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Higher-order spin-hole correlations around a localized charge impurity
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Analysis of higher-order correlation functions has become a powerful tool for investigating interacting
many-body systems in quantum simulators, such as quantum gas microscopes. Experimental measurements of
mixed spin-charge correlation functions in the 2D Hubbard have been used to study equilibrium properties of
magnetic polarons and to identify coherent and incoherent regimes of their dynamics. In this paper we consider
theoretically an extension of this technique to systems which use a pinning potential to reduce the mobility of
a single dopant in the Mott insulating regime of the 2D Hubbard model. We find that localization of the dopant
has a dramatic effect on its magnetic dressing. The connected third order spin correlations are weakened in the
case of a mobile hole but strengthened near an immobile hole. In the case of the fifth-order correlation function,
we find that its bare value has opposite signs in cases of the mobile and of fully pinned dopant, whereas the
connected part is similar for both cases. We study suppression of higher-order correlators by thermal fluctuations
and demonstrate that they can be observed up to temperatures comparable to the spin-exchange energy J . We
discuss implications of our results for understanding the interplay of spin and charge in doped Mott insulators.

DOI: 10.1103/PhysRevResearch.3.033204

I. INTRODUCTION

Understanding strongly correlated systems and their emer-
gent phases of matter has been a central task in modern
condensed matter physics. Cuprate superconductors have pro-
vided a particularly strong motivation for this line of inquiry
because of both potential applications of high-temperature
superconductivity and unusual thermodynamic and transport
properties of these materials [1]. The single-band (Fermi)
Hubbard model has been commonly considered as the min-
imal microscopic model for describing the physics of high-Tc
cuprates [2–4]. It correctly reproduces the antiferromagnetic
(AFM) Mott insulating state at half filling [5], and is believed
to exhibit non-Fermi liquid properties [6–11] as well as d-
wave pairing at finite doping [12–16], though other lattice
and material-specific factors beyond the Hubbard model were
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also argued to be important [17–25]. Methods based on the
mean-field approximation are not applicable for analyzing the
Hubbard model, because of the presence of many competing
instabilities and the importance of quantum antiferromagnetic
fluctuations that underlie the emergent nonlocal attraction be-
tween electrons [26–29].

Theoretically, the motion of a single hole in a doped
Hubbard model takes the form of spin-polaron propagation
(sometimes also referred to as magnetic polaron), where the
dopant is dressed by a cloud of spin defects in the AFM
background [30–40]. Fluctuations of these surrounding spins,
correlated with the dopants, should also play a crucial role
in the pairing of electrons or holes [41–46]. This mechanism
has been supported by multiple solid-state experiments. For
example, photoemission (ARPES) experiments have revealed
the presence of strong correlations, such as the “high-energy
anomaly” and the nonquasiparticle features, even in over-
doped cuprates [47–49]; recently resonant inelastic x-ray
scattering experiments (RIXS) have also observed the per-
sistent spin fluctuations in a wide range of electron and hole
doping [50–54]. Therefore, the correlations between spin and
dopants generally exist in strongly correlated materials and
may be crucial for the observed emergent phases, including
also the spin-glass phase at low doping in disordered cuprate
compounds [55].
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An additional line of inquiry into the nature of strongly
correlated electron systems such as cuprates comes from us-
ing impurities. One of the most well-studied examples is
the nonmagnetic Zn-substitution into the CuO2 plane, which
induces charge impurities due to local chemical potential
shifts. With this substitution, nuclear magnetic resonance
(NMR) and muon spin relaxation (μSR) experiments found
that the magnetic moment is locally enhanced near the
Zn impurities [56–59]. At the same time, the substitution
heavily suppresses the d-wave superconductivity [58–63].
While the mean-field theory can address this pair-breaking
phenomenon [64–69], it appears to provide an apparent
contradiction to the spin-fluctuation-mediated pairing mecha-
nism: It remains unclear why superconductivity is suppressed
while the local moment increases.

As an insightful perspective, we know that it is the dy-
namical instead of static spin correlations that enhance the
d-wave superconductivity [70–72]. Therefore, to address this
question, one needs to understand the microscopic correlation
between the carrier (electron or hole) and the spin fluctuations,
and their spatial distribution particularly near the impurity.
This is important not only for cuprates but also generally
for all correlated materials: As we will show in this paper, a
local charge impurity has outsized effects on high-order spin
correlations. However, such a correlation involves a dopant
hole and electron and at least two neighboring spins, which
cannot be directly accessed in existing solid-state spectral
measurements. Fortunately, this task was recently achieved
by a distinct approach—the ultracold-atom based quantum
simulator [73]. With the help of quantum gas microscopes, the
direct measurement of instantaneous correlations, especially
those high-order correlations, becomes possible [74–84]. The
full spatial resolution of individual lattice sites has also been
achieved. Furthermore, quantum simulators have control over
dimensionality [85] and can engineer tailored optical poten-
tials to precisely control model Hamiltonians [86,87]. As an
example, an optical tweezer can be used to engineer a local-
ized potential for holes, which allows for continuous control
of a local impurity in a clean system [88]. This paradigmatic
scenario of a single disordered lattice site with a tunable
onsite potential will be analyzed in detail throughout this
work.

Here, to systematically understand the high-order spin-hole
correlations in the doped Hubbard model and the impact of an
impurity on the correlations, we present an exact diagonaliza-
tion calculation of t-J-3s and Hubbard models. Compared to
the well-known spin polaron dressing in the case of a mobile
dopant in a Mott insulator, we find that the presence of a local
pinning field of variable strength results in significantly dif-
ferent spin correlation patterns. Such a difference is reflected
in both third-order and fifth-order spin-hole correlation func-
tions, suggesting a crossover from a spin-polaron surrounded
by weakened magnetic correlations to a geometric defect sur-
rounded by enhanced magnetic fluctuations. This work also
complements our analysis of the fifth-order correlations of
unpinned holes in Ref. [89]. Since the proposed correlation
functions are composed of local spin and charge operators,
they can be measured directly using the state-of-the-art quan-
tum gas microscopy [88,90], which can ultimately extend the
quantitative conclusion to the thermodynamic limit.

This paper is organized as follows. We first introduce the
models and methods used in Sec. II. Then we investigate the
third-order and the fifth-order correlation functions in Secs. III
and IV, respectively. We conclude our study in Sec. V. We
discuss the differential third-order correlator in Appendix A
and the finite-size effect in Appendix B.

II. MODELS AND METHODS

As the simplest microscopic model depicting Mott physics
in a strongly correlated electronic system, the 2D (Fermi)
Hubbard model is described by the Hamiltonian

HH = −
∑
i,j,σ

(tijĉ
†
jσ ĉiσ + H.c.)+U

∑
i

(
n̂i↑− 1

2

)(
n̂i↓− 1

2

)
,

(1)

where ĉ†
iσ (ĉiσ ) and n̂iσ denote the creation (annihilation) and

density operator, respectively, at site i of spin σ ; tij is the
hopping, restricted here to nearest neighbors (nn) t〈ij〉 = t . As
mentioned above, the single-band Hubbard model is believed
to capture the essential physics of strongly correlated materi-
als such as cuprates [2,3] and can be precisely simulated by
the cold-atom experiments [81–83,91–95].

The Hubbard model’s Hilbert space dimension is relatively
large, limiting both the system size and the number of states
accessible in exact numerical calculations. To investigate the
temperature dependence in the regime accessible by cold-
atom experiments (typically T ∼ 0.5t), we also consider the
low-energy approximation of the Hubbard model near half-
filling—the t-J-like spin model. Through a t/U expansion to
the lowest order, one can simplify the Hubbard model to the
t-J model [96–99]:

Ht−J = −t
∑
〈i,j〉,σ

(c̃†
jσ c̃iσ + H.c.) + J

∑
〈i,j〉

(
Si · Sj − n̂in̂j

4

)
,

(2)
where Si · Sj= Ŝzi Ŝ

z
j + 1

2 (Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j ), with Ŝzi = (n̂i↑−n̂i↓)/

2 and Ŝ+
i = (Ŝ−

i )† = c̃†
i↑c̃i↓. The constrained fermionic oper-

ators acting in the Hilbert space without double occupancy
are defined as c̃†

iσ = ĉ†
iσ (1 − n̂iσ̄ ). Although sometimes neg-

ligible, there is a three-site term at the same lowest order
(∼t2/U ) that contributes to the dopant’s motion [38,39,98–
108]. This defines the t-J-3s model with the Hamiltonian
given by Ht-J-3s = Ht-J + H3s:

H3s = −J

4

∑
〈i,j〉,〈i,j′ 〉
j�=j′ ,σ

(c̃†
j′σ ñiσ̄ c̃jσ + c̃†

j′σ c̃
†
iσ̄ c̃iσ c̃jσ̄ ). (3)

We use both the Hubbard and t-J-3s models to study high-
order correlations, where the latter allows for access to higher
temperatures. Comparisons between the two models allow
identifying which effects are captured by effective spin mod-
els and do not require higher-order expansions in t/U . Unless
otherwise specified, we use U = 8t for the Hubbard model
and accordingly J = 0.5t for the t-J-3s model throughout this
paper.

To test the correlations with respect to an immobile hole,
we also consider an extra pinning potential in the origin
(r0 = 0), controlling the mobility of the single hole. The
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Hamiltonian becomes

H = H0 +V
∑

σ

n̂0σ , (4)

where H0 is the Hubbard or t-J-3s Hamiltonian, and V is the
strength of a local pinning potential. This pinning potential
can be realized experimentally by an optical tweezer in an
ultracold atom system [88]. Hence, the high-order correlations
analyzed in this paper and Ref. [89] are directly accessible
to these experiments. Note that the strength of spin-exchange
and three-site terms in the t-J model involving a virtually
doubly-occupied central site (which is perturbed by the added
pinning potential) must be modified when |V | becomes com-
parable to the Hubbard interaction U . Throughout this work,
we neglect such corrections and focus on the regime |V | � U .
The difference between Hubbard and t-J-3s models are quan-
titatively compared and discussed whenever relevant.

To resolve the wave function and the corresponding corre-
lators over a range of low temperatures in a 2D D4 symmetric
system, we perform exact diagonalization calculations on a
4 × 4 cluster with periodic boundary conditions. Throughout
this paper, we evaluate the expectation values of observables
in a canonical ensemble. For convenience, we denote the
expectation as the thermal average

〈Ô〉 = Tr

[
e−H/T

Z Ô

]
≈

∑
n<nmax

e−En/T

Z 〈n|Ô|n〉, (5)

in which Z is the partition function. The nmax sets the numer-
ical truncation of excited states, which satisfies Enmax − E0 

T for all temperatures considered in our work. In the results
presented in Secs. III and IV, we keep nmax ∼ 650 states for
the Hubbard model, giving reliable results up to T ∼ 0.4t ,
whereas nmax ∼ 13, 000 states for the t-J-3s model, giving
reliable results up to T ∼ t .

In this paper, we employ the parallel Arnoldi and Pa-
radeisos algorithm to determine the equilibrium ground-state
wave function and expectation values [109,110]. Unless oth-
erwise indicated, we include all total-Sz sectors in the thermal
ensemble. Part of the results in Sec. IV are benchmarked
using the density matrix renormalization group (DMRG) at
zero temperature in a 6 × 12 cluster with cylindrical bound-
ary condition, to investigate possible artifacts caused by the
finite system size. We used bond dimension χ = 2 000 for
these DMRG simulations, which leads to the truncation error
3.83 × 10−6 for V = 0 and 2.38 × 10−7 for V = 5t . We also
use the determinant quantum Monte Carlo (DQMC) [111,112]
to benchmark the finite-size effects in the Appendix, using
6 × 6 and 8 × 8 clusters at high temperatures.

III. THE THIRD-ORDER SPIN-HOLE CORRELATIONS

To describe the spin correlations with respect to a doped
hole, we consider the following third-order correlation func-
tion:

B(r, r′,d) = 4
〈
n̂hr Ŝ

z
r′ Ŝzr′+d

〉/〈
n̂hr

〉
, (6)

where the hole density operator n̂hr = (1 − n̂r↑)(1 − n̂r↓). In
this paper, we focus on the |d| = 1 (neighboring spins) and
|d| = √

2 (diagonal spins), allowing the relative distance be-

)b()a(

FIG. 1. Schematic showing the third-order spin-hole correlators
for (a) nearest spins (|d| = 1) and (b) next-nearest spins (|d| = √

2).

tween the hole and the spin “bond” |r − r′| to vary (see
Fig. 1).

Figure 2 gives an overview of the spatial (r′ − r) distribu-
tion of the B(r, r′,d) in a single-hole-doped Hubbard model
at zero temperature, with r corresponding to the coordinate
where the pinning potential V is applied (white dot). For
different pinning potentials, the nearest-neighbor (|d| = 1)
correlations are always negative, while the diagonal (|d| =√

2) correlations are mostly positive due to the strong AFM
order. However, the spatial variation of these correlators in-
dicates different underlying physics triggered by the pinning
potential, as discussed below.

We first consider systems with a mobile hole, i.e., for V =
0. As shown in the left panel of Fig. 2(a), the (absolute value of
the) third-order correlator B(r, r′,d) is weakened for shorter
distances |r − r′|. This spatial distribution can be understood
in terms of the spin polaron [113,114], where a dopant’s mo-
tion is dressed by a cloud of spin defects, forming a polaronic
quasiparticle. As the system is translationally invariant for

V = 2.5 t V = 5 t
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FIG. 2. (a) The spatial distribution of B(r, r′, d) for |d| = 1 and
|d| = √

2 in a n = 1/16 doped Hubbard model at T = 0, with
pinning potential V = 0, V = 2.5t , and V = 5t , respectively. The
numbers in the bottom-right corner of each panel mark the values
of the correlators mentioned in the main text. (b) The V -dependence
of the differential third-order correlators �Bnn for T = 0.1t (blue),
0.2t (green), 0.3t (orange), and 0.4t (red). The dots and solid lines
denote the results obtained for the Hubbard and t-J-3s model, respec-
tively. The inset in panel (b) explains the definition of the differential
correlators.
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V = 0, the correlator B(r, r′,d) depicts the concentration of
spin defects in the comoving frame of the mobile hole. Due
to the small radius of the spin polaron (local screening of spin
correlations), the amplitudes of correlators for large |r′ − r|’s
asymptotically approach those of an undoped AFM system.

In contrast to the free hole, the spin correlations in the
presence of a pinning potential V > 0 lead to significantly
different patterns. With the pinning potential applied at site r,
we examine the the third-order correlator B(r, r′,d) between
the hole (at r) and the spins at r′ and r′ + d. As shown in the
right two panels of Figs. 2(a) and 2(b), B(r, r′,d) becomes
stronger for shorter distances |r − r′| (i.e., for |d| = 1 it be-
comes more negative, while for |d| = √

2 it becomes more
positive). To distinguish from the screening of correlations
in the spin-polaron picture, we denote this phenomenon as
“antiscreening.” A similar phenomena has recently been ob-
served in experiments, albeit at higher temperatures, where
it has been attributed to imperfections of the pinning poten-
tial [88]. Indirectly, this phenomenon is also consistent with
the increased local moments measured in NMR and μSR
experiments in Zn-substituted cuprates [56–59]. One can intu-
itively understand this phenomenon by observing the fact that
spin correlations in systems with a lower coordination num-
bers (e.g., a 1D chain) are stronger than in the 2D plane with
otherwise identical parameters due to the existence of reduced
frustrations (an AFM state favors spin to form singlets with all
its nearest neighbors) [115,116]. Thus, a system with a strong
pinning potential tends to form a 1D edge at the boundary
surrounding the impurity. Here the system can lower its en-
ergy by forming stronger singlet bonds closer to the impurity,
while retaining the bulk spin order at further-away sites. In
addition to the change in spatial distribution, the presence of
a pinning potential also leads to an overall enhancement of all
correlators (in terms of absolute values).

To quantify the different distributions of the third-order
correlators, we define the difference between the nearest-
neighbor correlators as [see the illustration in the inset of
Fig. 2(b)]

�Bnn = B(r, r + 2x̂, ŷ) − B(r, r + x̂, ŷ). (7)

Through the difference, the uniform (positive or negative)
background in the “bare” correlator B(r, r′,d) is removed.
Thus, we refer to the �Bnn as differential third-order corre-
lators. As shown in Fig. 2(b), �Bnn is always negative for
V = 0, indicating the screening effect of the spin polaron; the
�Bnn turns to positive for a finite V , indicating the onset of
antiscreening [117]. As such, the crossover between screening
and antiscreening natures is clearly reflected by the differ-
ential third-order correlators, while the original B(r, r′, ŷ)s
do not have a sign change. The reason is that the original
ones contain a substantial contribution from the lower-order
correlators (i.e., 〈ŜzrŜzr+ŷ〉), which is sizably negative. A spatial
difference with respect to the hole, however, cancels (or at
least heavily reduces) this lower-order background.

The above observation indicates that a “genuine” corre-
lator is required while describing the underlying many-body
physics. Such a genuine third-order correlator can be more
intuitively defined as the connected part of B(r, r′,d)

Bc(r, r′,d) = B(r, r′,d) − 4
∑
r′′

〈
Ŝzr′′ Ŝzr′′+d

〉/
N, (8)

where N denotes the number of lattice sites. As such, the
Bc(r, r′,d) reflects the net hole-spin-spin correlation on top
of the AFM background, without the need to extract through a
spatial difference. As shown in Fig. 3(a), the Bc(r, r′,d)’s for
small |r − r′| flip sign in the presence of the pinning potential,
which allows for a better discrimination of the screening and
antiscreening regimes.

Given that thermal fluctuations are expected to disrupt
long-range ordering, the crossover between the screening and
antiscreening situations should depend on both temperature
and the pinning potential. To address this, we calculate the
T - andV -dependence of Bc(r, r′,d). As mentioned in Sec. II,
the Hilbert space size of the Hubbard model limits the ac-
cessible maximal temperature; therefore, we also calculate
the above correlators for the t-J-3s model. As shown in
Figs. 3(b) and 3(c), the Bc characterizes a crossover from a
screening (negative) to the antiscreening (positive) regime for
any temperature T < 0.3t . The criticalV value increases with
temperature, because thermal fluctuations help with the hole’s
delocalization and, therefore, its mobility becomes larger for
the same strength of pinning potential.

By comparing the Hubbard and t-J-3s models in Fig. 3(c),
we note that the results obtained from both models agree
quantitatively at the small V side, suggesting that the third-
order spin-hole correlations originate from hole motion in
an AFM background instead of any interactions beyond the
O(t2/U ). On the large V side, Bc(r, r′,d) displays slightly
different temperature dependence for two models, which
can be attributed to the modified exchange coupling in the
vicinity of the pinning site: Between this site and its near-
est neighbors, the superexchange coupling becomes Jeff =
JU 2/(U 2 −V 2) > J . At much higher temperatures (T > J),
thermal fluctuations smear out the AFM spin correlations and
thus suppress the third-order correlator.

IV. THE FIFTH-ORDER RING-SPIN CORRELATORS

The third-order correlators B(r, r′,d) reflect the spin fluc-
tuations around the hole. These correlators are expected to
be weak for mobile holes because the underlying motion of
the dopants admixes spins from different sublattices in the
surrounding AFM [113,118]. To minimize the effect of av-
eraging over different trajectories and provide deeper insights
into the underlying spin-charge correlation, one may consider
constructing higher-order correlators. To this end, we examine
the (fifth-order) ring-spin correlators with respect to a doped
hole, which is introduced recently in Ref. [89] as

C♦(r,d) = 24〈n̂h
r Ŝ

z
r+d+x̂ Ŝ

z
r+d+ŷŜ

z
r+d−x̂ Ŝ

z
r+d−ŷ

〉/〈
n̂hr

〉
. (9)

As illustrated in Fig. 4, this correlator reflects the ring-spin
correlations in a comoving frame of the doped hole. By in-
cluding nonzero displacements d (between the ring-center
and the hole), Eq. (9) generalizes the five-point correlators
introduced in Ref. [89].

We first investigate the dependence of C♦(r,d) on the ring
displacement d, and consider a mobile hole with no pinning
potential (V = 0). In this case, the system has translational
invariance and C♦(r,d) is only a function of d. As shown in
Fig. 5(a) and the top-left panel of Fig. 5(b), C♦ is positive
for any |d| > 1, but becomes sizable and negative for d = 0.
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FIG. 3. (a) The spatial distribution of connected parts Bc(r, r′,d) in a n = 1/16 doped Hubbard model at T = 0, with pinning potential
V = 0,V = 2.5t andV = 5t , respectively. (b) TheV -dependence of the connected third-order correlators Bc(r, r′, d) for T = 0.1t (blue), 0.2t
(green), 0.3t (orange), and 0.4t (red). The dots and solid lines denote the results obtained for the Hubbard and t-J-3s model, respectively. The
inset in panel (b) explains the definition of the differential correlators. (c) The temperature and pinning potential dependence of the genuine
third-order correlator Bc(r0, r0 + x̂, d) with |d| = ŷ − x̂.

This behavior is reminiscent of a Z2 Gauss law expected in a
string description of the single spin polaron: when the mobile
hole forms a spin polaron, its motion creates a “string” of
displaced spins; In the C♦ correlator, spins which are part of
the string originate from the opposite sublattice and contribute
a negative sign [89]. Since C♦(r, 0) involves only one site
belonging to the string, it is expected to be negative; whereas
C♦(r,d �= 0) has statistically more contributions from an even
number of spins affected by a string, displaying a positive
value. We find they reach a quantitative agreement by com-
paring the t-J model and the Hubbard model with different
system sizes. This indicates that the observed correlations
can be understood from the spin-exchange picture, while
higher-order terms in the t/U expansion can be ignored. The
consistency between the DMRG calculation in a sizable sys-
tem and the ED calculation in a 4 × 4 cluster further precludes
the influence of system size and models.

We then consider systems with a finite pinning potential
V in the center at site r0. As shown in the upper panel of

(a) d  )b(0 = d = (1,1)

FIG. 4. Schematic showing the fifth-order ring-spin correlators
for (a) d = (0, 0) and (b) d = (1, 1).

Fig. 5(b), the onsite (d = 0) correlator C♦(r0, 0) flips sign
with a V -field. This is a direct consequence of a hole be-
coming immobile: when the pinning potential traps the dopant
hole, the spin polaron breaks down, and the remaining system
becomes a half-filled AFM system with a static defect. Since
next-nearest spins are expected to be parallel in a pure Néel
state, the C♦(r, 0) becomes positive in this immobile case.
This difference induced by the hole’s mobility further reflects
the screening to antiscreening crossover, consistent with the
observation using the third-order correlators in Sec. III.

The sensitivity to a pinning potential is affected by the ther-
mal fluctuation at finite temperature. As shown in the lower
panel of Fig. 5(b), the onsite correlator C♦(r0, 0) remains
negative until V ∼ 2.5t at a higher temperature T = 0.4t . As
mentioned in Sec. III, this is a consequence of the hole’s
delocalization enhanced by thermal fluctuations. To better
visualize this crossover, we extract theC♦(r0, 0) and plot its T
andV dependence in Figs. 6(a) and 6(b). As temperatures rise,
the regime dominated by the spin-polaron screening (blue)
extends to a larger pinning potential. We observe a similar
crossover here, as in Fig. 3; note that the crossover’s exact
position may be different for different observables as it is
not a phase transition. Except for this crossover, we find that
all C♦(r0,d)s decrease with increasing temperature, which
occurs dramatically near T ∼ J and indicates the thermal
melting of the surrounding antiferromagnet. Given the pres-
ence of four spins in the fifth-order correlator, its temperature
dependence is more evident than the third-order one presented
in Fig. 3(c).

As such, the temperature dependence of this fifth-order
correlator reflects the screening to antiscreening crossover
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(a) t-J model by DMRG (T= 0)

0-0.15 0.15(b) Hubbard model by ED

V = 0 

T=
 0

T=
 0

.4
 t

V = 2.5 t V = 5t

V = 0 V = 2.5t

FIG. 5. (a) The distribution of C♦(r,d) for different distances d,
r in the center with V = 0 (left) and V = 2.5t (right), calculated
for a 6 × 12 t-J model at zero temperature by DMRG. The weak
asymmetry in the x-direction is caused by the noncentral location of
the hole at x = 6, while the system is translational invariant along
the y direction due to the cylindrical boundary condition. (b) The
distribution of C♦(r = r0,d) for different distances d, strengths V
of the pinning potential in the center at r0, and temperatures T ,
calculated for the Hubbard model in a 4 × 4 cluster. The central
white circle denotes the position of the dopant hole r0 on the site
of the pinning potential.

similar to the third-order one. The difference is that this phe-
nomenon has already been reflected in the “bare” fifth-order
correlator, without spatial derivative or subtracting discon-
nected parts. In contrast, the genuine (connected) fifth-order
correlator reflects a different level of information. To extract

the genuine fifth-order correlators, we subtract off the discon-
nected pieces of the correlator following the same manner as
Ref. [89]:

Cc
♦(r,d) = C♦(r,d)

− 24

[ ∑
l/∈(i,j,k)

〈
n̂h
r Ŝ

z
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〈
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〉
〈
n̂h
r Ŝ

z
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〉
〈
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r

〉

+
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〉
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〉
〈
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〉
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〈
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〉
〈
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〉
〈
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z
r+d+j

〉
〈
n̂h
r

〉
〈
n̂h
r Ŝ
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+
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〉
〈
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r

〉
〈
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〉
〈
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〉
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〉
〈
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〉
]
.

(10)

Figures 6(c) and 6(d) show the dependence of the con-
nected correlator Cc

♦(r, 0) on the temperature and pinning
potential. We find that this correlator is sizably negative
even for large pinning potentials. Although the characteristic
temperature, above which |Cc

♦| drops dramatically, decreases
slightly for the systems with pinned holes, the absolute value
of Cc

♦ does not change much with V . This observation indi-
cates that the genuine fifth-order correlator is always present,
significantly deviating from the classical Néel state regardless
of whether the hole is mobile. Such an intrinsic nature is
invisible in lower-order correlators.

In the remainder of this section, we elucidate the physical
origin and properties of the genuine fifth-order ring-spin cor-
relators. We discuss the role of different statistical ensembles
on the fifth-order ring-spin correlators.

To this end, we compare a spin-imbalanced ensemble with
definite total spin Sz = 1/2 to a spin-balanced statistical mix-
ture with 〈Ŝz〉 = 0. Alternatively, in the former case, we could
consider an ensemble with definite Sz = −1/2, which gives
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1

0

0.6

0.4

0.8

r0, 0) (t-J-3s r0, 0) (t-J-3s)

T 
[t]

0 1 2 3 4 5
V [t]

r0, 0) (Hubbard)

0.2

0

0.4

T 
[t]

r0, 0) (Hubbard)

0 1 2 3 4 5
V [t]

0-0.15 0.15
0-0.15 0.15

FIG. 6. (a), (b) The bare onsite ring-spin correlator C♦(r0,d = 0) as a function of pinning potential V and temperature T , calculated using
the (a) t-J-3s model and (b) Hubbard model. (c), (d) Same as (a), (b) but for the connected part of the onsite ring-spin correlatorCc

♦(r0, d = 0)
as a function of pinning potential V and temperature T .
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the same results: the higher-order correlators C♦ and Cc
♦ each

involve an even number of spin operators Ŝz. Moreover, the
underlying spin or Hubbard Hamiltonian is invariant under
a global spin-flip (Szj → −Szj). Hence, the correlators in the
sectors with definite Sz = ±1/2 are equivalent,

C♦|Sz=1/2 = C♦|Sz=−1/2, Cc
♦|Sz=1/2 = Cc

♦|Sz=−1/2. (11)

With the same argument, in the spin-balanced ensemble,
〈Ŝz〉 = 0, all lower-order correlators involving an odd number
of spin operators vanish. While an ensemble with defi-
nite Sz = 1/2 or −1/2 is hard to realize in a solid-state
system, both spin ensembles can be addressed experimen-
tally with ultracold atoms and with full spin and charge
resolution [119,120]. This ensemble can be achieved by post-
selecting experimental data with specific Sz values.

The two spin ensembles correspond to different ways of
taking the zero-temperature limit. The usual canonical en-
semble converges to a balanced mixture of the two sectors
Sz = +1/2 and Sz = −1/2 when T → 0. In the resulting
spin-balanced ensemble 〈Ŝz〉 = 0, and all but the second sum
on the right-hand side of Eq. (10) vanish. In contrast, for the
ground state with a definite Sz = 1/2, all terms in Eq. (10)
contribute.

Nevertheless, for a mobile hole we find that the calculated
connected correlators do not change significantly if switched
to the imbalanced ensemble: In Fig. 7(a), we plot Cc

♦|〈Sz〉=0 as
a function of t/J (see Fig. 1 in Ref. [89]) and compare it to the
spin imbalanced ensemble. Qualitatively, the same behavior
is found for all considered values of t/J . The deviations are
largest for small values of t/J , where we expect a smaller
spin-polaron radius in the ground state [113].

The situation becomes slightly different when the hole is
trapped by a pinning potential. In Fig. 7 we compare con-
nected and bare correlators for a spin-imbalanced ensemble
with the fixed total Sz = 1/2. The bare correlator C♦ in
Fig. 7(b) reflects a crossover similar to Fig. 6(a), with slightly
stronger temperature dependence. This sensitivity to temper-
ature results from the fact that the fixed total spin Sz = 1/2
gives finite contributions to the odd terms in Eq. (10) as lower
orders and thus induces more fluctuations when temperature
increases. For the same reason, the connected fifth-order cor-
relator Cc

♦ also displays a slightly stronger sensitivity to the
pinning potential V s [see Fig. 7(b)].

Most significantly, we observe in Fig. 7(c) that the
connected correlator Cc

♦ decreases in magnitude in the spin-
imbalanced ensemble for largeV and small temperatures T ; in
contrast, it remains sizably negative in this regime for the spin-
balanced ensemble [see Fig. 6(c)]. We attribute this influence
of the spin ensemble on the connected higher-order correla-
tor to the formation of Néel order and a nonzero staggered
magnetization, 〈M̂z〉 = ∑

r(−1)rx+ry〈Ŝzr〉 �= 0, in the lattice.
In a finite-size system, like the one we study, the latter re-
quires spin-imbalance and a pinning potential for the hole
to avoid mixing of A- and B- sublattices in the comoving
frame of the hole where we define the higher-order correla-
tors. When a nonzero staggered magnetization forms in the
comoving frame with the hole, the lower-order terms—e.g.,
〈Ŝzr〉—provide sizable nonvanishing contributions to the bare
ring-spin correlators. Since we observe that bare ring-spin
correlators are only weakly affected by different spin ensem-
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(r0, 0)
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FIG. 7. (a) Genuine fifth-order correlator Cc
♦ for different spin-

ensembles, 〈Ŝz〉 = 0 and Sz = ±1/2, at zero temperature and without
pinning potential. The results are obtained by the ED (red) and
DMRG (blue) simulations on a 6 × 12 cylinder and a 4 × 4 cluster,
respectively. (b) The bare fifth-order correlator C♦ and (c) the gen-
uine correlator Cc

♦ in a spin-imbalanced ensemble with fixed total
Sz = 1/2, as a function of pinning potential V and temperature T .
We consider a t-J-3s Hamiltonian.

bles, the genuine higher-order terms can differ significantly
for different ensembles, as we find in Fig. 7(b).

Finally, to further illustrate the differences between spin-
balanced and imbalanced ensembles, we consider a strongly
simplified physical setting at zero temperature. We assume
that the hole is fully pinned in the center of the sys-
tem (V 
 t) and take into account only Ising couplings
∼JzŜzi Ŝ

z
j between the spins. The ground state of this toy

model in the spin-imbalanced ensemble with Sz = 1/2 is
a classical Néel state |N,+〉 where a missing down-spin
at r defines the pinned hole. Similarly, the ground state
in the spin-imbalanced ensemble with Sz = −1/2 is the
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opposite Néel state |N,−〉, obtained from |N,+〉 by flipping
all spins. For both Néel states, the bare ring-spin correlator
C♦(r, 0)|Sz=1/2 = C♦(r, 0)|Sz=−1/2 is equal since all four spins
surrounding the hole are aligned. Hence, C♦(r, 0)|〈Ŝz〉=0 =
C♦(r, 0)|Sz=±1/2 also takes the same value in the spin-
balanced ensemble, defined by the even statistical mixture
{|N,+〉, |N,−〉}. Now we turn to the connected correlators.
For each of the two Néel states |N,±〉 taken individually,
Cc
♦|Sz=±1/2 = 0 vanishes: By construction, the higher-order

connected correlators are identically zero for product states.
To obtain this result from Eq. (10), it is important to account
for all lower-order contributions, including those with an odd
number of Ŝz operators. In contrast, in the spin-balanced en-
semble where 〈Ŝz〉 = 0, only lower-order terms with an even
number of Ŝz operators contribute in Eq. (10). This leads
to a strongly modified connected correlator, with an overall
negative value: indeed, counting all terms for the classical
Néel states gives the estimate Cc

♦(r, 0)|〈Ŝz〉=0 = −2 in our toy
model with Ising interactions.

V. DISCUSSIONS AND CONCLUSIONS

Using the third-order and fifth-order spin-hole correlators,
we have analyzed spatial correlation of a doped hole and
its surrounding spin fluctuations in the single-hole doped
Hubbard and t-J-3s models. We particularly investigate the
impact of impurity on these high-order correlations, mimicked
by a localized pinning potential with varying strength V .
Interestingly, we find that even an extremely local impurity
imposes an outsized effect on the high-order correlations.
With the increase of the pinning potential, we identified a
crossover from screening to antiscreening of the spin fluctua-
tions surrounding the hole: For a mobile hole, the weakened
third-order correlators in proximity to the dopant and the
negative fifth-order ring-spin correlators reflect the underlying
spin polaron formation—here the motion of the hole screens
the spin defects; for an immobile hole trapped by the pinning
potential, the third-order correlators in proximity to the dopant
are enhanced and the bare fifth-order ring-spin correlators are
positive—as a result of the antiscreened magnetic moment
of the pinned hole. In this case, a geometric defect and a
staggered field are induced in the AFM background. This
microscopic transition from a spin-polaron to an antiscreened
defect provides a route to understand the Zn-substitution ex-
periments, where the magnetic moment is enhanced while
superconductivity is suppressed. Due to the breaking of the
spin-polaron, different holes are no longer paired by sharing
the spin fluctuations. Instead, the locally enhanced spin fluc-
tuations surrounding, the impurity-trapped hole, indicates a
repulsion to other holes and therefore suppresses the coher-
ence of Cooper pairs. This crossover in high-order correlators
may also provide intuitions to impurity effects in other corre-
lated materials.

We have also examined the impact of temperature on
the considered spin-charge correlations. We find that thermal
fluctuations lead to an extended spin-polaron regime with a
weakly pinned hole, and identify the crossover to the pinned
hole as a function of both temperature T and pinning poten-
tial V . In contrast to the crossover, we found genuine (i.e.,
connected) fifth-order ring-spin correlators carrying differ-

ent underlying physics: they are sizably negative and robust
against the pinning potential.

Based on these observations, we demonstrated that higher-
order correlation functions provide a new perspective on
quantum many-body systems with strong correlations. This is
a particularly promising direction in the context of correlated
fermionic systems and quantum materials, where traditional
theoretical approaches are limited and a comprehensive phys-
ical picture is still lacking. The specific situation discussed
here, where we analyzed the effect of a localized pinning
potential on mobile dopants, is particularly relevant in the
solid-state context for understanding the effects of disorder
on strong spin-charge correlations [56–63]. More gener-
ally, recent high-precision spectroscopic measurements in
correlated materials have shown signatures of nonsymmetry-
breaking gapped states, which are highly fluctuating and
beyond the description of the low-order Gaussian wave func-
tions [121–124]. The underlying physics of these phases lies
in the non-Gaussian wave functions. The high-order correla-
tions provide an efficient route to quantify these non-Gaussian
features, as the Gaussian wave functions fractionalize all
correlations two two-point ones through Wick’s theorem. Al-
though wave function itself is high-dimensional and cannot
be read from experiments, these higher-order correlators, car-
rying the non-Gaussian features, can be directly measured
and tested in state-of-the-art quantum gas microscopy exper-
iments with ultracold atoms in optical lattices. The required
temperatures to observe nontrivial effects have already been
reached, and we expect that even lower temperatures will
become accessible in the near future.
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APPENDIX A: DETAILS ABOUT THE DIFFERENTIAL
THIRD-ORDER CORRELATOR

The differential third-order correlator has been briefly dis-
cussed in Sec. III. To reveal the impact of temperature and the
pinning potential, we present its V -T dependence of �Bnn in
Fig. 8, following the same manner of Fig. 3(c) in the main
text.
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FIG. 8. (a) Dependence of the differential third-order correlators �Bnn with bond lengths |d| = 1 as a function of the trapping potential
V and temperature T , obtained for the t-J-3s model (top) and the Hubbard model (bottom). (b) The same as panel (a) but for �Bdiag with
|d| = √

2. The insets in panels (a) and (b) explain the definition of the differential correlators.

In addition to the �Bnn defined in Eq. (7), we further
quantify the difference between the diagonal (hole-spin) cor-
relators as

�Bdiag = B(r, r + x̂, ŷ − x̂) − B(r, r + 2x̂, ŷ − x̂). (A1)

The spatial relations of both differences are illustrated in the
inset of Fig. 8. Note, to compensate for the negative sign
induced by the AFM sublattices, we swapped the order while
defining these two differences.

We notice a difference between the �Bnn [Fig. 8(a)] and
the �Bdiag [Fig. 8(b)]: although the screening effect has been
dramatically suppressed for large pinning potentials follow-
ing the similar crossover, �Bdiag does not exhibit an evident
sign change. Since spin correlations are inhomogeneous when
the system breaks translational symmetry regardless of the
hole, the differential correlator �Bdiag has been affected by
this background inhomogeneity, reducing the signal-to-noise
ratio for describing the underlying properties of the spin-hole
composite.

The advantage of the genuine correlator Bc(r, r′,d) over
the differential correlator �Bdiag is reflected by comparing
Figs. 3(c) and 8(b). Although both describe the diagonal
spin correlations relative to the hole, the genuine correla-
tor clearly separates the spin polaron (where it is sizeably
negative) and the antiscreening regime (where it is sizeably
positive). Especially in the large V limit, the genuine cor-
relator characterizes a narrower crossover compared with
Fig. 3(a), due to the exclusion of noise in lower-order
correlators.

APPENDIX B: FINITE-SIZE SCALING

To test the size dependence of these different types of high-
order correlations, we further perform the DQMC simulations
and extrapolate them into different system sizes. DQMC
is an unbiased stochastic method based on the sampling of
the auxiliary Hubbard-Stratonovich field. Due to the presence
of the fermion sign problem, DQMC does not work for very
low temperatures in a doped Hubbard model. However, at
high temperatures, it can be extended to systems much larger
than the accessibility of ED. Here, we used DQMC to bench-
mark the finite-size effect and the high-temperature behavior
of these high-order correlations.

As shown in Fig. 9, the results obtained by ED and DQMC
agree well for T < 0.4t , above which the ED results are no
longer reliable within the same number of excited states. A
slightly larger deviation occurs for the connected fifth-order
correlation Cc

♦. This can be attributed to two reasons. On the
one hand, the DQMC simulation is based on grand canonical
ensemble with a fixed average electron density instead of
the canonical ensemble. The density fluctuation increases ev-
idently with temperature, which is amplified in the high-order
correlations. On the other hand, the excited-state truncation in
ED leads to numerical errors at high-order correlations even
when the static and low-order ones are numerically stable.
Except for this slight deviation close to 0.4t , the results from
both methods agree well.

With the increase of system size, the quantitative num-
bers change due to the dilution of the hole concentration
(and also affected by the density fluctuation in the grand
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FIG. 9. Upper to lower: Temperature dependence of Bc and Cc
♦

for the Hubbard model with pinning potential V = 5t . The blue, red,
and green dots represent the DQMC results for 4 × 4, 6 × 6, and 8 ×
8 systems, while the thick blue curve represents the ED results for the
4 × 4 cluster. The DQMC results are truncated at low temperatures
due to the fermion sign problem, while the ED results are restricted
to T < 0.4t due to the finite excited states kept in the calculation.

V = 0

0.03

0

-0.03
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FIG. 10. The spatial distribution of C♦(r, d) calculated using
DQMC for a 8 × 8 cluster with T = 0.4t . The left and right panel
show the results without and with a pinning potential, respectively.

canonical ensemble). However, the sign change in Bc is pre-
served, reflecting the crossover between the screening and
antiscreening picture. Due to the strong density fluctuation at
V = 0, DQMC is not suitable for discussing V -dependence
in these high-order correlations. The crossover for different
pinning potentials at zero temperature has been benchmarked
in larger systems using DMRG in Fig. 5(a) and Ref. [113].

Since our DQMC simulations cannot reach a low enough
temperature for the 8 × 8 cluster, the crossover of the fifth-
order correlator C♦ cannot be revealed by tuning temperature.
To show this crossover from a different perspective, we select
T = 0.4t and calculate the spatial distribution of C♦(r,d) for
different pinning potentials in the same manner of Fig. 5. As
shown in Fig. 10, the local fifth-order correlator C♦(r0, 0)
suffered from a sign change from negative atV = 0 to positive
at V = 5t , while other correlators at longer distances do not
exhibit obvious changes. This phenomenon is consistent with
the crossover extracted from ED at small clusters.
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