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Abstract

Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory 
with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming 
languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using 
advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt 
a unified set of coding principles and standards that could make coding easier to learn, use and modify. We identify eight 
principles to help in plant ecophysiologists without much programming experience to write resilient code: (i) standardized 
nomenclature, (ii) consistency in style, (iii) increased modularity/extensibility for easier editing and understanding, (iv) 
code scalability for application to large data sets, (v) documented contingencies for code maintenance, (vi) documentation 
to facilitate user understanding; (vii) extensive tutorials and (viii) unit testing and benchmarking. We illustrate these 
principles using a new R package, {photosynthesis}, which provides a set of analytical and simulation tools for plant 
ecophysiology. Our goal with these principles is to advance scientific discovery in plant ecophysiology by making it easier 
to use code for simulation and data analysis, reproduce results and rapidly incorporate new biological understanding and 
analytical tools.
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Background
Computer coding is becoming an increasingly important skill in 
biological research (Sayres et  al. 2018), especially within plant 
ecophysiology. A disconnect in coding skill and a lack of formal 
computer science training can make it difficult for biologists to 
create or modify programs to incorporate new understanding 
of biological processes. In other words, sophisticated code (by 
trained programmers) is efficient, but difficult to modify by 
biologists for new uses. So why code at all? Coding allows for 
consistent, reproducible, transparent and scalable analyses 
of scientific data, while at the same time minimizing human 
work hours compared to using pre-packaged software. However, 

most published ecophysiological analyses use spreadsheet-
based methods rather than computer code, which comes with 
some limitations. For example, Sharkey et  al. (2007) have an 
Excel spreadsheet-based method for fitting photosynthetic 
CO2 response (A–Ci) curves (also see Bellasio et  al. 2016). 
A  spreadsheet-based method can take several minutes per 
curve and involves a substantial amount of subjective decision-
making (e.g. ‘eye-balling’ where transitions between CO2- and 
RuBP-limited photosynthesis occur). Likewise, analysis of 
pressure–volume curves for hydraulic parameters is usually 
done via an Excel spreadsheet-based method (Sack et al. 2003), 
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which can be time-consuming, requires subjective decisions, 
and spreadsheets are usually not published with manuscripts, 
obscuring methodology. The total workload is time per 
spreadsheet multiplied by the number of curves, which can be 
inefficient in large studies. Cryptic changes in the spreadsheets 
can occur without a record of the change, potentially leading 
to compounding errors. Furthermore, spreadsheet tools often 
break, requiring a fresh, unaltered spreadsheet to be used for 
each CO2 response curve. Another option, provided by Gu et al. 
(2010) (leafweb.org) provides an online service that analyses 
A–Ci curves; however, in this case, the analysis is a black-box 
and could be misused by users lacking an understanding of the 
fitting process, and the data are stored on a government server 
which may cause some users discomfort.

Meanwhile, Duursma (2015) developed an R package, 
{plantecophys}, that can obtain similar outputs to the Sharkey 
et  al. (2007) fitting tools in seconds, with far fewer subjective 
decisions that can easily be outlined in the code used in the fitting 
process, while providing a similar, but transparent approach 
as in Gu et al. (2010). Like the {plantecophys} package, analytical 
methods should be fully transparent and reproducible. As such, 
authors should publish their code, which is still not the norm 
in plant ecophysiology (but see Kumarathunge et al. 2019 for an 
example of published code). As a community, increased adoption 
and dissemination of code will help the field perform more 
sophisticated analyses and model comparison (e.g. Walker et al. 
2021). Coding may also streamline integration between theory and 
data analysis, especially for complex mathematical formulations 
that require computationally intensive numerical methods, a 
common situation in plant ecophysiology. Ideally, we would like 
a workflow in which we state our assumptions mathematically, 
derive empirical predictions, and test those predictions or 
estimate parameters with data. The process of translating a 
mathematical model of biology into code can also help novice and 
advanced coders deepen their understanding of models and their 
assumptions before confronting them with data. Open-source, 
research-grade computer algebra systems like SymPy (Meurer et al. 
2017) and numerical solvers aid mathematical derivation and are 
part of or can be readily integrated with programming languages 
that are widely used for data manipulation and analysis, such as R 
(R Core Team 2021), Python (Python Software Foundation) or Julia 
(Bezanson et al. 2017).

Although coding can speed up large analyses, reduce errors, 
make analyses reproducible and integrate theory with data, 
writing robust code that can be understood and reused by 
other scientists is not easy. First, one must learn one or more 
programming languages (e.g. R, Python, Matlab, Julia), which can 
involve steep learning curves. Second, even though coding one’s 
own analysis can make it easier to catch errors associated with 
inappropriate use of black-box proprietary software, one must 
still understand the assumptions and limitations of statistical 
techniques and conceptual tools. Finally, code can be as unique 
as someone’s handwriting, which can make it difficult even for 
an experienced programmer to make sense of a ‘transparent’ 
analysis unless there is sufficient annotation within the code.

In this perspective, we propose eight principles of coding 
tailored to the specific needs of the plant ecophysiology 
research community. For example, guidance in other scientific 
fields often emphasizes computational speed. However, 
given the typical scale of ecophysiological data sets (~MB, i.e. 
small-batch, artisanal data sets) and the computer power 
of personal computers (~GB of RAM, ~GHz of processing 
power), computational speed is usually not a major limitation. 
Instead, ecophysiologists often need to estimate parameters 

derived from complex biophysical/chemical models. Coding 
is important as the complex models required to fit different 
response curves involve many interacting equations, numerical 
solvers and parameters that either need to be set or estimated. 
For example, there are seven different models that can be 
used to fit temperature responses which ultimately require 
different equations and fixed parameters (Arrhenius 1915; 
Johnson et al. 1942; Medlyn et al. 2002; Kruse et al. 2006; Heskel 
et al. 2016; Liang et al. 2018). In this domain, code flexibility and 
modularity are usually more important than computational 
speed. Furthermore, flexibility and modularity in code would 
enhance the sustainability of software after publication, which 
can be an issue (Prlić and Procter 2012). Here we demonstrate 
coding principles designed for plant ecophysiology using a new 
R package called {photosynthesis}. We caution that this software 
is a work-in-progress that does not yet completely adhere to all 
of the coding principles to which we aspire, but will be refined in 
future releases. This perspective, written by trained biologists not 
programmers, is intended to convey some of the lessons we have 
learned so far to provide guidance for plant ecophysiologists who 
are thinking about or starting to code their workflows, especially 
using R. We recognize that many other scientists in this field are 
adept coders who have already honed their practices through 
experience. Hence, this perspective is intended to guide for less 
experienced coders rather than a mandate for the entire field. 
We hope our perspective spurs experienced coders to share 
‘best practices’ with less experienced peers and expand the 
principles below to other languages besides R. As computational 
plant ecophysiology matures, we hope that this perspective will 
help move the field toward more standardized and sustainable 
software practices like those in more computationally intensive 
subfields of biology like population genetics (Adrion et al. 2020).

Description

Principles of coding

The overarching concept we propose is making code resilient 
by making it easier to use, reproduce and modify. Obviously 
not every possible discovery and need within a scientific field 
can be predicted, but the code can be written to allow easy 
modification and accommodation of the source code as the 
science progresses. Functional programming in R and other 
languages provides a powerful tool for writing functions that 
take functions as arguments and easily process newly written 
code into a standardized output without the need for ever 
modifying the original function itself (Wickham 2019). Such an 
approach helps to write modular code that is easy to modify 
and understand, while minimizing interdependencies between 
functions.

Freely available resources already exist for good coding 
practices in R packages and can be applied to R scripts as 
well, primarily from the efforts of Hadley Wickham (Wickham 
2014, 2015, 2016b, 2017, 2019; Wickham and Grolemund 2016). 
As well, guides to best practices for scientific computing exist 
(see Wilson et  al. 2014 for a list of best practices). Here we 
propose principles of coding for plant ecophysiology that, if 
implemented, could circumvent some of the common coding 
issues encountered when modifying the code of others, reduce 
the learning difficulty for nascent coders and make software 
maintenance much easier:

	 1.	Standardized nomenclature for variables and functions
	 2.	Consistent style
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	 3.	Modularity and extensibility
	 4.	Scalability
	 5.	Documented contingencies
	 6.	Documentation
	 7.	Extensive tutorials
	 8.	Unit testing and benchmarking

We think that adopting some or all of these principles will 
improve code reproducibility and help advance scientific 
discovery, but our goal is not to rigidly prescribe how plant 
ecophysiologists should do their work. First, we recognize that 
others will have different, well-reasoned preferences and/or 
apply principles we have not covered here. Second, those who 
find these principles useful may find implementing all of them 
time-consuming at first. We strongly encourage incremental 
progress and not making perfection the enemy of the good. 
Indeed, the {photosynthesis} package described below only 
partially implements our principles, with much left to do in 
future development.

Principle 1: standardized nomenclature.  Names vary wildly 
between functions with published code and data and even 
amongst instruments within the same company (e.g. for net 
CO2 assimilation, ‘A’ is used in the Li-Cor 6800 and ‘PHOTO’ is 
used in the Li-Cor 6400). Ideally, we need both standardized 
nomenclature in the field (e.g. Reid et al. 2005) and standardized 
construction of variable and function names to enhance 
readability and reduce the burden for learning how to use new 
packages and functions or testing published code. For example, 
g is always in reference to conductance, where a subscript term 
would then describe the physical pathway (e.g. s for stomata, 
c for cuticle or m for mesophyll) as well as the gas (e.g. c for 
CO2, w for water vapour). For example, gsw would mean stomatal 
conductance to water vapour. Standardizing nomenclature 
across both mathematical models and data files can also 
streamline theory–data integration, but this also requires 
standard translation between mathematical and computer 
notation, which is beyond our scope here.

For example, in {photosynthesis}, every function is named 
in a descriptive manner: e.g. fit_t_response fits specified 
temperature responses model to data, while fit_gs_model fits 
specified models of stomatal conductance. Variable names are 
also standardized: e.g. ‘T_leaf’ always means leaf temperature 
in Kelvin (K), ‘A_net’ always means net CO2 assimilation in μmol 
m−2 s−1. In this regard, standard units should also be imposed 
in the analysis (e.g. in R via the {units} package; Pebesma et al. 
2016), to remove any ambiguities when interpreting the output. 
To allow for differences in variable names from the raw data (e.g. 
from using different machines), the ‘varnames’ list is used to 
translate input names (note that this convention is adopted from 
{plantecophys}; Duursma 2015). We propose adopting Wickham’s 
(Wickham 2019) style in that functions that do something have 
a verb name, e.g. fit_aci_response, while functions that act 
as objects within other functions (e.g. stomatal conductance 
models) should have a noun name, e.g. gs_model.

Principle 2: consistent  style.  Consistent coding style makes 
reading code easier—certain conventions, e.g. commenting 
what the next line of code does, can make it easier to 
understand code documentation. Our preference is for the 
‘tidy style’, which applies to both data and code structure, 
and much else (see the The tidyverse Style Guide: https://
style.tidyverse.org/). For data, tidy style advocates that each 
column is a variable, and each row is an observation, since R 

is particularly suited for this style of data structure. Popular R 
packages like {dplyr} (Wickham et al. 2020) and {tidyr} (Wickham 
and Henry 2020) facilitate tidy data and many other packages, 
like {photosynthesis}, use them for consistent style (Notes 
S3 contains an example of tidy data organization). For code, 
computers do not care about style, as long as it is correctly 
formatted, but for humans reading code, adherence to well-
designed style can be helpful, especially for beginners trying 
to learn from others. A benefit of tidy style in particular is that 
R packages {styler} (Müller and Walthert 2020), {lintr} (Hester 
et al. 2020) and {formatR} (Xie 2019) can automate conformity 
to style. Ideally, a consistent style would be adopted across 
the field; however, this may be too rigid. Style can be highly 
personal, and many experienced coders likely have developed 
their own style, formal or informal, that works for them. Our 
proposal is geared for beginning coders who are looking for 
guidance on an established and easy-to-implement style. At 
the very least, a consistent style within a project will make it 
easier to read, understand and modify the code.

Principle 3: modularity and extensibility.  Arguably, code written 
for plant ecophysiologists, whether formally trained in coding 
or not, should be written in a modular manner, much like Lego 
bricks, where one component (e.g. Arrhenius function) can be 
easily swapped with another (e.g. peaked Arrhenius function), or 
extended (e.g. hypothetical mechanistic temperature response 
model). Note that this may increase apparent complexity of 
software packages by creating more functions and make it more 
difficult to work with at first. However, it will make adding, 
subtracting or modifying code modules easier for researchers 
who need to make on-the-fly changes to code as new biological 
processes are discovered or old ones re-evaluated. To achieve 
modularity in the structure of photosynthesis, we used principles 
of functional programming to develop a set of key functions for 
processing data and running quality control checks: fit_many, 
analyze_sensitivity, compile_data and print_graphs. 
Both fit_many and analyze_sensitivity can be run with any 
function within and outside of {photosynthesis} to run multiple 
curve fits or sensitivity analyses on assumed input parameters. 
Meanwhile, compile_data is used for processing the list outputs 
from fit_many into a form usable for further analyses and export 
from R, and print_graphs is used to export all graphs from a 
list as either .jpeg or compiled as a .pdf.

For curve fitting functions with multiple models (e.g. 
temperature responses, gs models), we use a basic function 
(e.g. fit_t_response), which contains fitting procedures 
for each of the seven temperature response models in the 
package. Meanwhile, a t_functions file contains all the 
temperature response functions. To extend the capabilities 
and add in a new temperature response model, we simply 
need to add the new model to t_functions, and the fitting 
procedure to fit_t_response. Currently, adding new functions 
requires modifying the source code, but future versions 
should increase extensibility by allowing users to supply any 
temperature response function. This principle of function 
building increases the extensibility of the code, while 
consistent style and standardized nomenclature provide the 
rules for writing the extended components.

Modularity also applies to modelling. The {photosynthesis} 
functions photo and photosynthesis model C3 photosynthesis 
using the Farquhar–von Caemmerer–Berry biochemical model 
(Farquhar et al. 1980). To account for temperature dependence, a 
user can specify leaf temperature, or they can provide additional 
inputs (e.g. air temperature, leaf size, wind speed, etc.) to 
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model leaf temperature using energy balance in the R package 
{tealeaves} (Muir 2019). Both {photosynthesis} and {tealeaves} 
packages are modular in that they can work independently or 
be readily integrated [see Supporting Information—Methods 
S1]. Ideally, future modelling packages would add modules to 
model environmental and plant parameters either on their own 
or integrated with these tools.

Principle 4: scalability.  A major advantage in using code to 
analyse data is the ability to scale up an analysis to reduce 
time spent on repetitive tasks common in spreadsheet-based 
methods such as copy-and-paste, selecting data, choosing menu 
options, etc. Functions allow the same model to be fit across 
groups within a data set using a consistent method. For this, our 
fit_many function and the principles of functional programming 
are how we achieve scalability within the package. Rather than 
writing functions for each type of model or curve, we have a 
single multiple fitting function, sensitivity analysis function and 
printing function. R even has generic functions for scaling such 
as apply (base R language) and map ({purrr} package; Henry and 
Wickham 2020) which can be easily parallelized for speed (e.g. 
{parallel} and {furrr}; Vaughan and Dancho 2018 packages). This 
makes it easy to scale a new function within the software to a 
large data set.

Principle 5: documented contingencies.  By documenting which 
functions are dependent on one another, it becomes easier 
to troubleshoot issues when modifying code and to pre-empt 
issues when adding or replacing a component. For example, fit_
aq_response depends on aq_response—if we want to change 
from the non-rectangular hyperbola model to a rectangular 
hyperbolic model, then fit_aq_response needs to be modified 
in addition to aq_response. To document contingencies, we 
created a function, check_dependencies, which uses {pkgnet} 
(Burns et al. 2020) to generate an html report that automatically 
documents R package interdependencies and function 
interdependencies. This is particularly useful when adding, 
subtracting or modifying functions in the package, as it allows 
planning to minimize issues that could break code.

Principle 6: documentation.  Code annotations allow a new 
user to readily understand what a line of code is doing, how 
it is doing it and why the code is written in a particular way. 
By providing exhaustive line-by-line annotation of a function, 
a new user can more rapidly understand the blueprint of the 
function. This is especially useful for R scripts and code hosted 

on GitHub (unfortunately, comments are erased from code 
upon submission to CRAN). For example, in fit_t_response, we 
outline the need for running looped iterations for the starting 
values of non-linear least squares curve fitting (Fig. 1). In the 
case of R packages hosted on CRAN, R documentation files 
provide information on how to use a function, though as a terser 
set of instructions as per CRAN policies (https://cran.r-project.
org/doc/manuals/r-devel/R-exts.html).

Enough metadata and commenting should be provided for a 
new user to understand how to use the written code (which can 
be an issue that affects widespread use of a program; Mangul 
et al. 2019).

Principle 7: extensive tutorials.  As with any tool, software will 
only be used if potential users can understand how it works. 
Extensive tutorials, while providing function-by-function 
examples of how to use the software, should also incorporate 
basic data-wrangling examples and explanations of why a given 
approach to data analysis is used in the field. The benefits of this 
approach include: making the code easier to adopt into your own 
analysis, making it easier for new coders to learn enough of the 
language to use the package effectively, and help trainees learn 
the appropriate theory behind the measurements and analytical 
approach. The net effect should be to increase the inclusivity of 
the field by reducing barriers to success since not all individuals 
will have equal access to workshops or experienced colleagues.

Principle 8: unit testing and benchmarking.  For reproducibility, 
code should yield the same results when it is run by other 
users months or years into the future. Unit testing, a common 
practice in software development that is still rare in scientific 
code, evaluates whether various components, such as custom 
functions, perform as expected. If all the components work as 
expected, it provides confidence that the whole body of code 
does what it is supposed to. Most scientists informally test their 
functions as they develop them, but formal unit testing involves 
writing scripts to test code and can be rerun to periodically check 
whether code still works as expected. More dedicated efforts 
automate testing and quantify code coverage, the fraction of 
code that is evaluated during automated tests. There are many 
ways to implement unit testing, but the {testthat} package is 
one option for R packages (Wickham 2011) that {photosynthesis} 
uses for some (but not yet  all) of its source code. A  related 
concept is benchmarking, by which we mean comparing 
parameter estimates from the same data set using different 
software or later versions of the same software. Benchmarking 
can help determine if parameter estimation is consistent 
between software packages. For example, parameter estimates 
of photosynthetic CO2 response parameters (Farquhar et al. 1980) 
are very similar using comparable settings in {photosynthesis} 
and {plantecophys} [see Supporting Information—Notes S1].

Examples of resilient coding in the {photosynthesis} 
package for R

We built a package containing analytical tools for plant 
ecophysiology (Stinziano et  al. 2020), embedding our coding 
principles into the package itself. The R package contains 
functions for fitting photosynthetic CO2 (Farquhar et al. 1980; von 
Caemmerer 2000; Gu et al. 2010; Duursma 2015) and light response 
curves (Marshall and Biscoe 1980), temperature responses of 
biological processes (Arrhenius 1915; Medlyn et al. 2002; Kruse 
et al. 2006; Heskel et al. 2016; Liang et al. 2018), light respiration 
(Kok 1956; Laisk 1977; Yin et al. 2009, 2011; Walker and Ort 2015), 
mesophyll conductance (Harley et al. 1992), stomatal conductance 

Figure 1.  Example of coding annotations to explain the given analytical 

approach.
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models (Ball et  al. 1987; Leuning 1995; Medlyn et  al. 2011), 
pressure–volume curves (Tyree and Hammel 1972; Koide et  al. 
2000; Sack et al. 2003), hydraulic vulnerability curves (Pammenter 
and van der Willigen 1998; Ogle et  al. 2009) and sensitivity 
analyses (Table 1; see Supporting Information—Table S1).  
It also contains functions for modelling C3 photosynthesis 
using the Farquhar–von Caemmerer–Berry biochemical model 
(Farquhar et  al. 1980). The default kinetic parameters for gas 
exchange fitting procedures are taken from Nicotiana tabacum 

(Bernacchi et  al. 2001, 2002). The {photosynthesis} package is 
currently limited to C3 photosynthesis, but future releases 
should expand its functionality to other photosynthetic 
pathways. A  comprehensive illustration of how to use the 
package can be found in the vignette of the package (see 
Supporting Information—Notes S2, ‘photosynthesis-curve-
fitting-sensitivity-analyses.rmd’). There are currently two 
vignettes available for the package that function as tutorials 
on CRAN (https://CRAN.R-project.org/package=photosynthesis). 

Table 1.  List of {photosynthesis} functions with applications and descriptions. The documentation for each function describes the estimated 
or simulated parameters, constants and other calculated values. Documentation is updated to describe new functionalities as they are added.

Base functions

Applications Function Description

Gas Exchange fit_aci_response Fits A–Ci curves, provides parameters/graphs

Gas Exchange fit_aq_response Fits A–Q curves, provides parameters/graphs

Gas Exchange fit_g_mc_variableJ Fits gmc, adds gmc and dCcdA to data frame for reliability checking

Gas Exchange fit_gs_model Fits the Ball et al. (1987), Leuning (1995) and Medlyn et al. (2011) models of 
stomatal conductance, provides parameters/graphs

Hydraulics fit_hydra_vuln_curve Fits the sigmoidal and Weibull models to hydraulic vulnerability data, 
provides parameters/graphs

Hydraulics fit_PV_curve Fits pressure–volume curves, provides parameters/graphs

Gas Exchange fit_r_light Fits r_light according to the Kok (1956) method, Yin method (Yin et al. 2009, 
2011) or Walker and Ort (2015) method.

Gas Exchange, Biochemistry fit_t_response Fits an Arrhenius (Arrhenius 1915), Heskel (Heskel et al. 2016), Kruse 

(Kruse et al. 2006 ), Medlyn (Medlyn et al. 2002), Macromolecular rate 
theory (Hobbs et al. 2013)  and quadratic temperature response models, 
provides parameters/graphs

Modelling photo Simulates C3 photosynthesis over a parameter set

Modelling make_parameters A set of functions (e.g. make_enviropar, make_leafpar) that generates 
the required inputs for photo

Meta-functions and utilities

Application Function Description

Software modification check_dependencies Generates HTML with package and function dependencies

All components compile_data Compiles the output from the fit_many function

All components fit_many Fits a function many times through a grouping variable

All components print_graphs Prints graphs from a list of graphs

All components sensitivity_analysis Allows up to two-factor sensitivity analysis of any function

Figure 2.  Dependencies of the A–Ci fitting functions in (A) {plantecophys} and (B) {photosynthesis}.
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The first vignette (titled ‘photosynthesis-curve-fitting-sensitivity-
analyses’) demonstrates how to use curve fitting and sensitivity 
tools and the second (titled ‘introduction to the photosynthesis 

package’) demonstrates how to simulate photosynthetic rate 
using the Farquhar–von Caemmerer–Berry C3 biochemical model, 
define leaf and environmental parameters, replace default 
parameters and solve for chloroplastic CO2 concentrations.

The package is specifically designed to accommodate new 
analytical tools and discoveries and be easily maintained by 
new users. Non-linear curve fitting procedures use the nlsLM 
function from {minpack.lm} (Elzhov et al. 2016), which provides 
a more robust fitting procedure for non-linear functions than 
the base R nls function. Graphical outputs are provided using 
{ggplot2} (Wickham 2016a). Meta-functions were constructed 
with the tools provided for generalizing functions and arguments 
in {rlang} (Henry and Wickham 2019).

The principles of modularity and functional programming 
have been used to substantially reduce code interdependencies 
within the software. For example, the fitaci function from 
{plantecophys} has over 30 function dependencies (Fig. 2A). By 
applying our principles, we were able to reduce this to just four 
function dependencies (Fig. 2B), by re-engineering the fitting 
procedure and eliminating redundant functions and code. 
Arguably, fewer dependencies could indicate less modularity, 
even though each of the components is modular, but fewer 
dependencies may reduce the number of bugs introduced by 
revisions in other components.

Example data  set.  To demonstrate the fitting functions of the 
package, we use a combination of data collected for the package 
and previously published data. A CO2 by light response curve and 
CO2 by temperature response curve were collected in sunflower 
(Helianthus annuum) grown in a rooftop greenhouse at the 
University of New Mexico (35.0843°N, 106.6198°W, 1587 m a.s.l., 
18.3 to 21.1/15.6 to 21.1  °C day/night temperature with daily 
irradiances of 600 to 1200 μmol m−2 s−1). CO2 response curves 
were measured at irradiances of 1500, 150, 375, 125, 100, 75, 50 
and 25 μmol m−2 s−1 at a Tleaf of 25 °C. CO2 response curves were 
also measured at Tleaf of 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5 and 

Figure 3.  Gas exchange curve fitting outputs. (A) Output from fit_aq_response 

showing the data (black points), the model fit (blue line) and the standard error on 

the model fit (grey region). The light response at a [CO2] of 100 μmol mol−1 is shown. 

Anet: net CO2 assimilation. (B) Graph from fit_aci_response showing modelled 

Anet (Amod, black line), CO2-limited Anet (Ac, blue), RuBP regeneration-limited Anet (Aj, 

orange), triose phosphate utilization-limited Anet (Ap) and the data (white dots). 

Anet: net CO2 assimilation; Ci: intercellular CO2 concentration. (C) Output from 

fit_t_response showing the Heskel temperature response of Jmax. Data are black 

dots, model fit is the blue line and the grey shaded region is the standard error 

on the model fit. Jmax: maximum rate of electron transport; Tleaf: leaf temperature..

Figure 4.  Relationship between gmc estimated through the variable J method 

and δCc/δA to test for reliability. The fit_g_mc_variableJ function was used 

on the CO2 by light response data in sunflower. gm: mesophyll conductance; Cc: 

chloroplastic CO2 concentration; A: net CO2 assimilation.
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40 °C at an irradiance of 1500 μmol m−2 s−1. Data to demonstrate 
hydraulic vulnerability curve fitting methods were drawn from 
Hudson et al. (2018), while data for leaf pressure/volume analysis 
come from an unpublished data set collected at the University 
of New Mexico. Below we illustrate some of the functionality of 
the package. These data are freely available in the package, so 
potential users can test out the functions and different analyses 
in the code. We refer potential users to the package vignette for 
more worked examples (see Supporting Information—Notes S2, 
‘photosynthesis-curve-fitting-sensitivity-analyses.rmd’).

Photosynthetic light response curve fitting.   The fit_aq_response 
function returns a list containing the fitted light response model, 
model parameters and a graph showing the model fit to the data 
(Fig. 3A). This function estimates the light-saturated net CO2 
assimilation rate, quantum yield of CO2 assimilation, an empirical 
curvature factor and respiration (Marshall and Biscoe 1980).

Photosynthetic CO2 response curve fitting.  The fit_aci_response 
function returns a list containing the fitted parameters, a data 
frame with the modelled data output and a graph showing the 
model fit to the data (Fig. 3B). It estimates the standard parameters 
of the Farquhar–von Caemmerer–Berry C3 biochemical model 
(Farquhar et  al. 1980) and parameter standard errors to help 
evaluate results. As with any non-linear regression, failure of the 
solver to converge on a solution or very large standard errors 
usually indicates problems fitting the model to the data and 
unreliable parameter estimates.

Photosynthetic temperature response curve fitting.  A series of 
temperature response functions can be fit using the package, 
with the outputs including the fitted model, model parameters 
and a graph (Fig. 3C). As with other functions, details about 
parameters are given in the package documentation.

Fitting gm using the variable J method.  The fit_g_mc_variableJ 
function implements the method of Harley et al. (1992) using 
chlorophyll fluorescence and gas exchange data to estimate 
gmc. Both gmc and δCc/δA are calculated, where δCc/δA between 
10 and 50 are deemed to be ‘reliable’ (Harley et al. 1992), and 
an average gmc value is estimated based on the reliable values. 
This makes it relatively easy to assess the reliability of gmc 
estimates (Fig. 4).

Hydraulic vulnerability curve fitting.  The fit_hydra_vuln_curve 
fits hydraulic vulnerability data using both a sigmoidal and 
Weibull function. Outputs include model fits, parameters and 
a graph (Fig. 5A).

Pressure–volume curves.   The fit_pv_curve fits pressure–volume 
curves, returning parameters such as relative water content and 
water potential at turgor loss points, relative capacitance at full 
turgor and others. Outputs include parameters and graphs (Fig. 
5B and C).

Figure 5.  (A) Example output from fit_hydra_vuln_curve showing both model 

fits overlaid on the data (black dots). PLC: percent loss of conductivity; Pe: air 

entry point; P50: water potential at 50 % PLC; Pmax: hydraulic failure threshold. (B, 

C) Example output from fit_pv_curve showing the (B) water mass graph and (C) 

the pressure–volume curve. Grey lines are fit to the linear regions of the data. Ψ: 

water potential; RWC: relative water content.

Figure 6.  Control coefficients of gm and Γ* at 25  °C calculated from analyze_

sensitivity and compute_sensitivity.
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Sensitivity analyses.  Both analyze_sensitivity and compute_
sensitivity are used in combination for sensitivity analyses. 
analyze_sensitivity allows up to two assumed parameters 
to be varied in a fitting function, while compute_sensitivity 
runs two types of local sensitivity calculations based on a user-
defined reference value: parameter effect (Bauerle et  al. 2014) 
and control coefficient (Capaldo and Pandis 1997). We can look 
at the impact of varying gm and Γ* at 25 °C on fitted Vcmax (Fig. 6). 
We can see that gm and Γ* at 25 °C have an orthogonal impact on 
Vcmax, with Γ* having a stronger control than gm on Vcmax.

Moving forward—standardized practices and 
code editors

It is not easy to rewrite software, and we are not arguing as such. 
Rather, going forward as a community, we argue that we should 
adopt a set of coding principles and guidelines to create code 
as flexible as the biology we study. We present the R package, 
{photosynthesis}, as an example of these principles and 
guidelines. The consequences of this are not to be understated: 
it will be easier for new trainees and beginner coders to learn, 
understand and write code for the community; and it will be 
easier to tailor existing code to our projects.

The drawback is that code may run more slowly, which may 
be a worthwhile trade-off for some but not others. For example, 
computational speed may take precedence over flexibility for 
eddy flux covariance, genomics and other ‘big data’ applications. 
In ecophysiology, many data sets are often small enough that 
even complex analyses may only take 1  h on one computer 
core of a multi-core system—as a community we can often 
afford slower-running code for greater flexibility and ease-of-
understanding, especially as this could save days or weeks of 
coding to write a desired analysis. Our code should be as flexible 
as, and easier to understand, than the biology it describes.

However, providing code according to these standards is 
not sufficient—we also need code-competent editorial staff 
for journals who can properly review and test submitted code 
to ensure that it runs as intended. In some cases, code for a 
published data set does not work even after comprehensive 
modification (J. R. Stinziano, pers. comm.). Standardized coding 
practices will help to reduce the burden on code editors by 
making it easier to read and understand code submissions.

Supporting Information
The following additional information is available in the online 
version of this article—

Methods S1. Description of variables used in 
{photosynthesis}.

Table S1. Table of other utility functions in {photosynthesis}.
Notes S1. Benchmark comparison of plantecophys::fitaci 

and photosynthesis::fit_aci_response.
Notes S2. The {photosynthesis} R package tar.gz file.
Notes S3. Examples tidy data file (hydraulic_vulnerability.

csv).
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