aima.2002.2072. MR 1936496
- [LKW1] Tian Lan, Liang Kong, and Xiao-Gang Wen, Modular extensions of unitary braided fusion categories and 2 + 1D topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), no. 2, 709–739, DOI 10.1007/s00220-016-2748-y. MR3613518
- [LKW2] T. Lan, L. Kong, X.-G. Wen, Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries, Phys. Rev. B 95 (2017), 235140.
- [L1] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195, DOI 10.1016/0022-4049(95)00079-8. MR1387738
- [L2] Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994), Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236, DOI 10.1090/conm/193/02373. MR1372724
- [L3] Haisheng Li, Some finiteness properties of regular vertex operator algebras, J. Algebra 212 (1999), no. 2, 495–514, DOI 10.1006/jabr.1998.7654. MR1676852

- [M] Masahiko Miyamoto, C₂-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279–1286, DOI 10.1007/s00220-014-2252-1. MR3320313
- [MT] Masahiko Miyamoto and Kenichiro Tanabe, Uniform product of $A_{g,n}(V)$ for an orbifold model V and G-twisted Zhu algebra, J. Algebra **274** (2004), no. 1, 80–96, DOI 10.1016/j.jalgebra.2003.11.017. MR $\overline{2040864}$
- [Mu] Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291–308, DOI 10.1112/S0024611503014187. MR1990929
- [NSW] Siu-Hung Ng, Andrew Schopieray, and Yilong Wang, Higher Gauss sums of modular categories, Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 53, 32, DOI 10.1007/s00029-019-0499-2. MR3997136
- [S] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR0344216
- [T] Kenichiro Tanabe, On intertwining operators and finite automorphism groups of vertex operator algebras, J. Algebra 287 (2005), no. 1, 174–198, DOI 10.1016/j.jalgebra.2005.01.044. MR2134264
- [V] Erik Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360–376, DOI 10.1016/0550-3213(88)90603-7.
 MR954762
- [W] X. G. Wen, Topological orders in rigid states, Internat. J. Modern Phys. B 4 (1990), no. 2, 239–271, DOI 10.1142/S0217979290000139. MR1043302
- [X] Feng Xu, Algebraic orbifold conformal field theories, Proc. Natl. Acad. Sci. USA 97 (2000), no. 26, 14069–14073, DOI 10.1073/pnas.260375597. MR1806798
- [Xu] Xiaoping Xu, Introduction to vertex operator superalgebras and their modules, Mathematics and its Applications, vol. 456, Kluwer Academic Publishers, Dordrecht, 1998, DOI 10.1007/978-94-015-9097-6. MR1656671
- [Z] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer.
 Math. Soc. 9 (1996), no. 1, 237–302, DOI 10.1090/S0894-0347-96-00182-8. MR 1317233

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 95064

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

School of Mathematics, Sichuan University, Chengdu 610064, People's Republic of China