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Abstract

Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory
with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming
languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using
advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt

a unified set of coding principles and standards that could make coding easier to learn, use and modify. We identify eight
principles to help in plant ecophysiologists without much programming experience to write resilient code: (i) standardized
nomenclature, (ii) consistency in style, (iii) increased modularity/extensibility for easier editing and understanding, (iv)
code scalability for application to large data sets, (v) documented contingencies for code maintenance, (vi) documentation
to facilitate user understanding; (vii) extensive tutorials and (viii) unit testing and benchmarking. We illustrate these
principles using a new R package, {photosynthesis}, which provides a set of analytical and simulation tools for plant
ecophysiology. Our goal with these principles is to advance scientific discovery in plant ecophysiology by making it easier
to use code for simulation and data analysis, reproduce results and rapidly incorporate new biological understanding and

analytical tools.
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Background

Computer coding is becoming an increasingly important skill in
biological research (Sayres et al. 2018), especially within plant
ecophysiology. A disconnect in coding skill and a lack of formal
computer science training can make it difficult for biologists to
create or modify programs to incorporate new understanding
of biological processes. In other words, sophisticated code (by
trained programmers) is efficient, but difficult to modify by
biologists for new uses. So why code at all? Coding allows for
consistent, reproducible, transparent and scalable analyses
of scientific data, while at the same time minimizing human
work hours compared to using pre-packaged software. However,

most published ecophysiological analyses use spreadsheet-
based methods rather than computer code, which comes with
some limitations. For example, Sharkey et al. (2007) have an
Excel spreadsheet-based method for fitting photosynthetic
CO, response (A-C) curves (also see Bellasio et al. 2016).
A spreadsheet-based method can take several minutes per
curve and involves a substantial amount of subjective decision-
making (e.g. ‘eye-balling’ where transitions between CO,- and
RuBP-limited photosynthesis occur). Likewise, analysis of
pressure-volume curves for hydraulic parameters is usually
done via an Excel spreadsheet-based method (Sack et al. 2003),
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which can be time-consuming, requires subjective decisions,
and spreadsheets are usually not published with manuscripts,
obscuring methodology. The total workload is time per
spreadsheet multiplied by the number of curves, which can be
inefficient in large studies. Cryptic changes in the spreadsheets
can occur without a record of the change, potentially leading
to compounding errors. Furthermore, spreadsheet tools often
break, requiring a fresh, unaltered spreadsheet to be used for
each CO, response curve. Another option, provided by Gu et al.
(2010) (leafweb.org) provides an online service that analyses
A-C, curves; however, in this case, the analysis is a black-box
and could be misused by users lacking an understanding of the
fitting process, and the data are stored on a government server
which may cause some users discomfort.

Meanwhile, Duursma (2015) developed an R package,
{plantecophys}, that can obtain similar outputs to the Sharkey
et al. (2007) fitting tools in seconds, with far fewer subjective
decisions that can easily be outlined in the code used in the fitting
process, while providing a similar, but transparent approach
as in Gu et al. (2010). Like the {plantecophys} package, analytical
methods should be fully transparent and reproducible. As such,
authors should publish their code, which is still not the norm
in plant ecophysiology (but see Kumarathunge et al. 2019 for an
example of published code). As a community, increased adoption
and dissemination of code will help the field perform more
sophisticated analyses and model comparison (e.g. Walker et al.
2021). Coding may also streamline integration between theory and
data analysis, especially for complex mathematical formulations
that require computationally intensive numerical methods, a
common situation in plant ecophysiology. Ideally, we would like
a workflow in which we state our assumptions mathematically,
derive empirical predictions, and test those predictions or
estimate parameters with data. The process of translating a
mathematical model of biology into code can also help novice and
advanced coders deepen their understanding of models and their
assumptions before confronting them with data. Open-source,
research-grade computer algebra systems like SymPy (Meurer et al.
2017) and numerical solvers aid mathematical derivation and are
part of or can be readily integrated with programming languages
that are widely used for data manipulation and analysis, such as R
(R Core Team 2021), Python (Python Software Foundation) or Julia
(Bezanson et al. 2017).

Although coding can speed up large analyses, reduce errors,
make analyses reproducible and integrate theory with data,
writing robust code that can be understood and reused by
other scientists is not easy. First, one must learn one or more
programming languages (e.g. R, Python, Matlab, Julia), which can
involve steep learning curves. Second, even though coding one’s
own analysis can make it easier to catch errors associated with
inappropriate use of black-box proprietary software, one must
still understand the assumptions and limitations of statistical
techniques and conceptual tools. Finally, code can be as unique
as someone’s handwriting, which can make it difficult even for
an experienced programmer to make sense of a ‘transparent’
analysis unless there is sufficient annotation within the code.

In this perspective, we propose eight principles of coding
tailored to the specific needs of the plant ecophysiology
research community. For example, guidance in other scientific
fields often emphasizes computational speed. However,
given the typical scale of ecophysiological data sets (~MB, i.e.
small-batch, artisanal data sets) and the computer power
of personal computers (~GB of RAM, ~GHz of processing
power), computational speed is usually not a major limitation.
Instead, ecophysiologists often need to estimate parameters

derived from complex biophysical/chemical models. Coding
is important as the complex models required to fit different
response curves involve many interacting equations, numerical
solvers and parameters that either need to be set or estimated.
For example, there are seven different models that can be
used to fit temperature responses which ultimately require
different equations and fixed parameters (Arrhenius 1915;
Johnson et al. 1942; Medlyn et al. 2002; Kruse et al. 2006; Heskel
et al. 2016; Liang et al. 2018). In this domain, code flexibility and
modularity are usually more important than computational
speed. Furthermore, flexibility and modularity in code would
enhance the sustainability of software after publication, which
can be an issue (Prli¢ and Procter 2012). Here we demonstrate
coding principles designed for plant ecophysiology using a new
R package called {photosynthesis}. We caution that this software
is a work-in-progress that does not yet completely adhere to all
of the coding principles to which we aspire, but will be refined in
future releases. This perspective, written by trained biologists not
programmers, is intended to convey some of the lessons we have
learned so far to provide guidance for plant ecophysiologists who
are thinking about or starting to code their workflows, especially
using R. We recognize that many other scientists in this field are
adept coders who have already honed their practices through
experience. Hence, this perspective is intended to guide for less
experienced coders rather than a mandate for the entire field.
We hope our perspective spurs experienced coders to share
‘best practices’ with less experienced peers and expand the
principles below to other languages besides R. As computational
plant ecophysiology matures, we hope that this perspective will
help move the field toward more standardized and sustainable
software practices like those in more computationally intensive
subfields of biology like population genetics (Adrion et al. 2020).

Description

Principles of coding

The overarching concept we propose is making code resilient
by making it easier to use, reproduce and modify. Obviously
not every possible discovery and need within a scientific field
can be predicted, but the code can be written to allow easy
modification and accommodation of the source code as the
science progresses. Functional programming in R and other
languages provides a powerful tool for writing functions that
take functions as arguments and easily process newly written
code into a standardized output without the need for ever
modifying the original function itself (Wickham 2019). Such an
approach helps to write modular code that is easy to modify
and understand, while minimizing interdependencies between
functions.

Freely available resources already exist for good coding
practices in R packages and can be applied to R scripts as
well, primarily from the efforts of Hadley Wickham (Wickham
2014, 2015, 2016b, 2017, 2019; Wickham and Grolemund 2016).
As well, guides to best practices for scientific computing exist
(see Wilson et al. 2014 for a list of best practices). Here we
propose principles of coding for plant ecophysiology that, if
implemented, could circumvent some of the common coding
issues encountered when modifying the code of others, reduce
the learning difficulty for nascent coders and make software
maintenance much easier:

1. Standardized nomenclature for variables and functions
2. Consistent style
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. Modularity and extensibility

. Scalability

. Documented contingencies

. Documentation

. Extensive tutorials

. Unit testing and benchmarking
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We think that adopting some or all of these principles will
improve code reproducibility and help advance scientific
discovery, but our goal is not to rigidly prescribe how plant
ecophysiologists should do their work. First, we recognize that
others will have different, well-reasoned preferences and/or
apply principles we have not covered here. Second, those who
find these principles useful may find implementing all of them
time-consuming at first. We strongly encourage incremental
progress and not making perfection the enemy of the good.
Indeed, the {photosynthesis} package described below only
partially implements our principles, with much left to do in
future development.

Principle 1: standardized nomenclature. Names vary wildly
between functions with published code and data and even
amongst instruments within the same company (e.g. for net
CO, assimilation, ‘A’ is used in the Li-Cor 6800 and ‘PHOTO’ is
used in the Li-Cor 6400). Ideally, we need both standardized
nomenclature in the field (e.g. Reid et al. 2005) and standardized
construction of variable and function names to enhance
readability and reduce the burden for learning how to use new
packages and functions or testing published code. For example,
g is always in reference to conductance, where a subscript term
would then describe the physical pathway (e.g. s for stomata,
c for cuticle or m for mesophyll) as well as the gas (e.g. c for
CO,, w for water vapour). For example, g_, would mean stomatal
conductance to water vapour. Standardizing nomenclature
across both mathematical models and data files can also
streamline theory-data integration, but this also requires
standard translation between mathematical and computer
notation, which is beyond our scope here.

For example, in {photosynthesis}, every function is named
in a descriptive manner: e.g. fit t response fits specified
temperature responses model to data, while fit_gs model fits
specified models of stomatal conductance. Variable names are
also standardized: e.g. ‘T_leaf’ always means leaf temperature
in Kelvin (K), ‘A_net’ always means net CO, assimilation in pmol
m-2 s In this regard, standard units should also be imposed
in the analysis (e.g. in R via the {units} package; Pebesma et al.
2016), to remove any ambiguities when interpreting the output.
To allow for differences in variable names from the raw data (e.g.
from using different machines), the ‘varnames’ list is used to
translate input names (note that this convention is adopted from
{plantecophys}; Duursma 2015). We propose adopting Wickham’s
(Wickham 2019) style in that functions that do something have
a verb name, e.g. fit aci response, while functions that act
as objects within other functions (e.g. stomatal conductance
models) should have a noun name, e.g. gs_model.

Principle 2: consistent style. Consistent coding style makes
reading code easier—certain conventions, e.g. commenting
what the next line of code does, can make it easier to
understand code documentation. Our preference is for the
‘tidy style’, which applies to both data and code structure,
and much else (see the The tidyverse Style Guide: https://
style.tidyverse.org/). For data, tidy style advocates that each
column is a variable, and each row is an observation, since R
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is particularly suited for this style of data structure. Popular R
packages like {dplyr} (Wickham et al. 2020) and {tidyr} (Wickham
and Henry 2020) facilitate tidy data and many other packages,
like {photosynthesis}, use them for consistent style (Notes
S3 contains an example of tidy data organization). For code,
computers do not care about style, as long as it is correctly
formatted, but for humans reading code, adherence to well-
designed style can be helpful, especially for beginners trying
to learn from others. A benefit of tidy style in particular is that
R packages {styler} (Miiller and Walthert 2020), {lintr} (Hester
et al. 2020) and {formatR} (Xie 2019) can automate conformity
to style. Ideally, a consistent style would be adopted across
the field; however, this may be too rigid. Style can be highly
personal, and many experienced coders likely have developed
their own style, formal or informal, that works for them. Our
proposal is geared for beginning coders who are looking for
guidance on an established and easy-to-implement style. At
the very least, a consistent style within a project will make it
easier to read, understand and modify the code.

Principle 3: modularity and extensibility. Arguably, code written
for plant ecophysiologists, whether formally trained in coding
or not, should be written in a modular manner, much like Lego
bricks, where one component (e.g. Arrhenius function) can be
easily swapped with another (e.g. peaked Arrhenius function), or
extended (e.g. hypothetical mechanistic temperature response
model). Note that this may increase apparent complexity of
software packages by creating more functions and make it more
difficult to work with at first. However, it will make adding,
subtracting or modifying code modules easier for researchers
who need to make on-the-fly changes to code as new biological
processes are discovered or old ones re-evaluated. To achieve
modularity in the structure of photosynthesis, we used principles
of functional programming to develop a set of key functions for
processing data and running quality control checks: fit many,
analyze sensitivity, compile data and print graphs.
Both fit many and analyze sensitivity can be run with any
function within and outside of {photosynthesis} to run multiple
curve fits or sensitivity analyses on assumed input parameters.
Meanwhile, compile dataisused for processing the list outputs
from fit many into a form usable for further analyses and export
from R, and print graphs is used to export all graphs from a
list as either .jpeg or compiled as a .pdf.

For curve fitting functions with multiple models (e.g.
temperature responses, g, models), we use a basic function
(e.g. fit t response), which contains fitting procedures
for each of the seven temperature response models in the
package. Meanwhile, a t functions file contains all the
temperature response functions. To extend the capabilities
and add in a new temperature response model, we simply
need to add the new model to t_functions, and the fitting
procedure to fit t response. Currently, adding new functions
requires modifying the source code, but future versions
should increase extensibility by allowing users to supply any
temperature response function. This principle of function
building increases the extensibility of the code, while
consistent style and standardized nomenclature provide the
rules for writing the extended components.

Modularity also applies to modelling. The {photosynthesis}
functions photo and photosynthesis model C3 photosynthesis
using the Farquhar-von Caemmerer-Berry biochemical model
(Farquhar et al. 1980). To account for temperature dependence, a
user can specify leaf temperature, or they can provide additional
inputs (e.g. air temperature, leaf size, wind speed, etc.) to
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model leaf temperature using energy balance in the R package
{tealeaves} (Muir 2019). Both {photosynthesis} and {tealeaves}
packages are modular in that they can work independently or
be readily integrated [see Supporting Information—Methods
S1]. Ideally, future modelling packages would add modules to
model environmental and plant parameters either on their own
or integrated with these tools.

Principle 4: scalability. A major advantage in using code to
analyse data is the ability to scale up an analysis to reduce
time spent on repetitive tasks common in spreadsheet-based
methods such as copy-and-paste, selecting data, choosing menu
options, etc. Functions allow the same model to be fit across
groups within a data set using a consistent method. For this, our
fit_many function and the principles of functional programming
are how we achieve scalability within the package. Rather than
writing functions for each type of model or curve, we have a
single multiple fitting function, sensitivity analysis function and
printing function. R even has generic functions for scaling such
as apply (base R language) and map ({purrr} package; Henry and
Wickham 2020) which can be easily parallelized for speed (e.g.
{parallel} and {furrr}; Vaughan and Dancho 2018 packages). This
makes it easy to scale a new function within the software to a
large data set.

Principle 5: documented contingencies. By documenting which
functions are dependent on one another, it becomes easier
to troubleshoot issues when modifying code and to pre-empt
issues when adding or replacing a component. For example, fit
ag_response depends on aq response—if we want to change
from the non-rectangular hyperbola model to a rectangular
hyperbolic model, then fit ag response needs to be modified
in addition to ag response. To document contingencies, we
created a function, check dependencies, which uses {pkgnet}
(Burns et al. 2020) to generate an html report that automatically
documents R package interdependencies and function
interdependencies. This is particularly useful when adding,
subtracting or modifying functions in the package, as it allows
planning to minimize issues that could break code.

Principle 6: documentation. Code annotations allow a new
user to readily understand what a line of code is doing, how
it is doing it and why the code is written in a particular way.
By providing exhaustive line-by-line annotation of a function,
a new user can more rapidly understand the blueprint of the
function. This is especially useful for R scripts and code hosted

model <- nlsLM(
data = data,
Par ~ Par25 * t_response_arrhenius(Ea, Tleal = Tleaf),
start = start,

lower = c (0, 0),
upper = c(leld, 10 * max(data$Par)),
control = nls.control (maxiter = 100)

)

model fm <- data.frame (
Ea = rep(0,
Hd = rep(0,
kopt = rep(0, 1000),
Topt = rep(0, 1000),
residual = rep(0, 1000},
Parameter = rep(varnames$Par([[1]]), 1000)
)

Figure 1. Example of coding annotations to explain the given analytical
approach.

on GitHub (unfortunately, comments are erased from code
upon submission to CRAN). For example, in fit t response, we
outline the need for running looped iterations for the starting
values of non-linear least squares curve fitting (Fig. 1). In the
case of R packages hosted on CRAN, R documentation files
provide information on how to use a function, though as a terser
set of instructions as per CRAN policies (https://cran.r-project.
org/doc/manuals/r-devel/R-exts.html).

Enough metadata and commenting should be provided for a
new user to understand how to use the written code (which can
be an issue that affects widespread use of a program; Mangul
et al. 2019).

Principle 7: extensive tutorials. As with any tool, software will
only be used if potential users can understand how it works.
Extensive tutorials, while providing function-by-function
examples of how to use the software, should also incorporate
basic data-wrangling examples and explanations of why a given
approach to data analysis is used in the field. The benefits of this
approach include: making the code easier to adopt into your own
analysis, making it easier for new coders to learn enough of the
language to use the package effectively, and help trainees learn
the appropriate theory behind the measurements and analytical
approach. The net effect should be to increase the inclusivity of
the field by reducing barriers to success since not all individuals
will have equal access to workshops or experienced colleagues.

Principle 8: unit testing and benchmarking. For reproducibility,
code should yield the same results when it is run by other
users months or years into the future. Unit testing, a common
practice in software development that is still rare in scientific
code, evaluates whether various components, such as custom
functions, perform as expected. If all the components work as
expected, it provides confidence that the whole body of code
does what it is supposed to. Most scientists informally test their
functions as they develop them, but formal unit testing involves
writing scripts to test code and can be rerun to periodically check
whether code still works as expected. More dedicated efforts
automate testing and quantify code coverage, the fraction of
code that is evaluated during automated tests. There are many
ways to implement unit testing, but the {testthat} package is
one option for R packages (Wickham 2011) that {photosynthesis}
uses for some (but not yet all) of its source code. A related
concept is benchmarking, by which we mean comparing
parameter estimates from the same data set using different
software or later versions of the same software. Benchmarking
can help determine if parameter estimation is consistent
between software packages. For example, parameter estimates
of photosynthetic CO, response parameters (Farquhar et al. 1980)
are very similar using comparable settings in {photosynthesis}
and {plantecophys} [see Supporting Information—Notes S1].

Examples of resilient coding in the {photosynthesis}
package for R

We built a package containing analytical tools for plant
ecophysiology (Stinziano et al. 2020), embedding our coding
principles into the package itself. The R package contains
functions for fitting photosynthetic CO, (Farquhar et al. 1980; von
Caemmerer 2000; Guet al. 2010; Duursma 2015) and light response
curves (Marshall and Biscoe 1980), temperature responses of
biological processes (Arrhenius 1915; Medlyn et al. 2002; Kruse
et al. 2006; Heskel et al. 2016; Liang et al. 2018), light respiration
(Kok 1956; Laisk 1977; Yin et al. 2009, 2011; Walker and Ort 2015),
mesophyll conductance (Harleyetal. 1992), stomatal conductance
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models (Ball et al. 1987; Leuning 1995; Medlyn et al. 2011),
pressure-volume curves (Tyree and Hammel 1972; Koide et al.
2000; Sack et al. 2003), hydraulic vulnerability curves (Pammenter
and van der Willigen 1998; Ogle et al. 2009) and sensitivity
analyses (Table 1; see Supporting Information—Table S1).
It also contains functions for modelling C, photosynthesis
using the Farquhar-von Caemmerer-Berry biochemical model
(Farquhar et al. 1980). The default kinetic parameters for gas
exchange fitting procedures are taken from Nicotiana tabacum
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(Bernacchi et al. 2001, 2002). The {photosynthesis} package is
currently limited to C, photosynthesis, but future releases
should expand its functionality to other photosynthetic
pathways. A comprehensive illustration of how to use the
package can be found in the vignette of the package (see
Supporting Information—Notes S2, ‘photosynthesis-curve-
fitting-sensitivity-analyses.rmd’). There are currently two
vignettes available for the package that function as tutorials
on CRAN (https://CRAN.R-project.org/package=photosynthesis).

Table 1. List of {photosynthesis} functions with applications and descriptions. The documentation for each function describes the estimated
or simulated parameters, constants and other calculated values. Documentation is updated to describe new functionalities as they are added.

Base functions

Applications

Function

Description

Gas Exchange

fit_aci_response

Fits A-C, curves, provides parameters/graphs

Gas Exchange

fit aq response

Fits A-Q curves, provides parameters/graphs

Gas Exchange

fit_g_mc_variabled

Fits g, , adds g, . and dC_dA to data frame for reliability checking

Gas Exchange

fit_gs_model

Fits the Ball et al. (1987), Leuning (1995) and Medlyn et al. (2011) models of
stomatal conductance, provides parameters/graphs

Hydraulics fit_hydra vuln curve Fits the sigmoidal and Weibull models to hydraulic vulnerability data,
provides parameters/graphs
Hydraulics fit_PV_curve Fits pressure-volume curves, provides parameters/graphs

Gas Exchange

fit_r light

Fits r_light according to the Kok (1956) method, Yin method (Yin et al. 2009,
2011) or Walker and Ort (2015) method.

Gas Exchange, Biochemistry

fit_t_response

Fits an Arrhenius (Arrhenius 1915), Heskel (Heskel et al. 2016), Kruse
(Kruse et al. 2006 ), Medlyn (Medlyn et al. 2002), Macromolecular rate
theory (Hobbs et al. 2013) and quadratic temperature response models,
provides parameters/graphs

Modelling

photo

Simulates C, photosynthesis over a parameter set

Modelling

make parameters

A set of functions (e.g. make enviropar,make leafpar) that generates
the required inputs for photo

Meta-functions and utilities

Application

Function

Description

Software modification

check _dependencies

Generates HTML with package and function dependencies

All components

compile_ data

Compiles the output from the fit many function

All components

fit many

Fits a function many times through a grouping variable

All components

print graphs

Prints graphs from a list of graphs

All components

sensitivity analysis

Allows up to two-factor sensitivity analysis of any function
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The first vignette (titled ‘photosynthesis-curve-fitting-sensitivity-
analyses’) demonstrates how to use curve fitting and sensitivity
tools and the second (titled ‘introduction to the photosynthesis
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Figure 3. Gas exchange curve fitting outputs. (A) Output from fit_aq_response
showing the data (black points), the model fit (blue line) and the standard error on
the model fit (grey region). The light response at a [CO,] of 100 pmol mol-* is shown.
A, net CO, assimilation. (B) Graph from fit_aci_response showing modelled
A, (A Dlack line), CO,-limited A (A, blue), RuBP regeneration-limited A (A,
orange), triose phosphate utilization-limited A, (A)) and the data (white dots).
A, net CO, assimilation; C;: intercellular CO, concentration. (C) Output from
fit_t_response showing the Heskel temperature response of J . Data are black
dots, model fit is the blue line and the grey shaded region is the standard error

on the model fit. ], : maximum rate of electron transport; T, leaf temperature..

max” leaf®

package’) demonstrates how to simulate photosynthetic rate
using the Farquhar-von Caemmerer-Berry C, biochemical model,
define leaf and environmental parameters, replace default
parameters and solve for chloroplastic CO, concentrations.

The package is specifically designed to accommodate new
analytical tools and discoveries and be easily maintained by
new users. Non-linear curve fitting procedures use the nlsLM
function from {minpack.lm} (Elzhov et al. 2016), which provides
a more robust fitting procedure for non-linear functions than
the base R nls function. Graphical outputs are provided using
{ggplot2} (Wickham 2016a). Meta-functions were constructed
with the tools provided for generalizing functions and arguments
in {rlang} (Henry and Wickham 2019).

The principles of modularity and functional programming
have been used to substantially reduce code interdependencies
within the software. For example, the fitaci function from
{plantecophys} has over 30 function dependencies (Fig. 2A). By
applying our principles, we were able to reduce this to just four
function dependencies (Fig. 2B), by re-engineering the fitting
procedure and eliminating redundant functions and code.
Arguably, fewer dependencies could indicate less modularity,
even though each of the components is modular, but fewer
dependencies may reduce the number of bugs introduced by
revisions in other components.

Example data set. To demonstrate the fitting functions of the
package, we use a combination of data collected for the package
and previously published data. A CO, by light response curve and
CO, by temperature response curve were collected in sunflower
(Helianthus annuum) grown in a rooftop greenhouse at the
University of New Mexico (35.0843°N, 106.6198°W, 1587 m a.s.l.,
18.3 to 21.1/15.6 to 21.1 °C day/night temperature with daily
irradiances of 600 to 1200 pmol m= s™!). CO, response curves
were measured at irradiances of 1500, 150, 375, 125, 100, 75, 50
and 25 pmol m= s at a T, of 25 °C. CO, response curves were
alsomeasured at T, ,of17.5,20,22.5,25,27.5, 30, 32.5,35,37.5and
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Figure 4. Relationship between g, estimated through the variable ] method
and 6C/0A to test for reliability. The fit_g mc_variableJ function was used
on the CO, by light response data in sunflower. g, : mesophyll conductance; C_:
chloroplastic CO, concentration; A: net CO, assimilation.
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40 °C at an irradiance of 1500 umol m~ s-%. Data to demonstrate
hydraulic vulnerability curve fitting methods were drawn from
Hudson et al. (2018), while data for leaf pressure/volume analysis
come from an unpublished data set collected at the University
of New Mexico. Below we illustrate some of the functionality of
the package. These data are freely available in the package, so
potential users can test out the functions and different analyses
in the code. We refer potential users to the package vignette for
more worked examples (see Supporting Information—Notes S2,
‘photosynthesis-curve-fitting-sensitivity-analyses.rmd’).

Photosynthetic light response curve fitting. The fit aq response
function returns a list containing the fitted light response model,
model parameters and a graph showing the model fit to the data
(Fig. 3A). This function estimates the light-saturated net CO,
assimilation rate, quantum yield of CO, assimilation, an empirical
curvature factor and respiration (Marshall and Biscoe 1980).
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Figure 5. (A) Example output from fit_hydra_vuln_curve showing both model
fits overlaid on the data (black dots). PLC: percent loss of conductivity; P,: air
entry point; P, water potential at 50 % PLC; P__: hydraulic failure threshold. (B,
C) Example output from fit_pv_curve showing the (B) water mass graph and (C)
the pressure-volume curve. Grey lines are fit to the linear regions of the data. W:

water potential; RWC: relative water content.
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Photosynthetic CO, response curve fitting. The fit_aci_response
function returns a list containing the fitted parameters, a data
frame with the modelled data output and a graph showing the
modelfittothe data (Fig. 3B). It estimates the standard parameters
of the Farquhar-von Caemmerer-Berry C, biochemical model
(Farquhar et al. 1980) and parameter standard errors to help
evaluate results. As with any non-linear regression, failure of the
solver to converge on a solution or very large standard errors
usually indicates problems fitting the model to the data and
unreliable parameter estimates.

Photosynthetic temperature response curve fitting. A series of
temperature response functions can be fit using the package,
with the outputs including the fitted model, model parameters
and a graph (Fig. 3C). As with other functions, details about
parameters are given in the package documentation.

Fitting g, using the variable ] method. The fit_g_mc_variableJ
function implements the method of Harley et al. (1992) using
chlorophyll fluorescence and gas exchange data to estimate
9, Both g and 6C/6A are calculated, where 6C /5A between
10 and 50 are deemed to be ‘reliable’ (Harley et al. 1992), and
an average g,__value is estimated based on the reliable values.
This makes it relatively easy to assess the reliability of g,
estimates (Fig. 4).

Hydraulic vulnerability curve fitting. The fit_hydra vuln curve
fits hydraulic vulnerability data using both a sigmoidal and
Weibull function. Outputs include model fits, parameters and
a graph (Fig. 5A).

Pressure-volume curves. The fit_pv_curve fits pressure-volume
curves, returning parameters such as relative water content and
water potential at turgor loss points, relative capacitance at full
turgor and others. Outputs include parameters and graphs (Fig.
5B and C).
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Figure 6. Control coefficients of g and I'" at 25 °C calculated from analyze_

sensitivity and compute_sensitivity.
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Sensitivity analyses. Both analyze sensitivity and compute
sensitivity are used in combination for sensitivity analyses.
analyze sensitivity allows up to two assumed parameters
to be varied in a fitting function, while compute sensitivity
runs two types of local sensitivity calculations based on a user-
defined reference value: parameter effect (Bauerle et al. 2014)
and control coefficient (Capaldo and Pandis 1997). We can look
at the impact of varying g, and I'" at 25 °C on fitted V___ (Fig. 6).
We can see thatg_and I'" at 25 °C have an orthogonal impact on
V_ ..o With " having a stronger control than g_on V,

cmax’ cmax’

Moving forward—standardized practices and
code editors

It is not easy to rewrite software, and we are not arguing as such.
Rather, going forward as a community, we argue that we should
adopt a set of coding principles and guidelines to create code
as flexible as the biology we study. We present the R package,
{photosynthesis}, as an example of these principles and
guidelines. The consequences of this are not to be understated:
it will be easier for new trainees and beginner coders to learn,
understand and write code for the community; and it will be
easier to tailor existing code to our projects.

The drawback is that code may run more slowly, which may
be a worthwhile trade-off for some but not others. For example,
computational speed may take precedence over flexibility for
eddy flux covariance, genomics and other ‘big data’ applications.
In ecophysiology, many data sets are often small enough that
even complex analyses may only take 1 h on one computer
core of a multi-core system—as a community we can often
afford slower-running code for greater flexibility and ease-of-
understanding, especially as this could save days or weeks of
coding to write a desired analysis. Our code should be as flexible
as, and easier to understand, than the biology it describes.

However, providing code according to these standards is
not sufficient—we also need code-competent editorial staff
for journals who can properly review and test submitted code
to ensure that it runs as intended. In some cases, code for a
published data set does not work even after comprehensive
modification (J. R. Stinziano, pers. comm.). Standardized coding
practices will help to reduce the burden on code editors by
making it easier to read and understand code submissions.

Supporting Information

The following additional information is available in the online
version of this article—

Methods S1. Description of variables used in
{photosynthesis}.

Table S1. Table of other utility functions in {photosynthesis}.

Notes S1. Benchmark comparison of plantecophys: :fitaci
and photosynthesis::fit aci response.

Notes S2. The {photosynthesis} R package tar.gz file.

Notes S3. Examples tidy data file (hydraulic_vulnerability.
csv).
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