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Abstract

We introduce a generalized finite difference method for solving a large range of fully nonlin-
ear elliptic partial differential equations in three dimensions. Methods are based on Cartesian
grids, augmented by additional points carefully placed along the boundary at high resolution.
We introduce and analyze a least-squares approach to building consistent, monotone approx-
imations of second directional derivatives on these grids. We then show how to efficiently
approximate functions of the eigenvalues of the Hessian through a multi-level discretization of
orthogonal coordinate frames in R3. The resulting schemes are monotone and fit within many
recently developed convergence frameworks for fully nonlinear elliptic equations including
non-classical Dirichlet problems that admit discontinuous solutions, Monge—Ampere type
equations in optimal transport, and eigenvalue problems involving nonlinear elliptic oper-
ators. Computational examples demonstrate the success of this method on a wide range of
challenging examples.
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1 Introduction

In this article, we introduce and implement a convergent finite difference method for solving
a large class of fully nonlinear elliptic partial differential equations (PDEs) on general three-
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dimensional domains. The method we develop encompasses a range of challenging problems
including Pucci’s maximal and minimal equations, obstacle problems, prescribed curvature
equations, Monge—Ampere type equations arising in optimal transport, and eigenvalue prob-
lems involving nonlinear PDEs.

1.1 Background

Fully nonlinear elliptic partial differential equations (PDEs) appear in a variety of applica-
tions including optimal transport, seismology [12], astrophysics [18], mathematical finance
[17], materials science [38], and molecular engineering [3]. These problems are challeng-
ing because they often include discontinuous or sharp jumps in the data, involve intricate
domains, and may require data to satisfy a solvability condition that is not known a priori.

In recent years, the numerical solution of these equations has received a great deal of
attention, and several new methods have been developed including finite difference meth-
ods [4,16,27,34,37], finite element methods [1,6,9,35], least squares methods [11], and
methods involving fourth-order regularization terms [14]. However, these methods are not
designed to compute weak solutions. When the ellipticity of the equation is degenerate or no
smooth solution exists, methods become very slow, are unstable, or converge to an incorrect
solution.

A couple convergence frameworks have emerged in recent years. The approach of [13]
introduces the concept of generalized monotonicity, similar in flavor to the fourth-order reg-
ularization of [14], to produce convergent methods for a class of Hamilton—Jacobi—Bellman
equations. Another powerful framework, which informs the method described in the present
article, is the approach of Barles and Souganidis [2], which shows that consistent, monotone
methods converge if the limiting PDE satisfies a comparison principle. A variety of methods
have been developed within this framework [15,21,22,28,33]. Moreover, these convergence
proofs have recently been extended to non-classical Dirichlet problems [23], optimal trans-
port type boundary conditions [24], and eigenvalue problems involving nonlinear PDEs [25].

1.2 Contributions of this Work

The method we describe applies to nonlinear equations that depend on various second direc-
tional derivatives,
F(x, u(x), upy (x);v € A C §) =0, M

where the admissible set A is used to characterize a finite set of unit vectors in R>. We also
consider functions of the eigenvalues A1, A2, A3 of the Hessian matrix,

3
FOu(D*u(x)), ha(D*u(x)), 13(D*u(x)) = G | D¢ (hj(D*ux)) | =0, (2)
j=1

where ¢ is a concave function and G is non-increasing and continuous. We note that this
encompasses arange of elliptic operators including PDEs of Monge—Ampere type and various
curvature equations. Finally, we consider eigenvalue problems of the form

F(x, D*u(x)) = ¢ (©)
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where both the function « and the constant ¢ € R are unknown. Moreover, we show how to
enforce a range of boundary conditions including Dirichlet conditions, Neumann conditions,
and the second type boundary condition Vi (§2) C £2* arising in optimal transport.

The starting point of our method is the generalized finite difference methods of [21], which
produced consistent, monotone schemes for a large class of nonlinear elliptic equations using
very general two-dimensional point clouds. While much of the convergence theory applies
to general bounded domains in R”, the transition to three dimensions introduces several new
challenges that are not present in two dimensions.

A first challenge that we face is the discretization of the boundary of three-dimensional
domains. In order to preserve both consistency and monotonicity in the entire domain, it
is necessary to over-resolve the boundary in a precise way. This precludes the use of many
standard structure grids such as Cartesian meshes. We describe a new approach to discretizing
our domains that preserves a great deal of structure (which is needed for efficient evaluation
of the nonlinear operators), while fitting within the precise requirements needed to construct
monotone schemes.

A second challenge is the approximation of second directional derivatives. In two dimen-
sions, this can be accomplished explicitly even on very complicated meshes. In three
dimensions, explicit formulas are no longer possible in general. Instead, we describe an opti-
mization approach that provably yields a consistent, monotone approximation. We describe
a particularly efficient implementation of this idea that utilizes simple centered differences
in the interior of the domain, while employing this optimization procedure in a small band
of points near the boundary.

A third major challenge is discretizing general functions of the eigenvalues of the Hessian.
In two dimensions, these two eigenvalues can be represented as the maximum and minimum
possible second directional derivatives. Three dimensions introduces a third eigenvalue, and
this simple approach does not easily generalize in a way that preserves monotonicity. We
introduce an alternate approach that allows for monotone approximation of a large range of
functions of the eigenvalues of the Hessian.

Finally, we note that the shift to a higher dimension brings the practical concerns of
memory and processing speed to the forefront. There are two challenges here: (1) efficient
construction and evaluation of the discrete systems of algebraic equations that approximate
equations (1)—(3) and (2) efficient methods for solving the resulting systems of nonlinear
algebraic equations. Our focus in this paper is the first issue; we propose a robust method
for solving the resulting nonlinear algebraic system, but defer the development of efficient
solvers to future work. Our ultimate goal is to produce a monotone scheme that can serve
as foundation for convergent higher-order filtered methods [19]. In two-dimensional exper-
iments, filtered methods derive their stability from an underlying monotone scheme, but
frequently provide accuracy that is independent of the formal accuracy of the monotone
component. Consequently, the particular implementation described in the present paper pri-
oritizes efficiency over accuracy. Since a naive implementation of our proposed discretization
can be computationally intractable, we introduce techniques derived from the structure of
the underlying problem to describe an efficient method for producing a consistent, monotone
approximation of many fully nonlinear elliptic PDEs in three dimensions. In particular, we
propose a new multi-level procedure for approximating functions of the eigenvalues of the
Hessian, which provides a dramatic reduction in computational cost.
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1.3 Contents

In Sect. 2, we review the theory of generalized finite difference approximations for fully
nonlinear elliptic equations. In Sect. 3, we describe the three-dimensional discretization
of (1)—(3). In Sect. 4, we discuss practical considerations relating to the efficient construc-
tion of our discretization. In Sect. 5, we provide computational results for a large range of
challenging problems. Finally, in Sect. 6, we provide conclusions and perspective.

2 Approximation of Elliptic Equations

In this section, we briefly review relevant results on the construction and convergence of
numerical methods for solving fully nonlinear elliptic equations.

2.1 Elliptic Equations

The PDE operators we consider in this work are degenerate elliptic.

F(x, u(x), Vu(x), D’u(x)) =0, xe 2 C R>. 4)

Definition 1 (Degenerate elliptic) The operator F : 2 x R x 8> — R is degenerate elliptic
if

F(x,u,X) < F(x,v,Y)
wheneveru <vand X > Y.

We note that the definition of the operator is extended onto the boundary of the domain, and
includes the relevant boundary conditions.

The PDE operators (1)—(2) that we consider in this work are degenerate elliptic if they are
non-decreasing functions of the argument u and non-increasing functions of all subsequent
arguments (which involve second directional derivatives).

Since degenerate elliptic equations need not have classical solutions, solutions need to be
interpreted in a weak sense. The numerical methods developed in this article are guided by
the very powerful concept of the viscosity solution [10].

Definition 2 (Upper and lower semi-continuous envelopes) The upper and lower semi-
continuous envelopes of a function u(x) are defined, respectively, by

u*(x) = limsupu(y), u,(x) = liminfu(y).
yx yox

Definition 3 (Viscosity solution) An upper (lower) semi-continuous function u is a viscosity
subsolution (supersolution) of_ (4) if for every ¢ € C?%(£2), whenever u — ¢ has a local
maximum (minimum) at x € §2, then

FP (. u(x), D*¢(x)) < ()0.
A function u is a viscosity solution of (4) if u* is a subsolution and u, a supersolution.
An important property of many elliptic equations is the comparison principle, which

immediately implies uniqueness of the solution.
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Definition 4 (Comparison principle) A PDE has a comparison principle if whenever u is
an upper semi-continuous subsolution and v a lower semi-continuous supersolution of the
equation, then # < v on £2.

2.2 Approximation

In order to construct convergent approximations of elliptic operators, we will rely on the
framework introduced by Barles and Souganidis [2] and further extended by Oberman [32]
and the authors of this work [23-25].

We consider finite difference schemes that have the form

FM' (%, u(x), u(x) —u(-)) =0 5)

where £ is a small parameter relating to the grid resolution.
The convergence framework requires notions of consistency and monotonicity, defined
below.

Definition 5 (Consistency) "l:he scheme (5) is consistent with the equation (4) if for any
smooth function ¢ and x € 2,

limsup ~ F*(y, p(y) + &, ¢(¥) — $() < F*(x, ¢ (x), Vo (x), D’$(x)),

h—01,y—>x,§—0

liminf  F'(y, ¢(y) + & ¢(¥) — () = Fulx, $(X), Vo (x), D> (x)).
h—01,y—>x,§—0

Definition 6 (Monotonicity) The scheme (5) is monotone if F hisa non-decreasing function

of its final two arguments.

Schemes that satisfy these two properties respect the notion of the viscosity solution
at the discrete level. In particular, these schemes preserve the maximum principle and are
guaranteed to converge to the solution of the underlying PDE under a range of interesting
settings.

Another important property of schemes is stability, which allows discrete solutions to be
bounded uniformly.

Definition 7 (Stability) The scheme (5) is stable if there exists some M € R such that if uh
is any solution of (5) then [|u”[|oc < M.

Under mild conditions relating to the well-posedness of the limiting PDE and continuity of (5)
in its final two arguments, consistent and monotone schemes are automatically stable [23,
Lemmas 35-36].

The convergence framework of Barles and Souganidis applies to well-posed PDEs that
satisfy a comparison principle.

Theorem 1 (Convergence [32]) Let F be a degenerate elliptic operator with a comparison
principle and suppose that the PDE (4) has a unique viscosity solution u. Let the approxi-
mation F" be consistent, monotone, and stable and u" any solution of the scheme (5). Then

u" converges uniformly to u as h — 0.

Recently, convergence results have also been obtained for a variety of equations that do not
have a traditional comparison principle. This includes non-classical Dirichlet problems that
admit discontinuous solutions [23], Monge—Ampere type equations equipped with optimal
transport type boundary constraints [24], and eigenvalue problems of the form (3) that require
solving for the solution of both a fully nonlinear PDE and an unknown scalar constant [25].
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2.3 Generalized Finite Difference Methods

The results discussed in the previous section provide a powerful tool for proving convergence
of monotone schemes. However, they do not offer insight into the actual construction of
monotone methods. Indeed, it is well known that there are linear elliptic operators for which
no finite difference stencil of bounded width admits a consistent, monotone discretization [26,
29].

Wide stencil methods on Cartesian grids have been developed for a variety of fully
nonlinear elliptic PDEs [28,33]. However, these can fail to preserve both consistency and
monotonicity at points near the boundary, particularly in the absence of Dirichlet boundary
conditions. For insight into the construction of globally consistent and monotone schemes
on general domains, we turn to the two-dimensional meshfree finite difference methods
developed in [21].

We begin by introducing some notation, which applies equally well to higher dimensional
settings.

(N1) 2 C I_Rd is a bounded domain with Lipschitz boundary 952.
(N2) G C £2 is a point cloud consisting of the points x;,i = 1,..., N.

(N3) h = sup mig |x —y| is the spatial resolution of the point cloud. In particular, every
xe2 Y€

ball of radius 4 contained in £2 contains at least one discretization point x; .

(N4) hp = sup min [x —y]| is the resolution of the point cloud on the boundary. In
xc9 Q2 yegnas2

particular, every ball of radius . p centered at a boundary point X € 9£2 contains at
least one discretization point X; € G N 052 on the boundary.

(N5) § = min_ inf |x — y]|is the distance between the set of interior discretization points
XeRNG yed 2

and the boundary. In particular, if x; € GN 2 and x; € 052, then the distance between
x; and x; is at least 6.
(N6) € is a search radius associated with the point cloud.

Using this notation, we can pose some necessary hypotheses on the point cloud and related
discretization parameters.

Hypothesis 2 (Hypotheses on point cloud) We require the discretization G of 2 to satisfy:

(HI) The boundary resolution satisfies hg /5§ — 0 as h — 0.
(H2) The search radius satisfies bothe — 0and h/e — 0ash — 0.

Remark 1 The particular choice of scales satisfying this hypothesis strongly impacts the cost
and accuracy of the resulting numerical method. See Sect. 4.1 for a detailed discussion of
the choices employed in the present implementation.

Suppose we wish to approximate the second directional derivative u,, at some point
X0 € G N 2. Let vi e R? be any vector orthogonal to v. We begin by considering as
candidate neighbors all nodes within a distance r of x¢. From this we select four points
X1, X2, X3, X4 € G N B(Xp, €), one in each of the four quadrants defined by the axes xo + vt
and xo + v17, that are as well-aligned as possible with the line Xo + vz. See Fig. 1.

Using these four neighbors, we seek an approximation of the form

4
—utyy (X0) & —Dh,u(x0) = — Y a;u(x;) — u(xp)).
j=1
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(b)

Fig. 1 A finite difference stencil chosen from a point cloud a in the interior and b near the boundary (Color
figure online)

(a) (b)

Fig.2 The angular resolution of a generalized finite difference stencil (Color figure online)

Here monotonicity requires that each of the a; > 0. In two dimensions, it is possible to find
an explicit form of the coefficients a that yields a consistent, monotone approximation under
Hypothesis 2.

We remark that the discretization error of the resulting scheme depends on two parameters:
the effective spatial resolution € (the maximum distance between xo and the points x; used
in the finite difference stencil) and the angular resolution d¢ (the maximum angle between
the axis aligned with v and the vector x; — Xq). These components of the error are not
independent of each other, and we find that the angular resolution is bounded by d¢ =
max{O(h/e), O(hp/d)}. See Fig. 2.

Once any second directional derivative can be approximated, it is easy to substitute these
into nonlinear operators of the form (1). Functions of the eigenvalues of the Hessian (2) are
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also easily approximated in two dimensions via the Rayleigh quotient characterization,

(D) = min sy, A (D%u) = max uyy. (©6)
V= y|=

3 Discretization
3.1 Construction of the Grid

In order to build a grid or point cloud on which monotone schemes can be constructed
efficiently for general domains, we seek to extend the framework used in [21] and summarized
in Sect. 2.3. Structured grids provide certain advantages in building the stencils quickly, but
as in two dimensions, the boundary needs to be more resolved than the interior and it is
necessary to preserve an appropriate gap § between interior and boundary points. In two
dimensions, where the boundary is a one-dimensional curve, this is fairly straightforward.
However, it is much more difficult to find an optimal sampling of boundary points in three
dimensions.

We begin by identifying interior points. Our strategy is to begin with a uniform discretiza-
tion of a cube C covering the domain (2 C C), then reduce to only the interior points.
Denote the grid by G. Define x;j, i, j,k =0, ..., n to be the nodes of the discretized cube
C and let / be the space between adjacent nodes.

Next we define the signed-distance function to the boundary of the domain §2,

dist(x,02) x¢ 2
G(x) = { —dist(x,082) x€ 2
0 X € 082.

As in two dimensions, we will require that there be some separation § between the interior
and the boundary in order to consistently resolve directional derivatives near the boundary.
Thus, the interior points in G are chosen to be

Xjjk € Cs.t. G(Xjjx) +8 < 0.

This ensures that there is a distance of at least § between the boundary and any interior point.
A two-dimensional visualization of this process is shown in Fig. 3a.

Note that although we start with the discretization of a cube, this restriction can be applied
to arbitrarily complicated three-dimensional regions.

Next we describe the discretization of the boundary, which must have an effective reso-
lution 1 < §< h in order to produce consistent schemes near the boundary.

At each candidate interior point near the boundary, we focus on the following small cubes

Cijr = [xi, xit1] X [yj, yj+1] X [2k, zk+1], @

which we define for any i, j, k such that C;jx N 92 is non-empty. Here x;jx = (x;, ¥}, zx),
and x;41 = x; + h. To identify these, we seek any such cube such that at least one corner
X_ € Cjjy satisfies G(x_) < 0 and one corner x; € C;ji satisfies G(xy) > 0.

Then boundary points are added to the point cloud by further discretizing these boundary
cubes and using the projection of points sufficiently close to the boundary of the domain. Let
Cij be a boundary cube. We introduce the discretization

Djjx = [(xi +ihg,yj+ jhp, 2k +khp)st. 0 <i,j, k< nB] (3)
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(a) (b)

Fig.3 A two-dimensional visualization of the construction of the grid. a Candidate interior points, with points
too close to the boundary rejected. b Candidate boundary points, with selected boundary points projected onto
the true boundary (Color figure online)

where the boundary resolution g = O(h/np).

As candidates for boundary points, we select any points X € D; j suchthat G(x) < hTB. We
then project each of these candidates onto the true boundary and include the results Proj, o, (x)
in our point cloud G. The projection is computed using the signed distance function G (x) to
the boundary of the domain, with the gradient of G giving us the direction of the projection.
This allows us to represent the projection as

Proj;o(x) =x — nVG(X).
The value of 1 € R is then obtained by using a bisection method to solve
Gx—nVG(x)) =0.

A two-dimensional visualization of this process is given in Fig. 3b.

A consequence of the specific sampling procedure utilized in this implementation is that the
ratio hi = np must be an integer. As the grid is refined, consistency requires that % — 00.
However, this will not happen continuously. This can translate to sudden increases in accuracy
and computational cost as the grid is refined, rather than a smooth dependence on the grid
resolution.

We emphasize again that Hypothesis 2 requires this procedure to lead to an over-resolution
of the boundary (hp < h), which is necessary (as in 2D) in order to preserve both consistency
and monotonicity up to the boundary. There are O (n%) boundary cubes, each of which contains
(’)(nSB) points. Of these, we select O(n%) to project onto the boundary. This leaves us with
a total of O(nzn%) boundary points in G, as compared with O(1n?) boundary points in a
traditional three-dimensional Cartesian grid.

3.2 Approximation of Second Derivatives

Next we describe a process for constructing a (negative) monotone approximation of the
second directional derivative u,, (Xg). We look for schemes of the form

Uyy(X0) ~ Dyytg = Y aj(u(x;) — u(Xp)) ©)
j=1
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(b)

Fig.4 Examples of a a perfectly aligned neighbor along the vector x( + v/ and b four non-aligned neighbors
along this direction (Color figure online)

where each x; € G N B(X, €) is a nearby grid point and all a; > 0 for monotonicity.

In the simplest setting, where the direction v is grid aligned (Fig. 4a), we can simply use a
standard centered difference discretization. That is, suppose that v € Z3 with |v| 7 < € and
xo £ vh € G. Then we define

u(xo + vh) +u(xg — vh) — 2u(xp)
|V|2 hZ

Dypitg = s (10)

which satisfies all the requirements outlined above.

This is the approach taken by traditional wide stencil schemes. However, there are some
clear situations where this simple scheme is not available: (1) if v is not grid-aligned, (2) if v
is grid-aligned but requires a stencil wider than our chosen search radius €, and (3) at points
Xo near the boundary where one or both of xg & v can lie outside the domain.

3.2.1 Generalized Finite Difference Schemes

At points where the simple centered scheme is not available, we will follow the approach
of [21] and develop generalized finite difference schemes. For clarity of exposition, we begin
by considering the approximation of u (Xo).

From the reference point xo (which is treated as the origin), we define an orthogonal
coordinate system using the standard Cartesian coordinate axes x, y,z. Let O;,i =1, ...,8
denote the eight octants defined by these axes. We can also use this coordinate frame to define
spherical coordinates (7}, 8, ¢;) corresponding to any grid point X; € G.
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In order to derive an appropriate scheme for u,, we rely on Taylor expansion. That is, we
seek a scheme of the form

Dyxut(x0) = Y aj(u(x;) — u(xo))
j=1
= Zaj [1x (x0) (xj — x0) + 1ty (X0)(yj — y0) + uz(X0)(zj — 20)

J=l (11)
(xj —x0)° (yj = y0)° (zj — 20)*

J 5 0 +Myy(X0) J 5 0 J 5 0
+uxy(X0)(xj — x0)(yj — yo) + uxz(Xo0)(x; — x0)(z; — 20)

+ 1y (50) (3 = ¥0) 25 = 20) + O(x; = %0 )]

+ uxx (Xo) + uz;(x0)

To simplify this expansion, we want to choose neighbors x; that are well-aligned with the
x-axis so that }yj — yo} , }zj — z()| = 0(|xj — x0|). We recall that in a perfectly grid-aligned
scheme, we would have y; — yo = z; — zo = 0. Inspired by the two-dimensional approach
of [21], we seek one point in each octant O; such that x; — X is as well-aligned as possible
with the direction x. That is, we define

x; = argmin {62 + (¢ —7/2)* |x € 0; NG N B(x0. )} . (12)

See Fig. 4a for the selection of four neighbors well-aligned with the vector v; the four
neighbors along the direction —v are chosen similarly.

Notice that with slight modification, the spherical coordinates 6; and ¢; — 7 /2 of these
neighbors now play the role of the angular resolution d¢ introduced in Sect. 2.3. In particular,
we expect that 0, ¢; — /2 = O(h/e + hp/5) as in two dimensions, which is summarized
in the following lemma.

Lemma 1 (Angularresolution) Let G be a point cloud satisfying Hypothesis 2. Then the points
X defined by (12) exist and have polar coordinates satisfying 0, ¢ —m /2 = O(h/e+hp/$).

Proof Without loss of generality, we consider j = 1. We first suppose that the search ball
B(xg, €) is contained in the domain £2.
Now we define the point X with spherical coordinates 7 = € — h, 0 = sin_l(Zh /€),
(5 =m/2— sin~! (2h/€). By design, the small ball B(X, h) C B(Xg, €). Moreover, from the
definition of #, this small ball contains at least one discretization point X; € G N B(Xp, €).
In Cartesian coordinates, the center of this small ball is given by

(e —M)(e = 2h)(e +2h) _ e+o(e), ¥y=2h+o(h), 7=2h+oh).

.i':
€2

This ensures that for sufficiently small %, the point X; satisfies
3 3 1 3
0 ——-h <X —h, —h<y.zZ —h.
<€ 2 <x1<e+2 2 <y1zl<2

In particular, X; resides in the first octant and the grid point x; defined in (12) is guaranteed
to exist.

Finally, we can verify that the spherical coordinates of this point (and thus also the mini-
mizer in (12)) satisfy

b-of)-o(?). 5-6=0(2)-0(2).
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The other possibility is that the search ball B(xg, €) is not entirely contained in the domain
£2, and that the above construction does not yield existence of the point x;. Then we can repeat
the above construction, replace & with i g and € with §, to obtain 0y, 7/2 — ¢1 = O (hp/d).

]
As desired, we obtain the relationships
|xj — xo| = |x; — 0| cos8; sing; = |x; — xo| + O(|x; — x0| d¢p?),
{yj — yo} = |xj —x0| sinf; sing; = (9(|xj — x0|d¢),
|zj — 20| = |x; — x0| cos ; = O(|x; — x0| d¢h).
Returning to the Taylor expansion in (11), we now neglect all terms that are o(|x i — X0 |2).
This leaves us with
8
Doc(x0) = Y aj [ (x0)(xj — x0) + ty (%0) (yj — ¥0)
j=1
(x; — x0)? 2 3
+u(x0)(z; — z0) + uxx(XO)f + O(|xj — xo| dop + |x; —x0| ") |-
13)

Consistency of the approximation, combined with the monotonicity requirement, leaves
us with the following system of equations for the coefficients a;:

8

Yajxj—x) =0

]:l

Z (y/ —y0) =0

8

S aj(z; —20) =0 (14)
j=1

i (xj—m)2 -1

aj > 0.

We note that the positivity condition allows us to easily obtain bounds on any solution of
this system via the estimate

R S R ox 2
0<a = G — x0)2/2al ) S _ X0)2/2 Z J - (x; — xO)2 .

The Taylor expansion (13) then guarantees a discretization error of

8 8
3 a;0(x; —x0*de + |x; — xo) = D" O + |x; — xo|) = Oh/e + hp /5 + o).
j=1 j=1

In two dimensions, an explicit solution of the system resulting from this procedure could
be obtained. This is not straightforward in three dimensions, and explicit formulas are often
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computationally intractable in practice. Instead, we solve the system (14) numerically through
a least squares procedure. That is, we notice that this system has the form

Ma=Db
a>0

where M is a 4 x 8 matrix. Thus, we can easily obtain a solution by solving the low-
dimensional linearly constrained least squares problem
15)

. 1 2
:mlmmlze 5IMa —b|3

subjectto a > 0.

In our implementation, this is accomplished using the Python Scipy implementation of the
Bounded-variable least-squares algorithm of [36]. This is an active set method, which requires
the number of iterations comparable to the number of variables. However, as the size of these
optimization problems is independent of the grid resolution, this is not a time-consuming
component of the method and the particular choice of optimization routine is not critical to
the performance of the overall method.

We remark that this procedure is easily adapted to the approximation of more general
second directional derivatives u,,(Xo). To accomplish this, we introduce any two vectors
v, v3 such that v, vy, v3 form an orthonormal set. We use these as our coordinate axes,
centered at the point Xg, and introduce the change of coordinates

Xj=(Xj —X0) -V,
Vi = (Xj —Xo) - v2,
Zj = (Xj —Xp) - v3.

The coefficients a; in the approximation Dy, (Xp) in (9) are then obtained by solving the
system (14) using these new coordinates in place of x;, y;, z;.

3.2.2 Existence of a Positive Solution

Our procedure for generating consistent, monotone generalized finite difference schemes in
3D hinges on finding a solution of (14) via a least squares procedure. However, it is by no
means obvious that a solution satisfying the positivity requirement (a; > 0) actually exists in
general. Fortunately, this is guaranteed by our careful choice of neighboring points x; lying
in different octants.

The proof of this relies on Farkas’ Lemma [39].

Lemma 2 (Farkas’ Lemma) Let M € R"*" andb € R"*!. Then exactly one of the following
two conditions holds:

— There exists a € R"™! such that Ma = b and a > 0;
— There exists y € R™*! such that MTy > 0,y"b < 0.

This allows us to prove the existence of a solution to the scheme (14), which immediately
yields existence of a consistent and monotone scheme for u,,(Xg).

Lemma 3 (Existence of positive solution) A positive solution to the system of equations (14)
exists if the eight neighbors X lie in different octants as required by (12).
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Proof Since each of the points X; is chosen to lie in the octant O, we can assign a definite
sign to each of the x; — xo, y; — Yo, and z; — zo. Moreover, since the x; are chosen to
minimize 62 + (/2 — ¢)2 and X; # X, we are assured that each x; # x¢. The system (14)
then takes the form

Ma=Db
a>0
where
Cl] —C12 —C13 C14 C15 —C16 —C17 CI8
M= | €21 €22 —C€23 —C24 C25 C26 —C27 —C28 b=

€3] €32 €33 (34 —C35 —C36 —C37 —C38
C4l C42  C43 €44  C45 C46 €47 C48

: (16)

- o O O

and all of the ¢;; > 0 with c4; > 0.

Following Farkas” Lemma, suppose there exists some y such that ATy > 0 and bTy < 0.
Notice that this second condition implies that y4 < 0. There are eight possible combinations
of signs for the remaining components yj, y2, and y3.

Consider, for example, the case where y1, yz, y3 > 0. Then we would have

(M"y)7 = —c17y1 — c27y2 — 3753 + cazya < 0.

Similarly, we can verify that any other possible combination of signs in y;, y2, y3 will require
at least one component of M Ty to be negative.

We conclude that there is no y such that both M7y > 0 and y” b < 0. By Farkas’ Lemma,
we infer the existence of a solution to (14). ]

We should also remark that this same strategy can be used using one perfectly aligned neighbor
along the direction v (the setting of Fig. 4a) and four non-aligned neighbors along the direction
—v (the setting of Fig. 4a). This situation can easily arise near the boundary, involving one
perfectly aligned interior neighbor and four non-aligned boundary neighbors. The proof of
Lemma 3 is unchanged since it does not require the assumption that the points xi, ..., Xg
belonging to the eight octants are pairwise distinct. In particular, a perfectly aligned neighbor
simply belongs to 4 such octants.

Corollary 3 (Existence of a consistent, monotone scheme) Under the assumptions of Hypoth-
esis 2, let v be any unit vector in R3. Then the procedure described in Sect. 3.2.1 yields a
consistent, monotone approximation of the negated second directional derivative —u, (Xo).
Moreover, the formal discretization error is O(€ + h/e + hp/d).

3.3 Approximation of Nonlinear Operators

We can utilize these monotone approximations of the second directional derivatives to solve
a wide class of fully nonlinear elliptic PDEs. In this case of equations of the type (1) that
explicitly depend on directional derivatives over a finite subset of directions, an appropriate
discretization is immediate.

Fh(x, ux),u(x) —u(-)) = F (x,u(x), Dyyux);ve A, xegGnNAL. 17

Monotonicity follows immediately from the fact that the elliptic operator F is a non-
increasing function of the second directional derivatives, which are approximated with a
negative monotone discretization.
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We are also interested in functions of the eigenvalues of the Hessian (2). The Rayleigh
quotient formulation that was used in two dimensions (6) does not immediately provide an
expression for all three of the eigenvalues that we need to consider in three dimensions.
Straightforward modifications of this formula, involving minimization over an appropriate
subspace of R? to obtain the middle eigenvalue A>(D?u), do not lead to monotone approxi-
mations for A, (D%u).

Instead, we use properties from linear algebra to provide a new formulation that will allow
for an appropriate monotone approximation of nonlinear functions of Ay (D?u), A2(D?u),
r3(D%u). To accomplish this, we first consider all sets of orthonormal coordinate frames in
RY (where we are particularly interested in d = 3 in this work).

V={1...va) | v; €RY lvjlla =1, v; LvV¥i# j). (18)

Lemma4 (Functions of eigenvalues) Let G : R — R be non-increasing, ¢ : R — R
concave, and A a symmetric real-valued d x d matrix. Then

w1,v2,..v4)€V

d d
G D ¢(A)|= max G|> ¢lAv)]. (19)
j=1

j=1

Proof Since A is a real-valued symmetric matrix, we can find d orthonormal eigenvectors
Vi,...,Vq.Any (v, v2,...vg) € V can be expressed as a linear combination of these eigen-
vectors:

d d
T
v = chkvk = Z(vj Vi) V.
k=1 k=1

Since v; and v; are both orthonormal, we can also compute

d d d

2 T
E Cjk=(g Cjka)<E C]'[Vl):vjv]':l,
k=1 k=1 =1

Now for any unit vector v j, we can use Jensen’s inequality to estimate

d d
¢(V/T~A"j) =¢ (Z CﬁM) > Zc?kq&(kk).
k=1 k=1

Summing these concave functions yields

d d d d
D 0wl Av) =YY o) =Y p()
j=1 k=1

j=1k=1

with equality if the (vq, ..., v4) coincide with the eigenvectors (vy, ..., v4) of A.
Since G is non-increasing, we conclude that

(v1,v2,...v9)eV

d d
G| oA = max G|) ¢ Av))
j=1

j=1
m}
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Remark 2 This also applies if G is non-decreasing and ¢ convex, with the maximum replaced
with a minimum.

This formulation immediately suggests a consistent, monotone approximation of the func-
tions of the eigenvalues of the Hessian D?u since v’ (D%u)v is identical to the second
directional derivative u,,. That is, for equations of the form (2),

d
F((D*u), 22(D*u), a(D*w) ~  max G [ Y ¢p(Dyu,u) | (20)
(v1,v2,...v9)eV sl
However, this is not computationally feasible as it requires computing a maximum over an
infinite set of orthogonal coordinate frames.
Instead, we must consider some finite subset V" of the possible orthogonal frames V. We
begin with a finite subset E”  S? of unit vectors in R?. Then we let

Vi ={(v1,....va) € E" | v; Lw¥j #i}.
We can define the angular resolution of this subset to be

df = max min max cos_l(vi - V). 21
(Vi VO)EV (vy,...,v)eVh i
That is, for each frame in V, we first find the frame in V" that minimizes the worst case angle
between v; and v;. Then, we maximize over all possible frames in V to find the worst case
do.

We remark that V' is a manifold of dimension D = w, known as the orthogonal
group. Thus in three dimensions, a necessary condition for achieving an angular resolution
d6 is that the number of elements in V" satisfies #(V") > ¢(d6)~P = ¢(d8)~3 for some
fixed ¢ > 0.

Many suitable choices of V" are possible, and this immediately leads to an appropriate
discretization.

Lemma5 (Consistent, monotone approximation) Consider a grid G satisfying Hypothesis 2
and a finite set V" C V chosen so that the angular resolution d® — 0 as h — 0. Let G be
continuous and non-increasing and ¢ be concave. Then

d
Flu) —u() =  max G| ¢pDypux)|. xegng (22)
=1

(v1,v2,..v9)€V!
is a consistent, monotone approximation of (2).

Remark 3 1f the functions G and ¢ are Lipschitz continuous, we can use the Lipschitz conti-
nuity of the maximum operator and the formal consistency error from Corollary 3 to deduce
a formal consistency error of O(e + h/e + hp/5 + d6).

3.4 Boundary Conditions

We now turn our attention to the approximation of boundary conditions. Dirichlet boundary
conditions are straightforward. However, we are also interested in constructing monotone
schemes for Neumann or Robin boundary conditions, as well as the nonlinear second type
(optimal transport) boundary condition Vu(§2) C §2*.
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3.4.1 Approximation of First Derivatives

We begin by describing the approximation of first directional derivatives in directions n
exterior to the domain. That is, letting ny be the unit outward normal to the domain at the
point x € 952, we discretize derivatives up(xg) = Vu(xXp) - n for directions n satisfying
n-ny, > 0.

As with the interior, simple schemes can be used if the direction n is well-aligned with
the grid (locally at the boundary point Xo). That is, if n € Z* and |n| & < €, we could utilize
the upwind scheme

u(xo) — u(xo — nh)

Dn(x0) = Inlh . (23)

However, given that the boundary is highly resolved relative to the interior and that compli-
cated domains are possible, we do not expect this simple approximation to be possible in
general.

In the interior, we were able to construct monotone schemes by choosing neighbors in
different octants relative to the direction and the point of interest. On the boundary, a similar
approach yields monotone schemes for the first directional derivatives using only interior
neighbors.

Taylor expanding as before, we get

NE

Dpu(xg) = ) a;u(x;) — u(xp))

J

Il
-

Il
.Ms

Il
-

2
a; [ 142 (x0) = o)1ty (x0) (v = o)+t (%0) (2 — 20)+O([x; =x0[) ] .
j
24
Consistency is achieved by equating the coefficients of the various first partial derivatives
to the components n1, ny, n3 of the unit direction n. Coupled with the (positive) monotonicity
requirement, we obtain the system

m
Y aj(xj —x0) =n

j=

]; aj(yj — yo) =m 25)

> aj(zj —z0) = n3

j=1
aj <0.

As a simple way of selecting appropriate neighbors, we let C; jx be the first small cube (7)
entered by the ray xo — rn. We choose as neighbors X1, X7, X3, X4 the four vertices of the face
through which this ray enters the small cube.

Lemma 6 (Existence of a negative solution) A negative solution to the system of equa-
tions (25) exists if Xo — i lies in the convex hull of the four vertices X1, X2,X3,X4 of a

square for some t > 0.

Proof Since x( — tn lies in the convex hull of the four corners of a square, then it also lies
in the convex hull of three of these points. Without loss of generality, let these be X1, X2, X3.
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Then there exist A1, A2, A3 € [0, 1] with A} + A>» + A3 = 1 such that
X0 — n = A1X] + A2Xp + A3X3.

Now we let v(x) be the piecewise linear interpolant of the values of u(x) at the points
X0, X[, X2, X3 € R3. Since v is linear, we can compute its first directional derivative in the
direction n via

% v(Xg) — v(Xp — tn)

on t

v(X0) — A1v(X1) — A2v(X2) — A3v(X3)
p )

Then we can easily verify that

ag=—— m=——,a3=——,a4=0
t t

is a solution of (25). m]

Corollary 4 (Existence of a consistent, monotone scheme) Consider a grid G satisfying
Hypothesis 2 and let n be any vector in R? exterior to the domain 2 at the point Xg € 3S2.
Then the procedure described in Sect. 3.4.1 yields a consistent, monotone approximation of
the first directional derivative un(Xo).

3.4.2 Approximation of Optimal Transport Conditions

In optimal transport and many geometric PDEs [8], a traditional boundary condition is
replaced by the so-called second type boundary condition Vu(£2) C £2* where 2* C R3 is
convex and the solution u is also required to be convex.
This global constraint can be re-expressed as a nonlinear Hamilton—Jacobi equation on
the boundary
H(Vu(x)) =0, xe€df2 (26)

where H is the signed distance function to the boundary of the target set £2*. By utilizing
the Legendre-Fenchel transform, it is possible to rewrite this in the form

sup {Vu(x) - n—H*(n)} =0, xe0. (27)

n-ng>0

This is established in [5, Lemma 2.4], and is due to the fact that the solution u we seek is the
gradient of a convex function.

This immediately allows us to construct an appropriate discretization using our approx-
imations for first directional derivatives up and the finite subset E” of unit vectors in R3.

Lemma 7 (Consistent, monotone approximation) Consider a grid G satisfying Hypothesis 2
and a finite set EM C S? chosen so that the angular resolution d6 — 0 as h — 0. Then

H"(x, u(x) — u(-)) = max {Dnu(x) —H*m) [ne€E" n-ng> o} . xeGNaR (28

is a consistent, monotone approximation of (27).
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4 Implementation

The preceding section shows how to define a consistent, monotone approximation for a wide
range of fully nonlinear elliptic operators in three dimensions. However, naive evaluation
of these approximation schemes may be computationally intractable in three dimensions. In
this section, we describe the details of our implementation that allow us to evaluate these
schemes efficiently. This discussion can be separated into two parts: discussion of a particular
discretization and discussion of a particular solution method.

In Sect. 4.1, we propose a particular choice of discretization parameters that is designed
to enhance the efficiency of evaluating the finite difference scheme. The resulting scheme
fits within the framework of Sect. 3 and relevant convergence results apply.

In Sects. 4.2-4.3, we propose a combination of an active set method with a Gauss-Seidel
iteration for solving the system of nonlinear algebraic equations resulting from our discretiza-
tion. This requires many evaluations of the nonlinear operator. As this can be expensive, we
utilize a multi-level approach for efficiently estimating the value of this nonlinear operator.
The techniques in these sections are proposed without proof of convergence. However, these
methods perform well in practice (see Sect. 5) and we can easily verify that the solution we
obtain does in fact satisfy the desired system of nonlinear algebraic equations.

4.1 Discretization Parameters

There are many valid choices for the parameters used to construct our numerical discretiza-
tion. The particular choices used in our implementation are motivated by the need for
efficiency that is brought to the forefront in three dimensions.

We begin with the parameters used to define the grid in Sect. 3.1, particularly the boundary
resolution & p and the gap to the boundary §. We recall that the total number of boundary
points scales like (’)(n2n23) while the total number of interior points scales like O(n3). While
the boundary has to be more highly resolved than in a traditional finite difference grid, we still
desire the number of boundary points to be less than the number of interior points to prevent
this high resolution from significantly impacting computational cost. With this in mind, we
choose np ~ n'/*, so that the total number of boundary points is O(n3/%) < n?. Note that
the boundary resolution is then iz = O(h/ng) = O(h>/*), which is asymptotically less
than 4 as required by Hypothesis 2. In order to satisfy the condition hp < §, we choose
8 =h/2.

The procedure for approximating second directional derivatives also requires us to define
a search radius € >> h. We recall that (as long as we are not too close to the boundary), the
discretization error of these approximations depends on both the effective spatial resolution
€ and the angular resolution d¢p = O(h/¢€) (Corollary 3). Motivated by the desire to balance
these two components of the error, we choose € = /h for an overall discretization error of
O(v/'h). We note that the discretization error near the boundary will be slightly larger in this
implementation as it scales like O (hp/8) = O (h5/ 4 /h) = O(h'/*). However, this occurs
in only a narrow band near the boundary and need not necessarily affect the scaling of the
overall error in the computed solution.

If we are considering functions of the eigenvalues of the Hessian (2), we also need to
define a discretization V" of orthogonal coordinate frames. In two dimensions, this is very
straightforward. However, in three dimensions, the number of possible coordinate frames
can quickly become very large as the resolution d6 of V" is improved. In light of the need
to conserve computational resources, we would like to make use of the simple centered
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scheme (10) as much as possible. For this reason, we restrict our attention to grid aligned
directions remaining within our search radius and define

<e/h}. (29)

E'={veZ vl

and
vi= {1 v, v3) v, € B v Lwjvi # (30)

Then the more complicated generalized schemes only need to be constructed in a band of
width € around the boundary. We provide a simple construction showing that this leads to a
consistent scheme, though we do not pursue an optimal bound on the angular resolution d6.

Lemma 8 (Discretization of coordinate frames) Let (vi, va, v3) € V. Then the angular
resolution of the discretization V" in (30) is bounded bydd =0 ((h/e)l/6).

€

V31h
we have m > 1 for small enough /4. Now we seek an element (vy, v, v3) € V" such that
C

v b > 11— —
m

1/3
Proof We first define the integer m = L( > ]. Since Hypothesis 2 requires & < ¢,

for every i = 1, 2, 3 and for some fixed C > O.
Let v;,1, v; 2, v; 3 be the three components of v;. We suppose without loss of generality
that vy 3 > 1/+/3 and propose the following choice:
vi = (Lmvy,1], lmvi 2], lmv; 3])
vy = (Lmvis)lmva 1], lmvi 3] lmva ], —mvy 1] mva1] — lmvy 2] [muva2])
V3 =V X V).
Note that by construction these vectors have integer components and are mutually orthogonal.
We now produce estimates on the relevant norms and inner products by relying on the
orthonormality of vy, v2, v3 and the following bounds on the floor function:
muvj j — 1< Lmvi,jj < muvj ;.
Sincem — ooash — 0, we may also express this asymptotically as [mv; ;| = mv; j+O(1).
We can then rewrite the first two vectors as
v = (mvr,1 + O(1), mv 2 + O(1), mvy 3 + O(1))
v2 = (m*v1 3021 + O(m), m*vy 3022 + O(m), —m*vy 1v2,1 — M*vy 2022 + O(m))
=m?v13 (v2,1 + O(1/m), v22 + O(1/m), v2 3+ O(1/m)).

Here the simplification in the last line is due to the fact that v; and v, are orthogonal, which
allows us to write

1
V23 = ———(v1,102,1 + V1,202.2).
V1,3

Note that the asymptotic bounds we obtain are independent of the vectors vy, v2, v3 since all
components are less than one in magnitude and v 3 is bounded away from zero.

A more careful estimate of the errors produced by the floor function quickly leads to the
bound

2 _ 2.9 > 2 2
[vill; <m=(vi | +vi, +vi3) =m".
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Applying the same procedure to v2, we find that
2 4,2 2 2 2 2 2 2 .2
vall; <m (U1,3U2,1 + Vi3V + V7V + v],zvz,z) + 2muy 1| lmvz 1] lmvy 2] lmva 2]
4 2 2 4
=m*vi 3|v2ll5 + 2 (Lmvi1 ] lmva,1 | lmv 2] lmvan] — m*vyqva,v12022)

Taking into consideration the different possibilities for the signs of vy 1, v2,1, v1,2, v2,2, and
recalling that these terms must be less than one in magnitude, we obtain the bound

Iv2113 < m*vf 5 +2((m + D* —m?)
30
<m* +30m3 = m* (1 + —) < 31m*.
m

We conclude that
il <m, (w2l < mPvis + Om) < V31m?.
Because these are orthogonal, we also obtain
lvallz = [Ivill2llvallz < v31m?.
This immediately implies that for all i = 1, 2, 3 we have
Ivilloc < v/31m® < €/h

so that indeed (v, v, v3) € yh,
Relying on the fact that the vectors v; are orthonormal, we can also estimate the relevant
inner products as

vi-vi=m+0O{), vy -vy= m2v173 + O(m).

This leads to the bounds
O(1 1
vl'f’l > L()=1+O<i>
m m

m?v1 3+ O(m) _q (9(1).

vy D = —
2= m2vy 3 + O(m)

m
Next, we use orthogonality to compute
v3-v3 = (v X v2) - (V| X ¥2)

= (v1-v)(v2-v2) — (v2-v) (V] - v2)
= [vili2llv2ll2 [(1 + O /m)) (1 + O(1/m)) — O(1/m)O(1/m)].

From this we verify that

__ Ivillalvallz (0 + O /m)) =1+O(i>
3 m ’

v3 - D3
vill2llvall2

These bounds on the inner products lead immediately to a bound on the angular resolution
do via (21). O

Since the second type boundary condition (27) is typically coupled to PDEs that depend

on the eigenvalues of the Hessian, it is natural to use this same discretization of unit vectors
in the approximation of this boundary condition.
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4.2 Identification of Orthogonal Coordinate Frames

In this section, we discuss the evaluation of the expression in (20), which requires computing
a maximum/minimum over many different orthogonal frames in order to achieve a consistent
approximation of functions of the eigenvalues of the Hessian.

Identifying all possible coordinate frames occurring in (30) can be done offline. For each
integer stencil width k& € N, we can use brute force to construct and save the coordinate
frames that can be constructed using this stencil width. That is, we define

Ex={veZ||Ivleo <k}. 31)

and
Vi = {(v1,v2,93) | v; € Ex,vi LwVi #j}. (32)

Then for a given problem (which may involve many different choices of domains, grid
resolutions, particular PDEs, etc.), we simply define V/ = Vj« where k* = |€/h]. As these
have been pre-computed, there is effectively no computational cost to identifying the relevant
coordinate frames.

However, actually solving a PDE involving the eigenvalues of the Hessian can require
multiple evaluations of a minimum/maximum over all possible frames. In three dimensions,
this becomes very expensive; see Table 1 for an overview of the number of coordinate
frames as a function of stencil width. For this reason, we propose a multi-level approach for
obtaining the solution of these maximum/minimum problems. We will focus the discussion
on the problem of solving systems of the form

max F(u,vi,vy,v3) =0, (33)
(vy,v2,v3)eV;x
which immediately provides a means for approximating schemes of the form (20).

The idea of our approach is to first solve (33) over coordinate frames of maximum stencil
width one. From here, we identify the twenty-five coordinate frames (of maximum stencil
width two) most closely aligned with the maximizer (v§1), vél), vgl)) of the narrow stencil
problem. We once again solve (33) over this small set of possible coordinate frames. This
procedure can be repeated, maximizing over twenty-five coordinate frames at a time, until
we are solving the system by maximizing over frames of the desired maximum width k£*. See
Fig. 5 for a visualization of this procedure.

We remark also that this procedure is only being used to seek coordinate frames of partic-
ular stencil widths. These same (potentially wide stencil) coordinate frames are valid even
at points close to the boundary of the domain. However, at these points it becomes nec-
essary to use the generalized finite difference scheme (11) rather than the simple centered
schemes (10).

We begin by producing a hierarchy of possible coordinate frames, which can be gener-
ated offline and stored. To accomplish this, we explicitly identify the different components
appearing in the sets of coordinate frames Vj. That is, we write

Vi = {(vl, Vo, v3) | V] € Vk(l), V) € Vk(zwl), vy =v1 X vz}

where Vk(l):Ek and for each v € Vk(l) we define a set

Vk(Z;v') ={vo € Ex | vy Lwi}.
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Fig.5 A two-dimensional illustration of the multi-level process for one direction v in the orthogonal frame.
The true direction that maximizes (33) is given by the black line. In the first level, we maximize over all
the nearest (red dot) neighbors. We then identify the five (black plus) neighbors of stencil width two most
closely aligned with the maximizer. After maximizing over these five neighbors, we continue the procedure
by identifying the best five (yellow diamond) neighbors of stencil width three (Color figure online)

Next, we create a map from each v, € Vk(l) to the five most closely aligned vectors

vev®

el We introduce the notation

a(v, n) = cos™! <i>
Il 1l

to denote the angle between the vectors v and . Then the map has the form

1 1
Tk(+)1(v1) = {1, ma, 3, Ry, 15} C Vk(+)1

and satisfies the close alignment condition

1 1 1
a(vi, p) < a1, §) forevery p € T, (1), & € v — T, 01).

Similarly, we produce a map from each vy € V,((Z;Ul) to the five most closely aligned
vectors in Vk(i;lﬂ ) This now has to be done for every L € qur)l (v1) since we need to obtain
nearby orthogonal coordinate frames, not merely nearby vectors. That is, we define

@:p) Q:p)
T 02) = {p1s pas p3, 04, 05} C VLT

satisfying the close alignment condition
2; 2; 2;
a(v2. p) < a(vy. §) forevery p € TH 1 (n2). & € VG — TGP (vy).

We emphasize again that all of the preceding work in building a hierarchy of maps can
be accomplished offline and stored for later use in a wide variety of problems. Then the
actual work of solving (33) involves solving a small number of similar problems, each
involving at most twenty-five possible coordinate frames. The required online computations
are summarized in the very short Algorithm 1.
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Algorithm 1 Estimating the solution of (33) over orthogonal coordinate frames.

W=V

2:fork=1,...,k* —1do

3: u < solution of max F(u;vy,vo,v3) =0
(vy,v2,v3)eWg

4: (v1,v2,v3) = argmax  F(u; vy, v, v3).

(v1,v2,v3)eWy

1 2;
500 Wit = {(I‘«lal’«Zsﬂ3) (WSS T;{(+)1(V1),IL2 € Tk(+1’“)(l’2), n3 =pp X ﬂz}-
6: end for

7: u < solution of max F(u; vy, vy, v3).
(v1,v2,93)EWx

4.3 Solution Methods

We also describe the techniques used in this implementation to solve the discrete system of
nonlinear equations arising from our approximations. In three dimensions, it is not practical
to explicitly build Jacobian matrices due to their prohibitively large sizes. Moreover, the
schemes constructed in this paper are not differentiable with respect the unknown u because
they involve a maximum or minimum. Finally, many of the PDEs we consider are degenerate
and/or have singular solutions. Thus, Newton’s method is not immediately suitable for these
problems.

Our approach here is to use a combination of an active set approach [7], which has excellent
stability properties for the nonlinear systems we consider, and a simple Gauss-Seidel iteration.
Depending on the particular PDE of interest, the solver may collapse into only one of these
methods or it may involve a combination. In the future, this approach could be accelerated
using a nonlinear multigrid method.

Recall that we are trying to solve systems of the form

max F(x,u(x), Dyu(x), Dyyux);v e A) =0, xeg. (34)
AeZ (x)

Above, the A consist of finite combinations of admissible directions v and the set = (x)
indicates the different combinations of directions that need to be considered. For example,
for approximations of the form (17) involving a given set of admissible unit vectors A, the
set &' (x) = {A} is a singleton. For approximations of the form (22) involving the eigenvalues
of the Hessian, the set Z(x) = V" and each A € 5 (x) consists of an orthogonal triplet.
At boundary points involving approximation of the transport boundary conditions (28), each
A = {n} consists of a single unit vector and the set

E(x):[{n}|neEh,n~nx>0].

The basic approach is to iterate through a two step process. First, for a given input u, we
identify the directions A(x) € & (x) that maximize (34) at each point x in the computational
domain. Secondly, we fix this direction and seek an approximate solution of

F(x, u(x), Dyu(x), Dyyu(x); x € A(x)) = 0.

In order to implement the second part of the procedure, we recall that our finite difference
systems can be written in the form

F(x,u(x), Dyu(x), Dyyu(x); x € A) = G (X, u(x), u(")).
As an example, we consider a standard centered difference approximation of Poisson’s equa-

tion. In this case, A = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and the finite difference operator is given
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by

F (%, u(x), Dyu(x), Doyt (); X € A) = = ) Dyyut(x) + (%),
ve A

which is equivalent to

1 6
Gax,ux),u()) = 2 X:(M(X +hv) + u(x — hv)) + hﬁu(X) + f(x).
ve A

We design a Gauss-Seidel iteration for this by solving for the reference value u (x) in terms
of the values at the remaining grid points. That is, we identify a function G;ll (x, u(-)) such
that

Ga (% G & u(),u()) =0,

In some cases (for linear or simple nonlinear operators), this function G;‘l can be identified
explicitly. For example, in the example of Poisson’s equation this function is given by

G (x u() = é D x4 hv) + u(x — hv)) - éf(x)hz.
ve A

In more complicated examples, this inverse can be obtained (or approximated) through several
iterations of a nonlinear solver such as a scalar Newton’s method.

The resulting solution method is described in Algorithm 2. This solver is simple to imple-
ment and memory efficient since there is no need to construct the Jacobian matrix. In practice,
we can initialize the method with the solution computed on a less refined grid.

Algorithm 2 Solution method for (34)

1: while Residual > Tolerance do

2:  forx e Gdo

3: A(x) = argmax G 4 (X, u(x), u(-)).
AecZ (x)

4 end for

5 fork=1,...,10do

6: for x € G do

7: () = G 1 (%, u()).
8 end for

9 end for

10: end while

4.4 Eigenvalue Problems

Our framework can also be used to solve eigenvalue problems involving fully nonlinear
elliptic PDEs. These take the form

F(x,Du(x))=c, xef
Hx,Vu(x)) =0, x€0d82 (35)
u(xp) = 0.
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Here the constant ¢ € R is unknown a priori. These arise from PDEs that require data to
satisfy a solvability condition, which may not be known explicitly, may not be satisfied exactly
by noisy data, or may not be satisfied at the discrete level even if the original continuous
problem is well-posed. Examples that can be cast in this form include the Neumann problem
for Poisson’s equation, Monge—Ampere type equations in optimal transport, and the problem
of computing minimal Lagrangian graphs [8].

With minor modification, monotone schemes can be used to correctly compute both the
eigenvalue ¢ and the solution u [25]. Thus our discretization applies immediately to these
problems. The only modification needed is to add an additional unknown c to the nonlinear
system, which is also augmented by an additional equation (u(xop) = 0) designed to select a
unique solution.

5 Computational Results

We demonstrate the effectiveness of the method by solving a variety of computational exam-
ples including a range of challenging nonlinear PDEs and different boundary conditions.

Many of our test examples are smooth (C ) as this makes exact solutions easier to procure
and allows us to test whether the formal discretization error can be achieved in practice.
However, our implementation is also designed to converge to weak solutions, as evidenced
by a test case (the convex envelope equation) where the solution is only Lipschitz continuous.

Our focus in these tests is in demonstrating (1) convergence of the discrete solutions u” to
the true solution u, (2) efficiency of the proposed procedures for setting up the computational
domain and finite difference stencils, and (3) practicality of our multi-level procedure for
evaluating functions of the eigenvalues of the Hessian. The method proposed in Algorithm 2 is
robust and allows us to easily test these properties of our schemes. However, the development
of a fast solver is not a focus of the present work and actual solver times can vary wildly
between different problems and grid resolutions.

In Sects. 5.1-5.6, we discuss a number of different examples with a view towards verifying
convergence and accuracy of the method, which is strongly dependent on the particular details
of the equation and solution regularity. In Sect. 5.7, we provide a summary of the computa-
tional cost associated with constructing and evaluating our finite difference approximations,
which turns out to be essentially independent of the particular problem.

5.1 Linear Degenerate Equation

We begin by considering a linear degenerate equation posed on the unit sphere:

(36)

—uUyy(x,y,2) =0, x2+y2+z2 <1
u(x,y,z) =sin Qr(x — 2y —32)), x2+y24+2=1

where v = (1, -1, M) The exact solution is

u(x, ) Z) = sin (27T(X - \/Ey - \/gz))

Note that the direction v is not aligned with any Cartesian grid. For this example, neither
the grid aligned scheme we derived nor any other grid aligned scheme can be used for a
consistent, monotone approximation [21,30]. Consequently, the generalized finite difference
schemes must be used exclusively.
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Fig.6 A convergence plot for the linear degenerate Eq. (36) (Color figure online)

Convergence results are presented in Fig. 6 and demonstrate better than the expected
O(¥/h) accuracy. At one point, we observe a great jump in accuracy as  is refined slightly.
This is due to the scaling of therationp = h/hp ~ n /4 which is constrained to be an integer
in our particular implementation in order to facilitate efficient discretization of the domain £2.
This causes the angular error d¢ near the boundary to decrease discontinuously rather than
smoothly as the grid is refined. Smooth relationships between / and 4 p are also possible, and
would not be expected to produce this artifact in the convergence plot. Regardless, the ability
of our scheme to improve angular resolution as the grid is refined is of particular importance
in this type of fully non-aligned PDE operator, for which the angular discretization error can

easily dominate.

5.2 Maximum of Linear Operators

For a second example, consider the following fully nonlinear PDE:

2 4y242

u(x,y,2)=e 2 +yr+=1

imax{_uvlvla _uv2v2} = f(x, y’ Z) xz +y2 +22 < 1

where
vi=(1,1,0), vo=(-1,0,1

and

x24y242 x24y2 42

(37

1 1
f(x,y,z):max{—ie 2 (2+x2+2xy+y2),—§e 2 (2+x2—2xz+z2)}.

The exact solution is

x2+y2 2

u(x,y,z) =e 2

+z
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Fig.7 A convergence plot for the two-operator problem (37) (Color figure online)

The convergence plot is presented in Fig. 7. As with the linear degenerate equation, there
is a discrete jump at one point due to a discrete increase in the boundary resolution. Once
again, we observe better accuracy than the expected O(+/h) for this fully nonlinear problem.

5.3 Convex Envelope Equation

Next, we consider a PDE for computing the convex envelope of an obstacle [31].

{max{—kl(Dzu), u—gl=0 x2+y>+72 <025 a8)

u=0.2 x24+y24+72=025

where

g(x,y,z) = min {2,/ (x2 4+ y2 4+ 22), 0.2} .

In addition to being a fully nonlinear equation, the solution to this PDE is only Lipschitz
continuous (but is not differentiable at the origin). Thus, it must be interpreted in a weak
sense, and the use of a discretization that converges to the viscosity solution is imperative.
The exact solution for this problem is the cone

u(x, Y, Z) = 04\/m

We remark that this PDE involves only the smallest eigenvalue of the Hessian matrix. It
can therefore be characterized using the traditional Rayleigh—Ritz form and discretized as

Al(Dzu) ~ min Dyyu.
veE"!
The convergence plot is presented in Fig. 8. Note that convergence is not monotone in
this case. This is due to effects of variations in the alignment of the grid points for different

n (by chance, some small values of n can lead to grids that are very well aligned with the
singularity). This effect has previously been observed in two dimensions for problems with
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Fig.8 A convergence plot for the convex envelope equation (38) (Color figure online)

very low regularity [23]. Nevertheless, we observe overall convergence close to O(V/h) even
on this very singular example.

5.4 Monge-Ampeére Equation

Next, we turn our attention to more general functions of the eigenvalues of the Hessian matrix.
We begin with the Monge—Ampere equation:

—det (D2u(x)) + f(x) =0, xe
u(x) = g(x) X e
u is convex.

The determinant can be expressed as a product of the eigenvalues. Since the equation is
only elliptic on the space of convex functions, we follow [20] and use the globally elliptic
extension

—max (A1, 0) max (A2, 0) max (A3, 0) — (min (11, 0) + min (A2, 0) + min (A3, 0))+ f = 0.

(39)
We notice that this can be decomposed into two different functions of the eigenvalues, each
of which can be written in the form of (2). That is, let ¢; (x) = log max{x, 0}, G| (x) = —e*,
¢2(x) = min{x, 0}, and G2 (x) = —x. Then we can re-express this Monge—Ampere equation
as

3 3
Gi | D 1 (Du) | +Ga [ Y 2(D?ux) | + f(x) =0,

j=1 j=1

similar to [22]. This now fits within the framework we require to produce consistent, monotone
approximations.
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Fig.9 A convergence plot for the Monge—Ampere equation (40) (Color figure online)

Consider the specific example

—det (D2u(x, y,2)) + 2@ H D1 422 132 4 22) =0, 22 +y2+22 < .25

24y2422
u(x,y,z)=e 2 22432 4+72=25
u is convex.
(40)
with the exact solution being
222

u(x,y,z) =e 2

The results are included in Fig. 9. On this example, we also observe better than the expected
OWh) convergence.

5.5 Neumann Boundary Conditions

Next, we consider Poisson’s equation with Neumann boundary conditions. The point of
this example is, of course, not to produce a new method for solving Poisson’s equation.
Instead, we use it to test our characterization of functions of the eigenvalues of the Hessian,
our generalized finite difference implementation of Neumann boundary conditions, and our
ability to solve eigenvalue problems.

We recall that the data must satisfy a solvability condition in order for a solution to exist.
Moreover, even if the continuous problem is well-posed, the discretized problem need not
be [25]. Therefore, we choose to frame this as the following eigenvalue problem:

(41)

— (M(D?u) + 2o (D?u) + 23(D*w)) = cf (x,y,2) x> +y*+2% <1
du(x,y, 1
u(JaC;lyz):e2 x2+y2+z2=1
where
x2+)72+:2

fxy.2)=@+x>+y>+70e 2
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Fig. 10 A convergence plot for Poisson’s equation with Neumann boundary conditions (41) (Color figure
online)

The exact solution is

x2+y2+zz

u(x,y,z) =e 2

with ¢ = 1.

To further test our characterization of functions of the eigenvalues of the Hessian, we also
note that the Laplacian does trivially have the form of (2) with ¢(x) = x and G(x) = —x.
The results are presented in Fig. 10. On average we observe the expected O(+/h) accuracy
on this example.

5.6 Second Type Boundary Conditions

Finally, we consider the problem of computing minimal Lagrangian graphs [8]. This is an
eigenvalue problem for a nonlinear PDE, equipped with the second type (optimal transport)
boundary condition. Specifically, we seek a convex function u and a scalar constant ¢ € R
satisfying

tan~! (A1 (D%w)) + tan~! (A2(D%w)) + tan~! (A3(D*w)) = ¢, X2+ y*+22 <1
Vu(S?) c T(S?).
(42)
where T'(x, y,z) = (x +2, y + 1, z — 1) is an affine shift. The exact solution is

x+22+ G+ D>+ (z—1)3
5 .

u(x,y,z) =
In order to discretize this function of the eigenvalues of the Hessian, we first need to put

the PDE operator into the form of (2). To accomplish this, we introduce a modification that
agrees with (42) on the space of convex functions (which is where the desired solution lives).
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Fig. 11 A convergence plot for the computation of minimal Lagrangian graphs (42) (Color figure online)

In particular, we propose the alternate operator

3
— Z (tan_1 (max{x;, 0}) + min{2;, 0})
j=1

which fits immediately into the required form. The optimal transport type boundary constraint
is discretized as described in Sect. 3.4.2.

The computed results are shown in Fig. 11. Once again, we observe slightly better than
the expected O(v/h) accuracy overall.

5.7 Computational Cost

We now summarize the computational cost required to construct and evaluate the finite
difference approximations (17) or (22) at every point in the computational domain G. In the
following discussion, N represents the total number of grid points. All computations were
performed in Python on a 2012 Windows 7 laptop with 8GB of RAM and a 4 core AMD A6
vision processor.

We first present the time required to set-up the domain and finite difference stencils for
each example. This in itself is a complex problem, which involves a delicate procedure for
discretizating the boundary and the need to construct many wide stencil finite difference
approximations. Nevertheless, the cost of our implementation is essentially linear in the total
number of grid points. See Fig. 12a.

We also report the computation time required to evaluate the finite difference approxima-
tions (17) or (22) at every point in the computational domain. See Fig. 12b. Once again, we
observe a cost that is essentially linear in the total number of grid points. This is particularly
telling for the examples involving the eigenvalues of the Hessian matrix (Monge—Ampere
equation, Poisson’s equation, and Lagrangian equation), which were computed using the
multi-level procedure of Algorithm 1.
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Fig. 12 a Set-up times and b evaluation times for the examples in Sects. 5.1-5.6 (Color figure online)

Table 1 Stencil widths (given by h N S - .
tencil width # Coordinate fi S

round(1//7)) and number of encil wi oordinate frames :
coordinate frames required to Brute force Multi-level
evaluate (22) using either a brute
force approach or the multi-level 0.125 303 3 632 78
approach of Algorithm 1 0.071 1520 4 1528 103

0.042 7377 5 3720 128

0.029 20,799 6 6264 153

0.023 87,979 7 12,176 178

To further elucidate the cost savings of Algorithm 1, we also display the stencil width and
corresponding number of coordinate frames that need to be checked using either the brute
force procedure or the multi-level procedure for our computational examples; see Table 1.
The multi-level procedure has dramatically reduced this cost. In fact, the computational cost
of the brute force procedure made it impossible for us to carry out these computations for
a stencil width greater than 2 on the finest grids we consider. Thus this procedure should
be viewed as essential to our ability to construct these finite difference schemes in three
dimensions.

6 Conclusion

In this paper, we introduced a new monotone finite difference method for solving a wide vari-
ety of fully nonlinear elliptic equations in three dimensions. Because the resulting schemes
are monotone, they are guaranteed to converge via the Barles-Souganidis convergence frame-
work [2] and generalizations of these to non-classical Dirichlet problems [23], optimal
transport problems [24], and eigenvalue problems involving nonlinear PDEs [25].

In particular, we described a new technique for discretizing general three-dimensional
domains, which produces the higher boundary resolution needed to preserve both consis-
tency and monotonicity throughout the entire domain. We also introduced and analyzed a
simple least-squares method for generating consistent, monotone approximations of sec-
ond directional derivatives. Moreover, we showed how to use these to construct monotone
approximations of a large range of fully nonlinear elliptic operators. Finally, we produced
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generalized finite difference approximations for a range of different boundary conditions
including Dirichlet, Neumann, and the nonlinear second type (optimal transport) boundary
condition.

This paper focused primarily on efficiently constructing these approximations in three
dimensions, which is much more expensive than the analogous problem in two dimen-
sions. Because our grids inherit much of the structure of a Cartesian grid, constructing the
finite difference stencils is straightforward throughout most of the domain. A more serious
computational challenge in three dimensions is evaluating nonlinear operators that require
computing a maximum/minimum over many different orthogonal coordinate frames; this is
needed for many fully nonlinear operators. We proposed a multilevel approach to this eval-
uation of the nonlinear operators, which converted the problem from one that is completely
intractable in 3D to a very efficient process.

In future work, we intend to leverage this new scheme, which can be evaluated very
efficiently, to produce numerical methods that are both efficient and higher-order. In particular,
we will develop faster solvers for the discretized systems that utilize the underlying structure
of the monotone approximations. We will also use these as a foundation for convergent,
higher-order filtered methods [19].
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