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ABSTRACT

Introduction: To mitigate the COVID-19 pandemic and prevent overwhelming the healthcare system, social-
distancing policies such as school closure, stay-at-home orders, and indoor dining closure have been utilized
worldwide. These policies function by reducing the rate of close contact within populations and result in de-
creased human mobility. Adherence to social distancing can substantially reduce disease spread. Thus, quantify-
ing human mobility and social-distancing compliance, especially at high temporal resolution, can provide great
insight into the impact of social distancing policies.
Methods: We used the movement of individuals around New York City (NYC), measured via traffic levels, as a
proxy for human mobility and the impact of social-distancing policies (i.e., work from home policies, school clo-
sure, indoor dining closure etc.). By data mining Google traffic in real-time, and applying image processing, we
derived high resolution time series of traffic in NYC. We used time series decomposition and generalized additive
models to quantify changes in rush hour/non-rush hour, and weekday/weekend traffic, pre-pandemic and fol-
lowing the roll-out of multiple social distancing interventions.
Results: Mobility decreased sharply on March 14, 2020 following declaration of the pandemic. However, levels began
rebounding by approximately April 13, almost 2 months before stay-at-home orders were lifted, indicating prema-
ture increase in mobility, which we term social-distancing fatigue. We also observed large impacts on diurnal traffic
congestion, such that the pre-pandemic bi-modal weekday congestion representing morning and evening rush hour
was dramatically altered. By September, traffic congestion rebounded to approximately 75% of pre-pandemic levels.
Conclusion: Using crowd-sourced traffic congestion data, we described changes in mobility in Manhattan, NYC, during
the COVID-19 pandemic. These data can be used to inform human mobility changes during the current pandemic, in
planning for responses to future pandemics, and in understanding the potential impact of large-scale traffic interven-
tions such as congestion pricing policies.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The COVID-19 pandemic threatens almost every single country on
Earth (Li et al., 2020; World Health Organization, 2020). To curb the
pandemic and prevent overwhelming the healthcare system with
COVID-19 cases, social-distancing policies such as school closures,
non-essential business closures, curfews, and stay-at-home orders
have been put into place. Social-distancing policies, specifically quaran-
tines, are some of the oldest and most utilized strategies for epidemic
control (Tognotti, 2013). Social distancing policies function by reducing
physical contact and decreasing human mobility; adherence can sub-
stantially reduce transmission (Jarvis et al., 2020) and case counts
(Alagoz et al., 2020). Thus, quantifying human mobility and social-
distancing compliance, especially at high temporal and spatial resolu-
tion, is critical for controlling the epidemic.

Several measures of social-distancing compliance have been used
previously in the literature. Studies evaluating individual-level adher-
ence to social-distancing policies frequently use self-report through
online surveys (Moore et al., 2020; Zhao et al., 2020; Xie et al., 2020).
While these methods are very useful for evaluating determinants of ad-
herence, they are not as useful for real-time epidemic monitoring
because they are time- and labor-intensive and only capture a snapshot
of the population's behavior in a small sample at a single timepoint. In
contrast, highly resolved data such as mobile phone call records or
locations can be used to measure social-distancing (Charoenwong
et al., 2020) and to inform mobility components of infectious disease
transmission models (Tizzoni et al., 2014). These measures, especially
if publicly available, can contribute to epidemic monitoring. One such
option is vehicular traffic condition smartphone apps, which base
their maps on cellphone movement data. Traffic congestion maps are
publicly available, updated in real-time, and can be used for public
health research. For example, we have previously shown that colors in
Google traffic maps correspond to relative vehicle speed, and used this
information to infer traffic-related air pollution (Hilpert et al., 2019).

App-based traffic information offers a pathway for assessing social-
distancing, as increased traffic congestion is indicative of spending
time outside the home that may result in opportunities for human inter-
action and contact. In fact, traffic data has been used to evaluate mobility
during the pandemic in South Korea, finding that in some cities in-
creases in traffic were correlated with increases in cases, but that in
others traffic and cases were negatively correlated (Lee et al., 2020).
Here we analyzed time series of traffic congestion that we derived
from app-based maps. We quantify changes in traffic in the Manhattan
borough of New York City (NYC) during the COVID-19 pandemic
(January 1 to December 31, 2020). Our objective was to describe how
social distancing interventions impacted population-level patterns of
mobility throughout various stages of the pandemic.

2. Methods

From January 1 through December 31, 2020, we obtained 12 tiles
from Google traffic maps to view Manhattan's entire street network
every three hours in real time. Briefly, the traffic map area was defined
as a rectangular array of square tiles, specifying the latitude and longi-
tude of the centroid of the array, the number of pixels along one side of
a square tile, the zoom level, and the number of tiles in the x and y direc-
tion. The zoom level can be chosen such that only traffic on major road-
ways and arteries is shown, or such that even traffic on small side streets
can be identified (as done here, with zoom equal to 15 and a correspond-
ing pixel size of ~4.8 m at the equator). For full details of this process, in-
cluding equations and constants for calculating the appropriate zoom
level and defining the geographic extent of the area to be downloaded,
and scripts for displaying, downloading, automating, and merging the
downloaded traffic tiles into one image, please see Hilpert et al. (2021).

We used image processing methods, as described previously in
Hilpert et al. (2019) to identify the color-coded road segments. Color
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codes indicated four traffic categories: (i) green for free-flowing traffic,
(ii) orange for medium traffic, (iii) red for traffic congestion, and (iv)
maroon for severe traffic congestion. The colors are proxies for vehicle
speed (relative to the road speed limit) (Weitz, 2009; Wikipedia,
2017) and have been ground-truthed with multiple vehicle speed mea-
sures, including using a traffic radar device (Hilpert et al., 2019), odom-
eter readings from a driven vehicle (Zalakeviciute et al., 2020), and
another traffic app (Waze) (Zalakeviciute et al., 2020). In the images,
we first reduced the number of possible colors from 16.8 million to
256 to simplify the analysis. Since some colors used to indicate traffic
congestion on road segments could also be used in the background
map without the traffic layer, we identified the background map. This
map was defined to consist of those pixels in the traffic map that over
a 2-week period in time did not assume the green and either orange
or red congestion color. Traffic color were then only analyzed in the
“image background” of the background map, which one can loosely
term the active street network of the traffic map. In summary (Hilpert
et al., 2019), map pixels for each of the four colors were counted in
the active street network and time series generated of the percent of
the geographic map area (not the percent of total road pixels) covered
by each color.

To investigate changes in traffic congestion during the pandemic, we
first characterized all four time series, but then restricted further analy-
sis to the time series of red traffic congestion given its clear pandemic-
related signal (e.g., decrease in April) and simpler interpretability
(increases in red coverage indicate increases in congestion). We did
this to avoid redundancy in analysis since all color coverage time series
showed correlated temporal patterns. There were substantial changes
in traffic congestion over the course of the pandemic and we captured
this variation by partitioning the time series into four distinct time pe-
riods, which we refer to as COVID periods. We individually fit a general-
ized additive model (GAM) (Wood, 2017) to each COVID period.

GAM models were constructed to describe and predict the time se-
ries of percentage of total map area covered by traffic congestion, (T;)
using two discrete predictor variables: hour of day, h,, which can as-
sume values 0,3, 6,9, 12, 15, 18 and 21; and the binary variable w; indi-
cating whether a traffic map describes traffic on weekdays (wy, ) or
during weekends (w, ;). We fitted the following model to the measured
Ty, Wy, ,, Wo, ¢ and h; data:

Te = ag +wye si(he) +war Sa(he) + € (1)

where qg is the intercept (representing mean color coverage), and s;
and s; are cyclic cubic regression splines with 8 degrees of freedom
and zero mean. Degrees of freedom were selected using the generalized
cross-validation criterion. The fitted models were then used to predict
congestion levels hourly for a weekend and weekday, with 95% confi-
dence intervals. Due to the morning and evening rush hour, traffic con-
gestion displayed a 24-h periodicity. The range of the diurnal fluctuation
was measured as the deviation from the intercept.

To investigate potential social distancing fatigue (increased mobility
before relaxation of stay-at-home policies), we applied seasonal decom-
position of time series by Loess (STL) (Cleveland et al., 1990) to the data
from March 14 to June 16, a period including the NY on PAUSE policy in-
tervention and the first stage of New York's reopening (Phase 1). This
analysis decomposed the time series into a periodic component, time
trend, and the remainder (or residual). Prior to running the analysis,
missing observations (n = 54) were imputed using predictions from
the GAM models.

All analyses were conducted in R version 3.5.1 (R Foundation for
Statistical Computing, Vienna, Austria). Simon Wood's mgcv package
was used to fit GAMs (Wood, 2011). STL analysis was completed using
the “stI” function in the stats package. R code and data for this analysis
can be found at doi:10.5061/dryad.7sqv9s4s8 (Shearston et al., 2020).
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3. Results

We found abrupt decreases in traffic congestion in Manhattan fol-
lowing school closures and the implementation of stay-at-home orders
(NY on PAUSE). For a list of policies implemented by New York State and
NYC in response to the COVID-19 pandemic, please see Supplemental
Table 1. A map of the study area is shown in Fig. 1, with colors
representing the crowd-sourced traffic data. There was a dramatic de-
crease in traffic congestion after the implementation of social distancing
policies. Stark differences in the proportion of green free-flowing traffic
are readily apparent on the ring roads that trace the edges of Manhattan
Island, as well as the main entry points, including the George
Washington Bridge in the north and all tunnels and bridges in the south.

Time series of the four congestion colors (Fig. 2) reveal abrupt de-
creases in traffic congestion after March 14, the weekend before New
York public school closure, with simultaneous increases in free-
flowing traffic occurring. Importantly, we observed a steady increase
in traffic congestion before NY on PAUSE ended on June 8th. This in-
crease was most apparent in the red traffic congestion series, where
traffic congestion appears to begin increasing on approximately May 1
and continues increasing up until about July 1. These increases occur be-
fore the end of stay-at-home orders and are indicative of social-
distancing fatigue.

We identified four COVID Periods where traffic congestion changed
markedly and fit each with a GAM model (Eq. (1)). The Pre-COVID Pe-
riod was defined as the start of the time series (January 1) through
March 13, before congestion began to decrease dramatically. COVID
Period 1 was defined as March 14 through May 19. Around May 19th
traffic congestion started to increase to the point that the model began
poorly fitting the data; therefore, we defined COVID Period 2, which
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was May 20 through June 16, during which traffic congestion continued
increasing. COVID Period 3 was June 17 through the end of the time se-
ries (December 31), where a more stable traffic pattern emerged.

Morning and evening rush hour impose a periodic cycle to traffic
patterns, seen as daily peaks and troughs in traffic (Fig. 2). The pan-
demic not only caused changes in traffic trends, but also drove changes
in the period cycle. In addition to the daily periodicity, there was also a
weekly cycle where congestion was elevated during the five consecu-
tive weekdays and was dampened during the two consecutive weekend
days. The weekly cycle was most apparent in the Pre-COVID period and
in the most recent period, COVID Period 3.

Mean percent area with red traffic congestion changed dramatically
throughout 2020 (Table 1). Mean percent area with red traffic conges-
tion (equivalent to the model intercept) was highest during the pre-
COVID time period, and then decreased abruptly during COVID Period
1 (from a mean of 0.99% to 0.41%) before steadily increasing for
COVID Periods 2 and 3. By COVID Period 3, the mean percent area
with red traffic congestion had rebounded to about 75% of the pre-
pandemic average.

The rebound in red congestion coverage began far in advance of the
implementation of Phase 1 reopening (Fig. 3, second panel). In STL anal-
ysis of COVID Periods 1 and 2, congestion appears to increase from ap-
proximately April 13th onward, while Phase 1 reopening did not
begin until June 8 (right dashed line).

In addition to these changes in traffic trends, the pandemic substan-
tially altered daily traffic periodicity, such that during the height of the
pandemic in NYC in the Spring, there was little differentiation between
weekday and weekend traffic patterns (Fig. 4, tan lines). During the Pre-
COVID period (gray lines) rush hour peaks were highest, with weekdays
demonstrating a clear bimodal distribution with peaks around 9 am and

March 23-27, 2020

Fig. 1. Pre- and Post-Pandemic Traffic. 5-day average traffic congestion in Manhattan during the 9:30 am weekday morning rush before (March 9-13) and after (March 23-27) school
closures and stay-at-home orders (NY on PAUSE policies) went into effect in New York City. Red and orange indicates traffic congestion, while green indicates free-flowing traffic. After
the implementation of NY on PAUSE policies, traffic became free-flowing in the ring roads surrounding Manhattan, as well as the main entry points, including the George Washington

Bridge in the north and all tunnels and bridges in the south.
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Fig. 2. Time series of the percent of congestion color coverage within Manhattan for the four traffic categories. Vertical black lines delineate COVID time periods for the four separate GAM
models, labeled below the bottom x-axis. The timeline of COVID response policies implemented by New York State and city are outlined at the top of the figure.

5 pm, and weekends a clear unimodal peak around 5 pm. However, dur-
ing COVID Period 1, both weekday and weekend traffic peaks were
greatly dampened, and the bimodal weekday distribution shifted to
nearly unimodal, becoming very similar to the weekend distribution.
During COVID Period 2 and 3 the daily traffic peaks were greater than
for Period 1, but still lower than pre-pandemic levels. Even as overall
traffic increased during these periods, the weekday distribution
remained altered, such that the morning peak was much smaller than
the evening peak.

A closer inspection of the GAM splines (Supplemental Fig. 1), includ-
ing the deviation of the fitted spline from the intercept, further highlight
these differences in diurnal traffic congestion. In Panel C of Supplemen-
tal Fig. 1, we can see that while the heights of the morning rush hour
peak for weekdays remains highest for the Pre-COVID period, for
COVID Period 3, the evening rush hour actually has a greater peak
than the Pre-COVID period. This shift in traffic from the morning to
the evening rush hour results in a diurnal congestion pattern that ap-
pears somewhere between the Pre-COVID weekday and weekend
distributions.

Table 1
Intercepts a, for generalized additive models describing the time series of red traffic con-
gestion coverage T; (% area) for four time periods during the COVID-19 pandemic.

COVID time period do p-value of intercept R?

Pre-COVID (January 1 - March 13) 0.99 <0.001 0917
COVID 1 (March 14 - May 19) 0.41 <0.001 0.758
COVID 2 (May 20 - June 16) 0.56 <0.001 0.877
COVID 3 (June 17 - December 31) 0.74 <0.001 0.873

4. Discussion

We present evidence of social-distancing fatigue in Manhattan, NYC,
from evaluation of traffic congestion levels during the COVID-19 pan-
demic. While traffic decreased sharply following the onset of the pan-
demic and implementation of response policies, levels were already
rebounding almost two months before stay-at-home orders (NY on
PAUSE) were lifted on June 8. Overall, we identified four COVID periods
based on traffic congestion patterns. While the dates delineating the
COVID periods sometimes lined up with the implementation of official
social distancing policies, they did not always. For example, traffic con-
gestion began to plummet on March 14 (Saturday) in advance of school
closures effective Monday, March 16, and substantially before NYC bars
and restaurants closed in-person service on March 17 and NY on PAUSE
began on March 22. The time period during which NY on PAUSE was in
effect spans two different COVID Periods because traffic began to re-
bound far in advance of the first reopening policy (Phase 1 reopening)
which occurred on June 8th. COVID Period 3, when traffic began to sta-
bilize (June 17th), was very close to the Phase 2 re-opening date of June
22 (Fig. 2). We also observe large impacts of the pandemic on the distri-
bution of traffic throughout the day, such that the pre-pandemic bi-
modal weekday diurnal congestion representing the morning and
evening rush hour was dramatically depressed. By September, traffic
congestion had rebounded to approximately 75% of pre-pandemic
levels.

Dramatic decreases in traffic have been noted in NYC (Schuman,
2020; Bian et al., 2021; Chen et al., 2021) and many other places
(Rossi et al., 2020; Patel et al., 2020; Hudda et al., 2020; Parr et al.,
2020) in response to the pandemic, including Padova, Italy (Rossi
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etal., 2020) and Auckland, New Zealand (Patel et al.,, 2020). The study in
Padova found a decrease in traffic flow (vehicle counts per unit time) in
2020 of approximately 70%, compared to 2018-2017 (Rossi et al., 2020).
Similarly, the study in Auckland found a 60-80% decrease in traffic flow
following travel restrictions implemented in response to the pandemic
(Patel et al., 2020). One analysis of traffic changes in the NYC metro
area found reductions of 66% in passenger vehicle traffic the week of
March 28-April 3 (Schuman, 2020), while another noted a decrease of
29% following the declaration of emergency and a decrease of 48% just
in advance of NY on PAUSE (Bian et al., 2021). While the traffic flows re-
ported by these other studies cannot be directly compared to our met-
rics, our findings were in line with those previously published. We
found a 59% reduction in total map area covered by traffic congestion
during March 14-May 19, compared to January 1-March 13, and we
were able to extend our analysis through the end of 2020. Our findings
are consistent with those of Bian et al. (2021), who used a different data
source (vehicle flow from 9 bridges and tunnels) and statistical method
(change point detection) to also examine social-distancing fatigue in
NYC. They found that vehicular traffic began to rebound on April 26, in
advance of the 1-5 am closure of the NYC subway system which
began on April 30. This is in line with the traffic increase in mid-April
we determined through STL analysis. Moreover, Bian et al. identified a
22-day lead time in traffic increase before Phase I reopening (beginning
on May 17). May 17 is very close to May 19, the date our COVID Period 1
ended, which consistent with Bian et al. indicates a substantial change
from the previous traffic pattern.

In this paper, we use changes in traffic as a measure of human mobil-
ity and an indicator for social-distancing interventions. However, an in-
crease in traffic congestion does not necessarily correlate with increased
case counts of COVID-19, as a study evaluating correlations between
traffic and cases in various cities of South Korea found (Lee et al.,
2020). Broadly, we can conceptualize COVID-19 non-pharmaceutical in-
terventions in four categories: face mask mandates, isolation or quaran-
tine (including stay-at-home orders), traffic or travel restrictions (such
as limiting travel between cities or counties), and social-distancing
(closure of schools or other businesses, or limiting gatherings) (Bo
et al, 2021). A review found that social-distancing was the most effec-
tive single non-pharmaceutical intervention, while combining social-
distancing with at least one other intervention was even more effective
(Bo et al., 2021). Traffic congestion can be thought of as an indicator for
three of these intervention groupings (all but mask mandates), as
human mobility is a component of isolation or quarantine, traffic or
travel restrictions, and social-distancing. As such, it makes sense to hy-
pothesize that increased congestion may correlate with increased op-
portunity for SARS-CoV-2 transmission. However, increases in traffic
congestion may also be an indicator of a switch in transportation
methods in response to the pandemic; studies have documented dra-
matic decreases in use of public transportation in NYC (Sy et al., 2020)
and metro areas in Sweden (Jenelius and Cebecauer, 2020). It is possible
that individuals who otherwise would have used public transit such as
subways or buses are now relying more heavily on private or shared ve-
hicles to reduce their chance of exposure, as was found in Canada
(Labonté-LeMoyne et al., 2020).

There are many potential reasons that mobility may increase in ad-
vance of the release of stay-at-home orders. Specific to the NYC area,
after a few weeks of stay-at-home orders, people may have increased
their travel outside the city to participate in outdoor activities. For ex-
ample, NYC did not fully reopen its beaches until July 1 (City of New
York, n.d.). Beaches were open for walking, but not for gathering, sun-
bathing, or swimming, while neighboring states, including New Jersey
and Connecticut, never closed their beaches (Connecticut) or reopened
them far earlier (New Jersey: May 22) (ABC 7 New York, 2020). This
may have contributed to the increase in vehicle traffic we observe as
the weather warmed in advance of NYC's Phase 1 reopening, e.g., if indi-
viduals used private vehicles or ride share services rather than public
transportation to go to beaches in New Jersey or Connecticut. More
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generally, there are a number of other reasons that social-distancing fa-
tigue may occur. First, it is more difficult for individuals with lower so-
cioeconomic status to reduce their mobility, especially long-term,
because (1) their savings or resources may be used up within a few
weeks or months (Martin et al., 2020), (2) they make up a larger
share of essential workers (Lou et al., 2020; Dingel and Neiman,
2020), and (3) they may not be able to reduce essential trips like grocery
store visits by purchasing larger amounts of food at once (Wolfson and
Leung, 2020), a problem likely to be exacerbated as stay-at-home orders
were extended. Second, the pandemic has been particularly challenging
for single parents (Fu and Zhai, 2021), who may have struggled to
social-distance while navigating childcare and making a living. Third,
the pandemic has had negative impacts on mental health (Marroquin
et al.,, 2020; Conroy et al., 2021), potentially increasing people's need
for social support and decreasing their ability to remain socially distant,
especially as time goes on. All of these reasons could have contributed to
social-distancing fatigue in advance of Phase 1 reopening, as New
Yorkers became less and less able to adhere to social-distancing
guidelines.

Understanding changes in traffic congestion during the pandemic is
useful not only as a proxy for human mobility, but also for implications
on large-scale traffic interventions that may be implemented in the fu-
ture. For example, in 2019 New York City became the first American city
to approve a congestion pricing policy (Durkin and Aratani, 2019), with
implementation scheduled to begin in early 2021 (although this was
delayed). The large-scale traffic disruption that followed implementa-
tion of NY on PAUSE, however, may be useful in informing what kinds
of changes in traffic patterns could reduce congestion. As we saw in
COVID period 1, traffic congestion can be reduced both by depression
of overall traffic and by dampening the bimodal diurnal congestion
driven by weekday rush hour.

In this paper, use of STL analysis allowed for clear identification of
the increasing trend in traffic congestion, while use of GAM models
allowed us to account for the changing within-day distribution of the
congestion data over the course of the pandemic. These methods
allowed us to identify the presence of social-distancing fatigue and to
describe traffic changes by hour, demonstrating a clearer picture of
the impact of the pandemic on traffic in NYC. This information is useful
not only as a proxy for tracking human mobility, but also for under-
standing how large-scale travel restrictions can impact traffic patterns
and congestion overall. Additionally, by using crowd-sourced, publicly
available data at high temporal and spatial resolution, we were able to
obtain traffic coverage for all of Manhattan in near real time. This is par-
ticularly advantageous for evaluating changes that occurred during the
pandemic, when government collection of data may have been limited
due to closures and emergency response, and for future emergency re-
sponse management.

Out study has some notable limitations. First, we include a fairly lim-
ited geographic area (the borough of Manhattan, NYC), and thus results
of our study may not be generalizable to other areas. However, studies
in other cities also find dramatic decreases in traffic, on a similar scale
as that reported here (Rossi et al., 2020; Patel et al.,, 2020; Parr et al.,
2020). Second, our data source does not allow for disaggregation of pas-
senger vehicles and trucks, which were likely differentially impacted by
responses to the pandemic (as trucking operations may be considered es-
sential businesses). Studies in NYC (Gao et al., 2020) and Somerville MA
(Hudda et al., 2020) have found decreases in both vehicles and trucks,
though the decrease was substantially less for trucks. Third, we do not
disaggregate traffic changes by neighborhoods, and thus do not report
variation in congestion changes within Manhattan. We recommend
that future studies describe and evaluate these potential differences.

5. Conclusions

Using highly temporally resolved, crowd-sourced traffic congestion
data, we describe changes in traffic congestion in Manhattan, NYC,
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during the COVID-19 pandemic. We report dramatic declines in traffic
congestion during the initial stages of the pandemic and implementa-
tion of stay-at-home orders, followed by rebounds in congestion nearly
two months before stay-at-home orders were reversed, evidence of
social-distancing fatigue. Additionally, we describe changes in diurnal
traffic congestion patterns for weekdays and weekends, by hour, for
four time periods during the pandemic. This data can be used to inform
human mobility changes during the current pandemic, in planning for
responses to future pandemics, as well as in understanding the potential
impact of large-scale traffic interventions such as congestion pricing
policies.
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