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ABSTRACT: Using hourly measures across a full year of crowd-
sourced data from over 1000 indoor and outdoor pollution monitors
in the state of California, we explore the temporal and spatial
relationship between outdoor and indoor particulate matter (PM)
concentrations for different particle sizes. The scale of this study offers
new insight into both average penetration rates and drivers of
heterogeneity in the outdoor−indoor relationship. We find that an
increase in the daily outdoor PM concentration of 10% leads to an
average increase of 4.2−6.1% in indoor concentrations. The
penetration of outdoor particles to the indoor environment occurs
rapidly and almost entirely within 5 h. We also provide evidence
showing that penetration rates are associated with building age and
climatic conditions in the vicinity of the monitor. Since people spend
a substantial amount of each day indoors, our findings fill a critical knowledge gap and have significant implications for government
policies to improve public health through reductions in exposure to ambient air pollution.

■ INTRODUCTION
Particulate matter (PM) is the largest environmental cause of
mortality around the globe, with fine particulate matter
particles with a diameter less than 2.5 μmestimated to cause
millions of premature deaths annually.1,2 Although PM is
produced by a vast array of sources, most of the dominant
contributors, especially in regions that do not depend on
biomass for cooking and heating, tend to be outdoors (e.g.,
transportation, electric power generation, industry, forest fires,
dust). While the built environment provides shelter from the
elements, it is an incomplete filter; PM can penetrate buildings
through open doors and windows, and localized studies have
shown that smaller particles can enter through the small cracks
and porous materials that comprise the outer shells of nearly all
structures.3,4 Given that Americans spend approximately 85−
90% of their time indoors, with the vast majority in a private
residence,5,6 any effort to understand and limit damages from
PMwill fundamentally hinge on the degree to which outdoor air
pollution penetrates indoors.
Despite the preponderance of evidence on the outdoor−

indoor relationship, critical gaps in our understanding remain.
Most evidence has relied on laboratory simulations or studies
that measured indoor and outdoor conditions either in a small
sample of locations or over a short period of time. (See ref 7 for
an overview of this study and refs 8−19 for some of the most
prominent contributions.) Estimates from these studies are
wide-ranging, and it is unclear whether the differences across
studies reflect true differences in PM penetration, differences in
methodology, or a combination of these factors. Moreover, the

vast majority of prior studies have focused on average indoor/
outdoor ratios (or correlations) that provide a steady-state
measure of the relationship, with limited evidence on the
dynamic process that connects outdoor conditions to the indoor
environment.
Here, we provide a large-scale analysis across a broad spatial

range of the relationship between outdoor and indoor aerosol
particulate matter concentrations based on unique, crowd-
sourced data from the PurpleAir Real Time Air Quality
Monitoring Network (PA hereafter). Our dataset includes
over 14.5 million observations and builds upon pioneering large-
scale analyses of data from Beijing, China.20 It allows us to more
precisely estimate this relationship and explore temporal and
spatial relationships not feasible in earlier work. Using a full year
of hourly data from these monitors, placed by consumers both
indoors and outdoors at thousands of locations across the state
of California, we directly explore the dynamic relationship
between outdoor and indoor PM concentrations of various
particle sizes. We further examine heterogeneity in this
relationship by time of day, season, and across monitor locations
(see the Data section for details). Our analysis thus fills a critical
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knowledge gap about the magnitudes and variability of indoor
particulate matter exposures, stemming from outdoor sources,
with direct implications for government policies to improve
public health through reductions in exposure to ambient air
pollution.

■ DATA AND METHODS
Data. The data for our analysis comes from the PurpleAir

Real Time Air Quality Monitoring Network (https://www2.
purpleair.com/). PA produces a retail, residential air pollution
monitor that measures airborne particulate matter (PM) at 120 s
intervals. PA sensors use laser particle counters to measure

particle number concentrations (number of particles per
deciliter, dl) under different size thresholds (0.3, 0.5, 1, 2.5, 5,
and 10 μm diameter cutoffs). PA reports direct number
concentrations as well as conversions to the more standard
PM1.0, PM2.5, and PM10 mass-based metrics (μg m−3). Since
these conversions rely on assumptions about the particulate mix
that may not be uniformly valid across our study region, we use
the raw particle counts to assess variation in outdoor−indoor
relationships for different size particles.
Although PA monitors are not officially approved by the

Environmental Protection Agency (EPA) for regulatory
monitoring purposes, they have been tested by the Air Quality

Figure 1. Summary of study parameters and data. (A) Locations of indoor (orange) and outdoor (blue) PA monitors operating for some or all of the
time between January 1, 2019, andDecember 31, 2019. The insets are shown for the Bay Area (top) and Los Angeles area, where amajority of monitors
have been installed. All monitors within the state of California were included. (B) From top to bottom, median PM1.0, PM2.5, and PM10 concentrations
over the study period, and total number of monitors online by date. Monitor installation and concentrations increased appreciably during the
November wildfire period. (C) Concentration data are derived from underlying particle count data shown here. Since the conversion to concentrations
rests on assumptions about particle size distributions (see Figure S1), we use the underlying particle count data by size bin in this study.
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Sensor Performance Evaluation Center maintained by the South
Coast Air Quality Management District, the regulatory agency
responsible for improving air quality for more than 17 million
residents in Southern California. The Agency concluded that the
PA-II sensor data correlated highly with standard reference
measures, with an R2 of 0.96 for particles smaller than 1 μm and
0.93 for particles smaller than 2.5 μm.21 Studies have shown that
the reliability of these monitors declines for particles over 2.5
μm.22 We include such data in our analysis while noting the
limitations that this measurement error presents. The PA
monitors, which retail for $179−259, have proliferated
throughout the U.S. and abroad in a short period of time, with
approximately 7000 monitors sold from mid-2016 through the
end of 2019.
Once installed at a particular location, monitor readings are

automatically sent to the PA servers and are available for
download from https://thingspeak.com/ via JSON. We down-
loaded hourly data from all monitors in CA in 2019, shown in
Figure 1A. After the quality check described below, these raw
data contain approximately 14.5 million hourly readings from
596 indoor and 2006 outdoor monitors. We then match each
indoor monitor with all outdoor monitors within a specific
radius (see below for details). We exclude indoor monitors
beyond 500m of an outdoor monitor. This provides our analysis
sample of approximately 1.4 million merged hourly readings
from 349 indoor monitors and 708 outdoor monitors residing in
29 of the 57 counties in CA. This compares with 52 PM2.5
monitors and 41 PM10 monitors for the entire state as
maintained by the California Air Resources Board (https://
ww3.arb.ca.gov/qaweb/site.php). In addition to number
concentrations, reported data include an indicator for whether
the purchaser placed the monitor indoors or outdoors, along
with the monitor GPS coordinates.
We took several steps to prepare the raw data for analysis.

First, we cleaned the data as suggested by PA.23 Nearly all
outdoor monitors as well as approximately one-third of our
indoor monitor sample contain two laser particle counters. For
these monitors, we dropped all observations for which the two
measurements for PM2.5 differed by more than 10 units if both
values fell below 100 μg m−3, or by more than 10% if one of the
values exceeded 100 μg m−3. We then calculated the mean of the
two values and removed all observations with values higher than
500 μg m−3, the specified accuracy threshold for PA. For
monitors with a single particle counter, we only performed the
latter of these two cleaning steps. These steps remove 955 075
observations in total. The concentration data are shown in
Figure 1B.
Second, we transformed the particle number concentrations

under different size cutoffs to number concentrations for five
nonoverlapping size bins: 0.3−0.5, 0.5−1, 1−2.5, 2.5−5, and 5−
10 μm. (To create, e.g., the 0.3−0.5 μm size bin, we subtracted
the particle concentration in the 0.5 μm cutoff from the 0.3 μm
cutoff.) We then dropped any resulting negative or zero
observations for each of those bins and trimmed the top
percentile of observations. We also dropped monitors with less
than 720 observations (30 days). We lose 379 599 observations
by dropping negatives and zeros, 307 013 by trimming, and
43 424 by removing monitors with less than 720 observations.
The measures for these individual size bins (and their mapping
to calculated mass-based concentrations) are shown in Figure
1C.
Finally, from the cleaned individual monitor data, we used the

geolocation for each monitor to calculate physical distances

between indoor and outdoor monitors. From this, we matched
each indoor monitor to all outdoor monitors within 500 m (we
assess robustness to alternative distance assumptions). When
multiple outdoor monitors matched to a particular indoor
monitor, we calculated the mean of all PM measures from the
matched outdoor monitors, weighted by the inverse squared
distance to the indoor monitor.
To control for local meteorological conditions that might

influence both indoor and outdoor concentrations (through
either direct physical effects or by induced behavior changes),
we obtained hourly weather data from the National Centers for
Environmental Information’s Integrated Surface Database
(https://www.ncdc.noaa.gov/isd, accessed August 24, 2020).
We calculate county-level averages from the network’s hourly
readings of air temperature, dew point temperature, precip-
itation, and wind speed.We restricted our calculations to include
only stations that were in operation for all of 2019 and had no
more than 25% of observations missing, and we interpolated any
remaining missing values with the average of all surrounding
stations within 50 km, weighted by the inverse squared distance.
Finally, we calculated county-level metrics by taking the average
of all stations within the respective county, or, in the one case no
monitor is present, by taking the values of the closest monitor to
the county’s centroid.

Methods. For comparison with previous studies, we first
estimate the raw correlation between daily outdoor and indoor
measurements (and calculated their ratios). We measure this
static relationship both overall, across days, and across seasons,
separately for each size bin (Figure 2).
To understand the dynamic relationship between outdoor

and indoor particulate matter levels, we estimate hourly
distributed-lag regression models with indoor pollution as the
dependent variable and outdoor pollution as the key
independent variable

I O X f t( )it
j

j it j i itct∑ β γ θ ε= ̅ + + + +−
(1)

Given the right-skewed nature of the pollution data (Figure
2A, note the log scale), we specify our measures of indoor and
outdoor pollution in logs. We relate measured (log) indoor
particle number concentrations (I) at monitor i at hour t to
nearby (log) outdoor particle number concentrations (O , the
inverse-distance weighted average of measurements at time t
within a radius of 500 m of indoor monitor i) as shown in eq 1.
To explore temporal dynamics, we include 12 hourly lags of
outdoor pollution. As we demonstrate below, 12 lags are
sufficient for understanding the entire dynamic process; adding
additional lags has no material impact on estimates. We account
for local meteorology by including a vector of weather variables
(Xct) (i.e., air temperature, air temperature squared, dew point
temperature, wind speed, and precipitation) in county c at the
time t. The coefficient vector γ thus captures the effects of
weather on indoor pollution. To account for other potential
confounds, we allow each indoor monitor to have its own
intercept (or fixed effect) (θi), thereby adjusting for overall
average differences in indoor and outdoor PM concentrations
specific to each location. To account for potential temporal
confounds, we include f(t), a vector of binary time variables,
representing month, day-of-week, and hour-of-day fixed effects.
These fixed effects control for all common characteristics
specific to each month, day of the week or hour of the day across
all locations. We assume that any remaining errors (ε) are
serially correlated over time within each monitor.
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We fit this model using ordinary least squares and focus on the
best-fit estimated coefficient β̂j, or ⟨∂I/∂O j⟩, as the main policy
parameter of interest. Given the log−log regression specifica-
tion, β̂j is thus interpretable as elasticity, or the % change in
indoor concentrations from a 1% change in average nearby
outdoor concentrations. We calculate standard errors for β̂j
clustered on the indoor monitor to allow for arbitrary serial
correlation within each monitor. We perform separate analyses
for each particle size bin to understand whether the outdoor−
indoor relationship varies by size. We examine heterogeneity in
this relationship by interacting outdoor concentrations (with
O it) with county-level temperature metrics (Figure 3C and
Table S5) to test the hypothesis that indoor PM concentrations
might more closely mirror outdoor PM concentrations at times
when ambient temperatures are more conducive to the opening
of doors and windows.
To explore heterogeneity at the individual monitor level, we

interact O j with θi to estimate penetration rates specific to each
indoor pollution monitor (βi). Since we find that nearly all
penetration occurs within a few hours (as shown below), we
modify eq 1 to the daily level. After obtaining these estimates, we
probe sources of heterogeneity using the following procedure.
We recast the estimated βi’s as a random variable (zi) and regress
this against fixed factors at each location according to eq 2

V W uzi i1 z 2 cδ δ= + + (2)

where Vz is a vector that includes the percent of buildings
constructed after 1960 and the percent of owner-occupied
buildings at the zip code (obtained from the 2018 American
Community Survey) and Wc is a vector of seasonal climate
measured at the county level, including means of winter
temperature, summer temperature, annual dew point, and
annual precipitation. Given the cross-sectional nature of this
regression and our ecological rather than individual measures of
the characteristics of the environment where the monitor
resides, we interpret the coefficients δ1 and δ2 with caution,
noting that they represent suggestive evidence on monitor-level
sources of heterogeneity.

■ RESULTS
The data for our analysis comes from the PurpleAir Real Time
Air Quality Monitoring Network (https://www2.purpleair.
com/), with monitor locations shown in Figure 1A.We calculate
hourly, raw particle counts under different size bins: 0.3−0.5,
0.5−1, 1−2.5, 2.5−5, and 5−10 μm, with the concentration data
shown in Figure 1B. For comparison with previous studies, we
first estimate the raw correlation between daily outdoor and
indoor measurements (and calculated their ratios) overall,
across days, and across seasons, separately for each size bin
(Figure 2). To understand the dynamic relationship, we
estimate hourly distributed-lag regression models with indoor
pollution as the dependent variable and outdoor pollution as the
key independent variable, controlling for numerous sources of
potential confounding. Given the right-skewed nature of the
pollution data (Figure 2A, note the log scale), we specify our
measures of indoor and outdoor pollution in logs, and interpret
estimates as the % change in indoor concentrations from a 1%
change in average nearby outdoor concentrations (see the
Methods section for more details).
Consistent with the existing literature, we find that the indoor

environment is only marginally protective of PM: on average,
outdoor concentrations are higher than indoor concentrations
for all size bins (Figure 2A), and this is true both over the course

Figure 2. Distributions of outdoor and indoor particle number
concentrations as measured by PA monitors and unconditional average
relationships between them. (A) Distributions of indoor (dashed) and
outdoor (solid) particle number concentrations, by size bin. (B)
Average daily particle number concentrations across all sites outdoors
(solid lines) and indoors (dashed lines), shown for each size bin over
the course of the year. (C) Average hourly particle number
concentrations across all sites outdoors (solid lines) and indoors
(dashed lines), shown for each size bin by hour of day (PST). (D)
Median ratios of indoor/outdoor particle concentrations by day of year.
(E)Median ratios of indoor/outdoor particle concentrations by hour of
day (PST). On average, particle concentrations are higher outdoors
than indoors across all size bins, although this ratio varies and is
sometimes inverted, particularly for the largest particles. The ratio of
indoor to outdoor concentrations is closer to 1 between March and
November, and smaller during winter months; the ratio is also higher
during afternoon and evening hours. Uncertainty ranges in (D) and (E)
show the standard errors around loss fits to median indoor/outdoor
ratios.
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of the year (Figure 2B,C) and over the course of a day (Figure
2D,E). Average indoor particulate levels are 40−70% of nearby
(500 m) outdoor levels, but that ratio varies in time and space,
and by particle size: smaller (more dangerous) particles have
higher average indoor/outdoor ratios than larger particles,
though these differences may be, at least in part, attributable to
measurement error.22 These raw ratios are lowest in the winter
for all size bins, and highest in the summer for smaller particles
(<1.0 μm), and in late spring and early fall for the larger size bins
(>2.5 μm). The ratio of indoor/outdoor is smaller at night than

during the day for all size bins, but with spread between them:
the largest particles reach a minimum indoor/outdoor ratio of
<0.4 in the predawn hours, while the smaller bins never drop
below 0.5. The average indoor/outdoor ratio peaked in early
afternoon, with similar ratios across size bins. These findings are
consistent with increased air exchange during waking hours
(when doors and windows are more like to be opened).24,25

The PA data also offer a unique opportunity to examine
particulate size distributions below the 2.5 μm threshold. This
view is important as particle size influences subsequent health

Figure 3. Relationship between changes in outdoor concentrations and changes in indoor concentrations, as measured by the inverse-distance-
weighted average concentration measured by outdoor monitors within 500 m of an indoor monitor. (A) Basic contemporaneous daily and hourly
relationships. (B) Breakdown of lags comprising the total daily relationship. Almost all of the influence of the outdoor environment on the indoor
environment takes place within 5 h. (C) Breakdown of penetration rates by outdoor temperature. All statistical relationships include adjustment for
monitor, day of year, and hour of day (for hourly); in all cases, error bars show 2× standard error of the coefficient (and are too small to be seen for
many estimates).

Figure 4. Variation in penetration rates across indoor monitoring locations. (A) Median building construction year across California zip code
tabulation areas (ZCTA), and monitor-specific relationship between changes in average outdoor particle number concentrations and changes in
indoor particle number concentrations (shown for the 0.3−0.5 μm size bin). (B) Zoomed-in view of the San Francisco Bay Area, site of the largest
density of PurpleAir monitors. (C) At the ZCTA level, the age of building stock plays a significant role in explaining this heterogeneity.
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effects26−28 and comparable data are not available from the EPA
nor could it be detected using mass-based measurement (Figure
S1). In our sample, indoor and outdoor PM distributions have a
similar fraction of total particles in the 1.0−2.5 μm size range,
but a larger fraction in the 0.5−1.0 μm range are present in
indoor air and a slightly smaller fraction of the smallest particles
(0.3−0.5 μm) are present in indoor air (Figure S2).
Estimates from our dynamic regression models that relate

outdoor and indoor particle concentrations, while adjusting for
weather, location, and temporal effects (Methods, eq 1), show
that a 10% increase in daily outdoor concentrations leads to a
4.2−6.1% increase in daily indoor concentrations, with the
estimates higher for smaller particles (Figure 3A and Table S1).
Turning to an hourly analysis shows comparable size estimates
(also Figure 3A and Table S2). When we extend the hourly
regression to include 12 lags of outdoor concentrations, we find
that penetration is nearly complete within 5 h for all size bins
(Figure 3B and Table S3) (based on t-tests for whether the sum
of the hourly lags coefficients equals the daily coefficient,
separately for each particle size bin (Table S4)). The
accumulated effect over the course of the day, obtained by
summing the individual estimates of βj, ranged from 0.559 for
the 5−10 μm size bin to 0.684 for the 0.5−1.0 μm size bin. The
penetration occurs quite rapidly, with 37-42% of the effect
occurring in the first hour. As with the static results, the
coefficients for smaller particles were larger in magnitude than
for bigger particles, with the 0.3−2.5 μm bins having the
strongest relationship. Our finding that transfer rates signifi-
cantly increased during moderate temperature days, particularly
for larger sizes particles, suggests a potentially important role for
open windows and doors (Figure 3C and Table S5). To address
selection concerns regarding the spike in monitor ownership in
response to the California wildfires, we exclude monitors
purchased after November 1, 2019, and find very similar
estimates (Table S8).
To explore heterogeneity in this relationship across monitors,

we estimate penetration rates specific to each indoor pollution
monitor. Looking across our study sites, the monitor-specific
coefficients show considerable heterogeneity in the outdoor−
indoor relationship for all particle sizes (Figures S3 and 4A). We
probe the source of this heterogeneity by regressing the
monitor-specific penetration rates against fixed factors at each
location (Table S6). We find that local weather conditions and
the age of building stock play a significant role in explaining this
heterogeneity. Lower winter temperatures, higher summer
temperatures, and higher dew point temperatures all increase
the degree of penetration. The summer and dew point
temperature results likely reflect the role of open windows,
while the winter temperature may reflect an increased role for
heating. It may also reflect the varied topography of California,
where inland andmountain regions tend to have hotter summers
and colder winters than the coastal region. In terms of
magnitude, however, the building stock result dominates.
Buildings constructed before 1960, which were subject to
quite lax building codes, exhibit more indoor penetration. To
put this relationship in context, it is important to note that the
average percent of buildings constructed after 1960 in a zip code
is 54%. As such, the coefficient on building stock suggests that it
explains 40% of a standard deviation of the heterogeneity in
estimates for the 0.3−0.5 μm size bin and 33% for the 5−10 μm
size bin.

■ DISCUSSION

Our study utilizes crowd-sourced data from across the state of
California to analyze the relationship between outdoor and
indoor particulate matter pollution. We find that average indoor
particulate levels are 40−70% of nearby outdoor levels,
consistent with the lower end of estimates found in prior
studies that more narrowly targeted a small number of study sites
and/or shorter time periods as well as one large-scale study
conducted in China where the climate and heating fuel sources
differ considerably from our study.20 Outdoor particulate matter
rapidly penetrates indoors. Nearly half of the penetration occurs
within the first hour, with the balance slowly accruing over the
next 5 h.
This pattern holds across particle sizes, with the majority of

penetration occurring within the first few hours, but overall
penetration is larger for fine particles than for coarse ones (i.e.,
less than ormore than 2.5 μm, respectively). This latter finding is
particularly concerning from a health perspective because
smaller particles pose significantly more harm to human
health.26,27 As temperature increases, so does the rate of
penetration, particularly for the largest particles. A leading
explanation is the opening of household windows, especially
because of the pattern by size where larger particles need larger
openings to penetrate inside.29

Despite the strength of our design, there are several important
limitations in our analysis. First, we lack information on
pollution-generating activities within the home. This will be
especially important when considering use and interpretation of
PA monitor data in places with high indoor primary PM
generation (e.g., from cooking, gas and wood stoves, fireplaces,
fuel oil boilers).30−34 While this matters for understanding all
factors that contribute to indoor pollution, it should only bias
our estimates of the outdoor−indoor relationship if indoor
emissions correlate with outdoor pollution levels, a threat
limited by our use of multiway fixed effects. In particular,
monitor fixed effects control for all time-invariant characteristics
of the monitor location, such as proximity to a highway and
indoor cooking source. Month fixed effects control for all
unobserved factors constant for each particular month, such as
the occurrence of a wildfire. Hourly fixed effects control for all
unobserved factors constant for each particular hour across all
locations. Hourly weather variables also control for time-varying
changes within a day that vary by location. Therefore, the time-
varying unobserved factor that our model does not account for is
one that varies within a particular month, on a particular hour,
and for a particular location that is not perfectly correlated with
weather. For example, if people alter the way they use indoor
stoves or the frequency with which they open and close windows
at certain times of the day when the wildfires occurred, then this
would be a source of bias. While we cannot rule out such
changes, we believe this threat is limited in our setting.
Second, PurpleAir monitors are purchased directly by

consumers, and thus our sample of observations may not paint
a representative picture of the outdoor−indoor relationship
across the State of California. This reflects a common
conundrum with the use of crowd-sourced data, though we
contend these potential limitations are compensated for by the
increased sample size and ability to extend our analysis relative
to prior studies, which also have their own issues of
representativeness.
Third, in contrast to results from other outdoor−indoor

studies, our analysis is based on indoor and outdoor monitors

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.0c08469
Environ. Sci. Technol. 2021, 55, 6107−6115

6112

http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c08469/suppl_file/es0c08469_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.0c08469?rel=cite-as&ref=PDF&jav=VoR


within 500 m of each other, rather than co-located at a particular
site. While it reduces our sample size, we are reassured by
comparable results obtained when we restrict to co-located
monitors (within 50 m of each other) (see appendix Table S7).
Fourth, PA uses a different technology to measure particulate
matter from the much more expensive (but regularly calibrated)
equipment deployed by the EPA monitoring system. PA uses
laser particle counters to measure a number density of particles
in each size bin, and then makes assumptions about particle
chemistry and density to convert number densities to the more
familiar mass-based measurements. EPA monitors directly
measure particulate mass under the 2.5 μm size threshold
accumulated on filters over a given time period. We report direct
bin-by-bin number density relationships to avoid making
assumptions about the particulate mix, but work incorporating
monitors of different types will need to address known
discrepancies.35 Fortunately, the measures from PurpleAir
monitors are highly correlated with those from EPA
monitors.35−38

Our results have several important implications for under-
standing the public health benefits from improvements in air
quality. First, the primary regulatory tool to protect citizens from
the harmful impacts of air pollution is through restrictions on
ambient pollution levels. While emissions from particular indoor
sources can be controlled through product standards, total
indoor levels cannot because they will depend on the
accumulated decisions within a residence as well as the ways
in which consumers use those products. In contrast, restrictions
on ambient pollution levels offer public health protection in the
form of reductions in direct outdoor exposure as well as
reductions that arise due to indoor penetration. This composite
effect, referred to as a concentration−response function, is what
is typically measured in epidemiologic studies of pollution, even
if the composition of this effect is rarely emphasized.39

Knowledge of the outdoor−indoor penetration, however,
enables us to better isolate the biological effect, or exposure−
response function, from the concentration−response function,
which is a composite measure that reflects the ways in which
ambient pollution levels are influenced by environmental and
behavioral circumstances to translate into health impacts.40,41

This distinction is important because the biological effect is
likely to generalize across populations (with perhaps some
important underlying heterogeneity), whereas the composite
effect may not because exposure is mitigated by local
circumstances.42 For example, time spent indoors and the
degree of outdoor−indoor penetration, driven by factors such as
building stock, ventilation services, and climatic conditions, may
vary by location such that estimates of the relationship between
ambient pollution concentrations and health differ despite
similar biological effects.
Second, our findings also have important implications for

policies related to pollution avoidance. In many parts of the
world, air quality alerts are designed to encourage individuals to
spend more time indoors on polluted days.43,44 For some
pollutants, such as ozone, this is clearly an effective approach,
but that protection is limited for PM given how rapidly it
penetrates indoors. Air Quality Indices are a composite measure
of air pollution that are constructed by taking the maximum over
a piecewise-linear transformation of daily readings for a suite of
pollutants. The value of the index is “triggered” by the pollutant
with the highest transformed value.45 At a minimum, our results
suggest that air quality reporting systems should indicate the

“triggering” pollutant so that individuals can make more
informed decisions regarding their avoidance behavior.
Finally, explicit attention to indoor penetration of outdoor

pollution also helps to broaden the regulatory conversation.
Current regulatory approaches focus on limiting emission
sources through mitigation technologies, such as scrubbers
and catalytic converters. Since most human exposure to ambient
pollution occurs indoors, policies to reduce this source of
exposure through devices such as personal air filters may also
have an important role to play. This is most clearly the case when
emissions cannot be controlled by government policy, as is
typically the case for nonanthropogenic emission sources (e.g
46.,) and when pollution crosses national boundaries (e.g., ref
47). One important caveat is that, in contrast to source-based
policies that confer benefits on everyone, the purchase of air
filters depends on income and the price to purchase and
maintain those devices; as such, receptor-based policies may
exacerbate inequalities absent policy interventions to counteract
their potential to be regressive. Evidence from China indicates
that lower-income families are less likely to purchase such
filters.48 In the end, receptor-based approaches may prove most
useful for policy targeting, where they can be used as a
supplemental approach to protect the most vulnerable,49 such as
pregnant women, infants, and those with respiratory ail-
ments.50−53
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