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Engineering quantum phases using light is a novel route to designing functional materials, where light-
induced superconductivity is a successful example. Although this phenomenon has been realized
experimentally, especially for the high-T. cuprates, the underlying mechanism remains mysterious.
Using the recently developed variational non-Gaussian exact diagonalization method, we investigate a
particular type of photoenhanced superconductivity by suppressing a competing charge order in a strongly
correlated electron-electron and electron-phonon system. We find that the d-wave superconductivity
pairing correlation can be enhanced by a pulsed laser, consistent with recent experiments based on gap
characterizations. However, we also find that the pairing correlation length is heavily suppressed by the
pump pulse, indicating that light-enhanced superconductivity may be of fluctuating nature. Our findings
also imply a general behavior of nonequilibrium states with competing orders, beyond the description of a

mean-field framework.
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I. INTRODUCTION

Understanding, controlling, and designing functional
quantum phases are major goals and challenges in modern
condensed matter physics [1,2]. Among a few successful
examples, light-induced superconductivity, above its original
transition temperature, has been a great surprise and is
believed to be a promising route to room-temperature
superconductors. Although this novel phenomenon has
been realized experimentally in various materials including
cuprates, fullerides, and organic salts [3—7], its mechanism
remains controversial. The underlying physics is particularly
attractive yet mysterious for the enhanced d-wave super-
conductivity observed in pumped charge-ordered high-T',
cuprates La,; g75Eu,Sr( 1,5Cu0,4 and La,_,Ba,CuO, near
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1/8 doping [8—14], partly due to their original high critical
temperatures at equilibrium. As illustrated in Fig. 1(a), the
occurrence of the Cooper pairs above T'. (reflected by the
Josephson plasma resonance in experiments), as a signature
of light-induced superconductivity, is observed when these
materials are stimulated by a near-infrared pulse laser.
Motivated by these experiments, various theories and
numerical simulations have been conducted to explain the
observed light-induced phenomena. In the context of
conventional BCS superconductivity, simulations with both
mean-field and many-body models have demonstrated the
feasibility to manipulate and enhance local Cooper pairs
(i.e., s-wave superconductivity) [15-24]. The understand-
ing becomes more challenging for the unconventional
d-wave superconductivity in cuprates due to the two-
dimensional geometry and the strongly correlated nature.
Insightful theoretical perspectives have been proposed in
the context of phenomenological or steady-state theory,
including the suppression of competing charge order [25],
Floquet engineering of the Fermi surface [26], and (for the
terahertz pump) parametric amplification [27]. In contrast
to studies of s-wave superconductivity, rigorous nonequi-
librium simulations for nonlocal d-wave pairing instability
in microscopic models have been limited to undoped
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Light-induced d-wave superconductivity experiment and theory. (a) Sketch of existing light-induced or enhanced

superconductivity experiments in the charge-dominant phase in cuprates. (b) Summary of the simulation results in this work. The
green circles denote the enhancement of the pairing correlation, and the purple squares denote the suppression of the relative correlation
length, averaged between time ¢ = 10-30¢; . The data are extracted from Figs. 2 and 3. The left and right insets in (b) sketch real-space
distribution of pairing correlations, respectively, before and after pump.

systems with truncated phonon modes [28], distinct from
the conditions of existing cuprate-based experiments. The
extension to a doped system has been hindered by the
difficulty of treating both strong electronic correlation and
electron-phonon coupling in a quantum many-body sim-
ulation. In particular, the spatial fluctuations of phonons
and bosonic excitations in 1/8-doped cuprates are expected
to be important due to the lack of a nesting momentum.
Therefore, the microscopic theory for light-induced super-
conductivity in a doped cuprate remains an open question.

Moreover, recent experiments have revealed the presence
of fluctuating superconductivity above the transition tem-
perature 7. in overdoped cuprates and FeSe [29-32]. In this
regime, the superconductivity gap remains open, but long-
range order and zero resistance are absent due to the
reduction of correlation length. Recent ultrafast experi-
ments also showed that the pump light can destroy the
coherence of Cooper pairs and fluctuate an existing super-
conductor [33-35]. Thus, the resonance and gap in the
transient optical conductivity may cause a misassignment
of the long-range superconductivity [36-38]. Both obser-
vations raise the necessity to further investigate the coher-
ence of superconductivity induced by light in a quantum
many-body model.

For this purpose, we study the photoinduced dynamics
and superconductivity in a light-driven Hubbard-Holstein
model relevant to cuprates. To overcome the numerical
difficulties of simulating many-body dynamics with strong
electronic correlations and electron-phonon coupling, we
construct on top of the recently developed variational non-
Gaussian exact diagonalization (NGSED) and develop the
time-dependent NGSED (see Sec. III). This hybrid method
leverages the merits of both the numerical many-body

solver and the variational non-Gaussian solver: The former
is necessary to unbiasedly tackle strong electronic corre-
lations, while the latter avoids the phonon’s unbounded
Hilbert-space problem and has been demonstrated efficient
in describing the ground and excited states of systems with
the Frohlich-type electron-phonon coupling [39-42]. As an
extension of the equilibrium NGSED [43], this time-
dependent method provides an accurate description of
far-from-equilibrium states through the Krylov-subspace
method and the Kihlerization of the solvers. These
advances of the numerical method allow the simulation
of light-induced dynamics in quantum materials with both
electronic correlations and electron-phonon couplings.

As summarized in Fig. 1(b), our results suggest that the
d-wave pairing correlation can be dramatically enhanced
by a pulsed laser when the system is charge dominant and
close to a phase boundary, consistent with optical experi-
ments. However, we also find that the pairing correlation
length is heavily suppressed by the pump pulse. Therefore,
light-enhanced d-wave superconductivity may be of fluc-
tuating nature. In addition to existing ultrafast reflectivity
measurements, our theoretical findings also predict various
observations verifiable by future transport and photoemis-
sion experiments on pumped La;¢75Eu),Sr)1,5Cu0O,
and La,_,Ba,CuQ,.

The organization of this paper is as follows. We introduce
our microscopic model for the cuprate system and light-
matter interaction in Sec. II. Next, we briefly introduce the
assumptions and framework of the time-dependent NGSED
method in Sec. III, while the detailed derivations and
benchmarks are shown in the Appendixes A and B. The
main results about light-enhanced d-wave superconductivity
and the fluctuating nature are presented in Secs. IV and V.
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We then discuss the frequency dependence of these obser-
vations in Sec. VI. Finally, we conclude our paper and
discuss relevant experimental predictions in Sec. VIL

II. PROTOTYPICAL MODELS

Unconventional superconductivity is believed to emerge
from the intertwined orders of strongly correlated systems,
where both spin and charge instabilities exist [44,45]. It
was widely believed that spin fluctuation, induced by
electron correlation, is a viable candidate to provide
the pairing glue for d-wave superconductivity [46—49].
The minimal model to represent this strong correlation is
the single-band Hubbard model [50]. Based on rigorous
numerical simulations, many important experimental dis-
coveries have been reproduced using this model, such as
antiferromagnetism [51], stripe phases [52-55], strange
metallicity [56-58], and superconductivity [59-61].
However, increasing experimental evidence reveals the
significant role of phonons in high-7T, superconductors
[62-66], in addition to the strong electronic correlation.
Together with the crucial lattice effects observed in pump-
probe experiments [3-5], we believe that the minimal
model to describe the light-induced d-wave superconduc-
tivity must involve both interactions.

The Hubbard-Holstein model is the prototypical model
for describing correlated quantum materials with both
electron-electron interaction and electron-phonon coupling
[67,68]. Its Hamiltonian is written as

H = -1, Z (cf cjo +He) + UZniTnu
(i.j)o i

1
+ QZ(ai +aj)nig + woza:ai- (1)

Here, c¢;, (CL) annihilates (creates) an electron at site i with
spin o, and g; (aiT ) annihilates (creates) a phonon at site i.
To reduce the number of model parameters, we restrict the
hopping integral 7, to the nearest neighbor, electron-
electron interaction to the on-site Coulomb (Hubbard)
repulsion U, electron-phonon coupling to the on-site
electrostatic coupling (Holstein) g, and phonon energy to
the dispersionless @,. The electron-electron interaction
and electron-phonon coupling can be depicted by the
dimensionless parameters u = U/t, and 1 = ¢*/wot,,
respectively. Here, we set w, = t;, in accord with common
choices [69-74]. Throughout the paper, we focus on
12.5% hole doping simulated on an N =4 x4 cluster,
corresponding to the La;g;5Eu,,5rg,5CuO, and
La; g75Baj 1,5Cu0, experiments [8—14,75].

In an undoped system with a well-defined nesting
momentum, one can restrict the phonons to only the q =
(7, #) mode [28,73]. However, in a doped Hubbard-Holstein
model without commensurability, phonon modes at all
momenta should be considered. As shown in Ref. [43],

the phase diagram for a doped Hubbard-Holstein model is
dominated by a regime with strong charge susceptibility and
a regime with strong spin susceptibility, although both are
not ordered like the half-filled case. Unlike the striped order
demonstrated in the Hubbard model at the thermodynamic
limit [52-55], our system size does not support such a
period-8 instability. Therefore, to increase the charge corre-
lation and mimic the charge-dominant cuprate system, we
exploit relatively strong electron-phonon couplings.

The light-driven physics is described (on the micro-
scopic level) through the Peierls substitution thc;facj(, -
pe S A(r)'drc'i’;;cj{,, where the vector potential A(z) of the
external light pulse affects the many-body Hamiltonian
Eq. (1). In this paper, we simulate the pump pulse with an
oscillatory Gaussian vector potential:

R t—1y)?
A(I) :Aoepol exp |:—( 5 20)

] cos(Qr) (2)
c
and fix the polarization as diagonal &, = (1/v2)(% + 9)
and the pump frequency as Q = 41, (close to the 800-nm
laser for 7, = 350 meV). In a strongly correlated model
like the Hubbard model or the extended Hubbard model,
the ultrafast pump pulse is coupled to electrons and may
manipulate the delicate balance between different compet-
ing orders [76-79]. When a finite-frequency phonon is
involved, the photomanipulated competition of phases also
relies on the retardation effect of the phonons.
Throughout this paper, we restrict ourselves to the two-
dimensional Hubbard-Holstein model and transient equal-
time correlation functions. The relation between the
in-plane Cooper pairs and the c-axis Josephson plasmon
resonance has been studied through semiclassical simu-
lations [80-82]. Our simulation does not consider specific
experimental conditions including the aforementioned
probe schemes, material-specific matrix elements, and
finite temperature, nevertheless it helps explain the
observed phenomena, in general. Therefore, our correlation
function analysis in Secs. IV=VI aims to address a matter-
of-principle question when the balance between charge-
density wave (CDW) and superconductivity, in a strongly
correlated material, is altered by a pulsed laser.

III. TIME-DEPENDENT VARIATIONAL
NON-GAUSSIAN EXACT
DIAGONALIZATION METHOD

The simulation of nonequilibrium quantum many-body
systems requires either Green’s function or wave-function
methods. The Green’s function methods, constructed on the
Keldysh formalism and represented by the dynamical
mean-field theory [83,84], have achieved great success
in solving correlated materials and pump-probe spectros-
copies in the thermodynamic limit [85,86]. However, when
multiple instabilities compete in systems with strong
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electronic correlations and electron-phonon couplings, the
accuracy cannot be guaranteed through perturbations which
may lead to a biased solution. On the other hand, wave-
function methods, such as exact diagonalization (ED) and
density-matrix renormalization group, have well-controlled
numerical error but are restricted to small systems or low
dimensions [87,88]. This issue becomes even more severe
when the electron-phonon coupling is non-negligible due to
the unbounded phonon Hilbert space [89,90].

To tackle the strong and dynamical electron-phonon
coupling and overcome the issue of phonon Hilbert space,
we develop a time-dependent extension of the variational
NGSED method. The idea of this method is based on the
following observations for electrons and phonons, respec-
tively. Electrons have a complicated form of interactions
(four-fermion terms) and intertwined instabilities, which
thereby have to be treated by an accurate solver. However,
with the Pauli exclusion principle, the electronic Hilbert-
space dimension is relatively small, which allows an exact
solution for finite-size or low-dimensional systems. In
contrast, the phonon-phonon interaction (anharmonicity)
is usually weak and electron-phonon coupling has a linear
form, with the complexity coming instead from the
unbounded local phonon Hilbert space. Therefore, if one
can find an entangler transformation involving a general
form of entanglements between electrons and phonons,
the solution of the correlated Hamiltonian correlated
Hamiltonian can be mapped (after the transformation) to
a factorize wave function as a product state consisting of
electrons and phonons separately. Using this trick, we can
take advantage of the distinct properties mentioned above
and solve the two subsystems using different techniques.

In equilibrium, such an efficient entangler transformation
has been found and benchmarked, in terms of the gener-
alized polaron transformation [39]. This leads to the wave-
function ansatz [43]

i AqD-
€< /\/N>Zq o” l|pqll//ph> ® |l//e>’

3)

with the electron density operator pq = » ;, nize 4T, the
phonon momentum py =iy ;(a] — a;)e”"/\/N, and
the phonon displacement x, = > ;(a; + aj)e™™ /\/N,
where N is the number of lattice sites in the calculation.
Here, the right-hand side is a direct product of electron
and phonon states: The electronic wave function |y, ) is
treated as a full many-body state, while the phonon wave
function [y,) is treated as coherent Gaussian state (see
Appendix A for details). The entangler transformation
involves momentum-dependent variational parameters A,
describing the polaronic dressing. Physically, a larger
dressing A4 ~ g/w, accurately describes the phonon and
coupling energies, known as the Lang-Firsov transforma-
tion [91], while a smaller dressing allows a precise solution

|‘PG> = Uplrn|th> ® |l//e> =

for the electron energy. Thus, the variational parameters 1,
are optimized numerically as a balance between these two
effects. Note that all 4’s are independent real numbers
and entangle the phonon momentum with electron density.
This entangler transformation is demonstrated to be suffi-
cient in equilibrium [39,42]. For systems with both strong
electron-phonon coupling and electronic interactions,
the electronic part of wave function |y,) can be solved
by ED, and the above framework becomes the NGSED
method. The application of the NGSED to the equilibrium
2D Hubbard-Holstein model successfully reveals the novel
intermediate phases with superconducting instability
[43,92,93], which is consistent with the recent quantum
Monte Carlo simulations at the thermodynamic limit [94].

In the real-time evolution, the electron density is driven
by the pump laser, the consequence of which is the varying
force acting on the lattice and the finite momentum of
phonon. To characterize the electron-density-dependent
phonon momentum, we introduce an extra cubic coupling
between the position and the phonon density in the non-
Gaussian transformation

UNGS (t) — ei(l/\/ﬁ)zlﬂq(f) [p—q Cos (Pq(t)_x—q sin (ﬂq<t>]pq (4)

to construct the variational ansatz

[W(1)) = Unas(D)lypm (1) @ |y (1) (5)

Here, the additional phase parameter ¢, controls the ratio
of position and momentum displacements. The time
dependence of 1, and ¢, allows dynamical fluctuation
of the polaronic dressing effect. At the same time, these two
sets of parameters, as a whole, disentangle the electrons and
phonons with the Frohlich-type coupling and allow a
relatively accurate description of the transformed wave
function via the direct-product state in the rightmost of
Eq. (5). The price one pays for the transformation is the
complication of the effective electronic Hamiltonian [see
Eq. (A9) in Appendix A], which is solved by the time-
dependent ED with well-controlled numerical errors [see
discussions in Appendix B]. As a minimal extension to the
equilibrium wave-function ansatz Eq. (3), the structure of
Eq. (4) involves an implicit Kihlerization, which guaran-
tees the minimization of errors throughout the evolution
(see discussions in Appendix A). In each numerically small
step of the time evolution, i.e., |¥(7)) — |¥(¢ + 6t)), we
simultaneously evolve both the variational parameters and
the full electronic wave function |y, (7)), as explained in
Appendixes A and B, respectively.

IV. LIGHT-ENHANCED PAIRING
CORRELATIONS

Figure 2(a) shows the square of local moment (m?) =
> i{(niy = n;)?)/N calculated for different u and 2 of the
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FIG. 2. Light-driven dynamics of charge, spin, and pairing correlations. (a) The square of local moment (m?2) for different model
parameters, subtracting off that for noninteracting electrons (mn2),. (b) The square of local moment (m2) (red) and the double occupation

(ng) as a function of u for a fixed 1 = 4, where (m?

)o is indicated by a horizontal dotted line. The two parameter sets used on the right

are marked as the dots in (a) and the dashed lines in (b). (c1),(c2) The evolution of charge correlation N(z, z) after a linear pump
of various strengths A, ranging from 0.1 to 1 (denoted by different colors) with A =4 and (cl) u = 6.6 and (c2) u = 7, respectively.
(d1)—(e2) The same as (c1) and (c2) but for (d1),(d2) the spin correlation S(z, z) and (el),(e2) the d-wave pairing susceptibility P,

The pump pulse is sketched above.

12.5% doped Hubbard-Holstein model, where N is the
system size. (m?) provides an indication of the overall
spin moment and spin correlation. An abrupt change of
(m?) with varying u and/or A can signal a phase transition.
At the large-u regime, the system is dominated by the
spin correlations inherent from the Hubbard model. In
this regime, d-wave superconductivity is identified in a
quasi-1D system [61,95], although in the 2D thermody-
namic limit its existence is not fully established [96]. In
contrast, at the large-A regime, the electrons are bound
with phonons as bipolarons, exhibiting a local moment
lower than that of noninteracting electrons. This is also
reflected in the average double occupation (n,) =
> i{nisn;y) /N presented in Fig. 2(b). There is an inter-
mediate regime between these two limits, where the
charge correlation slightly dominates (reflected by the
comparison to non-interacting-electron local moment
(m?),), while the spin correlations remain finite. Based
on recent studies using NGSED and QMC methods, this
intermediate regime persists at the thermodynamics limit
and reflects the realistic phases in a competing-order
system [43,94]. We focus on this intermediate regime,
which we believe corresponds to the situation in cuprate
experiments [8—14,28].

We select two sets of model parameters inside this
intermediate regime. Set 1 (u = 6.6 and 4 =4) lies in
the center of the intermediate regime, while set 2 (u =7
and 1 =4) lies close to the boundary. We first focus
on set 1 and examine the light-induced dynamics for
the charge structure factor N(q) = (p_qpq)/N and
spin structure factor S(q) = (plqpy)/N, where py =
>oi(nip —my)e™@%. We focus on the momentum
q = (7, ), due to the important role of spin fluctuations
at this momentum on superconductivity; data at other
momenta are presented in the Appendixes. Figures 2(cl)
and 2(d1) show the pump dynamics of N(z, z) and S(z, 7)
for set 1. The same as the half-filled case [28], the pump
pulse suppresses the charge correlations and enhances spin
fluctuations, which possibly serve as the pairing glue, at
short time (¢ < 0). This leads to the rise of d-wave super-
conductivity instability [see Fig. 2(el)], characterized by
the pairing susceptibility

1
(d) _ (d)f A (d)
P N<A° Ay > (6)

where the d-wave pairing operator reads
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Al((d) = ch—k’ick’T [cos k, — cos k] (7)
k/

As set 1 is relatively far from the spin-dominant regime,
spin fluctuation is unstable, manifest as the drop of S(z, r)
for strong pump (A > 0.5) at longer timescales. As a
consequence, the d-wave pairing susceptibility stops
increasing and starts to decrease for these strong pump
conditions. This nonmonotonic behavior reflects that the
transient d-wave pairing emerges from the dedicated
balance among charge, spin, and electronic itineracy.
While the latter two can be induced by light and enhance
the d-wave pairing, their internal competition may reduce
the enhancement if the pump strength keeps increasing.
Noticeably, when the nonequilibrium state finally melts
into such a “metallic” state, lattice distortions are released.
In these cases, the dynamics exhibit a period ~27/®,. This
is reflected in the corresponding Fourier spectra (see also
the Appendix D).

The situation becomes different if one drives the system
with set 2 (u = 7 and 1 = 4), where the system resides in
proximity to a phase boundary. Because of the existing
strong magnetic fluctuations, we find that the d-wave
pairing correlation is easier to enhance. As shown in
Figs. 2(c2)-2(e2), the pump pulse increasingly enhances
S(z,7) and P'¥) after suppressing the charge fluctuations.
Although the enhancement of S(z,7) saturates at large
pump strengths, spin fluctuations are more robust against
the increase of pump strength, due to proximity to a
quantum phase boundary. Therefore, they never drop below
the equilibrium values. This change of spin fluctuations
causes the saturation of d-wave pairing correlations in
Fig. 2(e2). Similarly, this enhanced d-wave pairing concurs
with a melting of the competing CDW order, which leads to
an oscillation of phonon energy. Since the CDW order is
already very weak near the phase boundary, the intensity of
the amplitude mode is no longer visible in the dynamics.

V. QUANTUM FLUCTUATIONS AND
CORRELATION LENGTH

The increase of pairing correlation reflects the formation
of Cooper pairs induced by the pump pulse. The exper-
imental reflection of this correlation is the opening of a gap
(or Josephson plasma) characterized by ultrafast optical
reflectivity [8—14]. However, we emphasize that the open-
ing of a gap does not necessarily reflect the onset of
superconductivity. As recently shown in cuprates and FeSe
experiments, above T, there exists a fluctuating super-
conductivity phase that exhibits a superconducting gap but
also a finite resistance, reflecting preformed Cooper pairs
[29-32]. This is a signature of strong correlations in
quantum material distinct from the mean-field notions,
due to strong thermal or quantum fluctuations. For the
nonequilibrium superconductivity in this paper, we focus

on the zero-temperature dynamics, and fluctuations may
arise from quantum instead of thermal origins.

To better clarify the nature of this photoinduced many-
body state, we further consider the spatial fluctuation
through the Fulde—Ferrell-Larkin—Ovchinnikov pairing
correlation with finite momentum Pf(d) = (1/N) <Al((d)TA§(d)>
[97,98]. For k = 0, it recovers to the BCS pairing correla-
tion, reflecting the total number of Cooper pairs. The
correlation length & can be estimated through

based on the definition of correlation length satisfying
<A§d)TAgd)) ~ e~ =Til/¢ Figures 3(a) and 3(b) present the
evolution of &, estimated using the smallest momentum
accessible in our cluster k = (z/2,0) and normalized by the
equilibrium correlation length &;. For the u = 6.6 system,
where charge order is robust [Fig. 3(a)], the correlation
length is dramatically suppressed for Ay < 0.5, where the
P@ is enhanced in Fig. 2(el). When the pump strength
increases to Ay > 0.5, £ even drops to zero at the center of the
pump, indicating the destruction of local Cooper pairs and
consistent with the drop of P'¥) in Fig. 2(el). This overall
drop of correlation length can be visualized in the real-space

distribution of (A{)*A\") shown in Fig. 3(c): The Cooper
pairs become strongly localized and spatially decoherent
after the pump.

What is more interesting is the system near the phase
boundary (z = 7), where the BCS pairing correlation P
always increases after the pump, as discussed in Fig. 2(e2).
However, this enhancement of total Cooper pairs is always
accompanied by a drop of the correlation length as shown
in Fig. 3(b). This means that the photoinduced Cooper
pairing is more fluctuating than the equilibrium one.
Different from the u = 6.6 system, here the decrease of
£ saturates at a moderate value, about half of the equilib-
rium &,. To filter out the oscillatory dynamics, we extract
the average enhancement of pairing correlation
P9 ()/P'Y(~c0) and the suppression of &()/&(—c0)
during the time window 107! <7 <30z, !, long after
the pump pulse disappears. As already shown in Fig. 1(b),
the relative changes (suppression or enhancement) in these
two quantities are comparable for all pump strengths.
Considering that long-range correlations asymptotically
approach (Agd”Agd)) ~ P@emlrirjl/é - our  simulation
reflects an enhancement of short-range superconductivity
but a suppression of the long-range one [99].

The difference between a short-range enhancement and
long-range suppression can be visualized via the spatial
distribution obtained by the Fourier transform of Pl((d). As
shown in Fig. 3(c), the local pairing correlation increases
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FIG. 3.

Time-dependent correlation length and spatial distribution of Cooper pairs. (a),(b) Evolution of the correlation length & of

d-wave Cooper pairs renormalized by its equilibrium value &, obtained for (a) u = 6.6 and (b) u = 7, respectively. (c) The real-space

distribution of <A§d>TAf)d>) for different r (considering translational invariance) evaluated at equilibrium, ¢ = =31, 0, and 37",
respectively. The upper and lower present the dynamics induced by two different pump strengths Ay = 0.5 and Ay = 1, respectively. The
simulations are obtained for the u = 6.6 and A = 4 system. (d) The same as (c) but for the # = 7 and A = 4 system.

and the range where the correlation is visible remains
finite after the pump. Both facts suggest that this type of
short-range superconductivity is visible in pump-probe
spectroscopies, albeit with a finite broadening. Thus, the
fluctuating nature of light-enhanced superconductivity
does not conflict with existing optical experiments in
Lay 675Bu0,Sr0.125CuOy4 and La, g75Bag 1o5CuOy [8-14].
Such a suppression of the coherence is associated with
the nonlocal nature of d-wave Cooper pairs, which is in
contrast to the light-enhanced strength and coherence of
local pairing [16,17,22,23]. This anticorrelation between
the strength and coherence is also distinct from previous
light-induced competing orders [76—79], possibly resulting
from the fact that superconductivity arises as a third
instability emergent from the competition.

VI. FREQUENCY DEPENDENCE

We further investigate the impact of the pump frequen-
cies on superconductivity and the competing orders. With a
fixed pump amplitude A, = 0.8, Figs. 4(a)—4(c) present the
dynamics of various quantities discussed above for differ-
ent frequencies. As Q increases from 7, (350 meV) to

101, (3.5 eV), the suppression of the charge correlations is
weaker. This can be attributed to the loss of resonances to
the phonon dynamics, which plays the crucial role in the
melting of the charge order. Interestingly, these suppres-
sions of CDW do not always translate into a monotonic
increase of the d-wave superconductivity. As shown in
Fig. 4(b), the low-frequency pump with Q = 27, leads to a
slightly weaker enhancement and a dramatic decrease of
the correlation length &£. The transient correlation length is
suppressed to zero in the center of the pump [see Fig. 4(c)],
indicating the loss of superconductivity. We tentatively
attribute this anomaly to the fact that the parametric driving
condition Q ~ 2wy is reached [18,100], leading to strong
fluctuations of phonons and overwhelming the d-wave
pairing [74,101].

Excepting the two frequencies which correspond to
parametric driving, the enhancement of the d-wave pairing
susceptibility drops monotonically with the pump fre-
quency, consistent with the melting of the charge correla-
tions. We stress that such a phenomenon reflects that the
dynamics are driven by light-induced quantum fluctuations
instead of a thermal effect, as the fluence increases (instead
of decreases) with the pump frequency. Although some
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FIG. 4. Frequency dependence of the light-induced dynamics and superconductivity. (a)—(c) Evolution of the (a) charge correlation
N(z, x), (b) d-wave pairing susceptibility P, and (c) correlation length &, at fixed pump strength Ay = 0.8 but with different pump
frequencies €. (d),(e) The postpump (d) pairing correlation P9 and (e) correlation length & averaged between time ¢ = 10—30t;l for

different pump frequencies, relative to their equilibrium values.

nonequilibrium effects are simply attributed to the sudden
heating of the electronic states caused by the pump pulse,
this is not the situation we found in the light-enhanced
d-wave superconductivity. More rigorous discrimination of
the thermal effects relies on the calculation of pump-probe
spectroscopies and a fitting with the thermal distribution
function [35,102-105], which is beyond the scope of
this paper.

Figures 4(d) and 4(e) summarize the frequency dependence
of the pairing susceptibility and the correlation length,
averaged between time 1 = 10-301; ! after the pump, similar
to the pump strength dependence shown in Fig. 1. Except for
the situation close to phonon parametric resonance, we find
that the maximal superconductivity enhancement is reached
at approximately 1.4 eV and rapidly decreases for higher
frequencies. As this frequency is close to the Mott gap
resonance (approximately 4¢, ~ 1.4 eV) for U = 81, this
enhancement can be attributed to the generation of spin
fluctuations across the Mott gap. This observation is
consistent with the wavelength-dependence study in
La; g75Bag 1,sCuQ,4, where the 800-nm laser is found to
enhance superconductivity more efficiently than a 400-nm
laser [11]. Although other mechanisms beyond the single-
band model have been proposed to address this wavelength
dependence, such a consistency strengthens the connection
between our microscopic simulation and the real experiments.

VII. SUMMARY AND OUTLOOK

Altogether, our study provides a novel perspective of
interpreting the light-induced d-wave pairing in the context

of strong correlation and electron-phonon coupling.
Although it does not rule out other interpretations, our
result reflects that the light-induced Cooper pairs may be
spatially local. Therefore, the Josephson plasma resonance
and the optical gap may coexist with a small Drude weight,
which reflects the superfluid density and cannot be directly
resolved in ultrafast reflectivity experiments. Fortunately,
this mystery was recently answered by a state-of-the-art
ultrafast transport measurement, in another type of light-
induced superconductor (K;Cgj) [106]. Such a transport
measurement directly provides the transient resistivity of
the material, which reflects the superconductivity long-
range order. Therefore, a similar transport measurement in
La; g75Baj 1,5Cu0O, will help to distinguish fluctuations
from ordered d-wave superconductivity.

In addition to optical and transport properties, the single-
particle electronic structure measurable by photoemission
is employed frequently to characterize the d-wave super-
conductors. In the single-particle context, the equilibrium
fluctuating superconductivity translates into the (single-
particle) gap opening above the transition temperature 7.
[30-32], while the distinction from long-range ordering
may hide in the quantitative spectral shape (e.g., quasi-
particle width and temperature dependence of the Fermi-
surface spectral weight) and is still ongoing research.
Identifying this fluctuation would be even harder, but also
promising, for a nonequilibrium state measured by the
time-resolved angle-resolved photoemission spectroscopy
(ARPES). The findings of our simulations indicate that
the light-driven La;g75Bag,5CuO, should exhibit a
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(single-particle) superconducting gap, but its quasi-
particle peak should be damped by the fluctuations.
Complementary to regular ARPES, future developments
on two-electron ARPES measurement [107,108], at ultra-
fast timescales, are promising directions to distinguish
long-range superconductivity from a fluctuating one.

Alternatively, a recent attempt has investigated the inverse
process by measuring the coherence of CDW states using
x-ray scattering [109]. Light-induced CDW also has been
recently observed in LaTe; with two competing CDW orders
[110]. Here, we investigate specifically light-driven cuprates,
but appropriate modification [111,112] of our study and
microscopic model can provide a general platform to examine
light-driven fluctuations for intrinsically competing orders, as
pointed out in a recent phenomenological study [38]. The
fluctuating nature of the enhanced quantum phase suggests
that the nonequilibrium states of competing-order systems are
beyond the description of a mean-field framework.

To tackle the dynamics of systems with strong electronic
correlation and electron-phonon coupling, we develop a
new technique by generalizing the variational non-
Gaussian exact diagonalization framework out of equilib-
rium. This method overcomes the issues of unbounded
phonon Hilbert space while keeping the numerical accuracy
through the exact diagonalization of the (transformed)
electronic problem. Although we restrict the application
into the Hubbard-Holstein model relevant for the cuprate
d-wave superconductivity, our derivation is rather general
and can be applied to dispersive phonons, extended
electronic interactions, and more complicated electron-
phonon coupling. The formalism also can be applied to
multiple phonon branches as long as the phonon-phonon
interaction can be ignored, but the generalization to multi-
band electrons is restricted by the Hilbert-space size issue
in exact diagonalization. Future application of this method
also includes the evolution of pump-probe spectroscopies
[102,104,113-115] by tracking the time-dependent gauges
and evaluating the off-diagonal overlap of Gaussian states.
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APPENDIX A: DETAILED DERIVATION OF THE
TIME-DEPENDENT NGSED METHOD

To obtain the equations of motion for variational
parameters in Eq. (5), where the phonon state is

Won) = e—(l/Z)Rgo}.ARe—i(l/4)ZqR;§qRq|0> = Ugs|0), (A1)

we notice that the generalization from Uy, to Ungs
involves a rotation of phonon operators in the phase space.
Therefore, the Ungs can be expressed by a composite
transformation, leading to an equivalent form of Eq. (5):

[W(1)) = Ut (1) Upien () i (1)) @ lwe (1)), (A2)

where the rotation is reflected in the unitary (Gaussian)
transformation

Upr) = /02l (A3)
and 7y is a variational matrix. In the derivation of
variational equations of motion, it is usually convenient
to employ the linearized form S'q to parametrize the
rotational transformation, i.e., UjothUrot = S’qRq. Thus,
ignoring the redundant degrees of freedom, which can be
absorbed into |y,), we obtain the following relation

between ¢q and Sg:

—sin g (1)
cos @4 (1)

cos @q (1)
sin g (1)

Sq(1) = e = < ) (A4)

In the above wave-function prototype, Ap (vector), &,
(matrix), and 44 and @4 (scalar) are variational parameters,
which are allowed to evolve during the dynamics.

To evaluate the nonequilibrium dynamics within the
hybrid wave-function ansatz, we project the Schrodinger
equation i0,|¥(t)) = H(t)|¥(¢)) onto the tangential space
in the variational manifold, which gives equations of
motion for both the variational parameters and the elec-
tronic wave function |y, (¢)). In contrast to an energy
minimization (imaginary-time evolution), the algebra of
this projection in a real-time evolution may be ill defined.
For the general time-dependent variational principle, the
real and imaginary parts in the projection of Schrodinger
equation on the tangential space

i{Sal0:|¥(2)) = (Sal H(D[¥(2)),

with |£,) denoting any tangential vector, may give rise to
two sets of incompatible equations of motion, which
correspond to the Dirac-Frankel and McLachlan variational
principles, respectively [116]. If and only if the variational
manifold is Kdhler manifold, the two principles result in the
same equation of motion. By designing the wave-function
ansatz in Eqgs. (5) and (4), we Kihlerize the variational
manifold such that the two principles are compatible and
the derivations below are self-consistent. Physically,
the Kihlerity guarantees that the variational principle
Eq. (A5) minimizes errors with respect to the realistic
time-dependent wave functions.

(AS)
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Taking advantage of the composite representation of
Ungs, 1t 1s convenient to define

[¥(1)) = Usa|¥(0)) = Upien (1) ) ® [y

and solve the Schrodinger equation in a rotating frame
i0,|¥ (1)) ="H|¥(¢)). Thus, the rotated Hamiltonian becomes

7:( = U:OtHUrot -
= Z ek + M)y o + ZRT

-
+ ﬁzq:ququell)q + Hees

where e is the unit vector (1, 0)7. Here, we denote the general
electron-electron interaction terms as H,_, and assume it to
commute with the electronic density operator n;, which is
satisfied in the Hubbard-Holstein model Eq. (1). This
assumption substantially simplifies the derivation and leads
to the following Eq. (A9).

On the left-hand side of the rotated Schrodinger equa-
tion, we obtain

(A6)

i l];‘rot6 Urot

+ 0,904)R

(A7)

o 1
la,|‘I’> = UplrnUGS |:—Z—A£6},81AR 2R0 OG 6 AR
I 1
- T F o
—ig zq:R(T]Sqay&SqRq v/ Zq:Rququ@t/lq

1
- ﬁAlTeezpoazﬂo} |0>ph ® lw.)

+ Uplm|th> ® (lat‘l//e»’

where e, is the unit vector (0, 1)”. Here, S, = ¢ is the
linearized transformation matrix of the Ugg, and the
effective Hamiltonian becomes

(A8)

Her = UT 7:[l]plm
E— z 1/\/—2/1 qere i (1—emia%) T

Cjt+5,0Ci0
‘]6(15(,

E :§ :V Ck+qack0’ck’ q.0' CK'd’ + He-e
k.k/
0.0

—ﬁZRm(

1
+ Z zq:(wo + 8t(ﬂq)R3qu

wy + 0ypq) — gSZ]elpq

(A9)

for the product state |y,,) ® |y, ). Here, a takes the x and y
directions, while §, denotes the vector pointing to the
nearest neighbors along the corresponding directions.
After transforming the Hamiltonian to the basis of
product states, the electron-phonon dressing effects are
reflected in both the interaction and the kinetic energy. For

the effective electronic interaction, the dressing of phonons
mediates an additional V on top of the original H,_,,
whose variational expression is

Vq = 4gcos pgRe[ly] — 2|44 [*(wo + O,04).  (A10)

(Note that here we employed the assumption that H,_,
commutes with n; and, therefore, Upim-) For the kinetic
energy, the phonon-dressed effective hopping term can be
reformulated in a closed form:

_Zq(uq ‘2/N><1_COS q(x)e;FqEZ

t, = tpe (A11)

when taking the expectation with respect to the phonon
Gaussian state |y) .

Now with both the time derivative and the effective
Hamiltonian transformed into the product-state basis, we
can project Egs. (A8) and (A9) onto various tangential
vectors sequentially. For the zeroth-order tangential vector,
which is proportional to the phonon vacuum state |0),,, we
obtain the equation of motion for the electronic state:

i8t|l//e> = <l//ph|Heff( )|l//ph> RO- 0 AR

1 1
+ —=Ageapo0ido — 5 Zat(/’q] lwe).  (A12)
VN 24

The (phonon-traced) H.¢ together with the scalar terms in
the square brackets govern the time evolution of the
electronic wave function |y, ). In the NGSED framework,
we treat |y, ) as a full many-body state and evaluate this
evolution stepwisely by the Krylov-subspace method (see
Appendix B).

Moreover, the equations of motion for (the variational
parameters of) [y,,) can be obtained by projecting
Egs. (A8) and (A9) onto the first-order tangential vector
(RESE10),n ® |w,)) and the second-order tangential vector
(R(Tqu|O>ph ® |w.)). After some algebra, these two equa-
tions are

98 = ic,{(wo + 9,90) Ar — 2V Np[(Aowo + Ao0:p0
— goSy)er — 0idges]} (A13)
and

—iS40,0,Sq = S4Qq(1)Sq. (Al14)

respectively. Here, p, = N,/N is the average electron
density, and the renormalized phonon energy matrix is

Zt(,

+ wq + 0,04.

o 8|/1 |?
— €08 q,)(ny) cos kyesel

(A15)
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As we are interested in the equal-time measurements (see
Sec. 1V), the gauge degrees of freedom are redundant.
Therefore, we employ a gauge-invariant covariance matrix
Iy= SqS;; and track the evolution of Iy instead of §.
Equation (A14) becomes
Ty = i0, Q4 ()T — iT(Q4(1)0,. (A16)
Finally, the equations of motion of 44 and ¢4, which
appear in Uyngs and entangle phonons and electrons, can be
obtained by projecting to the third-order tangential vector
aapq|0>ph ® |w.). These two equations are
: Iy 7
g = gqSin@g + 244 C_q e1lqen (A17)

and
|

_ 94C08¢q _

0ipq = f wq+2-2ellTye,,  (Al8)

q C‘l

respectively, where the modulated electronic correlation is

My =Y talcos ky = cos(ky + 4o)|(P-qChChrqe)  (A19)

koa

and the density correlation is Cq = (p_qpq)-

With the variational wave function Eq. (5), we can
express all (equal-time) observables using analytical
expressions formed by the variational parameters and the
correlations of fermionic operated evaluated in the elec-
tronic wave function |w,) [43]. The most important
observable in this manuscript is d-wave pairing correlation,
which can be explicitly written as

1 K, K, K, K
P@ = NZ Z (K + Kk, ki, k) [Cx(k’) cos <7 - k1x> cos <7 - k2x> + ¢, (K’) cos (7) - k1y> cos (7y - ka)

— £,y (k') cos <k—2x - k2x> cos (7y - k1y> —{,y(K') cos <7V - kzy> cos (7)‘ - k1x>] )

This expression contains the pairing correlation in the
electronic part of wave function

¢k ki ky) = <We|C|T(2¢C;_k2TCk’—k1TCk1¢|l//e> (A21)

and analytical dressing factors

LK) = 3 e org Yol (- e

r

¢y(k') = Ze_ik“l'g_Zq [(1+cos ‘Ix)(l—eiq")]@egrqez

r

LK) = Ze‘ik/'f exp{—z [(2 + cos g, +cos )

r q
- 1 1247
—4elat cos%cos %’} %egl“qez}. (A22)

Here, the r in the last summation denotes the half-unit-cell-
shifted coordinates r = r + %/2 — 3/2.

Thus, we have now extended the NGSED framework
into nonequilibrium dynamics. Each step of the time
evolution is achieved by the evaluation of above coupled
differential equations, as well as large-scale Krylov-
subspace method (for the electronic wave function). To
benchmark the accuracy, we compare the simulation results
with the ED in a 2D Hubbard-Holstein model with g = 7,
and U = 81,. The ED simulation is exact, except for the
finite phonon occupation, which is truncated at M = 10 in

(A20)

S(n,m)

10.08

10.06

a

10.04

70.02

s s s s s o
0.6 -10 -5 0 5 10 15
Time [t,"]

FIG. 5. Time evolution of the charge structure factor (blue

curve), spin structure factor (red curve), d-wave pairing suscep-
tibility (green curve), and s-wave pairing susceptibility (orange
curve), for a pump pulse with Ay = 0.4 and frequency Q = 51,
The solid and dotted lines denote the results obtained by NGSED
and the standard ED, respectively (with maximal phonon number
M = 10). The inset guides the eye for the pump pulse.
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our calculation. To allow the ED simulation with acceptable
computational complexity and accuracy, we choose a small
eight-site cluster and a relatively high phonon frequency
@y = 5t;,. For a medium pump strength (4, = 0.4) with
frequency Q = 51, the relative errors for two dominant
correlations, i.e., the spin structure factor S(z,7z) and the
d-wave pairing susceptibility P(¢), are both below 1% even
in the center of the pump pulse (see Fig. 5). At the same time,
the relative error for the s-wave pairing susceptibility P(*)
reaches approximately 5%. This relatively larger deviation
mainly originates from the fact that the variational wave
function tends to primarily capture the dominant correlations
with limited parameters, leaving a slightly larger deviation
for other correlations. In addition, the truncation error
for the phonon Hilbert space in ED simulations is more
prominent out of equilibrium, which also contributes to the
numerical error shown in Fig. 5.

APPENDIX B: KRYLOV-SUBSPACE METHOD
FOR TIME EVOLUTION

With instantaneous variational parameters, the
Hamiltonian can be reduced to an effective electronic one:

q=(n/2,0)

A 5

=(r,0
A 9=(r.0)

Heir (1) = (bpn(1)|Unas (1) TH(1) Ungs (1) pn (1)), (B1)

Then, the single-step electronic state evolution becomes

(1 +61)) ~ e M0y, (1)), (B2)
Here, the large Hilbert-space dimension (> 10®) requires
stable and efficient evaluation of the wave function, which
in this study is based on the Krylov-subspace method. The
Krylov subspace for an instantaneous wave function
lw. (1)) and Hamiltonian Hq(7) is defined as

K (1) =span{ |y, (1)) Hegr () lwe (). Hegr (1) o (1))}

A widely used Krylov-subspace generator is the Lanczos
algorithm, where the wave function can be approximated
by [117-120]

lw(t+61)) mexp [—iU, ()T, () U, (1) 6tlJw(1)).  (B3)
Here, U, (t) is the basis matrix of the Krylov subspace

K, (1), and T, (¢) is the tridiagonal matrix generated by the
Lanczos algorithm. Since the projected matrix is with

q=(n,m/2)

=(n/2,m/2
NTTTTR 9=(r/2,7/2) A .
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FIG. 6. Dynamics of N(q, ) and S(q, ¢) for other momenta [left to right: (z/2, 0), (x,0), (x/2,x/2), and (z, z/2)] not shown in the
main text. The upper two rows are obtained for parameter set 1, while the lower two rows are for parameter set 2.
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dimension n, much smaller than the Hilbert-space dimen-
sion, the evaluation of Eq. (B3) is much cheaper. The error
of evaluating the vector propagation is well controlled by
€, < 12e~(00/16n (05t /4n)" given the Krylov dimension
n > pét/2 and spectral radius p = |Epa — Emin| [119].
Depending on the simulated pump strengths, we adopt
n = 50-100 in this paper.

APPENDIX C: SPIN AND CHARGE DYNAMICS
FOR OTHER MOMENTA

In Fig. 2 in the main text, we show the time evolution for
the charge and spin structure factors for only a single
momentum ¢ = (7, z), which plays the dominant role in
d-wave superconductivity. In this section, we also present
the calculations for other momenta.

The upper two rows in Fig. 6 show the dynamics for
u = 6.6 and 1 =4 (set 1). In contrast to the suppression of
N(z, 7), the charge structure factors are always enhanced
for other momenta, due to the light melting of the dominant
order. The dynamics for spin structure factors are more
complicated: They are enhanced during the pump, but for
large pump strengths (A, > 0.5) the structure factors
decrease rapidly after the pump pulse. As discussed in
the main text, this means that a strong pump further
suppresses the spin fluctuations and is, thereby, unfavorable
for d-wave superconductivity.

In contrast to the dynamics with parameter set 1, the
evolution with parameter set 2 (lower rows in Fig. 6)
suggests unchanged spin correlations after the pump.
Together with the dominant (7, ) momentum in the main
text, these spin fluctuations give rise to the d-wave super-
conductivity after melting the charge-ordered state.

Using the momentum distribution of the spin and charge
structure factors, we can also obtain the evolution of
the correlation length. As shown in Fig. 7, the charge

1.2
u=66r=4

0.8} i

/g,

0.4L

g/E,

0
-10 0 10 20 30 40 50
Time [t,"]

FIG. 7. Evolution of the correlation length & of the charge
structure factor renormalized by its equilibrium value &, obtained
for (upper) u = 6.6 and (lower) u = 7, respectively.

10 Charge Spin 0.1 |Charge Spin
8
— 6
E]
4 0
05 1
A

FIG. 8. Fourier spectra for the pump-induced evolution of
N(z, =) and S(x, ) for (left) u = 6.6, (right) u = 7, and different
pump strengths shown in the main text.

correlation length decreases rapidly after the pump pulse
enters. Together with the reduction of N(x, ) shown in
Fig. 2, it reflects the light melting of the charge instability,
otherwise dominant at equilibrium. This trend is distinct
from the light-driven dynamics of the d-wave pairing
correlation, whose intensity is enhanced but the correlation
length is reduced.

APPENDIX D: FREQUENCY DISTRIBUTION
OF DYNAMICS

Besides the increase and decrease of the correlations,
the postpump dynamics reflect some underlying physical
quantities. Figure 8 presents the Fourier spectra of the
charge and spin dynamics shown in Fig. 2 in the main text.
For the model parameter set 1, the dynamics have low-
energy periodicity approximately 27/ wy, reflecting the role
of phonons in forming and melting a charge-ordered state.
For the model parameter set 2 close to the phase boundary,
the phonon energy becomes highly renormalized [73].
Therefore, the low-energy spectrum becomes complicated
and dependent on the pump strengths. This strength
dependence is also reflected by the dynamics of other
momenta in Fig. 6.
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