viruses MBPY

Article

Translation-Independent Roles of RNA Secondary
Structures within the Replication Protein Coding
Region of Turnip Crinkle Virus

Rong Sun, Shaoyan Zhang'”, Limin Zheng and Feng Qu *

Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA;
sun.1207@buckeyemail.osu.edu (R.S.); zhang.5635@buckeyemail.osu.edu (S.Z.); zheng.1811@osu.edu (L.Z.)
* Correspondence: qu.28@osu.edu; Tel.: +1-330-263-3835

check for

Received: 19 February 2020; Accepted: 20 March 2020; Published: 22 March 2020 updates

Abstract: RNA secondary structures play diverse roles in positive-sense (+) RNA virus infections, but
those located with the replication protein coding sequence can be difficult to investigate. Structures
that regulate the translation of replication proteins pose particular challenges, as their potential
involvement in post-translational steps cannot be easily discerned independent of their roles in
regulating translation. In the current study, we attempted to overcome these difficulties by providing
viral replication proteins in trans. Specifically, we modified the plant-infecting turnip crinkle virus
(TCV) into variants that are unable to translate one (p88) or both (p28 and p88) replication proteins,
and complemented their replication with the corresponding replication protein(s) produced from
separate, non-replicating constructs. This approach permitted us to re-examine the p28/p88 coding
region for potential RNA elements needed for TCV replication. We found that, while more than a
third of the p88 coding sequence could be deleted without substantially affecting viral RNA levels,
two relatively small regions, known as RSE and IRE, were essential for robust accumulation of TCV
genomic RNA, but not subgenomic RNAs. In particular, the RSE element, found previously to be
required for regulating the translational read-through of p28 stop codon to produce p88, contained
sub-elements needed for efficient replication of the TCV genome. Application of this new approach
in other viruses could reveal novel RNA secondary structures vital for viral multiplication.

Keywords: plant virus; positive-sense RNA virus; RNA secondary structure; translational
read-through; replication

1. Introduction

Viruses with single-stranded (ss) positive-sense (+) RNA genomes harbor various intra-genome
RNA secondary structures and sequence motifs that play critical cis-acting roles in their infection
cycles [1]. Among the best-known virus-encoded RNA secondary structures are the internal ribosomal
entry site (IRES) elements found in many viruses that enable efficient translation of viral proteins
by guiding ribosomes directly to the start codon [2]. Different RNA sequence motifs or structures
within the same or different viral genomic RNA (gRNA) are also known to engage in long-distance
interactions in order to enhance the translation of viral genes, or to facilitate the synthesis of viral
subgenomic RNAs (sgRNAs) [1,3,4]. Additionally, many internally encoded stem—loop structures have
been shown to exert diverse functions, including serving as the binding sites for viral RNA-dependent
RNA polymerase (RdARP), as well as the initiation site of genome encapsidation [3,5].

Despite their well-recognized roles in viral multiplication cycles, some of the RNA secondary
structures are difficult to study because they often reside in coding sequences for important viral
proteins, including RARPs and auxiliary replication proteins (ARPs). For instance, many a (+) RNA
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long-distance kissing loop interaction [6,7]. RSE also contains two internal stretches of sequences that
interact with each other to form a pseudoknot structure necessary for its role in stimulating translational
read-through [7]. Earlier studies suggested that some of the sequences within RSE might also be
important for TCV genome replication [13]. However, this could not be easily examined because lower
genome replication could also be caused by a lack of p88 resulting from RSE mutations that diminish
the read-through translation.

In the current study, we assessed the translation-independent role of several previously identified
structure/sequence elements within p28/p88 coding sequence by providing the p28/p88 proteins in
trans, thus obviating the need to maintain the protein-coding capacity and the structures that regulate
protein translation within the p28/p88 coding region of TCV genome. This alternative approach
allowed us to confirm a replicational role of a previously characterized structure, known as internal
replication element (IRE) [5]. More importantly, it permitted us to uncover a novel role of several
RSE-resident structural elements in TCV gRNA accumulation. This novel approach should be easily
adaptable to other viral RNAs, leading to further assessment of many known RNA structures and the
identification of new structures.

2. Materials and Methods

2.1. Constructs

The constructs TCV_sg2R, Core355::p88-2HA, and 2 x 355::p28 (tag-free) were described in
previous studies [10,12,14]. All of the new mutant replicons, including 813UAA, p28TS, and the
deletion mutants, as well as other mutants with point mutations, were made on the TCV_sg2R
backbone. The mutations were generated with either overlapping PCR with appropriate primers
or with mutation-containing gBlock fragments synthesized by Integrated DNA Technologies. The
identity of all new constructs was verified with Sanger sequencing.

2.2. Agro-Infiltration

Upon verification, the constructs were introduced into Agrobacterium tumefaciens strain C58C1
with electroporation [9]. In most experiments, various combinations of Agrobacterium suspensions
were mixed and delivered into N. benthamiana leaves, as described in [9,12,14]. A p19-expressing
Agrobacterium strain was included in all combinations to alleviate RNA silencing-mediated
mRNA degradation.

2.3. RNA Extraction and Northern Blotting

Total RNA was extracted from agro-infiltrated N. benthamiana leaves, using the Direct-zol RNA
Miniprep kit (Zymo Research, Irvine, CA, USA). To ensure consistency, four equivalent leaf sections
derived from infiltrated leaves of four different plants were pooled before RNA extraction. The
RNA was then quantified with NanoDrop and subjected to Northern blotting, as described in [12,14].
Quantification of Northern blotting results was carried out with ANOVA.

3. Results

3.1. Much of the p88 Coding Sequence is Dispensable for TCV gRNA Accumulation in Infected Cells

To assess the role of RNA secondary structures or conserved sequence motifs within the p88 coding
region of TCV independent of the RARP function of the p88 protein, we supplied p88 in trans, using a
transient expression construct, Core35S::p88-2HA (Figure 1A, bottom). The low-level p88 production
from this construct, driven by the Core35S promoter (the last 99 nucleotides (nt) of the cauliflower
mosaic virus 355 promoter), was shown previously to complement the replication of a p88-defective
mutant TCV replicon [10]. This construct was delivered into the cells of Nicotiana benthamiana leaves,
along with a series of mutant TCV replicons containing deletions within the C-terminal 2/3 of p88
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open reading frame (ORF), leaving the coding sequence of p28 intact (Figure 1A). The deletions
were based on TCV_sg2R, a TCV replicon encoding the mCherry red fluorescent protein in place
of p38 [8,9]. Accordingly, TBSV p19 was included in all treatments, to counteract RNA silencing.
Altogether, five in-frame deletions were generated, encompassing Fa, Fc, and IRE, three RNA elements
reported in various previous studies [5,13,15], a 990-nt (positions 1208 to 2197) region with no known
structural features, and the promoter of sgRNA1 (sglPro) [16]. The Fa element is also part of the
well-characterized RSE structure, controlling translational read-through of the p28 ORF to produce
p88 [1,7] (also see later).

An additional control included in nearly all experiments was the mix of trans-supplied p88 and
the TCV_sg2R replicon encoding its own p88 (Figure 1B, lanes 8 and 9). This is important because p88,
even at the low levels permitted by the Core35S promoter, exerted both repressive and complementing
roles on the co-delivered TCV replicons, making TCV_sg2R without p88 in trans an inadequate positive
control [10] (also see Figure 1B; compare lane 2 with lanes 8 and 9). As expected, without p88 provided
in trans, none of the five mutant replicons produced viral gRNA to levels detectable by Northern
blotting (Figure 1B, lanes 3-7). In contrast, the presence of p88 enabled three mutants, AFc (lanes 12 and
13), A1208-2197 (lanes 16-17), and AsglPro (lanes 18-19) to accumulate their corresponding gRNAs to
easily detectable levels (approximately 50%-80% of TCV_sg2R plus p88; Figure 1C). Therefore, the
regions deleted in these mutants, 141, 990, and 195 nt in respective lengths, were unlikely to contain
cis-acting elements indispensable for TCV gRNA replication.

3.2. Two Short Sections of the p88 Coding Sequence Are Essential for Robust Accumulation of TCV gRNA but
not sgRNA

By contrast, the AFa* and AIRE deletions, 129 and 114 nt respectively, diminished the viral gRNA
levels to below the detection limit of Northern blotting (Figure 1B, lanes 10 and 11; 14 and 15). The
requirement of IRE for TCV replication was previously investigated by others [5]. Nevertheless, we
were surprised to find that the AIRE mutant still produced sgRNAs to levels comparable to the AFc,
A1208-2197, and Asg1Pro mutants (Figure 1B). Therefore, in the presence of trans-supplied p88, the
IRE appeared to be needed only for the accumulation of TCV gRNA. Similarly, the Fa element (nt
816-847, the first 32 nt of the AFa* deletion), as part of RSE, was previously found to be essential
for the read-through translation of p88 [7]. However, the read-through requirement of Fa would
have been released by the trans-supplied p88 in our system. Thus, the fact that the AFa* mutant also
abolished gRNA accumulation suggested the existence of a read-through-independent element within
the deleted region that is required for TCV gRNA accumulation. Similar to the IRE, this novel function
of Fa appeared to have minimal effects on sgRINA accumulation. Hence, the activities of IRE and Fa
both appear to be gRNA-specific.

3.3. An Eight Base-Pair (bp) Stem within the Lower Half of RSE Modestly Contributes to TCV gRNA Accumulation

We next set out to identify potential RNA motifs and/or structures responsible for the diminished
gRNA accumulation in the AFa* mutant. Importantly, the AFa* deletion (nt positions 817-946)
encompassed two previously reported structures—Fa (nt 816-847) and RSE (nt 816-905), with the
former being the front half of the latter [7,13,15] (Figure 2A, middle drawing; the boundaries of Fa are
highlighted with light blue lines). Therefore, we first interrogated RSE by reexamining the previously
reported mA2 mutant [13]. As shown in Figure 2A (left diagram, red letters denote mutated nts),
the mA2 mutant contained seven point mutations causing extensive disruption of the lower half
of the RSE structure. To further eliminate the impact of translational read-through, we created a
new 813UAA mutant by inserting a second stop codon (UAA) in front of the original UAG stop
codon of p28 (Figure 2A). This 813UAA construct served as the backbone for all site-specific mutants
described hereafter. A UAA-mA2 mutant was also created by combining the mA2 mutations with the
813UAA insertion.
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In the presence of p88 in trans, the gRNA levels of the 813UAA mutant were 40-70% of TCV_sg2R
in different experiments (Figure 2B, lanes 8-10; Figure 2D, lanes 8 and 9; and Figure 2C,E for
quantifications), which probably reflected a small advantage afforded by the cis-translated p88 by
TCV_sg2R. Nevertheless, the mA2 mutations, with or without the extra UAA mutation, caused the
corresponding gRNAs to decrease to approximately 10% of TCV_sg2R levels, or close to 20% of the
813UAA levels (Figure 2B, lanes 11 and 12; Figure 2D, lanes 10-13). Therefore, the mA?2 mutations,
by disrupting the lower stem of RSE, caused a five-fold loss of TCV gRNA levels independent of
translational read-through. These results suggested that the Fa region of the RSE element also played
important roles in TCV genome accumulation.

Six of the seven mutations in the mA2 mutant are within the lower half of RSE, underneath
the 7-nt asymmetric loop in green (Figure 2A). To further delineate the area needed for TCV gRNA
accumulation, we next introduced mutations within stem I, the 8-bp G/C-rich stem immediately below
the asymmetric loop (Figure 2A; only the base pairs in the pink box were mutated). As shown in
Figure 2B, disrupting stem I with either m1-1 or m1-2 (Figure 2A, the pink boxes) caused a modest
decrease of viral gRNA levels (approximately 50% of 813UAA) that was less severe than mA2 (20%).
Importantly, this decrease was notably mitigated when the base-pairing was restored with m1-3, which
combined the mutations in m1-1 and m1-2 (Figure 2B, lanes 13-18). These results indicated that
maintenance of the stem I base pairs, but not the nt identities, plays a moderate role in TCV gRNA
accumulation. Again, the sgRNA levels were conspicuously unaffected.

3.4. A Highly Conserved Sequence Motif in the Vicinity of p28 Stop Codon Contributes Little to TCV
gRNA Abundance

We then interrogated stem II, located at the bottom of RSE, to assess its potential impact on TCV
gRNA accumulation. Earlier studies identified two key features within this portion of RSE: (i) The first
11 positions of the RSE contain seven invariable nts highly conserved among more than 35 viruses of
Tombusviridae (UAGGGGUGCULU, the underlined nts are invariable; also see Figure 2A, bottom-left
portion of RSE, for nts in orange) [7]; (ii) the four Cs on the right side of stem II (Figure 2A, blue
letters), which pair with four Gs 39-nt upstream (also in blue letters in the RSE diagram) to form a
pseudoknot, are crucial for efficient translational read-through [7]. However, the potential roles of
these two features in TCV gRNA accumulation were not investigated.

To determine whether the seven conserved nts contribute to TCV gRNA levels in infected cells,
we created m2-1, in which all of the conserved nts were mutated into their complementary residues
(Figure 2A, lower right, first blue box; red letters denote the mutated nts). Surprisingly, the gRNA
of this mutant accumulated to approximately 70% of the 813UAA levels (Figure 2D,E). Therefore,
mutating all of the seven conserved nts caused only a minimal loss of TCV gRNA accumulation; hence,
their conservation appears to be only crucial for translational read-through. Importantly, the m2-1
mutant also caused extensive disruption of stem II, especially the four base pairs at the bottom of RSE.
Therefore, the integrity of stem II likely has negligible contribution to TCV gRNA accumulation as well.

3.5. The Lower-Right Side of Stem II Plays a Dominant Role in TCV gRNA Accumulation

Mindful of the previous study showing that the CCCC motif at the bottom-right of RSE engaged
in a stable pseudoknot with GGGG near the top of RSE (nt 860-863)—and this pseudoknot was
needed for efficient translational read-through [7]—we next created mutant m2-2 by mutating three
of these four Cs, plus two additional mutations slightly above. These mutations, if combined with
the m2-1 mutations, were expected to restore the RSE secondary structure (Figure 2A, second and
third blue boxes). Surprisingly, m2-2 gRNA accumulated to just 20% of 813UAA, a level similar to
mA?2 (Figure 2C, lanes 16 and 17). Furthermore, restoring the base-paired state for this portion of RSE
(mutant m2-3) failed to mitigate the defect caused by m2-2 mutations (Figure 2C, lanes 19 and 20).
These results hinted that the previously identified pseudoknot might also be needed for efficient TCV
gRNA accumulation.
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3.6. Robust Accumulation of TCV ¢gRNA Depends on the Integrity of a Previously Identified Pseudokndt
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thenpeendeimeixarpingd earlier, this long-distance interaction appears to be needed solely for

translational read-through.
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Aside from the Fa, RSE, Fc, IRE, and sglPro elements described earlier, a previous study also
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§B, }llower left, grayish-blue letters).

None of the new mutants could accumulate detectable levels of gRNA in the presence of p88
alone (Figure 5C), illustrating that, unlike TMV [17], the TCV-encoded p28 ARP was absolutely
needed for genome replication. The p28TS replicon did accumulate gRNA to detectable levels in the
presence of both p28 and p88 (Figure 5D, lanes 5-7). However, this accumulation was 50% lower than
the 813UAA/p88 combination. Interestingly, introducing the mA2 mutations into p28TS caused a
very modest further reduction of viral gRNA levels (70%; Figure 5D, lanes 8-10; Figure 5E),
suggesting that the role of Fa in replication might be coupled to cis-produced p28. Nevertheless, the
mutations in mF2, which were predicted to disrupt the lower stem of the Basal structure depicted in
Figure 5B, did cause a 50% reduction in gRNA levels relative to p28TS (Figure 5D, lanes 11-13; Figure
5E). Furthermore, this reduction appeared to be alleviated by restoring the disrupted base-pairing
through the combination of mA2 and mF2 mutations (Figure 5D, lanes 14-16). Finally, deleting the
Ff element caused a reduction in viral gRNA levels comparable to mF2. Collectively, these results
suggest that both p28 and p88 could be provided in trans, to facilitate the replication of TCV gRNA,
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but the complemented replication was less robust when compared to replicons that encode both
vinRrogsips i, gis. Additionally, the previously identified Ff element appeared to modestly stimulate ,,
TCV gRNA accumulation, probably through the “Basal” stem-loop structure stabilized by the Ff/Fa
interaction.
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4. Discussion

We report here further examination of RNA secondary structures embedded in the coding
sequence of two TCV replication proteins, p28 and p88. Some of these structures were previously
shown to be essential for the translational read-through of the p28 stop codon in order to synthesize
the p88 RARP [6,7]. However, it was unclear whether they had additional roles in TCV multiplication
independent of translational read-through. Such roles were not easy to discern because mutations
that disrupt the RNA structures needed for translational read-through (e.g., RSE) would block the
translation of p88, hence abolishing replication, even if all RNA structures needed for replication
remained undisturbed. Our alternative approach sought to provide p88, and later on, p28 as well,
from separate replication-independent sources, in an attempt to bypass the need for translational
read-through. This approach allowed us to make several important observations.

First, more than 1/3 of the 2328-nt p88-coding sequence can be removed without substantially
compromising the replicability of the TCV genome relative to appropriate controls. This is evident from
the notable replication levels of three deletion mutants: AFc (deleting 141 nt), A1208-2197 (deleting
990 nt), and AsglPro (deleting 195 nt). Although the gRNA accumulation levels of these mutants
were modest in comparison to the TCV_sg2R + p88 control, they were similar to another control
replicon (813UAA + p88) incapable of producing any p88 by itself, suggesting a slight advantage
of cis-produced p88. Second, production of TCV sgRNA does not always depend on the synthesis
of gRNA. In the presence of p88 in trans, two deletion mutants, AFa* and AIRE, as well as several
other mutants, failed to produce detectable levels of gRNA but exhibited normal levels of sgRNA.
This observation indicates that minus-strand RNA synthesis is still active under these conditions,
as sgRNA-sized minus-strands are required as templates for sgRNA transcription [18]. Thus, the
deleted RNA elements could be required for (i) completion of full-length minus-strand synthesis and/or
(ii) efficient initiation and synthesis of the full-length plus-strands from a full-length minus-strand
template. The uncoupling of sgRNA transcription from genome replication based on modifications to
the RARP has been reported for tombusviruses [19]. Additionally, the synthesis of gRNA and sgRNA
may occur in different microenvironments. This is consistent with recent observations of different
sized replication organelles in cells replicating flock house virus that correspond to the different sized
genomic and subgenomic RNAs [20]. Conversely, additional cis-acting elements in gRNA could allow
replication proteins to discriminate against faulty templates.

Third, structures implicated in translational read-through can have additional roles in genome
replication. This is best illustrated by the pseudoknot structure residing in the RSE of TCV, which was
found earlier to be needed for efficient translational read-through. We found that it was also needed
for efficient accumulation of TCV gRNA, probably through its participation in genome replication. It
is possible that this dual function could be related to coordinating translational read-through with
genomic minus-strand synthesis, which are directionally opposing processes on the genomic RNA. In
this scheme, read-through would unfold the pseudoknot needed for full-length genome minus-strand
synthesis, thereby inhibiting this competing process. The maintenance of sgRNA accumulation when
the pseudoknot is disrupted suggests that the inhibition may be specific for synthesis of full-length
genomic minus-strands. RNA-mediated coordination of these two processes occurs in tombusviruses,
where formation of the long-range interaction between the RSE and 3’ UTR required for RARP
read-through concomitantly prevents formation of an alternative RNA structure in the 3’ UTR needed
for minus-strand RNA synthesis [6]. More detailed studies are required to address possible regulatory
effects of the RSE in TCV.

The integrity of the middle portion of the RSE (stem I) may also serve as an additional sentinel
for quality control of TCV genome. It is possible that involvement of stem I in TCV replication could
entail collaboration with p28 translated from the same RNA, because the reduction in gRNA levels
caused by mA2 mutations was much less pronounced in the p28TS replicon backbone (in need of
both p28 and p88 in trans) than in the 813UAA backbone (needing only p88 in trans). Finally, the RSE
element could be under dynamic regulation through the folding of the alternative Basal structure that
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encompasses the Ff element within the p28 coding region, as mutating or deleting Ff appeared to also
affect the robustness of TCV replication. Again, the Basal structure appears to be less critical when the
replicon genome produces its own p28, as the m2-1 mutant would be expected to have disrupted the
FfFa stem extensively, yet could replicate to 70% of its 813UAA parent (Figure 2).

Finally, we wish to address why the replication of TCV mutants with trans-provided p28 and p88
was inefficient compared to that of TCV replicons encoding their own p28 and p88. Multiple factors
could have contributed to this inefficiency. First, both p28 and p88 were shown previously to repress
TCV replication when overexpressed [10,12]. Assuming the heterogeneity of their expression in different
cells, it is possible that complementation might have occurred in a fraction of cells where the threshold
for repression was not reached. It is also possible that efficient replication requires these two proteins
to be present at specific intracellular concentrations and/or ratio, or be produced in a temporarily
regulated manner. These conditions would be difficult to meet with our experimental setup. Lastly,
cis-production of these replication proteins may indeed be favored by the replication process [21,22].
Nevertheless, our new approach did allow for the revelation of novel translation-independent roles of
several RNA secondary structures within the p28/p88 coding sequence. This approach may prove
valuable for the examination of similar RNA structures in other viruses, leading to a better appreciation
of the role played by these structures.
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