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VERTEX OPERATOR SUPERALGEBRAS AND THE

16-FOLD WAY

CHONGYING DONG, SIU-HUNG NG, AND LI REN

Abstract. Let V be a vertex operator superalgebra with the natural order 2
automorphism σ. Under suitable conditions on V , the σ-fixed subspace V0̄ is
a vertex operator algebra and the V0̄-module category CV0̄

is a modular tensor

category. In this paper, we prove that CV0̄
is a fermionic modular tensor

category and the Müger centralizer C0
V0̄

of the fermion in CV0̄
is generated by

the irreducible V0̄-submodules of the V -modules. In particular, C0
V0̄

is a super-

modular tensor category and CV0̄
is a minimal modular extension of C0

V0̄
. We

provide a construction of a vertex operator superalgebra V l for each positive

integer l such that C(V l)0̄
is a minimal modular extension of C0

V0̄
. We prove

that these modular tensor categories C(V l)0̄
are uniquely determined, up to

equivalence, by the congruence class of l modulo 16.

1. Introduction

Modular (tensor) categories are mathematical formalization of topological phases
of matters, which are also called topological orders [W]. The 2+1D symmetry pro-
tected topological (SPT) orders are recently described by using unitary braided
fusion categories C with the symmetry determined by their Müger centers E , which
are symmetric fusion categories (cf. [LKW1,LKW2] and the references therein). It
follows from [De,DR] that a Müger center E is Tannakian or super-Tannakian, i.e. E
is equivalent to the braided fusion category Rep(G) or Rep(G, z) where G is a finite
group uniquely determined by E and z is a central order 2 element of G. Modu-
lar tensor categories are exactly those braided fusion categories with trivial Müger
centers. The category sVec of super vector spaces over C is the smallest super-
Tannakian category. By gauging the minimal topological order with the fermionic
symmetry [Ki], Kitaev discovered the 16-fold way: The braided fusion category
sVec has 16 exactly inequivalent unitary minimal modular extensions, which are
unitary modular tensor categories of dimension 4 containing a full braided fusion
subcategory equivalent to sVec.

Throughout this paper, a super-modular category means a braided fusion cat-
egory over C whose Müger center is equivalent to sVec as braided fusion cate-
gories. Modular or super-modular categories are assumed to be pseudounitary and
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7780 CHONGYING DONG ET AL.

equipped with the canonical pivotal structures, i.e. the categorical (or quantum)
dimension of each object is a positive number. Motivated by Kitaev’s 16-fold way,
it is conjectured in [BGH] that every super-modular category C has exactly 16 min-
imal modular extensions up to equivalence, i.e. pseudounitary modular categories
of dimension 2 dim(C) containing a braided fusion full subcategory equivalent to
C. If C admits a minimal modular extension, it has been proved independently
in [LKW1] that C admits 16 minimal modular extensions. However, the existence
of a minimal modular extension for any super-modular category is still an open
problem.

Rational conformal field theory is closely related to modular categories. Ac-
cording to [Hu1,Hu2], the representation category of a rational C2-cofinite vertex
operator algebra (VOA) is modular. In fact, it is an open problem whether every
modular category over C can be realized by a VOA. Super-modular categories are
not modular, and so they cannot be realized as the module category of any rational
VOA. One would ask what kind of rational VOA could realize a minimal modular
extension of super-modular category C, and how one can obtain other VOAs whose
module categories are minimal modular extensions of C.

A vertex operator superalgebra V =
⊕

n∈ 1
2Z

Vn is 1
2Z-graded in this paper. The

Z2-grading V = V0̄ ⊕ V1̄ with V0̄ =
∑

n∈Z
Vn and V1̄ =

∑

n∈ 1
2+Z

Vn determines a

natural order 2 automorphism σ of V such that σ|Vr̄
= (−1)r for r = 0, 1. The

twisted representations and orbifold theory of rational vertex operator superalge-
bras are well-studied in [DZ1,DZ2]. With suitable assumptions ((A1) and (A2) in
Section 4), the V0̄-module category CV0̄

is a modular tensor category, and V1̄ is a
fermion in CV0̄

(cf. Lemma 9.1). In particular, V1̄ is an order 2 simple current
of V0̄. We prove in Theorem 8.1 that the full subcategory C0

V0̄
of CV0̄

, generated
by the simple V0̄-submodules of V -modules, are closed under the tensor product
of CV0̄

. In particular, C0
V0̄

is a braided fusion subcategory of CV0̄
with the fermion

V1̄. Moreover, C0
V0̄

is the Müger centralizer of the fermion V1̄ in CV0̄
. Hence, C0

V0̄

is super-modular (cf. Lemma 9.2), and CV0̄
is a minimal modular extension C0

V0̄
.

The modular category CV0̄
is also Z2-graded with CV0̄

= C0
V0̄

⊕ C1
V0̄

where C1
V0̄

is the
full subcategory of CV0̄

generated by the irreducible V0̄-submodules of the σ-twisted
V -modules, and dim(C1

V0̄
) = dim(C0

V0̄
) (cf. Section 8).

Since a nice vertex operator superalgebra V (i.e. satisfying (A1) and (A2))
naturally yields a super-modular category C0

V0̄
and a minimal modular extension CV0̄

,
one would like to construct other vertex operator superalgebras from V to realize the
16-fold way of the super-modular category C0

V0̄
. To achieve this goal, we establish

in Theorem 9.6 that if U is a holomorphic vertex operator superalgebra, then V ⊗U
is a vertex operator superalgebra and C0

V0̄
equivalent to C0

(V⊗U)0̄
as braided fusion

categories. In particular, C(V ⊗U)0̄ is another minimal modular extension of C0
V0̄
.

For each positive integer l, there is a nice holomorphic vertex operator superalge-
bra V (l,Z+ 1

2 ) (cf. [FFR], [KW], [L1]). For any nice vertex operator superalgebra

V , the tensor product vertex operator superalgebra V l := V ⊗ V (l,Z + 1
2 ) yields

the super-modular category C0
(V l)0̄

and its minimal modular extension C(V l)0̄
. Since

C0
(V l)0̄

is equivalent to C0
V0̄

as braided fusion categories, C(V l)0̄
is a minimal modular

extension of C0
V0̄

for each positive integer l. We prove in Theorem 10.3 that C(V l)0̄

and C(V m)0̄ are equivalent modular categories if and only if m ≡ l (mod 16) by
computing their Gauss sums and applying [LKW1, Theorems 4.26 and 5.4].
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VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY 7781

The results in this paper could hold for Z-graded vertex operator superalgebras
with certain assumptions. This situation will be discussed in another paper. A con-
nection between general orbifold theory for a vertex operator algebra and minimal
modular extensions has recently been investigated in [DNR].

The paper is organized as follows: A review of vertex operator superalgebras
and some of basic results on their representation theory are presented in Section 2.
In Section 3, we discuss the tensor product of two vertex operator superalgebras,
and investigate its irreducible representations via the representations of their Zhu’s
superalgebras. We review the modular invariance of the trace functions in the
orbifold theory for the vertex operator superalgebras in Section 4. In Section 5,
the irreducible V0̄-modules of a vertex operator superalgebra V are determined.
In Section 6, we show that the associated representation of SL2(Z) on the trace
functions in the orbifold theory for the vertex operator superalgebras provided in
Section 4 is unitary. Some important relations between the quantum dimensions of
the irreducible V -modules and the irreducible V0̄-modules are established in Section
7. In Section 8, we prove that the category CV0̄

is Z2-graded, where C0
V0̄

and C1
V0̄

are respectively generated by the irreducible V0̄-submodules of V -modules and σ-
twisted V -modules. We further prove that C0

V0̄
is a super-modular category and CV0̄

is a minimal modular extension of C0
V0̄

in Section 9. In Section 10, we construct a

sequence of vertex operator superalgebras V l for each positive integer l such that
C(V l)0̄

is a minimal modular extension of C0
V0̄

and these modular categories C(V l)0̄
are uniquely determined by the congruence class of l modulo 16.

2. Preliminaries

The various notions of twisted modules for a vertex operator superalgebra fol-
lowing [DZ1], [DZ2] are reviewed in this section. The concepts such as rationality,
regularity, and C2-cofiniteness from [Z] and [DLM3] are discussed.

A super vector space is a Z2-graded vector space U = U0̄⊕U1̄. The vectors in U0̄

(resp. U1̄) are called even (resp. odd). An element u in Uī for some i = 0, 1 will be
called Z2-homogeneous. In this case, we define ũ = ī. We reserve the notation sVec
for the category of finite dimensional super vector spaces over C with morphisms
preserving the Z2-gradings, and equipped with the super braiding.

If W is another super vector space, then Hom(U,W ) is also a super vector space
in which Hom(U,W )0̄ and Hom(U,W )1̄ are respectively the Z2-graded preserving
and reversing linear maps.

A vertex operator superalgebra is a 1
2Z-graded super vector space

V =
⊕

n∈ 1
2Z

Vn = V0̄ ⊕ V1̄

with V0̄ =
∑

n∈Z
Vn and V1̄ =

∑

n∈ 1
2+Z

Vn satisfying dimVn < ∞ for all n, and

Vm = 0 if m is sufficiently small. V is equipped with a linear map

V → (EndV )[[z, z−1]],

v '→ Y (v, z) =
∑

n∈Z

vnz
−n−1 (vn ∈ (End V )ṽ)
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7782 CHONGYING DONG ET AL.

and with two distinguished vectors 1 ∈ V0, ω ∈ V2 satisfying the following condi-
tions for u, v ∈ V, and m,n ∈ Z :

unv = 0 for n sufficiently large;

Y (1, z) = IdV ;

Y (v, z)1 ∈ V [[z]] and lim
z→0

Y (v, z)1 = v;

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δm+n,0c;

d

dz
Y (v, z) = Y (L(−1)v, z);

L(0)|Vn
= n

where L(m) = ωm+1, that is,

Y (ω, z) =
∑

n∈Z

L(n)z−n−2,

and the Jacobi identity

z−1
0 δ

(

z1 − z2
z0

)

Y (u, z1)Y (v, z2)− (−1)ũṽz−1
0 δ

(

z2 − z1
−z0

)

Y (v, z2)Y (u, z1)

= z−1
2 δ

(

z1 − z0
z2

)

Y (Y (u, z0)v, z2)

holds, where δ(z) =
∑

n∈Z
zn and (zi − zj)

n is expanded as a formal power series
in zj , and u, v ∈ V are Z2-homogeneous. Throughout the paper, z0, z1, z2, etc. are
independent commuting formal variables. A vertex operator superalgebra will be
denoted by V = (V, Y,1, ω). In the case V1̄ = 0, V is a vertex operator algebra
given in [FLM3].

Let V be a vertex operator superalgebra. There is a canonical order 2 linear
automorphism σ of V associated with the structure of super vector space V such
that σ|Vī

= (−1)i for i = 0, 1. It is easy to show that σ1 = 1, σω = ω and
σY (v, z)σ−1 = Y (σv, z) for v ∈ V. That means σ is an automorphism of vertex
operator superalgebra V , and will be denoted by σV when the clarification is nec-
essary.

Let g = σi for i = 0, 1 and T = o(g). Let V r = {v ∈ V |gv = e2πir/T v} for
r = 0, T − 1. A weak g-twisted V -module M is a vector space equipped with a
linear map

V → (End M)[[z1/T , z−1/T ]

v '→ YM (v, z) =
∑

n∈ 1
T
Z

vnz
−n−1 (vn ∈ End M)

which satisfies that for all 0 ≤ r ≤ T − 1, u ∈ V r, v ∈ V, w ∈ M,

YM (u, z) =
∑

n∈ r
T
+Z

unz
−n−1;

ulw = 0 for l >> 0;

YM (1, z) = IdM ;
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z−1
0 δ

(

z1 − z2
z0

)

YM (u, z1)YM (v, z2)− (−1)ũṽz−1
0 δ

(

z2 − z1
−z0

)

YM (v, z2)YM (u, z1)

= z−1
2

(

z1 − z0
z2

)−r/T

δ

(

z1 − z0
z2

)

YM (Y (u, z0)v, z2)

where we assume that u, v are Z2-homogeneous.
Let o(gσ) = T ′. An admissible g-twisted V -module is a weak g-twisted V -module

M which carries a 1
T ′Z+-grading

M = ⊕n∈ 1
T ′ Z+

M(n)

satisfying

vmM(n) ⊆ M(n+wt v −m− 1)

for homogeneous v ∈ V.
An (ordinary) g-twisted V -module is a weak g-twisted V -module

M =
⊕

λ∈C

Mλ

such that dimMλ is finite, and for fixed λ, Mn+λ = 0 for all small enough integers
n where Mλ = {w ∈ M |L(0)w = λw}. We will write wtw = λ if w ∈ Mλ.

If M =
⊕

n∈ 1
T ′ Z+

M(n) is an admissible g-twisted V -module, the contragredient

module M ′ is defined as follows:

M ′ =
⊕

n∈ 1
T ′ Z+

M(n)∗,

whereM(n)∗ = HomC(M(n),C). The vertex operator YM ′(a, z) is defined for a ∈ V
via

〈YM ′(a, z)f, w〉 = 〈f, YM (ezL(1)(eπiz−2)L(0)a, z−1)w〉,
where 〈f, w〉 = f(w) is the natural pairing M ′×M → C. It follows from [FHL] and
[X] that (M ′, YM ′) is an admissible g-twisted V -module. We can also define the
contragredient module M ′ for a g-twisted V -module M. In this case, M ′ is also a
g-twisted V -module. Moreover, M is irreducible if and only if M ′ is irreducible.

A vertex operator superalgebra V is called g-rational, if the category of its admis-
sible g-twisted modules is semisimple. We simply call V rational if V is 1-rational.
V is called holomorphic if V is rational and V is the only irreducible module of
itself up to isomorphism.

We also need another important concept called C2-cofiniteness [Z]. We say that
a vertex operator superalgebra V is C2-cofinite if V/C2(V ) is finite dimensional,
where C2(V ) = 〈v−2u|v, u ∈ V 〉. A vertex operator superalgebra V is called regular
if every weak V -module is a direct sum of ordinary irreducible V -modules.

The following results about σi-rationality are given in [DZ1] and [DZ2]. Also see
[DLM4] and [DLM7].

Theorem 2.1. Let V be a g-rational vertex operator superalgebra where g = σi

and i = 0, 1. Then:
(1) Any irreducible admissible g-twisted V -module M is an ordinary g-twisted

V -module. Moreover, there exists a number λ ∈ C such that Mλ .= 0 and M =
⊕n∈ 1

T ′ Z+
Mλ+n. The λ is called the conformal weight of M .

(2) There are only finitely many irreducible admissible g-twisted V -modules up
to isomorphism.
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7784 CHONGYING DONG ET AL.

(3) If V is also C2-cofinite and σi-rational for i = 0, 1 then the central charge c
and the conformal weight λ of any irreducible σi-twisted V -module M are rational
numbers.

A vertex operator superalgebra V = ⊕n∈ 1
2Z
Vn is said to be of CFT type if Vn = 0

for negative n and V0 = C1. We know from [L3] and [ABD] that if V is a vertex
operator algebra of CFT type, then regularity is equivalent to rationality and C2-
cofiniteness. Moreover, V is regular if and only if the weak module category is
semisimple [DYu]. The same results also hold for vertex operator superalgebras
with similar proof [HA].

We discuss more on V -modules. Let M = ⊕n∈ 1
2Z+

M(n) be an admissible V -

module. We set M0̄ = ⊕n∈Z+
M(n) and M1̄ = ⊕n∈Z+

M(n + 1
2 ). From now on we

assume that V is a simple vertex operator superalgebra and V1̄ .= 0. Then V0̄ is a
simple vertex operator algebra and V1̄ is an irreducible V0̄-module.

Lemma 2.2. Let M = (M,YM ) be a nonzero admissible V -module. Then Mī .= 0
for i = 0, 1. Moreover, we can define a linear automorphism σ on M such that
σ|Mī

= (−1)i and σYM (u, z)σ−1 = YM (σu, z) for all u ∈ V.

Proof. Assume Mī .= 0. For any nonzero u ∈ V1̄, there exists n ∈ Z such that
0 .= unMī ∈ Mi+1 by Proposition 11.9 of [DL1]. This implies that Mi+1 .= 0. The
rest of the lemma is clear. !

Recall from [DLM7] that M is called σ-stable if M ◦ σ and M are isomorphic
where M ◦σ is a V -module such that M ◦σ = M as vector spaces and YM◦σ(v, z) =
YM (σv, z) for all v ∈ V. Lemma 2.2 asserts that for any admissible V -module M,
M ◦ σ and M are isomorphic, or M is σ-stable.

We now turn our attention to σ-twisted V -module. In this case, an admissible
σ-twisted module M has gradation M = ⊕n∈Z+

M(n). So we cannot use gradation
to divide M into even and odd parts. In this case, we have to use M ◦ σ.
Lemma 2.3. Suppose M is an irreducible admissible σ-twisted V -module. If M ◦σ
and M are not isomorphic, then M is an irreducible V0̄-module. If M ◦ σ and M
are isomorphic, then M is a direct sum of two inequivalent irreducible V0̄-modules.
In this case, there exists an involution σ ∈ GL(M) such that σYM (v, z)σ−1 =
YM (σv, z) for v ∈ V and the two irreducible V0̄-modules are the two different
eigenspaces of σ.

Proof. If M ◦ σ and M are not isomorphic, it follows from the proof of Theorem
6.1 of [DM] that M ◦ σ and M are isomorphic irreducible V0̄-modules. If M ◦ σ is
isomorphic to M, we also denote this isomorphism by σ without confusion. Then
σ : M → M is a linear isomorphism such that σYM (v, z)σ−1 = YM (σv, z) for v in
V by Schur’s Lemma. We can choose σ such that σ2 = 1. We denote the eigenspace
with eigenvalue (−1)i by Mī. Then Mī is irreducible V0̄-module. The inequivalence
of M0̄ and M1̄ as V0̄-modules follows the same proof of Theorem 5.4 [DY]. !

We now introduce the notion of an admissible σ-twisted super V -module. An
admissible σ-twisted V -module M is called an admissible σ-twisted super V -module
if M is σ-stable. The ordinary σ-twisted super V -module can be defined similarly.

Lemma 2.4. If N is an admissible σ-twisted V -module which is not a σ-stable, then
N ⊕N ◦ σ is an admissible σ-twisted super V -module. Moreover, N is irreducible
if and only if N ⊕N ◦ σ is an irreducible admissible σ-twisted super V -module.
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VERTEX OPERATOR SUPERALGEBRAS AND THE 16-FOLD WAY 7785

Proof. For short, we set N = N ◦ σ and M = N ⊕ N. Since N = N as vector
spaces, we can define a linear isomorphism σ : M → M by σ(w,w′) = (w′, w) for
any w,w′ ∈ N . Obviously, σ2 = idM and one can verify directly that σYM (u, z)σ =
YM (σu, z) for u ∈ V. Therefore, M ◦σ ∼= M and M is an admissible σ-twisted super
V -module with

M0̄ = {w + σw|w ∈ M}, M1̄ = {w − σw|w ∈ M}.

Note that Mr̄ and N are isomorphic V0̄-modules for r = 0, 1. If N is irreducible,
then M0 and M1 are irreducible V0-modules by Lemma 2.3. Let X ⊂ M be a
nonzero admissible σ-twisted super V -submodule. Then X = X0̄ + X1̄. Without
loss, we can assume that X0̄ is nonzero. Then X0̄ is a submodule of the irreducible
V0̄-module M0̄. Thus X0̄ = M0̄. Since V is simple, for any nonzero u ∈ V1̄ and any
nonzero w ∈ M0̄ we know Y (u, z)w is nonzero by Proposition 11.9 of [DL1]. This
implies X1̄ is nonzero and equal to M1̄. So X has to be M and hence M is an
irreducible super V -module. Conversely, if M is super irreducible, take a nonzero
proper admissible σ-twisted submodule Z of N. It is easy to see that Z + σ(Z) is
a nonzero proper admissible σ-twisted super module. This is a contradiction. The
proof is complete. !

In summary, every admissible σ-twisted super V -module M of a vertex oper-
ator superalgebra V admits a Z2-grading which is determined by an V -module
isomorphism from M ◦ σ on M of order 2.

3. Tensor products

For the remaining discussion, we investigate the tensor product U ⊗ V of two
vertex operator superalgebras U and V , and its twisted modules, which are not
well-known in literature. The tensor product of vertex operator algebras and their
modules were studied in [FHL], but the super case is slightly more complicated. For
example, the tensor product M⊗N of a σU -twisted U -module M and a σV -twisted
V -module N may not be a σU⊗V -twisted U ⊗ V -module. We will use σ for any
vertex operator superalgebra if there is no confusion.

Lemma 3.1. Let U, V be vertex operator superalgebras. Then
(1) U ⊗ V is also a vertex operator superalgebra with

(U ⊗ V )0̄ = U0̄ ⊗ V0̄ + U1̄ ⊗ V1̄, (U ⊗ V )1̄ = U0̄ ⊗ V1̄ + U1̄ ⊗ V0̄

and
Y (u⊗ v, z)(u′ ⊗ v′) = (−1)ṽũ

′

Y (u, z)u′ ⊗ Y (v, z)v′

for any Z2-homogeneous elements u, u′ ∈ U and v, v′ ∈ V.
(2) The map f : U ⊗ V → V ⊗ U such that f(u ⊗ v) = (−1)ũṽv ⊗ u gives an

isomorphism of vertex operator superalgebras.
(3) If M is a σi-twisted U-module such that M ◦ σi ∼= M and N is σi-twisted

V -module with i = 0, 1. Then M ⊗N is a σi ⊗ σi-twisted U ⊗ V -module such that

Y (u⊗ v, z)(x⊗ y) = (−1)ṽx̃Y (u, z)x⊗ Y (v, z)y

u ∈ U, v ∈ V and x ∈ M and y ∈ N where as usual x̃ = r if x ∈ Mr̄. In particular,
the tensor product M ⊗N of an U-module M and an V -module N is a module of
U ⊗ V.

(4) If both U and V are rational, then any irreducible U⊗V -module is isomorphic
to M ⊗N for some irreducible U-module M and some irreducible V -module N.
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7786 CHONGYING DONG ET AL.

(5) If M is a σ-twisted super U-module and N is a σ-twisted super V -module
then M ⊗N is a σ ⊗ σ-twisted super U ⊗ V -module with

(M ⊗N)0̄ = M0̄ ⊗N0̄ +M1̄ ⊗N1̄, (M ⊗N)1̄ = M0̄ ⊗N1̄ +M1̄ ⊗N0̄.

Proof. The proofs of (1)–(4) are fairly standard [FHL], and (5) follows from (3). !

We deal with the tensor product of σ-twisted modules next. From Lemma 3.1
we need to understand M ⊗N where both M and N are not σ-stable in terms of
the tensor product of Aσ(U) and Aσ(V ) studied in [DZ2]. For this purpose, we
need some basic facts on superalgebras and their super modules from [Kl].

Let A = A0̄ ⊕ A1̄ be a superalgebra. A super A-module M is defined as a Z2-
graded module M = M0̄ ⊕M1̄ such that Ar̄Ms̄ ⊂ Mr+s. A is called semisimple if
A is completely reducible super A-module. A is simple if it is semisimple and the
only super ideals are 0 and itself.

There are two types of simple superalgebras Qk (Q type) and Mm,n (M type)
for any positive integer k and nonnegative integers m,n with m+n > 0. The Qk is

defined to be the algebra consisting of 2k × 2k matrices of the form

(

A B
−B A

)

,

where A and B are arbitrary k × k complex matrices, with B = 0 for the even
part and A = 0 for the odd one. The Mm,n is the complex matrix algebra

M(m+n)×(m+n). Write each matrix as

(

A C
D B

)

, where A,B,C and D are com-

plex matrices of dimensions m × m, n × n, m × n and n × m, respectively, with
C = 0, D = 0 for the even part and A = 0, B = 0 for the odd part. Clearly, Qk is
a direct sum of two copies of a full matrix algebra.

One can find the following results in [Kl].

Theorem 3.2. Let A be a finite dimensional superalgebra.
(1) The following are equivalent: (a) A is a semisimple superalgebra, (b) A is a

semisimple associative algebra, (c) A is a direct sum of simple superalgebras.
(2) Any finite dimensional simple superalgebra over C is of either Q type or M

type.
(3) For k > 0, Qk has a unique irreducible super module of dimension 2k which

is a direct sum of two inequivalent Qk-modules of dimension k.
(4) For m,n ≥ 0 with m + n > 0, Mm,n has a unique irreducible super module

of dimension m+ n which is also irreducible Mm,n-module.

Now we discuss the tensor products of superalgebras and their super modules.
For any superalgebra A = A0̄ ⊕ A1̄ and a ∈ Aī, we define ã := ī. Superalgebras
are algebras in sVec, which is a braided tensor category. Therefore, the tensor
product of two superalgebras is a superalgebra. More precisely, if A and B are
superalgebras, then A⊗ B is a superalgebra with

(A⊗ B)0̄ = A0̄ ⊗ B0̄ +A1̄ ⊗ B1̄, (A⊗ B)1̄ = A0̄ ⊗ B1̄ +A1̄ ⊗ B0̄

and

(a⊗ b)(a′ ⊗ b′) = (−1)b̃ã
′

aa′ ⊗ bb′
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for any homogeneous elements a, a′ ∈ A and b, b′ ∈ B. Note that the map f :

A⊗B → B⊗A with f(a⊗ b) = (−1)ãb̃b⊗ a for a ∈ A and b ∈ B is the braiding of
sVec. By [Kl],

Qm⊗Qn
∼= Mmn,mn, Qk⊗Mm,n

∼= Q(m+n)k, Mm,n⊗Mk,l
∼= Mmk+nl,ml+nk

as superalgebras or algebras in sVec.
We now return to vertex operator superalgebra V. Recall the associative algebra

Aσ(V ) from [DZ2]. Let Oσ(V ) to be the subspace of V spanned by u ◦σ v for
u, v ∈ V where

u ◦σ v = Resz Y (u, z)v
(1 + z)wtu

z2
.

Set

u ∗σ v = Resz Y (u, z)v
(1 + z)wtu

z
and Aσ(V ) = V/Oσ(V ). Note that the definition of Aσ(V ) is the same as the Zhu’s
algebra for a vertex operator algebra.

The statements (1)–(4) of the following proposition are known in [DZ2], and the
statements (1’)–(4’) can been proved similarly with obvious modifications.

Proposition 3.3. Let V be a vertex operator superalgebra. Then
(1) Aσ(V ) is an associative algebra with product induced from ∗σ on V and

identity 1+Oσ(V ). Moreover, ω +Oσ(V ) is a central element.
(1’) Aσ(V ) is a superalgebra with

Aσ(V )r̄ = (Vr̄ +Oσ(V ))/Oσ(V ) ∼= Vr̄/Oσ(V ) ∩ Vr̄.

(2) If M = ⊕n≥0M(n) is an admissible σ-twisted V -module with M(0) .= 0 then
M(0) is an Aσ(V )-module such that v +Oσ(V ) acts as o(v) where o(v) = vwt v−1.

(2’) If M = ⊕n≥0M(n) is an admissible σ-twisted super V -module with M(0) .= 0
then M(0) is a super Aσ(V )-module such that v +Oσ(V ) acts as o(v).

(3) The assignment, M → M(0), defines a bijection between inequivalent irre-
ducible admissible σ-twisted V -modules and inequivalent irreducible Aσ(V )-modules.

(3’) The assignment, M → M(0), defines a bijection between inequivalent ir-
reducible admissible σ-twisted super V -modules and inequivalent irreducible super
Aσ(V )-modules.

(4) If V is σ-rational then Aσ(V ) is a finite dimensional semisimple associative
algebra.

(4’) If V is σ-rational then Aσ(V ) is a finite dimensional semisimple superalge-
bra.

Now we assume that V is σ-rational. Let

{N0, N0
σ , . . . , N

q, Nq
σ , N

q+1, . . . , Np}

be a complete set of inequivalent irreducible σ-twisted V -modules, where N i, N i
σ =

N i ◦ σ are inequivalent for i = 0, . . . , q and N j ∼= N j ◦ σ for j = q + 1, . . . , p. Then

Aσ(V ) =

q
⊕

i=0

(EndN i(0)⊕ EndN i
σ(0))

⊕

p
⊕

j=q+1

EndN j(0).

For short we denote the EndN i(0) ⊕ EndN i
σ(0) by Aσ(V )i for i = 0, . . . , q and

EndN j(0) by Aσ(V )j for j = q + 1, . . . , p. Then Aσ(V ) = ⊕p
i=0Aσ(V )i.
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Lemma 3.4. Let V be a σ-rational vertex operator superalgebra. For i = 0, . . . , q,
Aσ(V )i is a Q type simple superalgebra with the unique irreducible super module
N i(0)⊕N i

σ(0), a direct sum of the inequivalent irreducible Aσ(V )i-modules N i(0)
and N i

σ(0). If i = q + 1, . . . , p, Aσ(V )i is an M type simple superalgebra with the
unique irreducible super module N i(0).

Proof. By Proposition 3.3, Aσ(V )i is semisimple. Clearly, if i > q, Aσ(V )i is an
M type simple superalgebra with the unique irreducible super module N i(0). If
i ≤ q, note that N i(0) ⊕ N i

σ(0) is a super Aσ(V )i-module with (N i(0) ⊕ N i
σ(0))r

spanned by (w, (−1)rw) for w ∈ N i(0). Since both (N i(0) ⊕ N i
σ(0))r for r = 0, 1

are isomorphic irreducible Aσ(V )i
0
-modules, we immediately see that N i(0)⊕N i

σ(0)

is an irreducible super Aσ(V )i-module and Aσ(V )i is a simple superalgebra of Q
type. The proof is complete. !

We now can establish the following results on the tensor product of σ-twisted
modules. Let U be another σ-rational vertex operator superalgebra and

{W i′ ,W i′

σ ,W j′ | i′ = 0, . . . , q′, j′ = q′ + 1, . . . , p′}

is a complete set of inequivalent irreducible σ-twisted U -modules.

Theorem 3.5. Let U, V be as above. Then U ⊗ V is σ-rational. Moreover, we
have

(1) For i′ = 0, . . . , q′, i = 0, . . . , q, (W i′ ⊕ W i′

σ ) ⊗ (N i ⊕ N i
σ) is a sum of two

isomorphic irreducible σ-twisted U ⊗ V -modules which are σ-stable.
(2) For i′ = 0, . . . , q′, j = q + 1, . . . , p, (W i′ ⊕ W i′

σ ) ⊗ N j is a sum of two

inequivalent irreducible σ-twisted U ⊗ V -modules W i′ ⊗ N j and W i′

σ ⊗ N j. In

particular, (W i′ ⊗N j) ◦ σ ∼= W i′

σ ⊗N j .

(3) For j′ = q′ + 1, . . . , p′, i = 0, . . . , q, W j′ ⊗ (N i ⊕ N i
σ) is a sum of two in-

equivalent irreducible σ-twisted U ⊗ V -modules W j′ ⊗N i and W j′ ⊗N i
σ such that

(W j′ ⊗N i) ◦ σ ∼= W j′ ⊗N i
σ.

(4) For j′ = q′ + 1, . . . , p′, j = q + 1, . . . , p, W j′ ⊗N j is an irreducible σ-twisted
U ⊗ V -module which is σ-stable.

(5) Every irreducible σ-twisted U ⊗ V -module is isomorphic to one of the irre-
ducible σ-twisted modules listed in (1)–(4).

Proof. The proof of σ-rationality of U ⊗ V is similar to that of Proposition 2.7 of
[DMZ]. (2)–(4) can be verified directly by Lemma 3.1. For (1), we need Aσ(U⊗V ).
Using the exact proof of Lemma 2.8 in [DMZ] yields Aσ(U ⊗V ) ∼= Aσ(U)⊗Aσ(V ).
This gives

Aσ(U ⊗ V ) =
⊕

0≤i′≤p′,0≤i≤p

Aσ(U)i
′ ⊗Aσ(V )i.

Note that these tensor product superalgebras are superalgebras with the multiplica-
tion given in the remark after Theorem 3.2. Using Lemma 3.4 and the tensor prod-
ucts of simple superalgebras we can give a different proof of (2)–(4). We now prove

(1). In this case, i′ ≤ q′, i ≤ q and Aσ(U)i
′ ⊗ Aσ(V )i is isomorphic to the simple

superalgebra Mmn,mn = M2mn×2mn, where m = dimW i′(0) and n = dimN i(0).

So Aσ(U)i
′ ⊗ Aσ(V )i has a unique irreducible module of dimension 2mn. Since

(W i′(0)⊕W i′

σ (0))⊗ (N i(0)⊕N i
σ(0)) is an Aσ(U)i

′ ⊗Aσ(V )i-module of dimension
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4mn, it has to be a sum of two isomorphic irreducible super Aσ(U)i
′ ⊗ Aσ(V )i-

modules. As a result, (W i′ + W i′

σ ) ⊗ (N i + N i
σ) is a sum of two isomorphic irre-

ducible σ-twisted U ⊗ V -modules which are σ-stable. (5) follows from Proposition
3.3(3). !

4. Modular Invariance

In this section, we review the modular invariance property of the trace functions
in orbifold theory for vertex operator superalgebras from [DZ1], [DLM7] and [Z].
We also correct a mistake on the number of irreducible σ-twisted V -modules in
[DZ1].

For the discussion of the modular invariance of trace functions, we recall the
vertex operator superalgebra (V, Y [ ],1, ω̃) associated to a vertex operator superal-
gebra V defined in [Z]. Here ω̃ = ω − c/24 and

Y [v, z] = Y (v, ez − 1)ez·wt v =
∑

n∈Z

v[n]z−n−1

for homogeneous v. Write

Y [ω̃, z] =
∑

n∈Z

L[n]z−n−2.

The weight of v ∈ V in (V, Y [ ],1, ω̃) is denoted by wt[v].
In the rest of this paper, we assume that V = ⊕n≥0Vn is a simple vertex operator

superalgebra such that
(A1) V0̄ is regular vertex operator algebra of CFT type,
(A2) The weight of any irreducible σi-twisted V -module is positive except for V

itself with i = 0, 1.
We remark that Assumption (A2) is not necessary in the discussions on modular

invariance and classification of irreducible V0̄-modules. However this assumption is
required for applying some results from [LKW1], where the categories are assumed
to be pseudounitary.

Under the assumptions of (A1) and (A2), V is σi-rational for i = 0, 1 by Theorem
4.1 of [DH] and C2-cofinite [ABD]. Using the arguments from [M] and [CM] one
can show, in fact, that V is regular if and only if V0̄ is regular.

Denote by M (g) a complete set of inequivalent irreducible g-twisted V -modules
for g = 1, σ and set M (g, h) = {M ∈ M (g)|M ◦ h ∼= M} for g, h = 1, σ. Note from
Lemma 2.2 that M (1, h) = M (1) for h = 1, σ. Also, M (σ, 1) = M (σ). Then M (g)
and M (g, h) are finite sets.

Let M ∈ M (σg, σh) and T = o(g). For any homogeneous element v ∈ V , we
denote vwt v−1 by o(v) as usual and set

ZM (v, (g, h), τ ) = tr
M
o(v)σhqL(0)−c/24 = qλ−c/24

∑

n∈ 1
T
Z+

tr
Mλ+n

o(v)σhqn

if either (g, h) .= (1, σ) or (g, h) = (1, σ) and M ◦ σ ∼= M . If (g, h) = (1, σ) and
M ◦ σ .∼= M.

ZM (v, (g, h), τ ) =
1√
2
tr

M
o(v+σv)qL(0)−c/24 =

1√
2
qλ−c/24

∑

n∈ 1
T
Z+

tr
Mλ+n

o(v+σv)qn

By convention, ZM (v, (g, h), τ ) := 0 whenever M .∈ M (σg, σh).
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Note that if (g, h) = (1, σ) and M ◦ σ .∼= M then

ZM (v, (1, σ), τ ) =
1√
2
(tr

M
o(v)qL(0)−c/24 + trM◦σ o(v)q

L(0)−c/24)

=
√
2 tr

M
o(v)qL(0)−c/24

= ZM◦σ(v, (1, σ), τ ).

The insertion of
√
2 in the definition of ZM (v, (1, σ), τ ) will ensure that the

corresponding S-matrix is unitary (see the discussion in Section 6).
From [DZ1] we know that ZM (v, (g, h), τ ) are holomorphic function on the upper

half plane H with q = e2πiτ [DZ1]. The definition of ZM (v, (1, σ), τ ) given in
this paper in the case M ◦ σ .∼= M is different from [DZ1] where this case was
not considered. This new definition ensures that ZM (v, (1, σ), τ ) is a vector in
the conformal block C(1, σ) [DZ1]. According to the definition of the conformal
block given in [DZ1], ZM (v, (1, σ), τ ) is required to be zero if σ(v) = −v. Clearly,
tr

M
o(v)qL(0)−c/24 is not necessarily zero for such M. But ZM (v, (1, σ), τ ) is zero in

our new definition.
Define ZM (v, τ ) = trM o(v)qL(0)−c/24 for σs-twisted V -modules M and

s = 0, 1. Then ZM (v, τ ) = ZM (v, (σ, σ), τ ) if M is a V -modules M , ZM (v, τ ) =
1√
2
ZM (v, (1, σ), τ ) if M is an irreducible σ-twisted V -module such that M .∼= M ◦σ

and ZM (v, τ ) = ZM (v, (1, σ), τ ) if M is an irreducible σ-twisted V -module such
that M ∼= M ◦ σ. We also set χM (τ ) = trM qL(0)−c/24 which is called the character
of M.

Lemma 4.1. If M ∈ M (σg, σh) and v ∈ V1̄ then ZM (v, (g, h), τ ) = 0 for any g, h.

Proof. If M ◦ σ ∼= M the result was obtained in Lemma 6.3 of [DZ1]. It remains
to prove the result if M is an irreducible σ-twisted V -module M with M ◦ σ .∼= M .
However, this follows from the preceding discussion. !

Let W be the vector space spanned by ZM (v, (g, h), τ ) for g, h ∈ {1, σ} and
M ∈ M (σg, σh). Then, for any given pair (g, h), ZM can be regarded as a
function on V ×H. Now, we define an action of the modular group Γ = SL2(Z) on
W such that

ZM |γ(v, (g, h), τ ) = (cτ + d)−wt[v]ZM (v, (g, h), γτ ),

where

γ : τ '→ aτ + b

cτ + d
, γ =

(

a b
c d

)

∈ Γ.

Recall that G = {1, σ} acts on M (1) and M (σ) such that the action of σ on
M is M ◦ σ. We have already known that each G-orbit in M (1) has exactly one
module by Lemma 2.2, and each G-orbit in M (σ) has either one or two σ-twisted
modules. Note that if two σ-twisted modules M1 and M2 are in the same G-orbit,
then ZM1(v, (g, h), τ ) = ZM2(v, (g, h), τ ) for all v ∈ V. Let Oσi be the collection of
orbit representatives in M (σi).

The following result is essentially obtained in [DZ1] with suitable modification:

Theorem 4.2. Let V be a vertex operator superalgebra satisfying the assumptions
(A1)–(A2).

(1) {ZM (v, (g, h), τ )|M ∈ Oσg} is linearly independent.
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(2) There is a representation ρV : Γ → GL(W ) such that for g, h ∈ {1, σ}

γ =

(

a b
c d

)

∈ Γ, and M ∈ Oσg,

ZM |γ(v, (g, h), τ ) =
∑

N∈Oσgahc

γ
(g,h)
M,NZN (v, (gahc, gbhd), τ )

where ρ(γ) = (γ
(g,h)
M,N ). That is,

ZM (v, (g, h), γτ ) = (cτ + d)wt[v]
∑

N∈Oσgahc

γ
(g,h)
M,NZN (v, (gahc, gbhd), τ ).

(3) The number of G-orbits in M (σ) or the number of inequivalent irreducible σ-
twisted super modules is equal to the number of inequivalent irreducible V -modules.

Theorem 4.2(3) gives a correction of Theorem 8.6(2) in [DZ1]. Let C(g, h) be
the vector spaces spanned by ZM (v, (g, h), τ ) for M ∈ Oσg. Then by Theorem
4.2(2) we know that C(1, σ) and C(σ, 1) have the same dimension by using the

matrix

(

0 1
−1 0

)

. So Oσi have the same cardinality for i = 0, 1. In particular,

the number of inequivalent irreducible σ-twisted modules is always greater than
or equal to the number of inequivalent irreducible modules. Two numbers are
equal if and only if every irreducible σ-twisted V -module is σ-stable. This result
is different from that in [DLM7] when V is a vertex operator algebra and g is an
order 2 automorphism. Moreover, if we replace the irreducible σ-twisted modules
by the irreducible σ-twisted super modules, the result is the same as in the case of
vertex operator algebra.

If V = V0̄ is a vertex operator algebra then ρV is a unitary representation of Γ
and the kernel of ρV is a congruence subgroup of Γ [Z,DLN].

We use the free fermion as an example to illustrate Theorem 4.2. Let A( 12 + Z)

be the associative algebra generated by a(m) with m ∈ 1
2 +Z subject to the relation

a(m)a(n)+a(n)a(m) = 2δm+n,0, and A( 12 +Z)+ the subalgebra generated by a(m)

with m > 0. Consider C as an A( 12+Z)+-module with the trivial action a(m)·1 = 0

for m > 0. Then V ( 12 +Z) = A( 12 +Z)⊗A( 1
2+Z)+ C is the unique irreducible highest

weight A( 12 + Z)-module. As vector spaces, V ( 12 + Z) is isomorphic to the free

exterior algebra
∧

[a(m) |m ≤ 0]. It is well known that V ( 12 + Z) is a rational, C2-

cofinite vertex operator superalgebra with only one irreducible module V ( 12 + Z)

up to isomorphism [KW] and [L1]. Moreover, V ( 12 + Z) is generated by a(−1/2)

such that Y (a(−1/2), z) =
∑

n∈Z
a(n+ 1/2)z−n−1.

The vertex operator superalgebra V ( 12 + Z) has two inequivalent irreducible
σ-twisted modules. To construct these two σ-twisted modules we need another
associative algebra A(Z) generated by a(m) with m ∈ Z satisfying the relation
a(m)a(n) + a(n)a(m) = 2δm+n,0. Let A(Z)+ be the subalgebra of A(Z) generated
by a(m) with m > 0. Consider the induced A(Z)-module V (Z) = A(Z) ⊗A(Z)+ C

where C is A(Z)+-module such that a(m)1 = 0 for all m > 0. It is easy to see that
V (Z) is isomorphic to

∧

[a(n)|n ∈ Z, n ≤ 0], in which a(m) acts by multiplication
if m ≤ 0 and a(m) acts as ±2 ∂

∂a(−m) if m > 0. Let W =
∧

[a(m) |m ∈ Z,m < 0],

and W = W0̄ ⊕W1̄ the decomposition of W into the sum even and odd subspaces.
Then

V (Z)± = (1± a(0))W0̄ ⊕ (1∓ a(0))W1̄
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are irreducible A(Z)-submodules of V (Z) and V (Z) = V (Z)+ ⊕ V (Z)−. More-
over, V (Z)± are the inequivalent irreducible σ-twisted V ( 12 +Z)-modules such that

Y (a(−1/2), z) =
∑

n∈Z
a(n)z−n−1/2 [L2], [DZ2]. It is easy to verify that V (Z)+ ◦σ

is isomorphic to V (Z)−. Furthermore, V (Z) is the unique irreducible σ-twisted
super V ( 12 + Z)-module.

Next we want to discuss more on the trace functions ZM (v, (g, h), τ ). We know
from the Lemma 4.1 that ZM (v, (g, h), τ ) = 0 if σv = −v. But we can still consider
trM o(v)qL(0)−c/24 for M ∈ M (σ) such that M and M ◦ σ are not isomorphic, and
v ∈ V1̄. In general, trM o(v)qL(0)−c/24 does not vanish. But our result does not tell
anything about such trM o(v)qL(0)−c/24. Now consider the example V ( 12 + Z). Let

v = a(−1/2) ∈ V ( 12 +Z)1̄. Then wt[v] = 1
2 and o(v) = a(0) on the twisted module.

It is easy to compute that

trV (Z)± o(v)qL(0)−c/24 = ±q1/24
∞
∏

n=1

(1− qn)

which is a modular form of weight 1
2 over Γ. This suggests that for an arbitrary

rational vertex operator superalgebra V, an irreducible σ-twisted module M and
v ∈ V1̄, trM o(v)qL(0)−c/24 is still a modular form of weight wt[v].

The following corollary is immediate.

Corollary 4.3. If γ = S =

(

0 −1
1 0

)

and v ∈ V0̄ we have:

ZM (v, (1, 1),−1

τ
) = τwt[v]

∑

N∈Oσ

S
(1,1)
M,NZN (v, (1, 1), τ ),

ZM (v, (1, σ),−1

τ
) = τwt[v]

∑

N∈M (1)

S
(1,σ)
M,NZN (v, (σ, 1), τ )

for M ∈ Oσ, and

(4.1) ZN (v, (σ, 1),−1

τ
) = τwt[v]

∑

M∈Oσ

S
(σ,1)
N,MZM (v, (1, σ), τ ),

(4.2) ZN (v, (σ, σ),−1

τ
) = τwt[v]

∑

M∈M (1)

S
(σ,σ)
N,M ZM (v, (σ, σ), τ )

for any N ∈ M (1). The matrix ρ(S) = (S
(g,h)
M,N ) is called S-matrix of V and is

independent of the choice of vector v ∈ V0̄.

Remark 4.4. If V1̄ = 0 then V = V0̄ is a vertex operator algebra and σ = 1. In this
case, the representation ρ is unitary and the kernel of ρ is a congruence subgroup
[DLN].

5. Irreducible V0̄-modules

We classify the irreducible V0̄-modules in this section and show that every ir-
reducible V0̄-module occurs in an irreducible V -module or σ-twisted module. The
main idea is to use the S-matrix to classify the irreducible V0̄-modules as in [DRX].

By Theorem 4.2(3), the number of inequivalent irreducible V -modules is equal to
the number of inequivalent of irreducible σ-twisted super V -modules. Let
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{M0, . . . ,Mp} be a complete set of inequivalent irreducible V -modules with M0 =
V and

{N0, N0
σ , . . . , N

q, Nq
σ , N

q+1, . . . , Np}

the inequivalent irreducible σ-twisted V -modules such that N j and N j ◦ σ are
equivalent for j > q. Then M i = M i

0̄⊕M i
1̄ and N j = N j

0̄
⊕N j

1̄
are direct sum of two

irreducible V0̄-modules by Lemmas 2.2 and 2.3 for i = 0, . . . , p and j = q+1, . . . , p.

Theorem 5.1. Let V be a vertex operator superalgebra satisfying the assumptions
(A1)–(A2). Then

{M i
s̄, N

j , Nk
s̄ | i = 0, . . . , p, j = 0, . . . , q, k = q + 1, . . . , p, s = 0, 1}

is a complete set of inequivalent irreducible V0̄-modules.

Proof. We first prove that {M i
s̄ | i = 0, . . . , p, s = 0, 1} is a complete set of inequiv-

alent V0̄-modules. Following [DLM5] we can define associative algebras An(V )
for n ∈ 1

2Z+ such that A0(V ) = A(V ) as defined in [KW] and both Am(V ) and
Am+ 1

2
(V ) for any nonnegative integerm are quotient algebras of Am(V0̄).Moreover,

An(V ) =

p
⊕

i=0

⊕

m≤n

EndM i(m)

as V is rational. Noting that M i
s̄ = ⊕n∈Z+

M i( 12s + n), we see immediately that

M i
s̄ are inequivalent V0̄-modules.
We prove next that {N j , Nk

s̄ | j = 0, . . . , q, k = q+1, . . . , p, s = 0, 1} is a complete
set of inequivalent V0̄-modules. In this case we need to construct associative algebras
Aσ,n(V ) for n ∈ Z+ following [DLM6] so that Aσ,0(V ) = Aσ(V ) as defined in [DZ2].
We can then follow the proof given in [DY] to show that {N j , Nk

s̄ | j = 0, . . . q, k =
q + 1, . . . , p, s = 0, 1} are inequivalent V0̄-modules.

Finally we prove that any M i
s̄ and N j or M i

s̄ and Nk
t̄ are not isomorphic. From

Proposition 7.2, we see that qdimV0̄
V1̄ = qdimV V = 1. Thus V1̄ is a simple current

[DJX]. This forces V1̄ ⊠ M i
s̄ = M i

s+1
and V1̄ ⊠ Nk

t̄ = Nk
t+1

and V1̄ ⊠ N j = N j as

V0̄-modules. Note that the weight difference between M i
0̄ and M i

1̄ is a half-integer,

and the weight difference between Nk
0̄ and Nk

1̄ is an integer. So any M i
s̄ and Nk

t̄ or

M i
s̄ and N j for i = 0, . . . , p, j = 0, . . . , q, k = q + 1, . . . , p and s, t = 0, 1 are not

isomorphic. !

Our next goal is to prove that the irreducible modules given in Theorem 5.1 are
complete.

Theorem 5.2. Let V be a vertex operator superalgebra satisfying the assumptions
(A1)–(A2). Then

{M i
s̄, N

j , Nk
s̄ | i = 0, . . . , p, j = 0, . . . , q, k = q + 1, . . . , p, s = 0, 1}

is a complete list of inequivalent irreducible V0̄-modules.

Proof. The main idea in the proof is to use the S-matrix for vertex operator algebra
V0̄. Observe that for v ∈ V0̄,

ZV0̄
(v, τ ) =

1

2
(ZV (v, (σ, σ), τ ) + ZV (v, (σ, 1), τ )).

Thus

ZV0̄
(v,−1

τ
) =

1

2
(ZV (v, (σ, σ),−

1

τ
) + ZV (v, (σ, 1),−

1

τ
)).
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Using (4.2) and Theorem 5.1 we know that

ZV (v, (σ, σ),−
1

τ
) = τwt[v]

p
∑

i=0

S
(σ,σ)
V,MiZMi(v, (σ, σ), τ )

= τwt[v]

p
∑

i=0

S
(σ,σ)
V,Mi(ZMi

0̄
(v, τ ) + ZMi

1̄
(v, τ )).

By (4.1) and Theorem 5.1

ZV (v, (σ, 1),−
1

τ
) = τwt[v]

∑

M∈Oσ

S
(σ,1)
V,M ZM (v, (1, σ), τ )

=
√
2τwt[v]

q
∑

j=0

S
(σ,1)
V,NjZNj (v, τ ) + τwt[v]

p
∑

j=q+1

S
(σ,1)
V,Nj (ZNj

0̄
(v, τ ) + ZNj

1̄
(v, τ )).

From [Z], ZMi
r̄
(v, τ ), ZNj (v, τ ), ZNk

s̄
(v, τ ) for i = 0, . . . , p, j = 0, . . . , q, k =

q + 1, . . . , p, r, s = 0, 1 are linearly independent vectors in the conformal block
of V0̄. From [Hu2], τ−wt[v]ZV0̄

(v,− 1
τ
) is a linear combination of ZW (v, τ ) for the

irreducible V0̄-modules W and the coefficient of each ZW (v, τ ) in the linear combi-
nation is nonzero. This implies that the list of irreducible V0̄-modules in Theorem
5.1 is complete. !

6. The unitarity of ρ

The representation ρ given in Section 4 is essentially the representation of SL2(Z)
associated with the modular invariance of the trace functions of V0̄ with respect to
a new basis. In this section, we show that this representation ρ is unitary, which
means this new basis is orthonormal.

Since the modular group is generated by S and T =

(

1 1
0 1

)

, it is good enough

to show ρV (S) and ρV (T ) are unitary matrices. Recall that ρV0̄
(S) and ρV0̄

(T ) are
the S and T matrices of V0̄. The main idea is to use the unitarity of ρV0̄

to establish
the unitarity of ρV . For this purpose we need to determine the relation between
ρV (S) and ρV0̄

(S), and ρV (T ) and ρV0̄
(T ).

Recall that ZM (v, τ ) = trM o(v)qL(0)−c/24 for any irreducible V0̄-module M and
v ∈ V0̄. The S and T matrices of V0̄ are given defined by

ZM (v,−1

τ
) = τwt[v]

∑

N

SM,NZN (v, τ ).

ZM (v, τ + 1) = e2πi(−c/24+λM )ZM (v, τ )

where N runs through the inequivalent irreducible V0̄-modules, c is the central
charge of V, λM is the lowest weight of M . In particular, the T matrix of V0̄ is
diagonal with TM,M = e2πi(−c/24+λM ) which is a root of unity as both c and λM

are rational [DLM7].
According to Theorem 5.2 we have three cases (i) M = M i

s̄ for i = 0, . . . , p and
s = 0, 1, (ii) M = N j for j = 0, . . . , q, (iii) M = Nk

s̄ for k = q + 1, . . . , p and
s = 0, 1. We first compute SMi

s̄,N
for i = 0, . . . , p and s = 0, 1. The computation is
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similar to those given in the proof of Theorem 5.2 for v ∈ V0̄ :

ZMi
s̄
(v,−1

τ
) =

1

2
(ZMi(v, (σ, σ),−1

τ
) + (−1)sZMi(v, (σ, 1),−1

τ
))

=
1

2
τwt[v]

p
∑

j=0

S
(σ,σ)
Mi,MjZMj (v, (σ, σ), τ )

+
(−1)s

2
τwt[v]

∑

N∈Oσ

S
(σ,1)
Mi,NZN (v, (1, σ), τ )

=
1

2
τwt[v]

p
∑

j=0

S
(σ,σ)
Mi,Mj (ZMj

0̄
(v, τ ) + ZMj

1̄
(v, τ ))

+
(−1)s√

2
τwt[v]

q
∑

j=0

S
(σ,1)
Mi,NjZNj (v, τ )

+
(−1)s

2
τwt[v]

p
∑

j=q+1

S
(σ,1)
Mi,Nj (ZNj

0̄
(v, τ ) + ZNj

1̄
(v, τ )).

The following lemma is immediate.

Lemma 6.1. For i = 0, . . . , p and s = 0, 1 we have

(1) SMi
s̄,M

j

t̄

= 1
2S

(σ,σ)
Mi,Mj for j = 0, . . . , p and t = 0, 1,

(2) SMi
s̄,N

j = (−1)s√
2

S
(σ,1)
Mi,Nj for j = 0, . . . , q,

(3) SMi
s̄,N

j

t̄

= (−1)s

2 S
(σ,1)
Mi,Nj for j = q + 1, . . . , p and t = 0, 1.

Next we compute SNi,N . Since N i is an irreducible V0̄-module for i = 0, . . . , q,
by Corollary 4.3 and the remark preceding Lemma 4.1, we immediately have

ZNi(v,−1

τ
) =

1√
2
ZNi(v, (1, σ),−1

τ
)

=
1√
2
τwt[v]

p
∑

j=0

S
(1,σ)
Ni,MjZMj (v, (σ, 1), τ )

=
1√
2
τwt[v]

p
∑

j=0

S
(1,σ)
Ni,Mj (ZMj

0̄
(v, τ )− ZMj

1̄
(v, τ )).

The discussion above yields

Lemma 6.2. For i = 0, . . . , q, SNi,Mj
s̄
= (−1)s√

2
S
(1,σ)
Ni,Mj and SNi,W = 0 for the other

irreducible V0̄-modules W.

Similarly, we have

Lemma 6.3. For i = q + 1, . . . , p and s, t = 0, 1, SNi
s̄,M

j

t̄

= (−1)t

2 S
(1,σ)
Ni,Mj for

j = 0, . . . , p, SNi
s̄,N

j

t̄

= (−1)s+t

2 S
(1,1)
Ni,Nj for j = q + 1, . . . , p and SNi

s̄,W
= 0 for the

other irreducible V0̄-modules W.
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Proof. A straightforward calculation using Corollary 4.3 gives

ZNi
s̄
(v,−1

τ
) =

1

2
(ZNi(v, (1, σ),−1

τ
) + (−1)sZNi(v, (1, 1),−1

τ
))

=
1

2
τwt[v]

p
∑

j=0

S
(1,σ)
Ni,MjZMj (v, (σ, 1), τ ) +

(−1)s

2
τwt[v]

p
∑

j=q+1

S
(1,1)
Ni,NjZNj (v, (1, 1), τ )

=
1

2
τwt[v]

p
∑

j=0

S
(1,σ)
Ni,Mj (ZMj

0̄
(v, τ )− ZMj

1̄
(v, τ ))

+
(−1)s

2
τwt[v]

p
∑

j=q+1

S
(1,1)
Ni,Nj (ZNj

0̄
(v, τ )− ZNj

1̄
(v, τ )).

The result follows. !

Theorem 6.4. The representation ρ given in Theorem 4.2 is unitary.

Proof. The unitarity of ρ(S) follows from Lemmas 6.1–6.3 and the unitarity of S
matrix of V0̄. It remains to show that ρ(T ) is unitary. We have

ZMi(v, (σ, σ), τ + 1) = ZMi
0̄
(v, τ + 1) + ZMi

1̄
(v, τ + 1)

= e
2πi(−c/24+λ

Mi
0̄
)
ZMi

0̄
(v, τ )− e

2πi(−c/24+λ
Mi

0̄
)
ZMi

1̄
(v, τ )

= e
2πi(−c/24+λ

Mi
0̄
)
ZMi(v, (σ, 1), τ )

where we have used the fact that λMi
0̄
− λMi

1̄
+ 1

2 is an integer. Similarly,

ZMi(v, (σ, 1), τ + 1) = e
2πi(−c/24+λ

Mi
0̄
)
ZMi(v, (σ, σ), τ ).

It is easy to see that for i = 0, . . . , p and j = q + 1, . . . , p

ZNi(v, (1, σ), τ + 1) = e2πi(−c/24+λ
Ni )ZNi(v, (1, σ), τ ),

ZNj (v, (1, 1), τ + 1) = e2πi(−c/24+λ
Nj )ZNj (v, (1, 1), τ ).

The unitarity of ρ(T ) now follows from that fact that c and λNi are rational numbers
[DLM7]. !

7. Quantum dimensions

In this section, we compute the quantum dimensions of the irreducible σi-twisted
V -modules and irreducible V0̄-modules, which are the Frobenius-Perron dimensions
of these modules in their underlying fusion categories. The ideas and techniques
used here come from [DJX] and [DRX].

Let V be a vertex operator superalgebra as before and M be an irreducible σi-
twisted module. Recall χM (τ ) from Section 4. The quantum dimension of M over
V is defined to be

qdimV M = lim
y→0

χM (iy)

χV (iy)

using the relation q = e2πiτ where y is real and positive.
The existence of the quantum dimension for a g-twisted V -module is given below

in terms of the S-matrix and the proof is similar to that of Lemma 4.2 of [DJX] by
using the S-matrix given in Corollary 4.3.
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Proposition 7.1. Let V be a vertex operator superalgebra satisfying (A1)–(A2),

and M an irreducible σr-twisted V -module for r = 0, 1. Then qdimV M =
S

(σ,σ)
M,V

S
(σ,σ)
V,V

for any irreducible V -module M . If M is an irreducible σ-twisted V -module, then

qdimV M =
S

(1,σ)
M,V√

2S
(σ,σ)
V,V

for M = N i for i = 0, . . . , q and qdimV M =
S

(1,σ)
M,V

S
(σ,σ)
V,V

for other

M. In particular, qdimV M exists.

We define the global dimension of V as

glob(V ) =
∑

M∈M (1)

(qdimV M)2.

In the case when V is a vertex operator algebra, glob(V ) is exactly the global
dimension of V defined in [DJX] and is equal to 1

S2
V,V

.

We now compute the quantum dimensions of irreducible V0̄-modules in terms of
quantum dimensions of irreducible V -modules by using Theorem 5.2.

Proposition 7.2. We have
(1) qdimV0̄

M i
r̄ = qdimV M i for i = 0, . . . , p and r = 0, 1;

(2) qdimV0̄
N j = 2qdimV N j for j = 0, . . . , q;

(3) qdimV0̄
Nk

s̄ = qdimV Nk for k = q + 1, . . . , p and s = 0, 1;

(4) glob(V0̄) = 4 glob(V );
(5)

∑

M∈M (σ)(qdimV M)2 = glob(V );

(6)
∑

X1
(qdimV0̄

X1)
2 =

∑

X2
(qdimV0̄

X2)
2 where Xi ranges over the inequiva-

lent irreducible V0̄-modules appearing in irreducible σi-twisted V -modules.
In particular, qdimV0̄

W = 2qdimV W for any irreducible σr-twisted module

W. Moreover, qdimV M i, and 2 qdimV N j for j = 0, . . . , q, and qdimV Nk for
k = q + 1, . . . , p, take values in {2 cos π

n |n ≥ 3} ∪ [2,∞).

Proof. (1) By Proposition 7.1 and Lemma 6.1 we see that

qdimV0̄
M i

r̄ =
SMi

r̄,V0̄

SV0̄,V0̄

=
S
(σ,σ)
Mi,V

S
(σ,σ)
V,V

= qdimV M i.

(2) can be proved similarly by using Lemma 6.2. But we give a different proof here:

qdimV0̄
N j = lim

y→0

χNj (iy)

χV0̄
(iy)

= lim
y→0

χNj (iy)

χV (iy)

χV (iy)

χV0̄
(iy)

= lim
y→0

χNj (iy)

χV (iy)
lim
y→0

χV (iy)

χV0̄
(iy)

= 2 qdimV N j .

(3) The proof is similar.
(4) From [DJX] we know that glob(V0̄) = 1

S2
V0̄,V0̄

is positive. This implies that

SV0̄,V0̄
is a real number. It follows from Proposition 7.1 that S

(σ,σ)
V,V is a real number.

Since qdimV M is always positive for any irreducible σr-twisted V -module M , we

see from Proposition 7.1 again that S
(σ1−r,σ)
M,V is a real number.

Using Proposition 7.1 and Theorem 6.4 yields

glob(V ) =

p
∑

i=0

(qdimV M i)2 =

p
∑

i=0

(
S
(σ,σ)
Mi,V

S
(σ,σ)
V,V

)2 = (
1

S
(σ,σ)
V,V

)2
p

∑

i=0

(S
(σ,σ)
Mi,V )

2 = (
1

S
(σ,σ)
V,V

)2.
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By Lemma 6.1, SV0̄V0̄
= 1

2S
(σ,σ)
V,V . It follows immediately that glob(V0̄) = 4 glob(V ).

(5) Again by Proposition 7.1 and Theorem 6.4

∑

M∈M (σ)

(qdimV M)2 =
2

(S
(σ,σ)
V,V )2

q
∑

i=0

(
S
(1,σ)
Ni,V√
2

)2+(
1

S
(σ,σ)
V,V

)2
p

∑

i=q+1

(S
(1,σ)
Ni,V )

2 = (
1

S
(σ,σ)
V,V

)2.

(6) Note from (1) that

p
∑

i=0

1
∑

s=0

(qdimV0̄
M i

s̄)
2 =

p
∑

i=0

2(qdimV M i)2 = 2glob(V ).

The result follows now from (4) and Theorem 5.2.
From [DJX], the quantum dimensions of irreducible V0̄-modules lie in {2 cos π

n |n ≥
3} ∪ [2,∞). From (1)–(3) we see immediately that qdimV M i, 2 qdimV N j for j =
0, . . . , q and qdimV Nk for k = q+1, . . . , p take values in {2 cos π

n |n ≥ 3}∪[2,∞). !

8. Z2-grading on the category of V0̄-modules

For the discussion below, we introduce several module categories. We use CV
and Cσ

V to denote the V -module category and the σ-twisted V -module category,
respectively. Since σ|V0̄

= idV0̄
, the objects in CV and Cσ

V are V0̄-modules. We
denote by Cr

V0̄
the full abelian subcategory of CV0̄

generated by the simple V0̄-
submodules of any σr-twisted V -modules. Let C be any of these categories, the
dimension of C is defined as dim C =

∑

M (qdimM)2 where M runs over the
equivalence classes of simple objects in C. It is clear that glob(V ) = dim CV ,
glob(V0̄) = dim CV0̄

= dim C0
V0̄

+ dim C1
V0̄
. From the discussions in Section 7, we

know that glob(V0̄) = 4 glob(V ), dim CV = dim Cσ
V , and dim C0

V0̄
= dim C1

V0̄
. By

[Hu2], CV0̄
is a modular tensor category, and dim CV0̄

coincides with the categorical
dimension of the fusion category of CV0̄

.

Theorem 8.1. The category C0
V0̄

is a fusion subcategory of CV0̄
with a complete list

of simple objects given by M j
r̄ , with j = 0, . . . , p and r = 0, 1.

Proof. We need to show that M i
r̄ ⊠M j

s̄ for i, j = 0, . . . , p and r, s = 0, 1 lies in C0
V0̄
.

This is equivalent to that the fusion rules NW
Mi

r̄,M
j
s̄

= 0 for W = Nk for k = 0, . . . , q

or W = Nk
t̄ for k = q + 1, . . . , p and t = 0, 1.

From Proposition 4.9 of [DJX] or the Verlinde formula for modular tensor cate-
gories,

qdimV0̄
M i

r̄ qdimV0̄
M j

s̄ = qdimV0̄
M i

r̄ ⊠M j
s̄ =

∑

W

NW
Mi

r̄,M
j
s̄

qdimV0̄
W

where W ranges over the inequivalent irreducible V0̄-modules. By the assumption
of V , the quantum dimensions are positive. Our idea is to establish

qdimV0̄
M i

r̄ qdimV0̄
M j

s̄ =

p
∑

k=0

∑

t=0,1

N
Mk

t̄

Mi
r̄,M

j
s̄

qdimV0̄
Mk

t̄

which implies that NW
Mi

r̄,M
j
s̄

= 0 if W is not any Mk
t̄ .
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Recall from [Hu2] the Verlinde formula

N
Mk

t̄

Mi
r̄,M

j
s̄

=
∑

W

SMi
r̄,W

SMj
s̄ ,W

SW,Mk
t̄

SV0̄,W

where W ranges through the inequivalent irreducible V0̄-modules. Thus
p

∑

k=0

∑

t=0,1

N
Mk

t̄

Mi
r̄,M

j
s̄

qdimV0̄
Mk

t̄

=

p
∑

k=0

∑

t=0,1

∑

W

SMi
r̄,W

SMj
s̄ ,W

SW,Mk
t̄

SV0̄,W

SMk
t̄
,V0̄

SV0̄,V0̄

We claim that
∑p

k=0

∑

t=0,1 SW,Mk
t̄
SMk

t̄
,V0̄

is 0 if W .= V0̄, V1̄ and is 1
2 otherwise.

Note that SMk
t̄
,W = SW ′,Mk

t̄
. Let W = Vā. By Lemma 6.1 we have SMk

t̄
,Vā

=
S

(σ,σ)

Mk,V

2

for a = 0, 1. Using the unitarity of ρ(S) Theorem 6.4 gives the claim
p

∑

k=0

∑

t=0,1

SW,Mk
t̄
SMk

t̄
,V0̄

=
1

2

p
∑

k=0

(S
(σ,σ)

Mk,V
)2 =

1

2
.

The proof for W = Mk
t̄ with k > 0 is similar. For W = N i, N j

s̄ , where i = 0, . . . , q,
j = q + 1, . . . , p and s = 0, 1, the claim follows immediately from Lemmas 6.2 and
6.3.

Finally we have
p

∑

k=0

∑

t=0,1

∑

W

SMi
r̄,W

SMj
s̄ ,W

SW,Mk
t̄

SV0̄,W

SMk
t̄
,V0̄

SV0̄,V0̄

=
1

2

SMi
r̄,V0̄

SMj
s̄ ,V0̄

SV0̄,V0̄
SV0̄,V0̄

+
1

2

SMi
r̄,V1̄

SMj
s̄ ,V1̄

SV0̄,V1̄
SV0̄,V0̄

.

Since SMi
r̄,V1̄

= SMi
r̄,V0̄

we see that

p
∑

k=0

∑

t=0,1

N
Mk

t̄

Mi
r̄,M

j
s̄

qdimV0̄
Mk

t̄ =
SMi

r̄,V0̄

SV0̄,V0̄

SMj
s̄ ,V0̄

SV0̄,V0̄

= qdimV0̄
M i

r̄ qdimV0̄
M j

s̄ ,

as desired. !

Remark 8.2. Similarly, one can show that if M ∈ Cr
V0̄
, N ∈ Cs

V0̄
then M ⊠N ∈ Cr+s

V0̄

where r + s is understood to be modulo 2. Therefore, CV0̄
is Z2-graded.

9. The 16-fold way

We discuss in this section on how the representation theory for vertex operator
superalgebra is related to the 16-fold way conjecture proposed in [BGH].

Let U be a rational, C2-cofinite, simple vertex operator algebra of CFT type such
that the weight of any irreducible U -module is positive except U itself. Then the
U -module category CU is a modular tensor category [Hu2] with positive quantum
dimensions. As usual, let cM,N : M ⊠N → N ⊠M be the braiding for U -modules
M,N. Let θ denote the ribbon structure on CU . Then θM is a scalar multiple of idM
for any simple U -module M . We use the abuse notation θM to denote such scalar.
A simple U -module F is called a fermion if F is a simple current (or invertible
object of CU ) of order 2 and cF,F = − idF⊠F . Since qdimU F = 1, θF = −1.

Lemma 9.1. Let V = V0̄⊕V1̄ be a vertex operator superalgebra satisfying assump-
tions (A1)–(A2) with V1̄ .= 0. Then V1̄ is a fermion of CV0̄

.
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Proof. Clearly, V1̄ is a simple current of order 2. Then

cV1̄,V1̄
= θV1̄

idV1̄⊠V1̄
= e2πiL(0) idV1̄⊠V1̄

= − idV1̄⊠V1̄

from [Hu2] and [BGH] as V1̄ = ⊕n∈ZV 1
2+n. !

Conversely, if U is as before and an U -module F is a fermion, then V = U ⊕ F
has a structure of a vertex operator superalgebra such that V0̄ = U and V1̄ = F by
Theorem 1.1 of [CKL]. Therefore, the vertex operator superalgebra V = V0̄ ⊕V1̄ in
our sense is completely determined by a fermion V1̄ in CV0̄

.
Let B be a braided fusion category. For any family D of objects in B, the Müger

centralizer CB(D) is the full subcategory of B consisting of the objects Y in B
such that cY,X ◦ cX,Y = idX⊠Y for all X in D. The subcategory CB(D) is closed
under the tensor product of B and hence a braided fusion subcategory of B. The
symmetric fusion category CB(B) is called the Müger center of B and denoted by
Z2(B). In this paper, a pseudounitary braided fusion category B is called super-
modular if Z2(B) equivalent to category sVec, which is equal to Rep(Z2) with the
super braiding. In particular, a super-modular category B admits a fermion F in
CB(B) with θF = −1.

Lemma 9.2. Let V = V0̄⊕V1̄ be a vertex operator superalgebra satisfying assump-
tions (A1)–(A2). Then C0

V0̄
= CCV0̄

(V1̄) and is super-modular.

Proof. By Theorem 8.1 that C0
V0̄

is a braided fusion subcategory of CV0̄
. We first

prove that V1̄ lies in Z2(C
0
V0̄
), and hence dimZ2(C

0
V0̄
) ≥ 2. Equivalently we need to

show that

cV1̄,M
i
r̄
◦ cMi

r̄,V1̄
= idMi

r̄⊠V1̄

for i = 0, . . . , p and r = 0, 1. Since V1̄ is a simple current we know that both
V1̄⊠M i

r̄ and M i
r̄ ⊠V1̄ are isomorphic to M i

r+1
. As usual we will denote the space of

intertwining operator of type
(

W 3

W 1,W 2

)

by I
(

W 3

W 1,W 2

)

where W j are modules of the

vertex operator algebra V0̄ for i = 1, 2, 3. Then I

(

Mi

r+1

Mi
r̄,V1̄

)

= CY and I

(

Mi

r+1

V1̄,M
i
r̄

)

=

CY where Y is the restriction of Y defining the V -module structure on M i to V1̄

and Y(w, z)u = ezL(−1)Y (u,−z)w for u ∈ V1̄ and w ∈ M i
r̄. In this case, cMi

r̄,V1̄
is

a linear map from I

(

Mi

r+1

Mi
r̄,V1̄

)

to I

(

Mi

r+1

V1̄,M
i
r̄

)

such that Y is mapped to Y ′ where

Y ′(u, z)w = ezL(−1)Y(w,−z)u for u,w as before. Similarly, cV1̄,M
i
r̄
is a linear map

from I

(

Mi

r+1

V1̄,M
i
r̄

)

to I

(

Mi

r+1

Mi
r̄,V1̄

)

such that Y is mapped to Y . It is trivial to verify

that Y ′ = Y and cV1̄,M
i
r̄
◦ cMi

r̄,V1̄
= idMi

r̄⊠V1̄
.

It remains to show that Vs̄ for s = 0, 1 are the only simple objects in Z2(C
0
V0̄
).

Since CV0̄
is modular, it follows from Theorem 3.2 of [Mu] that

dim CV0̄
= dimCCV0̄

(C0
V0̄
) · dim C0

V0̄
.

From the discussion in Section 8 we know that

dim CV0̄
= 2dim C0

V0̄
.
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This forces dimCCV0̄
(C0

V0̄
) = 2. Clearly, Z2(C

0
V0̄
) ⊂ CCV0̄

(C0
V0̄
). This implies that

2 ≤ dimZ2(C
0
V0̄
) ≤ dimCCV0̄

(C0
V0̄
) = 2,

and hence Z2(C
0
V0̄
) = CCV0̄

(C0
V0̄
). !

We can now formulate the 16-fold way conjecture in [BGH] in the context of
vertex operator algebra. Let B be a super-modular category. A modular category
C, which contains B as a full ribbon subcategory, is called a minimal modular
extension or a modular closure of B if dim C = 2dimB.

Conjecture 9.3. If B is a super-modular category, then B admits a minimal mod-
ular extension. In this case, there are exactly 16 minimal modular extensions of B
up to braided monoidal equivalence.

Under the assumption of the existence of modular closure of super-modular cat-
egory, the second part of the conjecture has been proved in [LKW1, Theorems 4.26
and 5.4].

From Lemma 9.2 and its proof, we immediately obtain:

Theorem 9.4. Let V be a vertex operator superalgebra satisfying (A1)–(A2). Then
CV0̄

is a minimal modular extension of the super-modular category C0
V0̄
.

In view of Theorem 9.4 and the 16-fold way conjecture, the following question
arises:

Question 9.5. Does every super-modular category C equivalent to C0
V0̄

for some
vertex operator superalgebra V ?

Our next goal is to construct a sequence {V m}m≥0 of vertex operator super-
algebras from V such that C(V m)0̄ are minimal modular extension of C0

V0̄
and the

equivalence classes of these modular categories C(V m)0̄ are characterized by the
congruence class of m modulo 16. We close this section with the following theorem.

Theorem 9.6. Let V, U be vertex operator superalgebras satisfying (A1)–(A2) and
U being holomorphic. Then C0

V0̄
and C0

(U⊗V )0̄
are equivalent braided fusion cate-

gories. In particular, C(U⊗V )0̄ is a minimal modular extension of C0
V0̄
.

Proof. Note that (U ⊗ V )0̄ is an algebra object in CU0̄⊗V0̄
. Let B = CCU0̄⊗V0̄

((U ⊗
V )0̄), the Müger centralizer of (U ⊗ V )0̄ in CU0̄⊗V0̄

. In view of [CKM, Proposition
2.65], let F0 : B → CU⊗V and F1 : B → C(U⊗V )0̄ be the induction functors, that
means

F0(Y ) = (U ⊗ V )⊠U0̄⊗V0̄
Y, F1(Y ) = (U ⊗ V )0̄ ⊠U0̄⊗V0̄

Y

for Y in B. By [CKM, Theorem 2.67], F0, F1 are braided tensor functors. Since
F1(Y ) is a (U⊗V )0̄-submodule of F0(Y ) and C0

(U⊗V )0̄
is generated by the (U⊗V )0̄-

submodules of super U ⊗ V -modules, F1(Y ) ∈ obj(C0
(U⊗V )0̄

) for Y ∈ B.

Since (U ⊗ V )0̄ = U0̄ ⊗ V0̄ ⊕ U1̄ ⊗ V1̄, U0̄ ⊗ X ∈ B for any object X of C0
V0̄
.

Note that the functor U0̄⊗ −: CV0̄
→ CU0̄⊗V0̄

is a faithfully full braided tensor
functor, and so is its restriction F2 : C0

V0̄
→ B. Therefore, the composite functor

F = F1F2 : C0
V0̄

→ C0
(U⊗V )0̄

is a braided tensor functor. Since C0
V0̄

is super-modular,

F is faithfully full by [DMNO, Corollary 3.26].
To show that C0

V0̄
is braided tensor equivalent to C0

(U⊗V )0̄
, it suffices to show that

every irreducible (U ⊗ V )0̄-module is an image of F .
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Recall that the inequivalent irreducible super V -modules areM i with i = 0, . . . , p.
This implies that {M i

r̄ | i = 0, . . . , p, and r = 0, 1} is a complete set of inequivalent
simple objects of C0

V0̄
. Moreover, inequivalent irreducible super U ⊗ V -modules are

U ⊗M i. Therefore, (U ⊗M i)r̄ = U0̄⊗M i
r̄ +U1̄⊗M i

1−r
for i = 0, . . . , p and r = 0, 1

are all the inequivalent irreducible (U ⊗ V )0̄-modules of C0
(U⊗V )0̄

.

For any simple X ∈ obj(C0
V0̄
),

F (X) = (U ⊗ V )0̄ ⊠ (U0̄ ⊗X)

which is isomorphic to U0̄⊗X+U1̄⊗(V1̄⊠X) as V0̄⊗U0̄-modules. Therefore, F (X)
is the irreducible (V ⊗U)0̄-module which contains an irreducible U0̄⊗V0̄-submodule
isomorphic to U0̄ ⊗X. Therefore, by the same reason,

F (M i
r̄)

∼= (U ⊗M i)r̄

as (U ⊗ V )0̄-modules for i = 1, . . . , p and r = 0, 1. Thus, F : C0
V0̄

→ C0
(U⊗V )0̄

is an

equivalence. The last statement follows immediately from Theorem 9.4. !

The Gauss sum τ1(C) of a ribbon fusion category C is defined as

τ1(C) =
∑

X∈Irr(C)

qdim(X)2 · θX

where Irr(C) denotes the set of isomorphism classes of simple objects of C, qdim(X)
is the pivotal (or quantum) dimension of the simple object X, and θX denotes the
scalar of the twist. The Gauss sums and their higher degree generalizations τn(C)
are invariants of ribbon fusion categories (cf. [NSW]). In the case of a fermionic
modular category, we follow some idea in [BGN] to prove that the centralizer of the
fermion has zero contribution to the Gauss sum.

Lemma 9.7. Let C be a pseudounitary modular tensor category over C, f a fermion
of C, and C0 the Müger centralizer of f . Then

τ1(C
0) = 0

Proof. Let X ∈ Irr(C0). Then SX,f = qdim(X) where SX,Y denotes the categorical
trace of cY,X ◦ cX,Y . Since f is an invertible object, the tensor product X ⊗ f of C
is a simple object of C0 and qdim(X ⊗ f) = qdim(X). On the other hand, by the
twist equation, we have

θX⊗f qdim(X ⊗ f) = θXθfSX,f ,

which implies θX⊗f = −θX . In particular, the action of f on Irr(C) has no fixed
point. Therefore, there exists a subset O of Irr(C0) such that

⋃

X∈O
{X,X ⊗ f} =

Irr(C0). Thus,

τ1(C
0) =

∑

X∈O

qdim(X)2 · θX − qdim(X ⊗ f)2 · θX = 0 . !

10. Minimal modular extensions of C0
V0̄

In this section we use the holomorphic vertex operator superalgebras V (l,Z+ 1
2 )

for l ≥ 1 and Theorem 9.6 to obtain all the 16 minimal modular extensions of C0
V0̄

for any given vertex operator superalgebra V satisfying (A1)–(A2).
The construction of V (l,Z + 1

2 ) is well known (see [FFR], [KW], [L1]). Let

Hl = ⊕l
i=1Cai be a complex vector space equipped with a nondegenerate symmetric
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bilinear form (·, ·) such that (ai, aj) = 2δi,j . Let A(l,Z+ 1
2 ) be the associative algebra

generated by {a(n) | a ∈ Hl, n ∈ Z+ 1
2} subject to the relation

[a(n), b(m)]+ = (a, b)δm+n,0.

Let A(l,Z+ 1
2 )

+ be the subalgebra generated by {a(n) | a ∈ Hl, n ∈ Z+ 1
2 , n > 0},

and make C a 1-dimensional A(l,Z+ 1
2 )

+-module so that ai(n)1 = 0 for n > 0. The
induced module

V (l,Z+
1

2
) = A(l,Z+

1

2
)⊗A(l,Z+ 1

2 )
+ C

∼=
∧

[ai(−n)|n > 0, n ∈ Z+
1

2
, i = 1, 2, . . . , l] (linearly)

is a holomorphic vertex operator superalgebra generated by ai(− 1
2 ) for i = 1, . . . , l

and Y (ai(− 1
2 ), z) = ai(z) =

∑

n∈Z
ai(−n − 1

2 )z
−n−1. For example, if l = 1 then

V (1,Z+ 1
2 ) is isomorphic to L( 12 , 0) + L( 12 ,

1
2 ) as a module for the Virasoro vertex

operator algebra L( 12 , 0). Moreover, V (1,Z + 1
2 )0̄ = L( 12 , 0) and V (1,Z + 1

2 )1̄ =

L( 12 ,
1
2 ). If l = 2k is even then V (l,Z + 1

2 ) is isomorphic to the lattice vertex

operator superalgebra VZk where Zk is the lattice in Rk with the standard inner
product.

As usual, we use σ to denote the canonical automorphism of V (l,Z + 1
2 ). To

construct σ-twisted V (l,Z + 1
2 )-modules, we need to consider the cases when l is

even or odd. If l = 2k is even, then H2k can be written as

H2k =
k
∑

i=1

Cbi +
k
∑

i=1

Cb∗i

with (bi, bj) = (b∗i , b
∗
j ) = 0, (bi, b

∗
j ) = δi,j . Let A(2k,Z) be the associative algebra

generated by {b(n) | b ∈ H2k, n ∈ Z} subject to the relation

[a(m), b(n)]+ = (a, b)δm+n,0.

Let A(2k,Z)+ be the subalgebra generated by {bi(n), b
∗
i (m) |n ≥ 0,m > 0, i =

1, . . . , k}, and make C a 1-dimensional A(2k,Z)+-module with bi(n)1 = 0 and
b∗i (m)1 = 0 for n ≥ 0, m > 0, i = 1, . . . , k. Consider the induced A(2k,Z)-module

V (2k,Z) = A(2k,Z)⊗A(2k,Z)+ C ∼= Λ[bi(−n), b∗i (−m) |n,m ∈ Z, n > 0,m ≥ 0].

By Proposition 4.3 in [L2], V (2k,Z) is an irreducible σ-twisted V (2k,Z+ 1
2 )-module

such that

YV (2k,Z)(u(−
1

2
), z) = u(z) =

∑

n∈Z

u(n)z−n−1/2

for u ∈ H2k. Moreover, V (2k,Z) is the only irreducible σ-twisted V (2k,Z + 1
2 )-

module up to isomorphism [DZ2]. As a result, V (2k,Z + 1
2 )0̄ has 4 inequivalent

irreducible modules V (2k,Z + 1
2 )r̄, and V (2k,Z)r̄ (r = 0, 1) of weights 0, 1

2 ,
k
8 ,

k
8 ,

and quantum dimension 1.
If l = 2k + 1 is odd, H2k+1 can be decomposed into:

H2k+1 =

k
∑

i=1

Cbi +

k
∑

i=1

Cb∗i + Ce
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with (bi, bj) = (b∗i , b
∗
j ) = 0, (bi, b

∗
j ) = δi,j , (e, bi) = (e, b∗i ) = 0, (e, e) = 2. Let

A(2k + 1,Z) be the associative algebra generated by a(n) for a ∈ H2k+1 and n ∈
Z subject to the same relation as before. Let A(2k + 1,Z)+ be the subalgebra
generated by

{bi(n), b
∗
i (m), e(m) |m,n ∈ Z, n ≥ 0,m > 0, i = 1, . . . , k}

and make C a 1-dimensional A(2k + 1,Z)+-module with bi(n)1 = 0 for n ≥ 0 and
b∗i (m)1 = e(m)1 = 0 for m > 0, i = 1, . . . , k. Set

V (2k + 1,Z) = A(2k + 1,Z)⊗A(2k+1,Z)+ C .

It is easy to see that V (2k + 1,Z) is isomorphic to the exterior algebra

W (2k + 1,Z) = Λ[bi(−n), b∗i (−m), e(−m) |n,m ∈ Z, n > 0,m ≥ 0]

as vector spaces. Let W (2k + 1,Z) = W (2k + 1,Z)0̄ ⊕ W (2k + 1,Z)1̄ be the
decomposition into the even and odd parity subspaces, and

V±(2k + 1,Z) = (1± e(0))W (2k + 1,Z)0̄ ⊕ (1∓ e(0))W (2k + 1,Z)1̄.

Then

V (2k + 1,Z) = V+(2k + 1,Z)⊕ V−(2k + 1,Z)

and V±(2k+1,Z) are irreducible A(2k+1,Z)-modules. It follows from Proposition
4.3 in [L2] that V±(2k+1,Z) are irreducible σ-twisted modules for V (2k+1,Z+ 1

2 )
so that

YV (2k+1,Z)(u(−
1

2
), z) = u(z) =

∑

n∈Z

u(n)z−n−1/2

for u ∈ H2k+1. Moreover, V±(2k + 1,Z) are the only inequivalent irreducible σ-
twisted modules and are isomorphic irreducible V (2k + 1,Z + 1

2 )0̄-modules [DZ2].

In this case V (2k+1,Z+ 1
2 )0̄ has 3 inequivalent irreducible modules V (2k+1,Z+ 1

2 )r̄
for r = 0, 1 and V+(2k + 1,Z) of weights 0, 1

2 and 2k+1
16 , and quantum dimensions

1, 1 and
√
2.

Let V be a vertex operator superalgebra satisfying (A1)–(A2). Set V 0 = V and
V l = V (l,Z + 1

2 ) ⊗ V for l ≥ 1. According to Theorem 9.6, C(V l)0̄
is a minimal

modular extension of C0
V0̄

for l ≥ 0. We denote the Virasoro vector of V l by ωl

for l ≥ 1 and write Y (ωl, z) =
∑

n∈Z
Ll(n)z−n−2. Let Tl be the corresponding T -

matrix associated to (V l)0̄ and set tl = e2πi(c+
l
2 )/24Tl which is the matrix for the

operator e2πiL
l(0) acting on the inequivalent irreducible (V l)0̄-modules. Then tl is

the T-matrix of the modular tensor category C(V l)0̄
.

The following result is an immediate consequence of Theorem 3.5.

Lemma 10.1. The inequivalent irreducible σ-twisted V l-modules are

{V (l,Z)⊗N j , (V (l,Z)⊗N j) ◦ σ, V (l,Z)⊗Nk | j = 0, . . . , q, k = q + 1, . . . , p}

if l is even, and

{N l,j , N l,k, N l,k ◦ σ | j = 0, . . . , q, k = q + 1, . . . , p}

if l is odd where V (l,Z)⊗ (N j+N j ◦σ) = 2N l,j and V (l,Z)⊗Nk = N l,k⊕N l,k ◦σ.
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Corollary 10.2. The inequivalent simple (V l)0̄-modules from the σ-twisted V l-
modules are

{V (l,Z)⊗N j , (V (l,Z)⊗Nk)r̄ | j = 0, . . . , q, k = q + 1, . . . , p, r = 0, 1}

if l is even. In this case,

qdim(V l)0̄
(V (l,Z)⊗N j) = qdimV0̄

(N j), qdim(V l)0̄
(V (l,Z)⊗Nk)r̄ = qdimV0̄

(Nk
r̄ )

for j = 0, . . . , q, k = q + 1, . . . , p, r = 0, 1.
If l is odd, the inequivalent simple (V l)0̄-modules from the σ-twisted V l-modules

are

{N l,j
r̄ , N l,k | j = 0, . . . , q, k = q + 1, . . . , p, r = 0, 1}

and

qdim(V l)0̄
(N l,j

r̄ ) =
1√
2
· qdimV0̄

(N j), qdim(V l)0̄
(N l,k) =

√
2 · qdimV0̄

(Nk
r̄ )

for j = 0, . . . , q, k = q + 1, . . . , p, r = 0, 1.

Proof. The set of simple (V l)0̄-modules from the σ-twisted V l-modules follows
immediately from Lemma 10.1 for any nonzero integer l. Let us denote U l =
V (l,Z+ 1

2 ). If l is even, then qdimUl(V (l,Z)) = qdimUl
0̄
(V (l,Z)r̄) = 1 for r = 0, 1.

For j = 0, . . . , q, V (l,Z)⊗N j is an unstable σ-twisted V l-module. It follows from
Proposition 7.2 that

qdim(V l)0̄
(V (l,Z)⊗N j) = 2 qdimV l(V (l,Z)⊗N j) = 2 qdimV (N

j) = qdimV0̄
(N j) .

For k = p+ 1, . . . , q, V (l,Z)⊗Nk is σ-stable. By Proposition 7.2,

qdim(V l)0̄
(V (l,Z)⊗Nk)r̄ = qdimV l(V (l,Z)⊗Nk) = qdimV (N

k) = qdimV0̄
(Nk

r̄ )

for r = 0, 1.
If l is odd, then qdimUl(V (l,Z)) = qdimUl

0̄
(V±(l,Z)) =

√
2. For j = 0, . . . , p,

N l,j is a σ-stable σ-twisted V l-module and

qdimV l(V (l,Z)⊗ (N j ⊕N j
σ)) = 2 qdimV l(N l,j) = 2 qdim(V l)0̄

(N l,j
r̄ )

for any r = 0, 1. On the other hand,

qdimV l(V (l,Z)⊗ (N j ⊕N j
σ)) =

√
2 · qdimV (N

j ⊕N j
σ) =

√
2 qdimV0̄

(N j) .

Thus, we have

qdim(V l)0̄
(N l,j

r̄ ) =
1√
2
qdimV0̄

(N j)

for r = 0, 1. Similarly, for k = p+1, . . . , q, N l,k is a σ-unstable σ-twisted V l-module
and

qdim(V l)0̄
(N l,k) = 2 qdimV l(N l,k) = qdimV l(N l,k ⊕N l,k

σ ) = qdimV l(V (l,Z)⊗Nk)

=
√
2 · qdimV (N

k) =
√
2 · qdimV0̄

(Nk
r̄ )

for r = 0, 1. !
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Theorem 10.3. The minimal modular extensions C(V l)0̄
, C(V m)0̄ of C0

V0̄
are braided

equivalent if and only if l and m are congruent modulo 16. In particular, we have
constructed 16 minimal modular extensions of C0

V0̄
.

Proof. Since C(V m)0̄ has positive quantum dimensions, its spherical pivotal structure
is uniquely determined by the fusion category C(V m)0̄ . Therefore, C(V l)0̄

, C(V m)0̄
are equivalent braided fusion categories if and only if they are equivalent modular
categories. The later implies they have the same Gauss sums. Therefore, we proceed
to compute the Gauss sum τ1(C(V l)0̄

). It follows from Lemma 9.7 that

τ1(C(V l)0̄
) =

∑

X∈Irr(C1

(V l)0̄
)

qdim(X)2 · θX

where Irr(C1
(V l)0̄

) is the set of inequivalent simple (V l)0̄-modules from the σ-twisted

V l-modules.
By Corollary 10.2, the inequivalent irreducible (V l)0̄-modules from the σ-twisted

modules are

{V (l,Z)⊗N j , V (l,Z)0̄⊗Nk
r̄ +V (l,Z)1̄⊗Nk

1−r
| j = 0, . . . , q, k = q+1, . . . , p, r = 0, 1}

if l is even. The actions of e2πiL
l(0) on V (l,Z)⊗N j and V (l,Z)0̄ ⊗Nk

r̄ +V (l,Z)1̄ ⊗
Nk

1−r
are respectively are e2πi(λNj+

l
16 ) and e2πi(λNk+

l
16 ) for r = 0, 1, where λNj is

the weight of N j . Therefore,

τ1(C(V l)0̄
) =

q
∑

j=0

qdim(V l)0̄
(V (l,Z)⊗N j)2 · e2πi(λNj+

l
16 )

+
1

∑

r=0

p
∑

k=q+1

qdim(V l)0̄
(V (l,Z)⊗Nk)2r̄ · e

2πi(λ
Nk+

l
16 )

= e
2πil
16





q
∑

j=0

qdimV0̄
(N j)2 e2πiλNj +

1
∑

r=0

p
∑

k=q+1

qdimV0̄
(Nk

r̄ )
2 e2πiλNk





= e
2πil
16 τ1(CV0̄

) .

Again by Corollary 10.2, the inequivalent irreducible (V l)0̄-modules from the σ-
twisted modules are

{N l,j
r̄ , N l,k|j = 0, . . . , q, k = q + 1, . . . , p, r = 0, 1}

if l is odd. The actions of e2πiL
l(0) onN l,j

r̄ is e2πi(λNj+
l
16 ) and onN l,k is e2πi(λNk+

l
16 ).

Thus, for r = 0, 1,

τ1(C(V l)0̄
) =

1
∑

r=0

q
∑

j=0

qdim(V l)0̄
(N l,j

r̄ )2 e2πi(λNj+
l
16 )

+

p
∑

k=q+1

qdim(V l)0̄
(N l,k)2 e2πi(λNk+

l
16 )

= e
2πil
16





1
∑

r=0

q
∑

j=0

1

2
qdimV0̄

(N j)2 e2πiλNj +

p
∑

k=q+1

2 qdimV0̄
(Nk

r̄ )
2 e2πiλNk




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= e
2πil
16





q
∑

j=0

qdimV0̄
(N j)2 e2πiλNj +

1
∑

r=0

p
∑

k=q+1

qdimV0̄
(Nk

r̄ )
2 e2πiλNk





= e
2πil
16 τ1(CV0̄

) .

Therefore, τ1(C(V l)0̄
) = e

2πil
16 τ1(CV0̄

) for any integer l ≥ 0. As a result, τ1(C(V l)0̄
)

= τ1(C(V m)0̄) if and only if l ≡ m modulo 16, and there are at least 16 inequivalent

modular categories which are minimal extensions of C0
V0̄
. By [LKW1, Theorems

4.26 and 5.4], C0
V0̄

has exactly 16 minimal extensions. Thus, C(V l)0̄
and C(V m)0̄

are equivalent minimal extensions of C0
V0̄

if and only if l ≡ m modulo 16. These
16 minimal extensions of are also inequivalent as braided fusion categories as they
have distinct Gauss sums. !

References

[ABD] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and C2-

cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391–3402, DOI 10.1090/S0002-
9947-03-03413-5. MR2052955

[ADJR] Chunrui Ai, Chongying Dong, Xiangyu Jiao, and Li Ren, The irreducible modules and
fusion rules for the parafermion vertex operator algebras, Trans. Amer. Math. Soc. 370
(2018), no. 8, 5963–5981, DOI 10.1090/tran/7302. MR3812115

[BDM] Katrina Barron, Chongying Dong, and Geoffrey Mason, Twisted sectors for tensor prod-
uct vertex operator algebras associated to permutation groups, Comm. Math. Phys. 227
(2002), no. 2, 349–384, DOI 10.1007/s002200200633. MR1903649

[BGH] Paul Bruillard, César Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric
C. Rowell, and Zhenghan Wang, Fermionic modular categories and the 16-fold way, J.
Math. Phys. 58 (2017), no. 4, 041704, 31, DOI 10.1063/1.4982048. MR3641612

[BGN] Paul Bruillard, César Galindo, Siu-Hung Ng, Julia Y. Plavnik, Eric C. Rowell, and
Zhenghan Wang, Classification of super-modular categories by rank, Algebr. Represent.
Theory 23 (2020), no. 3, 795–809, DOI 10.1007/s10468-019-09873-9. MR4109138

[CM] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras,
arXiv:1603.05645, 2018.

[CKL] Thomas Creutzig, Shashank Kanade, and Andrew R. Linshaw, Simple current exten-
sions beyond semi-simplicity, Commun. Contemp. Math. 22 (2020), no. 1, 1950001, 49,
DOI 10.1142/S0219199719500019. MR4064909

[CKM] T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra
extensions, arXiv:1705.05017, 2021.

[C] S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc.
4 (1964), 152–173. MR0168663
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Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195. MR1106898

[DPR90] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomol-
ogy and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72 (1991),
DOI 10.1016/0920-5632(91)90123-V. Recent advances in field theory (Annecy-le-Vieux,
1990). MR1128130

[D1] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993),
no. 1, 245–265, DOI 10.1006/jabr.1993.1217. MR1245855

[D2] Chongying Dong, Twisted modules for vertex algebras associated with even lattices, J.
Algebra 165 (1994), no. 1, 91–112, DOI 10.1006/jabr.1994.1099. MR1272580

[DH] Chongying Dong and Jianzhi Han, On rationality of vertex operator superalgebras, Int.
Math. Res. Not. IMRN 16 (2014), 4379–4399, DOI 10.1093/imrn/rnt077. MR3250038

Licensed to Louisiana St Univ, Baton Rouge. Prepared on Mon Dec  6 12:30:10 EST 2021 for download from IP 96.125.26.100.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=2052955
https://www.ams.org/mathscinet-getitem?mr=3812115
https://www.ams.org/mathscinet-getitem?mr=1903649
https://www.ams.org/mathscinet-getitem?mr=3641612
https://www.ams.org/mathscinet-getitem?mr=4109138
https://arxiv.org/abs/1603.05645
https://www.ams.org/mathscinet-getitem?mr=4064909
https://arxiv.org/abs/1705.05017
https://www.ams.org/mathscinet-getitem?mr=0168663
https://www.ams.org/mathscinet-getitem?mr=3039775
https://www.ams.org/mathscinet-getitem?mr=1106898
https://www.ams.org/mathscinet-getitem?mr=1128130
https://www.ams.org/mathscinet-getitem?mr=1245855
https://www.ams.org/mathscinet-getitem?mr=1272580
https://www.ams.org/mathscinet-getitem?mr=3250038


7808 CHONGYING DONG ET AL.

[DJX] Chongying Dong, Xiangyu Jiao, and Feng Xu,Quantum dimensions and quantum Galois
theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441–6469, DOI 10.1090/S0002-
9947-2013-05863-1. MR3105758

[DL1] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex
operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA,
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