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ABSTRACT: Learning is a widespread ability among animals and, like
physical traits, is subject to evolution. But how did learning first arise?
What selection pressures and phenotypic preconditions fostered its
evolution? Neither the fossil record nor phylogenetic comparative
studies provide answers to these questions. Here, we take a novel ap-
proach by studying digital organisms in environments that promote
the evolution of navigation and associative learning. Starting with a
nonlearning sessile ancestor, we evolve multiple populations in four
different environments, each consisting of nutrient trails with various
layouts. Trail nutrients cue organisms on which direction to follow,
provided they evolve to acquire and use those cues. Thus, each organ-
ism is tested on how well it navigates a randomly selected trail before
reproducing. We find that behavior evolves modularly and in a pre-
dictable sequence, where simpler behaviors are necessary precursors
for more complex ones. Associative learning is only one of many suc-
cessful behaviors to evolve, and its origin depends on the environment
possessing certain information patterns that organisms can exploit.
Environmental patterns that are stable across generations foster the
evolution of reflexive behavior, while environmental patterns that vary
across generations but remain consistent for periods within an organ-
ism’s lifetime foster the evolution of learning behavior. Both types
of environmental patterns are necessary, since the prior evolution of
simple reflexive behaviors provides the building blocks for learning
to arise. Finally, we observe that an intrinsic value system evolves along-
side behavior and supports associative learning by providing reinforce-
ment for behavior conditioning.
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Introduction

Associative learning has long been considered fundamental
to the adaptability of behavior and development of knowl-
edge about the world (Hume 1738). It is also widely assumed
that associative learning emerged as animal behavior evolved
greater complexity and may have provided new avenues for
this complexity to increase (Godfrey-Smith 1996; Weber and
Depew 2003; Duckworth 2009; Ginsburg and Jablonka 2010;
Brown 2013). The general fitness advantage of learning in
living organisms seems clear: learning enables an organism
to adapt its behavior during its lifetime without requiring
genetic changes across generations (as with evolution), and,
unlike other forms of behavioral plasticity that occur dur-
ing development, learning can result in very rapid rather
than gradual behavioral modifications (Dennett 1996; Dukas
2013). Most research on the evolution of learning has focused
on the adaptive specialization of learning—how the speed of
learning, biases to learn certain things better than others, and
capacity to store learned information correlate with the reli-
anceonlearninginan organism’s natural environment (Selig-
man 1970; Stephens 1991; Mery and Kawecki 2002; Dukas
and Ratcliffe 2009; Shettleworth 2010; Domjan 2012). Little
is known, however, about the historical question of what se-
lection pressures and evolutionary precursors facilitated the
emergence of learning from ancestors incapable of doing so
or about the processes that allowed more complex forms of
learning to evolve from simpler ones (Moore 2004; Dunlap
etal. 2019).

Most people assume that complex behavior evolves in re-
sponse to complex challenges; however, the evolution of be-
havioral complexity need not entail the emergence of learn-
ing (Godfrey-Smith 2002). Rather, learning evolves under
specific environmental dynamics: where conditions that are
relevant to the organism’s fitness change on the timescale of
generations but remain relatively stable within an individu-
al’s lifetime (Stephens 1991). Furthermore, in the particular
case of the evolution of associative learning, there must also
be learnable cues that reliably correlate with the state of the
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environment (Dunlap and Stephens 2009). In this situation,
organisms may benefit if they use those cues to track current
conditions and map them to appropriate responses. Since
the environment and cues may change between generations,
the mapping cannot be encoded genetically and must be
learned during the organism’s lifetime.

Researchers have explored the factors of environmental
dynamics and cue availability that are necessary for the evo-
lution of associative learning using both mathematical and
empirical approaches (Stephens 1991; Dunlap and Stephens
2009). However, it is still an open question whether these
factors are sufficient for associative learning to emerge during
the evolution of an organism’s behavioral repertoire. Here,
we propose:

Hypothests 1. The initial evolution of associative
learning depends on the scaffolding provided by the
prior evolution of a repertoire of instinctual behav-
iors that exploit stable environmental patterns.

Skinner and others speculated that complex behavioral traits
do not evolve independently of each other but build on pre-
existing ones according to a characteristic evolutionary se-
quence that starts with simple movement, then sensing, fol-
lowed by tropisms and reflexes, and finally learning (Skinner
1984; Miller and Todd 1991). Similarly, it has been suggested
that different forms of learning are not independent but
evolve from one another in a specific sequence, where more
complex forms build on the mechanisms of simpler ones
and subsume them (Wells 1968; Razran 1971; Hawkins and
Kandel 1984a, 1984b). For example, associative learning
would have evolved from sensitization (Wells 1968; Razran
1971; Hawkins and Kandel 19844, 1984b), a simpler, non-
associative form of learning where an organism increases
its response to a repeated stimulus (van Duijn 2017). There-
fore, we propose:

Hyporaesis 2. Complex behaviors, including learn-
ing, do not arise and function independently from
one another. Instead, as more complex cognitive pro-
cesses arise, they do so in a modular and stepwise
manner, where early instinctual behaviors (such as
moving and sensing) are co-opted and integrated into
increasingly more complex ones (such as error recov-
ery or path prediction) before eventually reaching as-
sociative learning.

It has also been speculated that the emergence of associa-
tive learning required only minor modifications in preex-
isting memory mechanisms (Hawkins and Kandel 19844,
1984b; Ginsburg and Jablonka 2010), enabling it to evolve
in parallel in different species (Ginsburg and Jablonka 2010).
Thus, we propose:

HyporhEsis 3. Associative learning can arise sud-
denly, as a result of small modifications in preexisting
cognitive mechanisms, as opposed to arising gradu-
ally and independently by accumulating incremental
changes under selection.

Finally, given the expectation that environmental charac-
teristics, such as stability and cue availability, shape the type
oflearning that evolves (Stephens 1991; Dunlap and Stephens
2009; Domjan 2012), we investigate an additional hypothesis
on the flexibility of the associative learning mechanism that
evolves in a particular environment. We propose:

Hyporaesis 4. Organisms that evolve associative learn-
ing will not be able to change established associations
(e.g., reversal learning) unless such changes were nec-
essary for success during evolution.

Our research focuses on a definition of associative learning
that emphasizes its consequences for behavior rather than
the mechanisms by which it works. We think this approach
is justified because associative learning is traditionally de-
fined in operational rather than mechanistic terms—for
example, as “a behavioral modification, dependent on re-
inforcement, involving new associations between different
sensory stimuli, or between sensory stimuli and responses”
(Ginsburg and Jablonka 2010, p. 13)—and may not even be
a unitary behavioral trait with consistent properties across
species. For example, it is by no means clear that associative
learning involves distinct mechanisms from those under-
lying simpler, nonassociative forms of learning, such as ha-
bituation and sensitization. In Drosophila, mutants incapa-
ble of associative learning also show reduced habituation and
sensitization (Duerr and Quinn 1982), and in Aplysia, sensi-
tization and associative learning share many of the same mo-
lecular elements (Roberts and Glanzman 2003). It is also not
clear whether there is only one way of implementing asso-
ciative learning mechanistically. All animals in which asso-
ciative learning has been well established have a central ner-
vous system (i.e., brains)—although many animal groups
have not yet been tested (Ginsburg and Jablonka 2010)—
but having a brain is not necessary for associative learning:
plants are capable of it (Gagliano et al. 2016), and single-cell
organisms may be as well (Armus et al. 2006; Fernando et al.
2009). These observations suggest that associative learning
has evolved independently, acquiring different properties in
different lineages (Moore 2004; Ginsburg and Jablonka 2010;
Shettleworth 2010). Hence, they also justify the assumption
that we can study the evolution of associative learning as a
phenotypic attribute of behavior that is independent of a par-
ticular mechanistic implementation.

Major challenges arise in studying the evolutionary or-
igin of learning. One challenge is the utter lack of fossil



evidence, especially from periods as remote as the Precam-
brian, when associative learning behavior is believed to
have first evolved (Ginsburg and Jablonka 2010). Another
is the difficulty of performing phylogenetic comparisons to
study the origin, as opposed to the adaptive function, of be-
havioral traits. Although phylogenies are valuable to infer
ancestral character states, sequences, and timing of evolu-
tion of traits, this approach is virtually silent on the selective
forces and mechanisms involved (Ord and Martins 2010)
and may suggest patterns of evolution that could result from
multiple different processes (Losos 2011). In addition, asso-
ciative learning is such a widespread and likely ancient be-
havior that it is particularly challenging to reconstruct an
accurate phylogeny because of the lack of out-groups and
because its origin presumably predates the rapid adaptive ra-
diation of the Cambrian explosion (van Duijn 2017). The
ubiquity of associative learning behavior among extant spe-
cies is also a challenge for experimental evolution, which has
been very successful in studying the adaptive modification of
existing learning mechanisms in animals but can reveal little
about the origins and early evolution of learning (Dunlap
et al. 2019).

To overcome these limitations, here we study the origins
of learning behavior in populations of self-replicating com-
puter programs that undergo open-ended evolution in a vir-
tual environment (Grabowski et al. 2010). These digital organ-
isms are selected for their ability to cope with behavioral
challenges in which associative learning may confer a fitness
advantage; specifically, the environment provides alternative
courses of action and cues that reliably correlate with the
correct action, although these cues vary across generations
(Dunlap and Stephens 2009).

This approach allows ample opportunities for a wide
range of behaviors to evolve and enables the discovery of
evolutionary principles that are potentially independent of
the cognitive machinery that is undergoing evolution. We
emphasize that digital evolution is not a simulation of evo-
lution but rather an instantiation of it (Pennock 2007): al-
though digital organisms are evaluated in simulated environ-
ments, their behavioral control algorithm undergoes actual
Darwinian evolution. Specifically, (i) organisms reproduce
and pass on their evolved traits, including their behavioral
algorithm, to their offspring; (ii) inheritance is subject to
mutations, producing variation; and (iii) individual fitness
depends on an organism’s performance at specific behav-
ioral tasks and determines the outcome of the competition
for space in a size-limited population. This approach enables
true experimental study of evolutionary history across mul-
tiple replicate lineages evolving under different conditions,
providing insights not only on the outcomes of evolution
but also on the transitions that occur in different lines of de-
scent. Digital evolution has a proven track record of expand-
ing evolutionary theory (Wilke et al. 2001; Lenski et al. 2003;
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Chow et al. 2004) with supporting evidence often collected
later in biological systems (Codoiier et al. 2006). Previous stud-
ies in Avida have also demonstrated the evolution of instinc-
tive navigation, such as gradient ascent and trail-following
behavior (Grabowski et al. 2008), including the genetically
encoded use of memory to dictate subsequent behavior (Gra-
bowski et al. 2010). Here, we extend this work beyond reflex-
ive behaviors to study the evolution of associative learning
where each individual organism must discover a mapping be-
tween environmental cues and the optimal response.

Our results support the aforementioned hypotheses and,
moreover, provide a rich picture of the circumstances that
favor—or disfavor—the evolution of learning, including the
critical role played by historical contingency. Learning is a
rare outcome of evolution in our system, not because of any
intrinsic difficulty in the underlying computation but rather
because oftentimes lineages evolve highly flexible behavioral
strategies over which learning does not provide a strong se-
lective advantage. When learning does evolve, it emerges via
an almost stereotypical sequence, as proposed by Skinner and
others (Skinner 1984; Miller and Todd 1991). Finally, we find
that the evolution of behavior is inseparable from the evolu-
tion of an intrinsic value system, the innate gauge of an or-
ganism’s experiences that provides positive or negative feed-
back on its actions.

Experimental System

We used the Avida digital evolution platform for all of our
experiments (Ofria et al. 2009, 2015). Avida is a linear ge-
netic programming platform, meaning that each organism’s
genome consists of an ordered sequence of computer in-
structions in a machine-like language. Instructions are sim-
ple, self-contained operations, such as adding two values,
storing a value in memory, or skipping to another instruc-
tion if one value is greater than another. During evolution,
random mutations occur that can insert, remove, or replace
instructions in offspring. Note that any sequence of Avida
instructions can be executed; as such, mutations will always
produce valid programs even if their functionality may be
meaningless.

In addition to the instructions for arithmetical and logi-
cal operations described above, we used a single instruction
that caused the organism to reproduce as well as a set of
instructions that acted as simple sensors and effectors to
interact with the environment (described in the next sec-
tion). Using Avida provided key benefits for the experimen-
tal study of evolution. For example, the set of instructions
we used formed a Turing-complete programming language
that, in theory, can represent any algorithm—including any
behavioral control algorithm—given the necessary sensors
and effectors. In addition, it is easy to analyze an Avida organ-
ism to dissect and study the behavioral control algorithms
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that evolve. Furthermore, we can archive all ancestors and
their evolutionary lines of descent to examine the evolution-
ary transitions that occurred along any lineage, allowing us to
study patterns that reveal how one set of behaviors might po-
tentiate another.

An Avida organism is defined by a sequence of instruc-
tions (its genome), and each particular sequence defines its
genotype. In our experiments, each population was seeded
with a “naive” organism that lacked any instruction for be-
havioral control other than the one necessary to reproduce.
Such an organism’s genome consisted of a sequence of null
instructions that acted as placeholders for future behavioral
“genes” and a single “reproduce” instruction. To reproduce,
an organism had to execute a minimum number of instruc-
tions, that is, spend a minimum amount of time in the en-
vironment in order to mature. At the same time, an organism
also had an upper limit in the number of instructions it could
execute before it tried to reproduce, essentially creating a
maximum age. If an organism failed to reproduce by the time
this limit was reached, it was eliminated from the population.
Reproduction was asexual and resulted in the production of
two offspring, both inheriting a copy of the parent’s genome.
However, only one of the offspring was subject to mutation,
while the other remained identical to the parent and essen-
tially replaced it.

Populations were capped at 3,600 organisms. Once that
limit was reached, every organism that was born resulted
in an existing one being randomly removed. Organisms
did not interact with each other in the environment; how-
ever, the age limit and the competition for space in the size-
limited population created a strong selection pressure for
fast reproduction.
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How well an organism performed the behavioral task de-
termined the rate at which its offspring’s instructions were
executed and consequently how quickly they could repro-
duce. Therefore, the better an organism performed on the
behavioral task, the faster its offspring executed their behav-
ioral algorithm and reproduced. Thus, behaviors evolved in
this digital system in a purely Darwinian fashion.

The Behavioral Task

Bees, ants, and other insects are known to use local and dis-
tant landmarks for navigation (Dyer 1991, 1998; Collett and
Collett 2002; Grabowski 2009; Grabowski et al. 2010). For
example, experiments have shown that bees can learn visual
cue associations to successfully navigate complex mazes
(Zhang et al. 1996, 1999). Inspired by these experiments,
the behavioral task that we presented to evolving Avida or-
ganisms consisted of navigating a trail of nutrients in a vir-
tual arena (fig. 1), where nutrients provided cues that in-
dicated the direction to follow—if organisms evolved the
ability to sense and use them. An organism’s task was to
complete as much of the trail as possible and then reproduce
before the end of its life. The system kept track of the organ-
ism’s cumulative performance by counting the number of
new nutrient locations it visited and subtracting the number
of empty (i.e., off-trail) locations encountered. This count
was then divided by the total number of nutrients in the trail
to compute the organism’s “task quality,” which ranged from
0 to 1 (negative values were set to zero). Nutrient locations
were counted only on the first visit; subsequent visits to
the same nutrient location would not affect an organisms’
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Figure 1: Sample arena and nutrient trail. Shown is one of four virtual arenas from an environment. Each virtual arena contained a single
trail of nutrients laid out in a unique configuration. At the beginning of its life, each organism was placed alone at the start of the trail (green

circle) in a randomly selected arena and oriented in the direction of

the next nutrient.



task quality. However, visits to empty locations were always
deducted. The organism had no sensory feedback about its
task quality (i.e., cumulative performance), similar to the
way a natural organism cannot sense its own fitness. Never-
theless, our organisms are limited relative to natural ones
that may be able to measure payoffs of their foraging deci-
sions by the rate of some physiological condition, such as
gut fullness (Charnov 1976).

Each environment in our evolutionary experiments con-
sisted of four virtual arenas, each with a different trail con-
figuration (fig. 1). Every time an organism was born, it was
randomly assigned to one of the four arenas, placed at the
beginning of the trail on a nutrient location, and oriented
in the direction of the next nutrient. The use of four trail
configurations reduced the likelihood of an organism evolv-
ing a rigid control algorithm tailored to a single nutrient
trail (genetically hardwiring a sequence of actions) instead
of a flexible control algorithm that captures the principles of
trail navigation.

Each of our experiments consisted of between 50 and
900 replicates. At the end of an experiment, we selected the
predominant (most abundant) genotype from each repli-
cate’s final population for behavioral analysis. Given the
large population size, the predominant genotype typically
represented dozens of organisms, implying that they, on av-
erage, outperformed the rest of the population on all four
trail configurations. Indeed, in these experiments we found
that the predominant genotype typically had the highest
task quality scores on each of the four trails; thus, we mea-
sured its performance by computing the population’s aver-
age maximum task quality (AMTQ) scores across all trail
configurations.

An organism’s interaction with the environment depended
on sensor and effector instructions acquired through muta-
tion and maintained during evolution. These instructions
conferred the abilities to sense the nutrient content of the
current location (“sense current”), rotate right by 45 degrees
(“rotate right”), rotate left by 45 degrees (“rotate left”), take
one step ahead (“move ahead”), and take one step back while
facing forward (“move back”).

The execution of a sense current instruction provided
feedback, in the form of an integer, about the nutrient con-
tent of the location the organism occupied. Empty locations
and nutrients, in both straight portions of the trail and at
turn points, were each sensed as different values. Therefore,
the numeric value of the nutrients could cue the organism
to the direction of the trail once they evolved the ability to
interpret the sensed values correctly. There were four types
of cues: right turn (45 degrees), left turn (45 degrees), for-
ward, and empty location (fig. 1). Nutrients that indicated
forward (forward cue) and empty location were always rep-
resented by the integers 0 and —1, respectively. Meanwhile,
nutrients that indicated turns (turn cues) were each assigned
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a distinct random number between 1 and 100 every time an
organism started on a trail, and this assignment persisted
only during the organism’s lifetime. Since forward cues and
empty locations had persistent values between generations,
organisms could evolve to use them to predict optimal fu-
ture moves. However, the environmental uncertainty rep-
resented by randomized turn cues created an additional chal-
lenge for the organism: it not only had to move and follow
the trail, but it also had to identify the direction represented
by the turn cues. The optimal way to overcome this chal-
lenge was for an organism, within its lifetime, to associate
either the right turn cue or the left turn cue with the correct
action, thus identifying the opposite turn cue by exclusion.

Although one cannot predict the course of evolution, if as-
sociative learning evolved in our experiments, we expected to
recognize it by observing the path of the organism along the
trail. When placed on a new trail and allowed a period of ex-
posure to the different turn cues, an organism capable of as-
sociative learning should be able to consistently turn to the
correct direction every time it encounters a turn cue, some-
thing that would not be possible if the organism were using
heuristics or choosing randomly.

Experimental Conditions
Experiment 1

In experiment 1, we tested four different environments,
each with four possible trail configurations (table 1; figs. S1-
S4; figs. S1-S19 are available online). In three of the envi-
ronments, the trails of nutrients started with a simple (and
presumably predictable) pattern (table 1). In the fourth envi-
ronment, which served as a control, the trails provided nu-
trients in an unpredictable pattern—that is, each of the first
two turns had equal probability of being to the right or to
theleft. This setup allowed us to test our first three hypotheses
(as presented above). We performed 50 evolutionary repli-
cates for each of the four conditions listed in table 1. See sec-
tion S.1 of the supplemental PDF (available online) for ad-
ditional details on methods.

Experiment 2

In experiment 2, we applied an additional selection pres-
sure aimed at the evolution of reversal learning. We used
only the nutrient cued environment but reversed the turn
cues at approximately the 85% mark of each trail (fig. S5).
In a complementary experiment, we tested different cue re-
versal positions ranging between 10% to 90% in 2.5% in-
crements and found that it did not affect the results signif-
icantly (supplemental PDF, sec. S.4; fig. S8). Therefore, we
report only the results for the 85% mark.
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Table 1: Environments for experiment 1

Predictable-start environments

Control environment

One fixed turn

Two fixed turns

Nutrient cued

Random start

Trail start
pattern

The first turn was always
to the right in all four
trails (fig. S1)

The first turn was always to

the left and the second
was always to the right
in all four trails (fig. S2)

The direction of the first

and second turns was
random in all four trails
but could be predicted
by counting the number
of forward cues preced-
ing the first turn (an odd

The direction of the first

and second turns was
random, and the number
of forward cues preced-
ing the first turn was the
same in all four trails
(fig. S4)

number meant left, while
even meant right; fig. S3)

Note: Each environment contained four different trail configurations. An organism experienced only one trail configuration in its lifetime. See section S.1 of

the supplemental PDF for images of each environment.

We performed 900 evolutionary replicates in experi-
ment 2. The reason for the larger number of replicates than
in experiment 1 was to generate a sufficient number of phe-
notypes for lineage studies, especially to explore the ances-
try of the rare organisms that evolved reversal learning. A
lineage study consists of singling out the final predominant
organism of a population and reconstructing its line of de-
scent, testing every ancestral genotype on the behavioral task
to uncover how the behavior evolved over time. Although
this experiment was designed to test hypothesis 4, it also en-
abled us to obtain additional evidence relevant to hypothe-
sis 3. See section S.1 of the supplemental PDF for additional
methodological details.

Raw data, code, and a video associated with this research
are available in the Dryad Digital Repository (https://doi
.0rg/10.5061/dryad.f45gh6s; Pontes et al. 2020). The custom
version of Avida used in this study is available at https://
github.com/mercere99/Avida-AssociativeMemory (Ofria
et al. 2015).

Results

Repeated Evolution of Adaptive Behaviors: Error
Recovery, Imprinting, and Reversal Learning

Our experiments resulted in the evolution of organisms ca-
pable of adapting to unpredictable environments by using
a variety of strategies, including associative learning. We
also observed the evolution of flexible strategies that did
not rely on learning (table 2). We called the most successful
nonlearning strategy “error recovery,” in which an organ-
ism attempted to follow the nutrient trail and, on stepping
off the trail, performed the necessary actions to return to it
but did not modity its future behavior based on the error. A
particularly notable result was the repeated evolution of as-
sociative learning, including both a rigid form that we called
“imprinting” and a more flexible form that we called “re-
learning” (described in table 2).

We also found recurrent patterns in the behavioral strat-
egies that evolved. Organisms from different evolutionary
replicates, which inevitably had genotypes producing dis-
tinct behavioral control algorithms, generated a consistent
set of behavioral phenotypes. We analyzed more than 300
out of 1,100 replicates across all experimental conditions
and found, notably, that they all fell into five easily recog-
nizable categories, including relearning, imprinting, and er-
ror recovery (previously mentioned), plus “searching” and
“path predicting” (see table 2). We found some hybrids of
these strategies as well.

The specific type of associative learning that evolved in
our experiments was “instrumental conditioning,” in which
an organism forms an association between a stimulus and a
behavior from its repertoire (Ginsburg and Jablonka 2010).
Organisms that performed imprinting formed an associa-
tion early in their lives that was used for future decisions
but could never be modified. Organisms that performed re-
learning also formed associations between cues and actions
early in their lives but were able to form new associations if
the cues changed, regardless of whether they were swapped
or replaced with novel ones. Additionally, we identified en-
vironmental factors and historical constraints that strongly
influence whether associative learning evolves.

The ability to relearn when cues are swapped is called
“reversal learning,” a learning ability that is sometimes re-
garded as cognitively complex (Hadar and Menzel 2010;
Bissonette and Powell 2012; Xue et al. 2013). A typical or-
ganism capable of reversal learning followed the trail of nu-
trients until it encountered a turn cue. Since the integers
representing turn cues were randomly assigned for each gen-
eration, the organism then attempted to turn 45 degrees in
a default direction and move forward one step. If this step
led to a nutrient-containing location, the organism contin-
ued to follow the trail. However, if the organism turned in
the “wrong” direction and found itself on an empty location,
it engaged in a corrective reaction by taking one step back
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Table 2: Behavioral strategies found in all experiments

Behavioral strategy

Description

Typical AMTQ

Learning behaviors:

Relearning

Imprinting

Reflexive behaviors:

Error recovery

A flexible and generalizable strategy, based on instrumental condi-

tioning, that allowed organisms to navigate any trail configuration
regardless of the starting pattern. Organisms using this strategy
were able to re-form the cue-response association multiple times,
even when the cues were reversed (fig. S15).

A somewhat rigid strategy, based on instrumental conditioning,

where organisms made the cue-response association early, and
only once, in their lifetimes (fig. 2). These organisms were not able
to relearn cues that were changed or reversed. This strategy was
further classified into two subtypes: “generalizable” and “nongen-
eralizable.” The generalizable subtype enabled organisms to imprint
and navigate on any trail configuration regardless of the starting
pattern, while the nongeneralizable subtype limited organisms to
imprint on trails with the same starting pattern in which the
organisms evolved.

A flexible and generalizable strategy that allowed organisms to

navigate any trail configuration regardless of the starting pattern.
These organisms did not discriminate between right and left turn
cues. Instead, they reacted to turn cues by turning in one direction
(each organism had its own default direction) and, if this direction
led an organism off the trail, returning and trying the other di-

95%-97% (experiment 2; 97%-99%
in non-cue-reversal environment)

97%-99% (experiment 1; 87%-92%
in cue reversal environment)

78%-84% (experiments 1 and 2)

rection (fig. 2).
Searching

A strategy that appeared only in hybrid combinations with others,

48%-60% (experiments 1 and 2)

especially error recovery and path predicting. It was triggered
if the organism stepped off the trail and typically involved
performing several moving and turning steps to try to find
another segment of the trail and rejoin it (fig. S7).

Path predicting

A strategy where organisms encoded behavioral sequences in their

7%-14% (experiments 1 and 2)

genomes that matched the initial portion of different trails (fig. S12).
This strategy enabled them to successfully navigate the first few
segments of any trail but not the entire trail.

Note: We analyzed more than 300 organisms across all experimental conditions. Although the details of their behavior differed among experiments, all be-
havioral phenotypes could be classified into five strategies or hybrids of two or more. The performance results for each behavioral strategy fell into a typical
performance range, measured by average maximum task quality (AMTQ), and ranked from highest to lowest.

and turning 45 degrees twice (90 degrees) in the opposite di-
rection (as if recoiling and turning away). The organism then
made the association between the turn cue and correct ac-
tion, such that the turn cue alone was sufficient to trigger
the correct action in subsequent encounters. If the turn cues
remained consistent, the organism navigated the remain-
der of the trail without error. Alternatively, if the turn cues
changed further along the trail (including cue reversals) the
organism again exhibited the corrective reaction and up-
dated its association to the new cue, resuming the navigation
without further error. Cues could be changed any number of
times with the organism always relearning the turn cue and
navigating without error until the cue changed again or it
reached the end of the trail (fig. S15).

This serial reversal learning behavior evolved repeatedly,
although it was a rare outcome, evolving in only 10 out of

900 replicates in experiment 2, where we specifically selected
for reversal learning (and not at all in the 200 replicates in
experiment 1, where reversal learning was not actively se-
lected). Nevertheless, many replicates that did not result in
the evolution of reversal learning still produced organisms
that were able to efficiently navigate the entire trail using ei-
ther imprinting or error recovery.

Early Trail Predictability Produces Behavioral
Building Blocks for Learning

Although all environments could promote the evolution of
simple controlled movement, not all of them could lead to
the evolution of learning. All environments were constructed
in a way that could potentially select for behavioral biases,
such as moving along the trail of nutrients and avoiding
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Figure 2: Two top-performing strategies in experiment 1. Shown are the paths of the final predominant organisms from two different
replicates that evolved in the nutrient cued environment in experiment 1. Both were tested in the same trail configuration to facilitate com-
parison. In the left panel, an organism using an error recovery strategy achieved a task quality score of 81% of the maximum. Starting from
the green circle, it moved straight while sensing forward cues but always tried to turn right (45 degrees) when sensing a turn cue. If turning
right led the organism into an empty cell, it would retreat to the previous position and turn toward the left (90 degrees). It continued to repeat
this behavior at every turn cue without ever learning from its error. In the right panel, an organism from a separate replicate using a gen-
eralizable imprinting strategy achieved a task quality score of 98% of the maximum. It also tried to turn right when sensing a turn cue. How-
ever, it stepped off the path only once at the first left turn. It learned the correct cue-response association and navigated the remainder of the

trail without error.

empty locations, that contributed to the overall task perfor-
mance. Indeed, the very first behaviors to evolve were simple
forms of controlled movement, such as oscillatory behavior
(moving back and forth) and moving to an edge of the path
segment and stopping (see supplemental PDF, sec. S.4.1 for
an example).

In addition, all environments provided organisms with
the features thought necessary for learning to evolve: fre-
quent choices of actions (move straight, turn right, or turn
left) and cues that change each generation but reliably indi-
cate the best choice within a generation (Dunlap and Ste-
phens 2009, 2016; Dunlap et al. 2019). However, while these
features were present in all environments, they proved insuf-
ficient to evolve learning. Specifically, no replicates in the
random start environment produced organisms capable of
learning (or even error recovery). In fact, none of the organ-
isms from this environment were able to navigate past the
first turn, and their task quality remained at or below 4% of
the maximum across all 50 replicates. The environments in
which learning did evolve (i.e., one fixed turn, two fixed turns,
and nutrient cued) all had a property that the random start
environment lacked: trails providing a high initial degree of
predictability across generations that enable organisms to

evolve behavioral building blocks and navigate the trail re-
flexively before evolving learning (Skinner 1984). These
building blocks include moving repeatedly, sensing the cur-
rent cue, distinguishing the different cues and reacting to
them, turning to either side, retreating to the trail when an
empty location is sensed, storing a cue in memory, and com-
paring the current cue with the one in memory. This result
supports hypothesis 1.

The predictable-start environments (one fixed turn, two
fixed turns, and nutrient cued; table 1; figs. SI-S3) were the
only ones to evolve complex behaviors, including learning.
These environments also produced a wider range of naviga-
tional strategies and organisms that reached substantially
higher task quality than any organism in the random start
environment (fig. 3; table 3). The nutrient cued environment
produced the largest proportion of organisms that could
navigate the entire trail, followed by the one fixed turn and
the two fixed turns environments. These organisms used im-
printing, error recovery, or a hybrid strategy (table 3). The
organisms that achieved at least 25% AMTQ but did not
complete the trail used the same strategies but performed
more slowly, or simply reproduced before reaching the end
of the trail (table 3).
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Figure 3: Distribution of average maximum task quality (AMTQ) per environment for experiment 1. Each violin plot represents the dis-
tribution of AMTQ across replicates for a given environment. Only the environments that started with a predictable pattern (one fixed turn,
two fixed turns, and nutrient cued) evolved organisms that could finish the trail. They also produced a wider range of navigational strategies
and organisms that reached much higher task quality than the control environment (random start).

Learning May Not Generalize to Novel Environments

Both imprinting and error recovery were successful strat-
egies in experiment 1, but they differed in how well organ-
isms could generalize to novel trails. Organisms that used
error recovery did not depend on the pattern at the start of
the trail for their navigation and could finish any trail con-
figuration that we tested (fig. 2). In contrast, most of the or-
ganisms that used imprinting depended on the specific start
pattern from the environment in which they had evolved to
form the cue association. When tested in trails with a differ-
ent start pattern, these organisms were not able to navigate
far and scored poorly in task quality. However, two rep-
licates in the nutrient cued environment evolved a general-
izable version of imprinting that allowed the organisms to
navigate any trail configuration independently of the start-
ing pattern. These organisms began navigating the trail and,
when sensing a turn cue, turned to a default direction. On
making their first wrong turn and stepping off the trail, these
organisms used error recovery to step back onto the trail and
turn to the other direction. At this point, they imprinted the
turn cue that led them astray and used the learned associa-
tion to navigate the remainder of the trail (fig. 2). However,
when tested in trails containing cue reversals or replace-

ments, these organisms were not capable of coping with such
changes and made wrong turns and stepped off the trail.
They then resorted to using error recovery to get back on
the trail and continue navigating until the end. This result
led us to propose hypothesis 4, namely, that the environment
has to present cue reversals along the trail to foster the evo-
lution of more “complex” learning abilities, such as relearn-
ing and reversal learning (Hadar and Menzel 2010; Bisso-
nette and Powell 2012; Xue et al. 2013), a hypothesis that
we tested as part of experiment 2.

Cue Reversals during Evolution Foster
the Ability to Relearn during a Lifetime

In experiment 2, we used only the nutrient cued environ-
ment because it was the only one where generalizable im-
printing evolved in experiment 1. At approximately the 85%
mark of each trail we swapped (reversed) the values associ-
ated with the turning cues, requiring the organism to learn
to turn in the opposite direction of the one it learned at the
beginning of the trail. We named this condition the “cue re-
versal” environment (fig. S5). In a complementary experi-
ment, we tested varying the cue reversal position between
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the 10% and the 90% mark, without any significant effect on
the results (supplemental PDF, sec. S.4; fig. S8).

The results support hypothesis 4, although, as in previ-
ous experiments, the evolution of a complex learning abil-
ity proved to be a rare occurrence. Of 900 replicates, only
18 evolved the capacity for any form of reversal learning
(fig. 4). In 10 of these 18 replicates, organisms also evolved
the capacity for serial reversal learning, even though their
ancestors had only experienced a single cue reversal in their
lifetimes. In a serial reversal learning trial, the agent is con-
fronted by a repeated reversal of a two-symbol combination.
Organisms from the 10 replicates that could perform this
task exhibited behavior that generalized to any trail config-
uration. In the other eight replicates, organisms evolved at
least some capacity for reversal learning and relearning.
However, their behavior had limitations, such as (i) being
able to learn certain pairs of cues and not others, (ii) gener-
alizing their behavior to some novel trail configurations and
not others, or (iii) having a “short memory,” which is “for-
getting” the association after a while and needing to learn
it anew on making a wrong turn. These limitations led to
failures in staying on the trail, and in these cases organisms

Table 3: Experiment 1: summary of results

got lost or stuck outside the trail or resorted to navigating by
error recovery or searching.

As in experiment 1, the fittest organisms (based on task
quality) that evolved in experiment 2 were those that used
learning strategies. The organisms capable of relearning
scored as high as 97% of the maximum and were the fittest
overall. Their behavior was similar to the generalizable im-
printing that evolved in experiment 1 in that they made the
association between the cue and the correct action on step-
ping off the trail, but they were also capable of relearning if
a cue reversal led them off the trail. Intriguingly, these or-
ganisms could also relearn when tested in environments
where an initial pair of turn cues was replaced by a com-
pletely different pair as well as when they were reversed or
changed multiple times along the trail, even though we did
not specifically select for this form of flexibility.

The next fittest organisms that were capable of learning
employed various hybrid strategies involving imprinting,
error recovery, and path predicting to reach task quality
scores as high as 93% of the maximum. Although incapa-
ble of relearning per se (i.e., replacing a cue association with
another), they were able to form temporary associations

Predictable-start
environments

Control
environment

One fixed turn

Two fixed turns

Nutrient cued Random start

Replicates in which organisms finished the trail

Proportion of
replicates

Strategies evolved
(no. replicates)

Highest AMTQ
observed (strategy)

Proportion of
replicates

18/50 13/50 23/50 0/50
Imprinting (3) Imprinting (5) Imprinting (3%) NA
Error recovery (15) Error recovery (7) Error recovery (20)

Hybrid of path predicting
and error recovery (1)
99% (imprinting) 99.7% (imprinting) 99% (imprinting) NA
Replicates in which organisms did not finish the trail (AMTQ > 25%)

9/50 4/50 4/50 0/50

Imprinting (1) Imprinting (2) Error recovery (1) NA

Strategies evolved

(no. replicates) Error recovery (8)

searching (1)

Error recovery (1)
Hybrid of error recovery and

Path predicting (1)

Hybrid of error recovery and
searching (1)

Hybrid of path predicting,
searching, and
imprinting (1)

Note: Shown are the performance and strategies of the organisms with average maximum task quality (AMTQ) equal to or higher than 25%, organized by

environment. We examined only a sample of organisms that had less than 25% AMTQ. Those that were examined displayed previously described strategies and

did not travel far on the trail. NA = not applicable.

* Two of these organisms performed a generalizable version of the imprinting strategy that allowed them to navigate any trail configuration independently

of the starting pattern.
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Figure 4: Distribution of average maximum task quality across 900 replicates. The performance histogram of all final predominant organism
in experiment 2 reveals a marked grouping by behavioral strategy. Organisms in groups 1 and 2 did not finish the trails, while those in groups 3-
5 did. Group 1 consisted mainly of organisms that navigated by path predicting and its hybrids. Group 2 consisted mainly of organisms that
navigated by error recovery, imprinting, and their hybrids. Group 3 consisted mainly of organisms that navigated by more effective forms of
error recovery. Group 4 consisted mainly of organisms that employed imprinting hybrids. Group 5 consisted mainly of organisms capable of
relearning. The behaviors from groups 1-3 were assessed from a sample of organisms. Those of groups 4 and 5 were assessed from all organisms.

(short-term imprinting). This “short memory” gave the or-
ganisms the opportunity to form a new association after the
previous one had extinguished. This hybrid strategy turned
out to score higher in task quality than imprinting or error
recovery alone. For additional results and a “bestiary” of
evolved behaviors, see sections S.3 and S.4 of the supple-
mental PDF.

The Stepwise Evolution of Learning

We found a discernible pattern in the evolutionary trajec-
tories of the organisms that evolved learning strategies (re-
learning and imprinting). Despite the organisms having
evolved completely independently, these lineages passed
through a characteristic sequence of phenotypic stages cor-
responding to two or more of the categories we described
in table 2.

We analyzed the ancestral lineages of all of the final pre-
dominant organisms that evolved imprinting in experiment 1
and ten of the final predominant organisms capable of re-
learning in experiment 2. Starting from a sessile common
ancestor, all lineages first evolved the capacity for moving,

then sensing, followed by reflexive navigation and then
learning, a result that supports hypothesis 2. In addition,
error recovery preceded the evolution of associative learn-
ing in all of the lineages where the final predominant or-
ganism made the cue-response association by stepping off
the trail (generalizable imprinting and relearning). In lin-
eages where imprinting evolved directly from path predict-
ing, the final predominant organisms were not capable of er-
ror recovery, and their behavior did not generalize to other
trail configurations (nongeneralizable imprinting; figs. 5, 6).

Learning Can Evolve Suddenly

Finally, we found that during evolution, the transitions from
one strategy to another could occur abruptly, often as a result
of a single mutation. This is not to say that a single mutation
was sufficient to produce a new strategy but rather that the
new strategy often evolved silently over a great number of
generations until one or a few mutations triggered the tran-
sition in behavior, a result that supports hypothesis 3. Some-
times this evolutionary transition would give the organism
a large fitness advantage, and its descendants would sweep
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Figure 5: Evolutionary history: 10 lineages. Shown is the evolution of task quality over time in each of the 10 lineages that were ultimately
capable of serial relearning from experiment 2. As they transitioned to a new strategy, some lineages had great gains in task quality, while
others had more gradual ones. All lineages, however, went through occasional periods of fitness loss. Different task quality ranges often cor-
responded to specific behavioral strategies. Range 1 corresponded to path predicting, range 2 corresponded to hybrid strategies that included
searching, range 3 corresponded to error recovery, and ranges 4 and 5 corresponded to imprinting and relearning.

the population. For example, the transition between error
recovery and associative learning (imprinting or relearning)
always occurred in one generation (we never observed any
instance of a behavior that would be intermediary, such as
a simpler form of learning). In one of the lineages we ana-
lyzed, the transition from error recovery to relearning raised
the AMTQ from 81% to 98% in a single generation. This
strategy transition was triggered by a single mutation that
changed the flow of the algorithm so that after an error re-
covery event, the value of the currently sensed cue would be
stored in memory (figs. S16, S17). The remainder of the er-
ror recovery process stayed intact and was subsumed by the
newly acquired relearning capacity. Other components of
the relearning algorithm, such as the module for storing the
cue in memory, had already been part of the ancestor for
many generations but were not used or did not affect the or-
ganism’s task quality. This result represents a clear case of
historical contingency, where one or more modules had to
be in place before new mutations could lead to a fitness gain
(Blount et al. 2008; Lenski 2017). See section S.4.1 of the sup-
plemental PDF for figures and phenotypic descriptions of
the major evolutionary transitions in this lineage.

Discussion and Conclusions

Emergence of Learning Depends on the Prior
Evolution of Reflexive Behaviors

Most studies of the evolution of learning have focused on the
selection pressures that may act to increase or decrease an
organism’s reliance on learning (Mery and Kawecki 2002;
Dunlap and Stephens 2009; Dunlap et al. 2019). Our study
complements and extends this work by examining how learn-
ing may have first arisen. As Dunlap demonstrated (Dunlap
and Stephens 2009, 2016; Dunlap et al. 2019), learning is
favored in environments that present alternative courses of
action, where the best action cannot be predicted at the be-
ginning of an organism’s life but environmental cues exist
that reliably correlate with the best action. However, we
found that although all of the environments possessed those
presumably necessary qualities, they were not sufficient for
learning to arise, as evidenced by results from the random
start environment. Instead, as hypothesis 1 predicts, for or-
ganisms to initially evolve the capacity for learning, they
must first accumulate simple behavioral building blocks to
cope with the environment reflexively. In the cases presented
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here, these building blocks include an ability to move, to
sense different cues, and to perform a range of actions (move
forward, turn left or right, step back) in response to different
cues. Crucially, generalizable learning (generalizable im-
printing and relearning; table 2) arose only in lineages that
first evolved a reflexive ability to correct for missteps and re-
turn to a trail of resources (error recovery; table 2). With
these reflexive behaviors in place, associative learning can
then evolve because it confers an advantage by enabling an
organism to modulate its behavior based on experience. More-
over, we find that reflexive and learning behaviors are shaped
by different characteristics of the environment—the former
by regularities that are stable across generations, and the lat-
ter by patterns that vary across generations but persist for
periods within an organism’s lifetime. The most flexible
learning ability—relearning new cue associations multiple
times during an organism’s life—depends on specific selec-
tion for it (i.e., swapping cues within the individual’s lifetime
as in experiment 2), as we proposed in hypothesis 4.

Stepwise and Modular Evolution of Complex Behaviors

Across many replicate evolutionary runs in several experi-
mental conditions, we found an almost stereotypical histor-
ical sequence leading to the ability to learn. Furthermore,
our results are consistent with the idea that behavioral con-
trol algorithms evolve modularly (Soyer and Goldstein 2011),
where more complex behaviors evolve by building on sim-
pler ones and sharing their mechanisms. For example, learn-
ing mechanisms incorporated previously evolved error re-
covery behavior (figs. S16, S17). This result supports our
hypothesis 2, originally proposed by Skinner and others for
natural organisms (Skinner 1984; Miller and Todd 1991;
Moore 2004), that learning abilities evolve by building on
previously evolved reflexive behaviors.

However, in contrast to Skinner’s model, we found that
not all intermediate modules have an immediate survival
value. Such is the case with the previously mentioned organ-
ism that evolved relearning from error recovery in a sudden
transition triggered by a single mutation (figs. S16, S17) and
whose error recovery ancestors had already acquired the ca-
pacity to store the cue in memory but never used this ability
and, therefore, gained no fitness benefit. Only when a muta-
tion connected the memory-storing with the error recovery
module did the organism acquire the capacity to learn, thus
gaining fitness.

It is important to clarify that no single Avida instruction
or even specific set of instructions could bestow learning on
an arbitrary nonlearning organism. All associative learning
algorithms we observed were assemblies of many instruc-
tions that had to be executed in the proper order for learn-
ing behavior to manifest (see sample learning organisms;

fig. S18). That a single mutation could activate this behav-
ior in an offspring only demonstrates that the remainder of
the mechanism was already in place either as part of the
existing behaviors or as neutral instructions (Lenski et al.
2003; Ofria et al. 2008).

In the eleven lineages leading to imprinting in experi-
ment 1 and in the ten lineages leading to serial relearning
in experiment 2 (fig. 5), we routinely found that complex
abilities evolved from simpler ones in sudden transitions
triggered by just a few mutations. This finding supports our
hypothesis 3, that learning may arise through minor modi-
fication of existing mechanisms, and also lends credence to
the proposition that something similar could have happened
among natural organisms leading up to the Cambrian ex-
plosion (Ginsburg and Jablonka 2010).

More generally, these sharp transitions in phenotype are
a consequence of the modular evolution of behavior. Mod-
ularity inherently reduces the requirements for evolving a
new trait if it can build on existing ones, increasing pheno-
typic complexity with relatively modest genetic modifications
(McAdams et al. 2004; Kashtan and Alon 2005; Wagner et al.
2007), which can build up silently and, once completed,
cause a sudden shift in phenotype.

Why Learning Was Rare

Despite striking regularities during the course of evolution,
associative learning was actually a rare outcome even in en-
vironments that fostered it (7% of lineages in experiment 1,
2% of lineages in experiment 2). Our results suggest some
possible explanations. First, as mentioned above, complex
behaviors can be hard to evolve, in part because they may
depend on the preexistence of reusable intermediary mod-
ules—including features without survival value—and are
therefore subject to the stochasticity of historical contin-
gencies in general. Another possible explanation is that a re-
flexive strategy involving error recovery may already con-
fer high fitness, such that the fitness gain associated with
a learning strategy may not be enough for learning to arise
and spread in the population. Across evolutionary repli-
cates, we found organisms that could solve the problem in
surprisingly different ways and obtain high levels of fitness,
even in these simple environments. Furthermore, there can
be implicit costs on more complex algorithms, including
greater mutational fragility and longer processing times.
Even making more mistakes on the trail, a shorter, suffi-
ciently faster algorithm could reproduce more quickly and
thus outcompete more complex algorithms that made fewer
mistakes but executed too slowly. Surprisingly, we found in a
follow-up experiment (supplemental PDF, sec. S.5) that the
amount of computational memory available to an organism
is not a constraint on the evolution of learning in our system
as long as the minimum amount necessary to solve the task



is provided. We performed a version of experiment 2, where
we reduced the amount of memory available in the organ-
ism’s CPU from 26 integers to 2, which is the minimum
necessary to solve the learning task, but did not see a signif-
icant difference in the frequency of evolution of the relearn-
ing strategy or in the average task quality and distribution
of task quality in the final population compared with ex-
periment 2 (fig. S19; table S3). Overall, the same conditions
that explain the rarity of solutions involving learning were
also responsible for the variety of solutions and evolution-
ary paths we observed, better resembling natural evolution,
where learning typically entails some kind of cost and is
not always adaptive (Johnston 1982; Miller and Todd 1991;
Godfrey-Smith 2002; Dunlap and Stephens 2016; Dunlap
et al. 2019).

Interestingly, the stepwise succession of behaviors ob-
served in our lineage studies, in conjunction with the diver-
sity of final strategies from different replicates, are reminis-
cent of how behaviors appeared on trace fossils from the
Ediacaran and early Cambrian, becoming more complex and
diverse over time (Carbone and Narbonne 2014).

The Scientific Value of an Open-Ended Evolutionary Model

In comparison with prior studies of the evolution of learn-
ing using computational methods (Todd and Miller 1991;
Izquierdo and Harvey 2007; Izquierdo et al. 2008), ours is
striking in the open-endedness of the evolutionary process,
which parallels that of biological evolution. Avida (Ofria
etal. 2009) employs relatively neutral genetic building blocks
consisting primarily of algebraic and logic instructions,
which do not constrain or favor the evolution of any partic-
ular behavioral algorithm. Thus, we were able to explore a
large solution space and gain insights into the evolutionary
dynamics that are also likely to occur in natural open-ended
systems, even though nature uses very different building
blocks. In Avida, the sheer number of potential solutions
creates evolutionary dynamics and patterns that are not
possible to observe using simpler digital evolution systems.
For example, Izquierdo’s groundbreaking work on the evo-
lution of associative learning using neural networks con-
sisted of evolving only the connections between preexisting
neurons (Izquierdo and Harvey 2007; Izquierdo et al. 2008).
Although many insights were gained from that experiment,
the limited number of potential solutions also led to a
smaller diversity of outcomes. In fact, simply using neural
networks, which are intrinsically designed to form associa-
tions, means that fewer mutational steps are needed from a
starting point to evolve appropriate connections compared
with the enormous search space in Avida. In our experi-
ments, the behavioral algorithms evolved from scratch, us-
ing the most basic computer programming language ele-
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ments, from ancestors incapable of sensation, movement,
or navigation of any kind.

Furthermore, in our system even a basic behavioral build-
ing block, such as the move back instruction, could evolve
from an assembly of simpler actions, as we demonstrate in
a preliminary experiment (supplemental PDF, sec. S.2). We
performed a version of experiment 1 without the move back
instruction, and even without it many organisms evolved
the capacity to navigate the entire trail using either imprint-
ing or error recovery. These organisms evolved behavior
functionally equivalent to the move back instruction by as-
sembling other instructions from the basic instruction set.

Early Evolution of an Intrinsic Value System

An unexpected outcome of this study was that it provided
insights into the evolution of motivational mechanisms,
which are thought to be integral to adaptive decision-
making (Miller and Todd 1991; Breazeal 2004; Panksepp
2004; Damasio 2005; Singh et al. 2009, 2010). Some of the
earliest building blocks to evolve across all of our experi-
ments were those responsible for evaluating experiences.
In our system, evaluations were implicit features of the
evolved controller and not distinct modules for deciding
“good” or “bad.” They were also essential to behavior control,
since organisms could not sense their own task quality scores
to determine whether an action was beneficial or harmful.
Early in evolution, values started as arbitrary biases, such as
moving constantly or favoring turning one way or another,
but biases that proved adaptive (e.g., preferring continuous
movement while avoiding empty or previously visited loca-
tions) would fix, excluding less fit alternative biases. Over
time, an intrinsic value system evolved that ensured appropri-
ate behavior in response to specific inputs, and when associa-
tive learning arose, this value system provided reinforcement
for behavior conditioning.

We can thus reinterpret the associative learning mech-
anism we have observed in the light of a value system: when
an organism capable of learning senses an empty location, it
displays the avoidance behavior because, in effect, it nega-
tively values the experience. It associates this negative expe-
rience with the cue that led it to the empty location, and
from then on, experiencing the cue alone is sufficient to ac-
tivate the avoidance behavior.

Reversal Learning Seems No More Complex
than Initial Learning

Reversal learning is often deemed more challenging cogni-
tively than initial learning (Hadar and Menzel 2010; Bisso-
nette and Powell 2012; Xue et al. 2013). However, in our
experiments organisms that evolved the ability for reversal
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learning showed no difference in the capacity or speed of
learning between the initial and subsequent learning events.
Thus, once reversal learning evolves, it does not seem cogni-
tively more complex than associative learning itself, at least
in this system. Our point is not to undercut the study of
how serial reversal learning in animals becomes faster with
experience and correlates with cognitive flexibility (Bond
et al. 2007; Cauchoix et al. 2017; Buechel et al. 2018) but
to call for a refinement of the ideas around what is required
for reversal learning to occur.

How Evolution Continues to Shape Associative Learning

In a follow-up analysis (supplemental PDF, sec. S.6), we
looked into how evolution continued to shape learning af-
ter it appeared in a lineage. In the lineages that produced
associative learning in experiments 1 and 2, we found that
learning ability would become attuned to the environment
of evolution in a variety of ways. For example, (i) ancestral
organisms that could learn some cue combinations but not
others would eventually give rise to descendants that could
learn any cue combination; (ii) ancestral organisms that re-
quired multiple exposures to learn the cue-response associ-
ation gave rise to descendants that required fewer exposures
and, ultimately, final organisms that required only a single
exposure; and (iii) in environments without cue reversals,
ancestral organisms that could re-form associations multi-
ple times gave rise to final organisms that could imprint only
once.

These adaptations are consistent with the literature on
preparedness and other so-called constraints on learning
(Seligman 1970; Shettleworth 2010; Domjan 2012; Dunlap
2017) as well as the literature on sensitive periods of plastic-
ity (Bateson 1979; Cashdan 1994; Fawcett and Frankenhuis
2015). The key themes are that evolution produces learning
mechanisms that are optimized for the needs of an animal
in the environment where it evolved, and since learning is
costly, evolution will often restrict the periods of an animal’s
life when it is most capable of learning (sensitive periods).
An example of learning optimization is when an animal that
relies on odors for foraging can learn more quickly to as-
sociate odors with good or bad foods than visual cues with
the same foods (Dunlap and Stephens 2014). The phenom-
enon of sensitive periods for learning is illustrated by filial
imprinting in birds, where a chick learns who its mother is
early in life and that association does not change (Cashdan
1994).

Consistent with this literature, the imprinting strategy
was adaptive in experiment 1, where there were no cue re-
versals. In that environment, ancestral organisms that were
capable of re-forming the cue association multiple times
eventually gave rise to organisms that could form the asso-

ciation only once, presumably becoming more efficient. The
sensitive period for learning in those lineages became re-
stricted to the beginning of an organism’s life. Meanwhile
in experiment 2, where the environment contained cue re-
versals, the ability to re-form the cue associations (relearn-
ing and short-term imprinting) was adaptive, and the sen-
sitive period for learning lasted an organism’s entire life.

Although our experiments were not designed to investi-
gate these topics, the patterns we found suggest a future area
of study in which Avida is used to systematically explore how
the evolutionary environment can constrain and optimize
learning abilities.

Implications for Artificial Intelligence

The insights of this study are relevant to the field of artificial
intelligence, where lifetime learning has long been a chal-
lenge. We demonstrated that adaptive autonomous agents,
capable of learning and navigation, can be produced by evo-
lutionary methods, using biologically consistent scenarios
where the environment fosters the evolution of learning
and decision making, instead of traditional methods based
on human design, which are difficult to scale up and to ap-
ply to novel tasks. One of our future goals is to extend this
study and test whether we can evolve more complex forms
of learning, such as contextual learning and rule learning
(the learning of rules and concepts), and see whether their
evolution follows the same sequence suggested in the litera-
ture (Wells 1968; Razran 1971; Hawkins and Kandel 1984a,
1984b; Skinner 1984; Miller and Todd 1991; Moore 2004).
We could test this hypothesis by introducing additional cue
types and requiring the organism to perform additional tasks
in more intricate trails.

Implications for the Evolution of Behavior

Finally, we believe that the evolution of learning in a digital
environment would be useful to investigate the effect that
learning behavior has on evolvability and rate of adaptive
evolution. Some researchers have proposed that learning
increases evolvability, since behavioral flexibility shields or-
ganisms from some selective pressures, allowing the popu-
lation to maintain its diversity to cope with future selective
events (Brown 2013; Dukas 2013). Others have proposed
that learning could either drive evolution by helping organ-
isms adapt to different niches, where they would experi-
ence different selective pressures leading to change, or in-
hibit it by protecting them from selective pressures, leading
to stasis (Duckworth 2009). It has even been suggested that
the emergence of learning drove the diversification of com-
plex behavior during the Cambrian explosion (Ginsburg and
Jablonka 2010). Overall, we agree with the remarkable



assertion by B. F. Skinner (1984, p. 220) that understanding
“the conditions under which [learning] evolved are helpful
in understanding its nature.”
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