Quantum sensitivity limits of nuclear magnetic
resonance experiments searching for new
fundamental physics

Deniz Aybas

Department of Physics, Boston University, Boston, MA 02215, USA
Department of Electrical and Computer Engineering, Boston University, Boston, MA
02215, USA

Hendrik Bekker
Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany

John W. Blanchard

Helmholtz-Institut, GSI Helmholtzzentrum fiir Schwerionenforschung, 55128 Mainz,
Germany

Dmitry Budker

Helmholtz-Institut, GSI Helmholtzzentrum fiir Schwerionenforschung, 55128 Mainz,
Germany

Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany

Department of Physics, University of California, Berkeley, California 94720-7300, USA

Gary P. Centers

Helmholtz-Institut, GSI Helmholtzzentrum fiir Schwerionenforschung, 55128 Mainz,
Germany
Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany

Nataniel L. Figueroa

Helmholtz-Institut, GSI Helmholtzzentrum fiir Schwerionenforschung, 55128 Mainz,
Germany
Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany

Alexander V. Gramolin
Department of Physics, Boston University, Boston, MA 02215, USA



Quantum sensitivity limits of nuclear magnetic resonance experiments. . .

Derek F. Jackson Kimball

Department of Physics, California State University - East Bay, Hayward, California
94542-3084, USA

Arne Wickenbrock

Helmholtz-Institut, GSI Helmholtzzentrum fiir Schwerionenforschung, 55128 Mainz,
Germany
Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany

Alexander O. Sushkovi

Department of Physics, Boston University, Boston, MA 02215, USA

Department of Electrical and Computer Engineering, Boston University, Boston, MA
02215, USA

Photonics Center, Boston University, Boston, MA 02215, USA

1 Electronic address: asu@bu.edu



Quantum sensitivity limits of nuclear magnetic resonance experiments. . . 3

Abstract. Nuclear magnetic resonance is a promising experimental approach to search
for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession
experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in
particular, spin-projection noise. We discuss how such fundamental limits can potentially
be reached. We consider a circuit model of a magnetic resonance experiment and
quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
Calculation of the total noise spectrum takes into account the modification of the circuit
impedance by the presence of nuclear spins, as well as the circuit back-action on the spin
ensemble. Suppression of the circuit back-action is especially important in order for the
spin-projection noise limits of searches for axion-like dark matter to reach the quantum
chromodynamic axion sensitivity.

1. Overview of fundamental physics measurements using magnetic resonance

Nuclear magnetic resonance (NMR) experiments have long been at the forefront of
precision tests of fundamental physics [1, 2]. One of the earliest such efforts was the
neutron-beam NMR experiment carried out in the 1950s by Purcell, Ramsey, and Smith
[3, 4] to search for a parity (P) and time-reversal (T) violating permanent electric dipole
moment (EDM) of the neutron. It is interesting to note that this earliest EDM experiment
focused on the P-violating character of the EDM — only after the discovery of P-violation
in B-decay [5] did Landau point out that EDMs are also T-violating [6]. Modern EDM
experiments [7, 8, 9, 10, 11, 12, 13, 14], many employing NMR methods, are motivated
by the fact that an EDM with a magnitude measurable with present techniques would
be evidence of a new source of CP-violation (where C represents charge conjugation);
additional sources of CP-violation beyond those in the Standard Model are needed to
explain the cosmological asymmetry between matter and antimatter [15]. An experiment
to test the isotropy of space inspired by Mach’s principle and using NMR was carried
out by Hughes, Robinson, and Beltran-Lopez in 1960 [16]; since then there have been
many related NMR experiments testing Lorentz invariance (see, for example, Refs. [17,
18, 19]). Another early use of NMR methods to test fundamental physics was in a series
of experiments searching for couplings between intrinsic spin and gravity [20, 21, 22,
23, 24], and experiments along these lines are still being actively pursued [25, 26, 27,
28]. The existence of “new” spin-0 or spin-1 bosons may imply the existence of exotic
spin-dependent interactions [29, 30, 31|, which can also be searched for using NMR. For
example, Ramsey searched for exotic spin-dependent couplings between protons using
NMR measurements [32], and here too, recent experiments build on Ramsey’s early work
(33, 34, 35].
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The tools of NMR can also be used to search for ultralight bosonic dark matter [36,
37], in particular axions and axion-like particles (ALPs) [38]. If dark matter consists
primarily of particles with mass m, < 1 eV/c?, their density must be so large that, rather
than individual particles, their behavior can be treated as a highly coherent classical
field oscillating near the Compton frequency w; = mg,c?/h. This axion-like field can
both generate oscillating nuclear EDMs via a coupling to gluons and act as an oscillating
“pseudo-magnetic” field via a coupling of the gradient of the axion-like field to fermion
spins [36, 37]. In either case, the resultant interaction between axion dark matter fields
and nuclear spins is similar to that of an oscillating magnetic field, and thus can be
searched for using the tools of NMR. This is the central concept of the Cosmic Axion
Spin Precession Experiment (CASPEr) [37, 39, 40, 41, 42, 43].

2. Basics of NMR

de?ectl.on t By
circuit )
spin

z
+ ensemble

e

Y

B1 sin wlt

R

Figure 1: A schematic of a typical NMR experiment. M is the nuclear spin magnetization of the sample. Bo
is the bias magnetic field, and B sinwst is either an externally-applied excitation field, or the “pseudo-magnetic”
field due to interaction with ultralight dark matter. The spin-1/2 level diagram indicates spin polarization as
larger population in the ground spin sublevel, and spin coherence induced by the excitation field B, if it is
resonant with the spin Larmor frequency. The inductive detection circuit includes a coil with inductance L. and
resistance R..

Magnetic resonance encompasses a broad and versatile set of techniques that have
found application in a wide range of disciplines. A typical NMR experiment investigates
nuclear spin dynamics in an applied bias magnetic field (Fig. 1), although in zero- and
ultralow-field (ZULF) NMR the bias field may be small or absent [44]. In pulsed
magnetic resonance experiments, the spins are excited with a sequence of resonant
radiofrequency (RF) pulses, and the subsequent spin evolution is detected. In the context
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of fundamental physics, searches for permanent electric dipole moments usually employ
the pulsed scheme [14]. In continuous wave (CW) magnetic resonance experiments, the
excitation field is present continuously. Spin-based dark matter haloscope experiments
usually employ the CW scheme [45]. Here we will focus on CW magnetic resonance, which
is also convenient for considering the problem of spin-projection noise. In our treatment
we will neglect saturation effects, working in the limit of weak drive fields.

2.1. Nuclear spin susceptibility

It is convenient to quantify the CW NMR response of a spin ensemble by its frequency-
dependent magnetic susceptibility [46]. In the limit of a weak drive, the complex
susceptibility x = x’ — ix” is given by:

1 (wo — w)T
/ _ T* 2
X (CU) XoWolg 1+ (WO — w>2T2*27

; 1 1)
n — _ T*
X (w) 2X0w0 211 (WO _ w)2T2*2’

where wy = 7By is the resonance frequency of spins with gyromagnetic ratio v in a bias

magnetic field By, susceptibility yq is defined via the sample magnetization: xoBy = oMo,
and 75 is the transverse relaxation time, including damping due to the interaction with
the pickup circuit. We use SI units, with permeability of free space .

Let us re-write the above in terms of magnetization:

1 (CL)O — CL))T*

r_ M, T* 2
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Assuming that spin polarization is much less than unity, we can connect magnetization

with spin temperature 6,:

nh*y*1(I + 1)By
M pr—
0 3k g0, ’ )

where n is spin number density, [ is the nuclear spin, A is the reduced Planck constant,

and kp is the Boltzmann constant. In thermal equilibrium, 6, = 6., where 6. is the
physical system temperature. If spins are hyperpolarized then 6, < 6., and if they have
been saturated, then 65 > .. We note that negative spin temperatures can, of course,
also be achieved, in which case the magnetization is also negative, corresponding to a
population excess in the spin sub-level with higher energy.
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2.2. CW NMR signal

In the limit of a weak continuous coherent drive at frequency w, the spin response can be
quantified by the unsaturated steady-state transverse magnetization M, calculated using
the susceptibility in Eq. (2):

_ ,U/OMOQIT;
1+ (wo — w)2T3?

fio My (4)
where () is the drive Rabi frequency, proportional to the coupling strength of a beyond-
Standard-Model field that the experiment is designed to search for.

2.83. NMR detection circuit coupled to a spin ensemble

There are many experimental approaches designed to detect NMR. The most basic
approach is to use a pickup coil coupled to the spin ensemble. The transverse
magnetization precesses around the leading field at the Larmor frequency, creating an
oscillating magnetic flux, which induces a Faraday voltage across the coil, Fig. 1. As
discussed below, a resonant circuit is often used to couple this voltage to a sensitive
amplifier. However at first we focus on the basic elements of the inductive detection
scheme: the pickup coil inductance L. and the series resistance R.. For an empty solenoid
coil the inductance is given by L. = ugn?A/l, where 7 is the number of turns, A is the coil
area, and [ is its length. The resistance determines the coil quality factor: Q. = wL./R..

The magnetic permeability of the spin sample changes the coil inductance and
resistance when the spin sample is inserted. With the spin sample in place, the pickup
coil impedance becomes

Z = R.+iwL.(1+ qx) = (R + qwL:X") + iwL.(1 + qx’), (5)

where ¢ is a filling factor. We define the spin resistance Ry and spin inductance L, such
that Z = (R. + R,) + iw(L. + L), with

q o (wo—w)T¥

Ly = ~Ley(poMo)T, , 6
o Lev(ioMo) Tz 7 + (wo — w)2Ty2 (6)
q « 1

Ry = ~wLy(ptoMo)T: . 7
o @ L (1oMo) T3 + (wo — w)2Ty2 9

Thus, through Eqgs. (5-7), it is seen that the spins in the sample modify the impedance of
the circuit.
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The circuit, in turn, modifies the properties of the spin ensemble via the back-action
mechanism, which has historically been called “radiation damping” (although there is no
radiation involved) [47]. The current in the pickup circuit creates a magnetic field, which
resonantly couples back to the spin ensemble. This circuit back-action can be described
as a spin-relaxation mechanism, with the rate given by [48]

1
— = §chvquo- (8)

If the intrinsic coherence time of the spin ensemble is T3, then when the spins are coupled
to the pickup circuit, their coherence time becomes

1 1 1 1 qQ ey oMy
—_— = — _— —_— . 9
: . + + ) 9)

T, T

The circuit back-action is a well-known phenomenon in the field of NMR, and several
ways to suppress it have been developed [49, 50]. The most promising approach for a
precision fundamental physics experiment is likely to implement a feedback scheme that
cancels the current in the pickup coil, induced by precessing spin magnetization [49].
Such a scheme is commonly used with SQUIDs in order to avoid cross-talk [51]. For
example, a commercial SQUID sensor (Magnicon, GmbH) has a feedback coil, inductively
coupled to the SQUID pickup coil. The SQUID output can be used in a negative feedback
loop, with the feedback coil driven so that any current created in the pickup circuit by
an external magnetic flux is cancelled by the feedback signal. The degree of radiation
damping suppression is determined by the feedback loop gain [49]. This scheme may
also play a role in suppressing positive-feedback effects that occur with highly polarized
samples [52, 53].

3. Spin-projection noise

3.1. The standard quantum limit

Spin-projection noise is closely related to the Heisenberg uncertainty principle and the
standard quantum limit. A simple way to understand spin-projection noise is to consider
the following thought experiment. Suppose a single spin-1/2 is prepared in the “spin-up”
state, namely the quantum state with the s, = 1/2 spin projection along the z axis (Fig. 1).
Then a measurement of the s, spin component is performed. There are two possible
outcomes: s, = +1/2, —1/2, and they are equally likely. If this sequence is repeated N
times, or the experiment is performed on N uncorrelated spins, then the (random) mean
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value of the s, spin component is normally distributed, with standard deviation VN/2.
The uncertainty in the transverse spin projection corresponds to a 66 ~ 1/ VN uncertainty
in the polar angle of the spin, or the spin ensemble. This uncertainty is the origin of the
spin-projection noise.

In an NMR experiment, a continuous measurement of one of the components of the
transverse magnetization M, = (hy/V) Y] s, is usually performed, here V = ¢Al is the
sample volume. In an applied bias magnetic field, M, oscillates at the Larmor angular
frequency wy = vBy. The coherence time of M, is ~ T3 and the root-mean-squared
magnetization due to the spin-projection noise is

SR ~ h_V’V\/N (10)

We have dropped factors of order unity, which will be tracked more carefully in the
subsequent sections. Let us denote the frequency-domain amplitude spectral density of
M, by My (here and below we mark the angular frequency-domain Fourier-transformed
quantities by a tilde). It has a peak centered at wy, with FWHM linewidth Aw = 2/T%
[see Eq.(4)] and amplitude

Wty = o) ~ VRN (11)

We note that the root-mean-squared magnetization noise in Eq. (10) is the square root
of the area under the power spectrum [Eq. (11) squared and multiplied by Aw].

3.2. The circuit model of spin-projection noise

An alternative way to derive the spin-projection noise (11) is to consider the Nyquist noise
generated by the spin-induced resistance R,. According to the fluctuation-dissipation
theorem [54], the power spectral density of the voltage noise created by the spin ensemble
at spin temperature 6, is

(12)

In the classical regime hw <« kg#,, and this simplifies to the well-known formula

V2 = 2R,kpl,/m. Using Egs. (3) and (7), we find the Nyquist noise spectrum:

1
14 (wo — w)?Ty*

Vi {(w) = ipoh272nw2LcT2*

o (13)
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Note that the spin-noise voltage is independent of spin temperature in both the classical
regime hw « kpfs [considered above, here 6, from the argument of cotangent cancels with
the 6 in the denominator of My, see Egs. (3) and (7)] and the quantum regime fiw » kg
[where coth(hw/2kgfs) — 1 and spin polarization approaches unity].

We note the equivalence between the standard quantum limit treatment and the
Nyquist treatment. For inductive detection, we can use the transfer coefficient «y
to convert transverse magnetization M; to voltage V) across the pickup coil: V; =
appoM;y [43]. Faraday’s law of induction gives

|| = qwnA, (14)

where w is the signal frequency. Therefore the oscillating magnetization (11) creates an
induced voltage in the coil:

. h
Vi(w = wp) = qwonAuo%\/N«/TZ*. (15)

We can verify that this reproduces (up to a numerical factor) the on-resonance voltage in
Eq. (13) by squaring and substituting N = nV = ngAl and L, = pon*A/I.

4. Observations of spin-projection noise and its applications

Already in 1946, Bloch noted that spin-projection noise should be observable using
NMR [55]. Namely, a sample of N spins of magnetic moment p are statistically highly
unlikely to perfectly cancel, so that the sample has an instantaneous nonzero magnetic
moment of the order (N)2u. Along the same lines, the instantaneous magnetic moment
of a sample in a magnetic field pointing along the z-axis has a nonzero component
perpendicular to z as discussed in Sec.3.1. Even so, the time average of this transverse
magnetic moment will converge to zero with the characteristic time constant 7. If
other noise sources are sufficiently suppressed, the spontaneously fluctuating transverse
magnetic moment can be measured. This was first achieved by Sleator and co-workers
for a solid sample containing **Cl at liquid helium temperatures [56, 57|, and later by
McCoy and coworkers as well as Guéron and coworkers for liquid-state protons at room
temperature [58, 59].

A crucial issue for understanding the role of spin noise in NMR measurements is
the role of the detection circuit, which has long been a controversial topic. Based on
ideas by Purcell [60], Sleator et al. claimed that the low spontaneous emission rate was
enhanced due to the increased density of the radiation field in the cavity formed by the
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resonant high-Q probe circuit [56, 57|. This interpretation, however, ignores that the
sample-coil interaction takes place in the regime of near-field inductive coupling [61].
Hoult and Ginsberg provide a concise historical overview of the arguments, followed by
measurements that show that even with a low-Q probe system, spin noise can clearly be
observed [47]. Thereby, the notion of cavity enhanced emission was rejected and instead
one can invoke the concept of virtual photons for a complete quantum electrodynamics
(QED) description of the interaction between spins and pickup coil such as done by
Engelke [62].

Practically, it is convenient to treat the quantum mechanical spin noise of a
macroscopic sample as the Johnson-Nyquist noise of a resistance as described in
section 3.2 and also already applied by, for example, Sleator and co-workers [56, 57].
However, care needs to be taken here to distinguish between pure spin-projection noise
and absorbed circuit noise (ACN) as made explicit in a series of papers by Miiller,
Jerschow, and coworkers [63, 64, 65, 66]. The observed noise lineshapes often contain
contributions from both effects and are, for example, dominated by ACN when the
spin temperature is significantly below that of the detection circuit [67]. In that case,
a dip in the power spectrum is observed due to energy transfer to the spin sample
from the circuit. This improved understanding together with technological advances
allowed for experiments optimized for the detection of spin noise, such as at the
spin-noise tuning optimum (SNTO) [68, 69]. Applications include detection of low
13C spin concentrations [70], monitoring of hyperpolarization without destroying the
magnetization [71], and imaging [72, 73]. These can be considered to be part of a much
wider field of spin-noise spectroscopy, of which magneto-optical-rotation spectroscopy is
one widely employed technique [74, 75].

5. Technical requirements for performing a spin-projection noise-limited
dark matter search

The spin-projection noise is the fundamental limit on sensitivity of magnetic resonance
experiments searching for dark matter and other physics beyond the Standard Model. In
this section we consider the technical requirements for the category of such experiments,
based on the NMR-probe design of a single-pole LC resonator, capacitively coupled to a
voltage amplifier, Fig. 2. A number of pickup circuits were analyzed in the NMR literature,
e.g. Ref. [58]. Our circuit includes both the probe and the amplifier. This analysis is
especially relevant to NMR-based dark matter searches with inductive detection.
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Figure 2: Circuit model of a tuned NMR probe. The pickup coil is shown as an inductor L. 4+ Ls, and the
dissipation is shown as a resistor R. + Rs, where Ls; and Rs are the contributions due to the spin-ensemble
permeability. Capacitors C1 and Cs are tuned so that the circuit resonant frequency is at or near the spin Larmor
frequency. The noise sources in this circuit are: spin-projection noise Vs, Nyquist noise due to circuit loss V., and
the amplifier, whose noise can be described by the input-referred voltage noise V, and current noise I,.

5.1. Noiseless amplifier

Let us first consider the case of a noiseless amplifier. Then, apart from the spin ensemble,
the only source of noise in the circuit is the Nyquist noise in the resistor R.. The power
spectral density of this white noise is given by

V2(w) = 2R.kpb, /T, (16)

C

if the resistor is at temperature .. Since the two noise sources are in series, we conclude
that, in order to reach the spin-projection noise limit, we have to design our experiment
so that the spectral density of circuit Nyquist noise is below the spin-projection noise:
2R kpb./m < VZ(w = wy). Using Eq. (13), we can write this requirement as:

kgb,. < %choh%anoTQ*, (17)

where Q). = woL./R,. is the circuit quality factor without the spin sample present. Making
use of Egs. (3) and (8), this condition can also be written as (up to factors of order unity):

0, Ty
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These equations quantify the temperature 6. to which the circuit should be cooled in
order for spin-projection noise to dominate over the circuit Nyquist noise.

5.2. Real amplifier, small spin impedance

When we consider NMR measurements with the circuit shown in Fig. 2, we have to take
into account how the NMR signal and the noise sources are coupled to the amplifier
input by the capacitive matching network. Usually capacitors are chosen so that the
circuit resonance is at or near the Larmor frequency, and the impedance is matched to
the amplifier input impedance R,. If the presence of the spins does not significantly affect
the circuit impedance (Ls « L., R; < R.), and the circuit damping is small (Q. » 1),
then we can write down the expression for converting the on-resonance voltage amplitude
Vs to the voltage V! that appears at the input of the amplifier:

Vl — E QCRCL

. 19
S 2 WOLC ( )

Substituting Eq. (15), we can formulate the amplifier input noise level required to reach
the spin-projection noise limit:

V(W) < QCRa;ugh%anoT;. (20)
s
Note that we have neglected the back-action of the amplifier noise on the spins, but

included the circuit back-action via the modified spin coherence time T3, see Eq. (9).

5.3. Real amplifier, large spin impedance

In order to optimize the sensitivity to beyond-Standard-Model physics, it is often
advantageous to work with spin samples with large spin density n and long coherence
times 7. In such cases the presence of the spin sample leads to large changes in the probe-
circuit impedance: Ry 2 R., Ly 2 L.. This affects signal coupling to the amplifier and
can lead to effects such as reduction of noise spectral density near the Larmor frequency,
where the spin sample significantly alters the probe circuit impedance.

We numerically model the noise spectrum that appears at the amplifier input. In
our model, the resonant circuit is tuned to w. = 27 x 100 MHz, with a circuit quality
factor Q. = 103. The pickup coil has n = 4 turns, 1cm length and diameter, and
inductance L. = 0.1 pH. We assume a proton nuclear spin sample with number density
n = 10¥ cm~? and filling factor ¢ = 0.5. The nuclear spin Larmor frequency is tuned
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to wo = 27w x 100.1 MHz, and the NMR linewidth is 1 ppm in the limit of no radiation
damping. We choose a small detuning between the circuit resonance and the Larmor
frequency so that the corresponding noise peaks appear at separate frequencies.

We explore the noise spectrum of the system by calculating the different
contributions: spin-projection noise, circuit Nyquist noise, and amplifier noise. The
spin-projection noise is peaked at the spin Larmor frequency, as described by Eq. (13).
The circuit Nyquist noise is peaked at the circuit resonance frequency, as described by
Eq. (16). The amplifier noise is generated by voltage and current noise sources, with
respective spectral densities V?(w) = 2kpf,R./m and I?(w) = 2kgb,/(7R,), where 6, is
the amplifier noise temperature. The amplifier input impedance R, and noise impedance
\N/a/fa are both set to R, = 50 (2.

In the noiseless amplifier limit, we observe the effect of the spin ensemble on the
pickup probe circuit, Fig. 3(a). We note that the circuit Nyquist noise present at the
amplifier input is affected by the change in probe circuit impedance due to the spin
ensemble (magenta dotted line). It appears that at some frequencies the presence of
the spin ensemble decreases the Nyquist noise. This is caused by the change in circuit
impedance at those frequencies, due to the spin ensemble. The spin-projection noise (blue
dotted line) is added to the Nyquist noise, resulting in the solid red line.

Amplifier noise introduces additional contributions to the noise spectrum, Fig. 3(b).
The broad dip at the circuit resonance frequency is the feature of our amplifier noise
circuit model, which includes independent voltage and current noise sources, added in
quadrature. If the pickup probe impedance is Z,, then the total amplifier noise voltage
at its inputs is given by

‘72 ‘7(12R§ igRZZJg 21
" (Ry+ Z,)? * (Ro + Z,)? (21)

Away from circuit resonance Z, » R,, and V2 = [2R? = V2. But at circuit resonance
Z, = R,, and V2 = V2/2. Once again, there are two effects due to the spin ensemble.
(1) The frequency-dependent spin impedance Ry + iwL, affects the circuit Nyquist noise
and the amplifier noise appearing at the amplifier inputs. (2) The spin-projection noise
is added to these noise sources in quadrature.

Spin hyperpolarization amounts to decreasing the spin temperature 5. As discussed
in section 3, this does not change the root-mean-squared spin-projection noise, equivalent
to the area under its frequency power spectrum. However higher magnetization M,
broadens the NMR line, as a result of the circuit back-action, Eq. (9). Therefore the
peak amplitude of the spin-projection noise spectrum decreases. Both effects can be seen
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in Fig. 3(c), for spin temperature 5, = 3 K, corresponding to (proton) spin polarization of
4 x 107*. If the spin temperature is another factor of 100 lower, corresponding to 4% spin
polarization, the broadening is so large that it dominates the width of the pickup circuit
resonance, Fig. 3(d). This broadening due to circuit back-action makes the spin-projection
noise more challenging to detect for hyperpolarized spin ensembles.
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Figure 3: Noise voltage power spectral density (PSD), referred to amplifier input. (a) The case of noiseless
amplifier: 6, = 0, 8. = 300 K, s = 300 K. (b) The system in thermal equilibrium: 6, = 300 K, 6. = 300 K,
0s = 300 K. (¢) Hyperpolarized spin ensemble, moderate circuit back-action: 6, = 300 K, 6. = 300 K, 6, = 3 K.
(d) Hyperpolarized spin ensemble, radiation damping dominates linewidth: 6, = 300 K, . = 300 K, 6, = 0.03 K.
The circuit back-action broadens the spin projection noise spectrum and suppresses its peak amplitude for
hyperpolarized spin ensembles.
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6. Spin-projection noise limits for magnetic resonance-based searches for
axion-like dark matter

Let us consider the spin-projection noise limits for the CASPEr-electric and CASPEr-
gradient experiments, which use nuclear magnetic resonance to search for axion-like dark
matter. We will not detail the technical requirements (such as amplifier noise and circuit
temperature) necessary to achieve these limits, because doing so would necessitate a
detailed optimization of the experimental design parameters, which is beyond the scope
of this work.

Following Eq. (4), we consider the steady-state amplitude of the transverse
magnetization, induced by resonant driving of the nuclear spin ensemble: puoM; =
o MoS2 Ty, where €y is the drive Rabi frequency, and we assume the drive carrier
frequency is close to circuit resonance. The spin coherence time 735 includes the
contribution from the probe circuit back-action, given by Eq. (8). We convert the
transverse magnetization to voltage Vi across the pickup coil using transfer coefficient
Qp, see section 3.2. We then compare this signal voltage with the spin-projection noise
voltage, given by Eq. (13). After averaging for time 7,,, the smallest detectable signal
voltage is:

2 ‘292(“ = wp)

V2 =
! TmTa

where 7, is the axion coherence time [37]. We convert this signal voltage limit to

(22)

interaction strength to determine the corresponding spin-projection noise limit. This
is a naive noise estimate, that neglects the possibility of searching away from the
circuit resonance; for a discussion of the optimized search strategy in the context of
electromagnetic searches see Ref. [76].

6.1. The EDM interaction of axion-like dark matter

The EDM interaction of the axion-like dark matter field a with nuclear spin I is described
by the Hamiltonian:
HEDM = gdCLE* . I/I, (23)

where ¢4 is the coupling strength and FE* is an effective electric field [37].
The search for this interaction, using solid-state NMR, is described in Ref. [43].
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For 2"Pb nuclear spins (I = 1/2) in ferroelectric PMN-PT (chemical formula:
(PbMg;/3Nby/303)9/3 — (PbTiO3);/3) the effective electric field is £* = 340kV /em [43].

For our estimates we consider a cylindrical volume of ferroelectric PMN-PT with
radius » = 10cm and height equal to diameter. We set the filling factor and the spin
polarization to unity, the probe circuit quality factor to Q. = 103, and the measurement
time to 7, = 30min. The nuclear spin-coherence time is 75 = 16.7 ms and the chemical
shift anistropy is 2000 ppm [43]. Even with these relatively short coherence times,
circuit back-action (radiation damping) limits the spin coherence and the experimental
sensitivity, Fig. 4(a). In order to reach the sensitivity at the level of the QCD axion
coupling, it is necessary to suppress the circuit back-action by a factor of ~ 10*. As
mentioned in section 2.3, the most promising approach is the pickup-probe feedback
scheme.

(a) Larmor frequency (Hz) (b) Larmor frequency (Hz)
10° 10° 10° 10° 10° 10°

- - full circuit back-action

Y. circuit back-action x 107 SN1987A
107 | |—no circuit back-action

- - full circuit back-action

= circuit back-action x 1072 SN1987A
—no circuit back-action

1010 e

nucleon EDM coupling g; (GeV~2)
nucleon gradient coupling g,y (GeV ™)

10715 '
e
-12 -9 ‘—6 10-20 ‘—]2 ‘»9 ‘—6
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Figure 4: Spin-projection-noise limits for magnetic resonance-based searches for axion-like dark matter. The
green region is excluded by analysis of cooling in supernova SN1987A, with color gradient indicating theoretical
uncertainty [36]. The purple line shows the QCD axion coupling band. The darker purple color shows the mass
range motivated by theory [36], and the green band marks the mass range where the ADMX experiment is
searching for the QCD axion-photon coupling [77]. (a) CASPEr-e search for the EDM interaction with a 10 cm
sample radius. (b) CASPEr-g search for the gradient interaction with a 10 cm sample radius.

6.2. The gradient interaction of axion-like dark matter

The gradient interaction of the axion-like dark matter field a with nuclear spin I is
described by the Hamiltonian:

ng = gaNNVCL . I, (24)
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where g,y is the coupling strength [37]. There have been a number of experimental
searches for this interaction, using a variety of spin species [40, 42, 78, 79, 80]. For
our estimates we consider a cylindrical volume of radius » = 10cm and height equal
to diameter. This volume is filled with proton nuclear spins with number density
n = 102 m™3. We set the filling factor and the spin polarization to unity, the probe
circuit quality factor Q. = 103, and the measurement time 7,, = 30 min. The nuclear spin
coherence time is set to 7o = 1s and the inhomogeneous broadening is 2 ppm. Circuit
back-action (radiation damping) is much more important, given the narrow linewidth
assumed for this search, Fig. 4(b). In order for back-action not to limit experimental
sensitivity, it needs to be suppressed by a factor of ~ 10°.

7. Driving the spin ensemble — is there a win?

The treatment in Sec. 5.3 shows that the condition that experimental sensitivity be limited
by spin-projection noise places stringent requirements on the noise level of the amplifier
(see the schematic in Fig.2). We consider whether it is possible to manipulate the spin
ensemble in such a way as to ease the requirements on amplifier noise. One idea is to
“bias” the transverse spin signal, by applying an rf pulse, or sequence of pulses, to tilt the
magnetization away from the z-axis, prior to the search for a spin torque due to beyond-
Standard-Model physics. This would be similar to aligning the sensitive axis of an optical
polarimeter at an angle to its dark channel (see, for example, Ref. [81], Sec. 8.9).

Suppose the transverse magnetization due to spin interaction with dark matter is
M,(t) = M cos(wt+¢). We do not know the phase ¢, in fact it is random, varying over the
dark matter field coherence time (along with the value of M; [82]). Our apparatus detects
voltage V' = aM,(t) + V,(t), where « is a constant transfer coefficient that depends on
apparatus details, and V() is the noise term. We model the noise voltage as a fluctuating
signal with (V,,(t)) = 0, (V2(t)) = V2 and (VX(t)) = 3V, corresponding to Gaussian
noise with variance V2. There are three noise contributions: circuit noise, spin noise,
and amplifier noise. These are uncorrelated with each other, so to get V? we add their
variances. The noise is also uncorrelated with the spin dark matter signal M, (t). Over
times much longer than dark matter coherence time, (V') = 0, and we end up having
to measure (V?) = a?M3?/2 + V2, which in practice means analyzing the voltage power
spectral density. The signal-to-noise ratio is: SNR = o> MZ/(2V?).

Now let us drive the spin ensemble, for example, by applying a resonant tipping
pulse, so that magnetization is M, (t) = M, cos(wt) + M; cos(wt + ¢), where M, represents
the transverse magnetization that results from the application of the pulse. The tipping
angle of the pulse is small but larger than any dark-matter-induced tip, so that M, » M.
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The detected voltage is now

V(t) = aM, cos(wt) + aM; cos(wt + @) + V,,(t). (25)

The dark matter signal still does not appear in (V'), but when we square the voltage, there
is a cross term 20 M, M, cos(wt) cos(wt + ¢). After averaging, this cross term disappears:
(V?) = (&®M} + &®*M7)/2 + V;?, and, on average, we simply added an offset to our dark
matter signal. However let us calculate the variance of V2

var(V?) = (V) —(V3? = o' My /8 + 2V2(a® M} + V2) + o M7 (o M7 +2V2),  (26)

where we neglected the term of order M{. Note that we have used the averages
(cos? (wt)) = 1/2, {cos* (wt)) = 3/8, and {cos® (wt)cos? (wt + @)y = 1/4. We have
“enhanced” our dark matter-induced signal by a factor Q2M5 + 2V2. However the signal-
to-noise ratio has not improved. For example, in the limit oM, » V,,, the dominant
noise term is 20°M>V;2, and the SNR = o' MPM?/(20°M2V;2) = o> M} /(2V;?), which is
independent of M,, and the same as the SNR with (V?) measurement.

Therefore, if the detector response is linear, then there is, in general, no gain in
signal-to-noise ratio. In fact we have introduced extra technical complexity, since the
pulse magnetization has to be carefully controlled so as not to introduce extra noise into
the measurement. However there are certain detection regimes in which multiplying both
signal and noise by a common factor can actually lead to an improvement of signal-to-
noise ratio at the detector output — one common example is a photodetector that has a
finite dark current. Another possible technical benefit is the loosening of requirements
on gain of the first amplifier stage. The case for which our pulse scheme could offer a
substantial advantage is when the dark matter field coherence time is long compared to
the measurement time. In this situation, the cross term 2a?M,M; cos(wt) cos(wt + ¢)
appearing in the square of the voltage [Eq.(25)] does not average away since the dark
matter field phase ¢ is constant over the measurement time, and phase cycling should
be employed to search for the signal [42]. In this regime the SNR could potentially be
enhanced by a factor ~ 2M,/M;.

8. Data-analysis strategy

There are several possible approaches to analyzing the data obtained with a spin-based
detector sensitive to new physics. The aim is to extract from the data the maximum
amount of information about a particular new physics model. For high signal frequency
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analysis usually starts by performing the Fourier transformation to convert the data into
frequency domain. The computational complexity of fast Fourier transform is O(N log N),
where NN is the number of time-domain data points. In practice, the maximum size of a
data block that can be Fourier transformed is often limited by the size of the available
memory. It is important, if possible, to choose the time duration 7, of this data block
to be longer than the coherence time 7, of the new-physics signal that the experiment is
searching for. This ensures that the resulting frequency spectrum has ~ 7,/7, data points
within the signal bandwidth. If the total data-taking time is 7,,, then the power spectral
densities of the data blocks (whose total number is ~ 7,,/7,) can be averaged together, in
order to improve the signal-to-noise ratio. One way to search for a new-physics signal in
the averaged spectrum is by optimal filtering. This is how a number of experiments search
for axion-like dark matter (see [43] and references therein). For low signal frequencies,
the entire experimental run time may be within a single coherence time: 7,,, < 7, [40, 42].
In general, this results in a loss in sensitivity [82]. However it is possible to search for
coherent signals by using phase-cycling to implement coherent data averaging [42].

If the Gaussian white noise model is a good approximation in the frequency range near
a potential signal, then the minimum detectable signal can be estimated as in Eq. (22) [37].
We note that the noise sources considered in this work have some spectral structure. The
linewidths due to a circuit resonance are usually much broader than a new-physics signal.
We have considered circuit quality factors Q. ~ 10%, while an axion-like dark matter signal
has quality factor of ~ 10° [36]. However, magnetic resonance linewidths are routinely
narrower than 1 ppm and can even be narrower than 1 ppb [83, 84]. In this case, the spin-
projection noise spectrum can have a linewidth comparable to or narrower than that of a
new-physics signal. The optimal data-analysis strategy in this case is yet to be developed.

9. Outlook

There is a long road ahead of the CASPEr experiments to reach the spin-projection noise
limit. Nevertheless, it is interesting to consider whether this limit could be overcome,
at least in principle. We note in this context that some dark-matter experiments (for
example, HAYSTAC [85] and DM Radio [86, 87], where the claim is that the use of
squeezing, entanglement, and back-action evading techniques leads to a sensitivity better
than the standard quantum limits. Perhaps, the most promising aspect of such quantum
techniques is that they may improve the measurement bandwidth [88].
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