

Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways

Yu Zhao, Andrea K. Steiger, and Michael D. Pluth*

Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States

Supporting Information

ABSTRACT: Hydrogen sulfide (H₂S) is an important signaling molecule that provides protective activities in a variety of physiological and pathological processes. Among the different types of H₂S donor compounds, thioamides have attracted attention due to prior conjugation to nonsteroidal antiinflammatory drugs (NSAIDs) to access H₂S-NSAID hybrids

with significantly reduced toxicity, but the mechanism of H₂S release from thioamides remains unclear. Herein, we reported the synthesis and evaluation of a class of thioamide-derived sulfenyl thiocarbamates (SulfenylTCMs) that function as a new class of H₂S donors. These compounds are efficiently activated by cellular thiols to release carbonyl sulfide (COS), which is quickly converted to H₂S by carbonic anhydrase (CA). In addition, through mechanistic investigations, we establish that COSindependent H₂S release pathways are also operative. In contrast to the parent thioamide-based donors, the SulfenylTCMs exhibit excellent H₂S releasing efficiencies of up to 90% and operate through mechanistically well-defined pathways. In addition, we demonstrate that the sulfenyl thiocarbamate group is readily attached to common NSAIDs, such as naproxen, to generate YZ-597 as an efficient H₂S-NSAID hybrid, which we demonstrate releases H₂S in cellular environments. Taken together, this new class of H₂S donor motifs provides an important platform for new donor development.

■ INTRODUCTION

Gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S), are small gaseous signaling molecules that are produced endogenously and transmit chemical signals within the organism, tissues, and cells by acting on specific targets. 1-3 H₂S, which is the youngest member of the gasotransmitter family, is generated from cysteine (Cys) and homocysteine (Hcy) by cystathionine β synthase (CBS), cystathionine γ -lyase (CSE), and cysteine aminotransferase (CAT)/3-mercaptopyruvate sulfur transferase (3-MST), which work either individually or in concert to regulate H₂S levels under physiological conditions.⁴⁻⁶ Once generated, H₂S plays important roles in a variety of physiological and pathological events.7-10

To deliver H₂S in complex environments, numerous H₂S releasing agents (H₂S donors) have been developed. These donors function as important chemical tools to both mimic H₂S biosynthesis and also to investigate H₂S chemistry and biology in contextually rich environments. Although sodium sulfide (Na₂S) and sodium hydrosulfide (NaSH) are the most commonly used sources of exogenous H₂S, both of these compounds release H₂S instantly and spontaneously in aqueous media, making the controlled release of sulfide unfeasible. 11,12 Ideal H₂S donors should only release sulfide upon activation and deliver H2S with slower, but controllable kinetics. In response to this need, chemists have developed different types of H₂S donors in the past decade, which can be activated by different triggers, such as hydrolysis, 13-15 cellular thiols, 16-26 light, 27-31 pH modulation, 32,33 and enzymes 34,35

(Figure 1).36-43 Among these donors, aryl thioamides have attracted attention due to their synthetic simplicity and ease of incorporation into common pharmaceutical compounds.²⁴ For example, when compared to regular nonsteroidal antiinflammatory drugs (NSAIDs), thioamide-coupled NSAIDs, such as ATB-346, have retained promising anti-inflammatory activities while significantly reducing side GI damage,

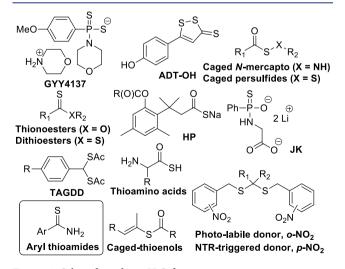


Figure 1. Selected synthetic H₂S donors.

Received: June 13, 2019 Published: August 2, 2019 suggesting potential applications of these donors as $\rm H_2S$ -related therapeutics. 38,44 Although thioamides provide promising donor motifs, the H₂S releasing efficiency of thioamidebased donors remains at relatively low levels (typically 1-2%), and the detailed mechanism of H₂S remains unclear (Figure 1 and Scheme 2, top).

To further diversify available H₂S donor platforms and also to develop mechanistically well-defined donors, our group has recently reported new strategies to access H₂S donors through the intermediate release of carbonyl sulfide (COS). In our initial approach, COS was caged in a self-immolative thiocarbamate system. Upon removal of the protecting group, the cascade decomposition of the thiocarbamate released COS, which is quickly hydrolyzed to H₂S by the ubiquitous mammalian enzyme carbonic anhydrase (CA) with an associated rate constant of $2.2 \times 10^4 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ (for bovine CA II) (Scheme 1, top). 45-47 Following our initial report, our

Scheme 1. Examples of COS-Based H2S Donors

Common activation scheme for COS-releasing donors

Selected examples of COS/H₂S Donors

group, as well as others, 48 have developed a series of COSbased H₂S donors that can be triggered through different mechanisms, such as cellular reactive oxygen species (ROS), ⁴⁹⁻⁵¹ esterases, ^{46,52,53} nucleophiles, ⁵⁴ light, ⁵⁵⁻⁵⁷ click chemistry, ⁵⁸ and Cys. ⁵⁹ More recently, we have broadened our approach to include different activation strategies and core motifs to develop colorimetric⁶⁰ and fluorescent⁶¹ COS-based H₂S donors, such as γ-KetoTCM-1 and FLD, which released COS/H₂S with a concomitant change in optical readout (Scheme 1, bottom).

Advancing from this prior work, we envisioned that hybrid COS-releasing constructs based on thioamide cores could be used to leverage the increased H2S-releasing efficiency from COS donors with the beneficial properties of thioamides, such as synthetic simplicity and ease of incorporation into common pharmaceutical compounds. Here, we report the design, synthesis, evaluation, and mechanistic investigation of thioamide-derived cyclic sulfenyl thiocarbamates (SulfenylTCMs, also known as 1,2,4-dithiazolin-3-ones). 62,63 The SulfenylTCMs are stable in aqueous solutions but are activated by cellular thiols to cleave the cyclic disulfide and release COS, which is quickly converted to H₂S by CA. The resultant iminodisulfide intermediate then reacts further with

cellular thiols to generate a thioamide product and release H₂S by different pathways (Scheme 2, bottom).

Scheme 2. (Top) Cys-Activated H₂S Release from Thioamides; and (Bottom) Proposed Thiol-Triggered COS/H₂S Release from SulfenylTCMs

■ RESULTS AND DISCUSSION

Donor Synthesis. To test our hypothesis that cyclic sulfenylTCMs can function as thiol-activated COS/H2S donors, we first prepared sulfenylTCMs by treating corresponding thioamides with chlorocarbonylsulfenyl chloride (Scheme 3). Briefly, chlorocarbonylsulfenyl chloride (2.0

Scheme 3. Synthesis of Sulfenyl Thiocarbamates

equiv) was added to anhydrous THF containing the desired thioamide (1.0 equiv) at 0 °C. The resultant solution was stirred at room temperature until the completion of the reaction as indicated by TLC. The reaction solution was then concentrated, and the sulfenylTCM was isolated and purified by flash column chromatography. Five donors with aryl (SulfenylTCM-1-4) or alkyl (SulfenylTCM-5) substituents were prepared, and SulfenylTCM-1 was selected as the model donor for COS/H₂S releasing and mechanistic evaluations.

GSH-Activated COS/H₂S Release from SulfenylTCM-1. To evaluate thiol-activated H₂S delivery from the donor motifs, we used the colorimetric methylene blue (MB) assay to monitor H_2S production from SulfenylTCM-1 (25 μ M) in the presence of GSH (0-1000 μ M) in PBS buffer (pH 7.4, 10 mM) containing cellularly relevant concentrations of CA (25 $\mu g/mL$). GSH was used as the model thiol trigger due to its cellular abundance (typically 5-10 mM) and high nucleophilicity. The MB assay was chosen to measure H₂S production because it has been widely used to detect H2S from a variety of H₂S donors. Treating SulfenvlTCM-1 in PBS in the absence of GSH failed to provide a detectable H2S signal, indicating negligible spontaneous H₂S delivery from SulfenylTCM-1. In the presence of GSH, however, SulfenylTCM-1 exhibited a dose-dependent COS/H₂S release response (Figure 2). These results demonstrate that SulfenylTCM-1 is activated by GSH in aqueous buffer, and that the resultant COS is quickly converted to H₂S by CA.

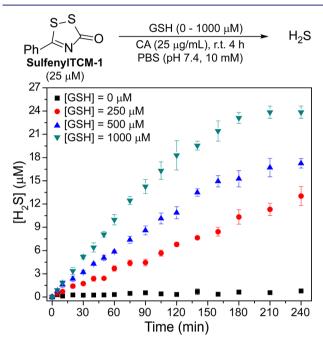


Figure 2. COS/H₂S release from SulfenylTCM-1 (25 μ M) in the presence of 0 μ M (black), 250 μ M (red), 500 μ M (blue), and 1000 μ M (green) GSH. The experiments were performed in triplicate, and results are expressed as mean \pm SD (n = 3).

Thiol-Activated COS/H₂S Release from SulfenylTCM-

1. Because disulfide bonds are readily cleaved by thiol species, we anticipated that SulfenylTCM-1 should be triggered by not only GSH, but also by other cellular thiols, such as Cys, Hcy, N-acetylcysteine (NAC), and penicillamine (PEN). To test this hypothesis, we treated **SulfenylTCM-1** (25 μ M) with each thiol trigger (500 μ M) in PBS buffer (pH 7.4, 10 mM) containing CA (25 µg/mL) and monitored H₂S generation using the MB assay. As expected, a time-dependent COS/H₂S release was observed in the presence of Cys, Hcy, or NAC, indicating a successful activation of SulfenylTCM-1. In comparison, H₂S delivery was significantly reduced (~10% COS/H₂S release) in the presence of PEN, presumably due to the increased steric bulk and resultant decrease in nucleophilicity, which prohibited its reaction with SulfenylTCM-1 (Figure 3). Taken together, these studies demonstrated that SulfenylTCM-1 can be activated by a variety of cellular thiol species, such as GSH, Cys, Hcy, NAC, and PEN. In addition, COS/H₂S delivery from SulfenylTCM-1 can be controlled by using different triggers due to their different reactivities toward SulfenylTCM-1.

Effects of Cellular Nucleophiles on COS/H₂S Release from SulfenylTCM-1. To investigate whether COS/H₂S release can be triggered by other species, SulfenylTCM-1 (25

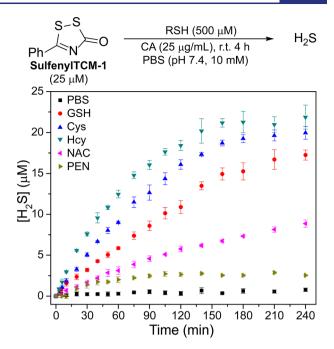


Figure 3. Thiol-dependent (500 µM) COS/H₂S release from SulfenylTCM-1 (25 μ M). The experiments were performed in triplicate, and results are expressed as mean \pm SD (n = 3).

 μ M) was treated with biologically relevant species (500 μ M), including oxidized glutathione (GSSG), lysine (Lys), serine (Ser), glycine (Gly), thiosulfate $(S_2O_3^{2-})$, sulfite (SO_3^{2-}) , and sulfate (SO₄²⁻), in PBS buffer (pH 7.4, 10 mM) containing CA (25 μ g/mL), and COS/H₂S release was monitored using the MB assay. As compared to GSH-induced donor activation, which led to 70% H₂S production during a 4-h reaction period, none of the above species triggered SulfenylTCM-1 (Figure 4). These studies confirmed that SulfenylTCM-1 is stable

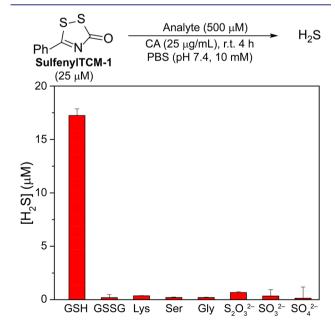
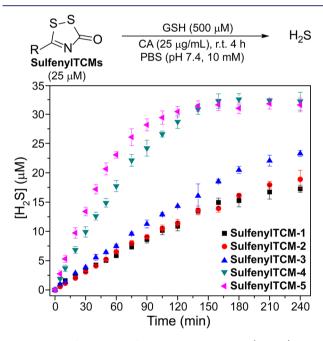



Figure 4. COS/H₂S release from SulfenylTCM-1 (25 μ M) in the presence of cellular nucleophiles (500 μ M). H₂S concentration was measured after 4-h incubation. The experiments were performed in triplicate, and the results were expressed as mean \pm SD (n = 3).

toward common biological nucleophiles and reactive sulfur species, but also highly sensitive toward thiol activation to deliver COS/H₂S.

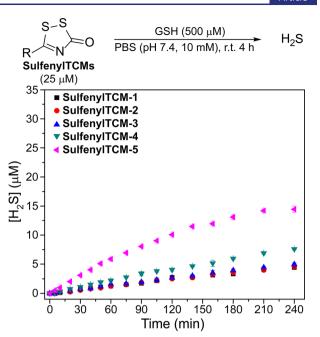

GSH-Activated COS/H2S Release from Other Sulfe**nylTCMs.** Having evaluated COS/H₂S production from SulfenylTCM-1, we next investigated the COS/H₂S releasing efficiency of other SulfenylTCMs (SulfenylTCM-2-5) using GSH as the model trigger. In these experiments, the **SulfenylTCM** donors (25 μ M) were incubated with GSH (500 µM) in PBS buffer (pH 7.4, 10 mM) containing CA (25 $\mu g/mL$). As expected, all donors were activated by GSH, and COS/H₂S release was measured using the MB assay. Importantly, the rate of COS/H₂S release from these donor motifs was changed by structural modifications, which demonstrates that release rates can be tuned by use of differently substituted thioamide precursors. For example, even though SulfenylTCM-1-3 showed similar COS/H₂S releasing profiles, donors with strong electron-withdrawing groups (i.e., CF₃ in SulfenylTCM-4) or small alkyl group (i.e., CH₃ in SulfenylTCM-5) provided significantly enhanced COS/H₂S release (Figure 5). During the 4-h time course of these

Figure 5. COS/H₂S release from **SulfenyITCM-1–5** (25 μ M) in the presence of GSH (500 μ M) in PBS (pH 7.4, 10 mM) containing CA (25 μ g/mL). The experiments were performed in triplicate, and the results are expressed as mean \pm SD (n=3).

experiments, we were surprised to observe over $100\%~H_2S$ release from SulfenylTCM-4 (130%) and SulfenylTCM-5 (126%). Although the extra H_2S could potentially be attributed to H_2S release from the 4-methoxythiobenzamide and thioacetamide byproducts, the low H_2S releasing efficiency of thioamide-based H_2S donors suggested to us that an alternative COS-independent H_2S releasing pathway was plausible in these SulfenylTCM systems.

To determine whether **SulfenylTCM** donors also released H_2S directly through a COS-independent pathway, we treated **SulfenylTCM-1–5** (25 μ M) with GSH (500 μ M) in PBS (pH 7.4, 10 mM) in the absence of CA. For each donor, direct H_2S release was observed using the MB assay, which confirmed the existence of direct H_2S releasing pathway(s) (Figure 6).

Figure 6. COS-independent H₂S release from **SulfenylTCM-1–5** (25 μ M) in the presence of GSH (500 μ M) in PBS (pH 7.4, 10 mM). The experiments were performed in triplicate, and the results were expressed as mean \pm SD (n = 3).

Although certain aryl thioamides have been reported previously as Cys-activated H_2S donors, we did not observe H_2S release from thioamides (25 μ M), such as thiobenzamide, in the presence of GSH (500 μ M) using the MB assay under our conditions (Figure S1).²⁴ Taken together, these studies demonstrated that **SulfenylTCM** donors can release H_2S through a COS- and thioamide-independent pathway (vide infra)

Mechanistic Investigations on COS/H₂S Release from **SulfenylTCM-1.** To further investigate the operative direct H₂S release mechanism from SulfenylTCMs, we next conducted NMR experiments to determine which intermediates and products were formed during the course of the reaction in the absence of CA. We first confirmed the stability of SulfenylTCM-1 in DMSO- d_6/D_2O (9:1) over the course of the standard experiments (Figure S3). Next, we prepared a DMSO- d_6/D_2O (9:1) solution containing SulfenylTCM-1 (10 mM) and 5 equiv of benzyl mercaptan (BnSH, 50 mM) and monitored the reaction by NMR spectroscopy. This experiment showed that the reaction was complete with full consumption of SulfenylTCM-1 within 30 min. The two major products of the reaction were thiobenzamide and benzyl disulfide (BnSSBn), which were confirmed by comparison to authentic samples (Figures 7 and S4). In related experiments using substoichiometric amounts of BnSH (0.1-0.5 equiv), we also observed complete SulfenylTCM-1 consumption, which indicated that thiols also serve as promotors for SulfenylTCM activation (Figures S5 and S6). This observation is consistent with a mechanism in which activation of SulfenylTCM-1 by BnSH generates reactive thiol intermediates, which would further react with the donor motif to release COS/H₂S. In addition, we also treated SulfenylTCM-1 (5.0 mM) with GSH (10.0 mM) in DMSO/PBS (pH 7.4, 10 mM) (1:1) for 4 h. Thiobenzamide was then isolated as the final product (yield 98%), which is consistent with our NMR study using BnSH as a model trigger (Figure S7).

Journal of the American Chemical Society

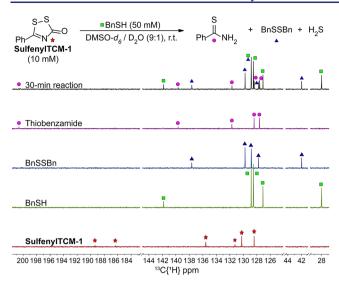


Figure 7. ¹³C{¹H} NMR spectra of the reaction between SulfenylTCM-1 (red ★) and BnSH (green ■). Thiobenzamide (purple ●) and BnSSBn (blue ▲) were identified as major products using authentic samples.

On the basis of the MB measurements and NMR experiments, three main observations drive the mechanistic requirements of donor activation: (1) **SulfenylTCM** donors can be activated by thiols to release COS, which functions as an H₂S precursor in the presence of CA; (2) **SulfenylTCM** donors can also directly release H₂S in the absence of CA; and (3) thiobenzamide and disulfide (RSSR) are the two major products when treating **SulfenylTCM-1** with either substoichiometric or excess RSH (0.1–5 equiv), such as BnSH. According to these results, we proposed donor activation and H₂S releasing pathways in Scheme 4. Briefly, thiols (RSH) can react with the **SulfenylTCM** to cleave the disulfide bond,

Scheme 4. Proposed Mechanism of Thiol-Triggered COS/ H₂S Release from SulfenylTCM-1

which results in a dethiocarboxylation to release COS, which is converted to $\rm H_2S$ by CA (COS-dependent pathway). This step also generates iminodisulfide intermediate 1, which can undergro thiol/disulfide exchange to generate RSSR and thiobenzamide (pathway A). A thiol can also react with iminodisulfide 1 at the electrophilic imine carbon to yield iminothioether 2 and a persulfide (RSSH), which can react further with thiols to generate $\rm H_2S$ (pathway B, COS-independent $\rm H_2S$ releasing pathway). Adding further complexity to this reactivity, the generated $\rm H_2S$ or persulfides could also likely intercept 1 to yield the thiobenzamide product and generate an additional persulfide or polysulfide, respectively. In addition, any persulfide intermediates can also likely react with the donor motif directly to propagate this chain of reactions to yield $\rm H_2S$.

In our investigations, we did not observe iminothioether 2 directly in our NMR experiments (Figures 7 and S4-S6), but we suspected that 2 would likely react directly with H₂S to generate a thiol, which would further react with SulfenylTCM-1. This general reaction scheme supports the role of thiols acting as a promotor for SulfenylTCM activation (Figures S5 and S6). To test our hypothesis, we synthesized iminothioether 2 and treated it (10 mM) with NaSH (100 mM) in DMSO- d_6 / D₂O (9:1). NMR experiments showed the full consumption of 2 by H₂S within 10 min, and the formation of thiobenzamide and thiol as the final products (Figure S8), which is consistent with proposed reaction pathway B. This reactivity suggests that H₂S generated in the system may go on to propagate donor activation. Furthermore, this reactivity is consistent with the recently reported Cys-triggered H2S donation from iminothioether derivatives.²⁵ Moreover, our studies here provide useful mechanistic insights on internal H₂S scavenging by iminothioether donor motifs, which also helps to explain the low H2S releasing efficiency observed in the recently reported iminothioether donor systems.2

Generation of a COS-Hybrid Naproxen as a New COS/H₂S-Releasing NSAID. To demonstrate the generality of sulfenyl thiocarbamate incorporation into biologically active platforms, we envisioned that this donor motif could be readily incorporated into compounds used for anti-inflammatory activity, such as nonsteroidal anti-inflammatory drugs (NSAIDs). One of the major limitation of NSAIDs is the potential gastrointestinal (GI) and cardiovascular toxicity. Recent efforts to improve the therapeutic profile and reduce the GI toxicity of these drugs have included the generation of a series of H₂S-releasing hybrid NSAIDs (H₂S-NSAIDs), many of which include thioamides (Figure 8a-c). 38,66,67 For

Figure 8. Representative thioamide-containing H_2S -NSAIDs, including (a) **GIC-1001**, (b) **NBS-1121**, (c) **ATB-346**, and (d) COS/ H_2S -NSAID **YZ-597**.

example, one of the most successful H₂S-NSAIDs that progressed into clinical development is **ATB-346**, a naproxen derivative coupled with thiobenzamide as an H₂S releasing moiety. This hybrid H₂S-NSAID exhibited anti-inflammatory activities similar to those of naproxen but with significantly reduced GI damage.^{38,44,68} Aligned with this high therapeutic potential, **ATB-346** has advanced to two clinical trials in 2014⁶⁹ and 2017.⁷⁰ One limitation of **ATB-346**, much like other thioamide-based donors, is the poorly understood H₂S releasing mechanism and the relatively low efficiency of H₂S release, which was reported to be only 10–20 μ M H₂S from 1 mM of the drug motif.³⁸ We viewed that developing related H₂S-releasing NSAIDs with more efficient and mechanistically understood donor motifs could provide a useful platform for further leveraging these hybrid H₂S donor/drug system.

To investigate whether cyclic sulfenyl thiocarbamates could be used to enhance H2S release from such systems, we prepared YZ-597 from ATB-346 (Figure 8d). Our expectation, based on our work described above, was that this compound would be activated much more efficiently than the thioamide-based parent H₂S-NSAID conjugate. Consistent with this hypothesis, when we incubated YZ-597 (25 μ M) in the presence of GSH (500 μ M) in PBS buffer (pH 7.4, 10 mM) containing CA (25 μ g/mL) and 1 mM CTAB to help solubilize the components, we observed rapid and efficient H₂S release (90%). Although H₂S release from ATB-346 has been reported to be favored in the presence of reducing agents, such as Cys and GSH or in the presence of biological materials, we did not observed efficient H2S release from ATB-346 under our experimental conditions (Figure 9).⁶⁸ These data suggest that YZ-597 may have more accessible H₂S releasing pathways than the thioamide-derived ATB-346 motif.

Having confirmed H_2S release from YZ-597 in the presence of GSH, we next investigated whether this conjugate could release H_2S efficiently in live cells. We first incubated HeLa cells with FBS-free DMEM containing the H_2S -responsive fluorescent probe SF7-AM (5 μ M), and after washing then

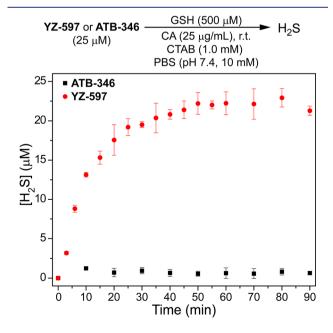
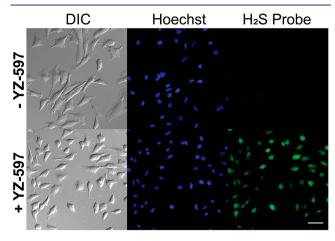



Figure 9. GSH (500 μ M)-triggered H₂S release from YZ-597 or ATB-346 (25 μ M). The experiments were performed in triplicate, and the results are expressed as mean \pm SD (n=3).

added either YZ-597 (50 μ M) or vehicle.⁷¹ As shown in Figure 10, the HeLa cells displayed negligible H₂S-derived fluo-

Figure 10. H₂S delivery from **YZ-597** in HeLa cells. HeLa cells were treated with **SF7-AM** (5 μ M) and Hoechst (10 μ g/mL) for 5 min. After removal of extracellular SF7-AM and Hoechst, cells were incubated in FBS-free DMEM in the absence (top row) or presence (bottom row) of **YZ-597** (50 μ M) for 30 min. Cells were then washed and imaged in PBS. Scale bar: 50 μ m.

rescence in the absence of YZ-597, suggesting minimal endogenous H_2S levels. In comparison, cells treated with YZ-597 revealed a strong fluorescent signal, indicating that YZ-597 was activated to release H_2S in a cellular environment. We also treated HeLa cells with the donor motif SulfenylTCM-1 under identical conditions and observed similar fluorescence enhancement (Figure S9). Taken together, we view that YZ-597 and related sulfenyl thiocarbamate motifs can provide a useful platform for investigating the action of H_2S -hybrid NSAIDs and related pharmacologically active compounds.

CONCLUSIONS

Thioamide-derived sulfenyl thiocarbamates function as thiolactivated COS/H₂S donors. These compounds can be activated by cellular thiol species, such as GSH, Cys, Hcy, and NAC, to deliver H₂S. We demonstrated that the H₂Sreleasing efficiency of SulfenylTCMs is significantly enhanced in comparison to the parent thioamide compounds. Moreover, COS and H₂S release from SulfenylTCM compounds is mechanistically well-defined, which provides the ability to tune release parameters. Leveraging this design platform, we also prepared the COS/H₂S-NSAID, YZ-597, which is built off of the ATB-346 platform, and demonstrated the efficient H₂S release both in vitro and in live cells from YZ-597. In addition, we anticipate that YZ-597 and related compounds will also serve as promising chemical tools to provide insights into the relationship between H₂S release and efficacy of H₂S-hybrid compounds. Further investigations into the activity of YZ-597 and related H2S hybrids are currently ongoing in our laboratory.

■ EXPERIMENTAL SECTION

Materials and Methods. Reagents were purchased from Sigma-Aldrich, Tokyo Chemical Industry (TCI), Fisher Scientific, and VWR and used directly as received. Carbonic anhydrase (CA) from bovine erythrocytes was purchased from Sigma-Aldrich (C2624). Silica gel (SiliaFlash F60, Silicycle, 230–400 mesh) was used for column chromatography. Deuterated solvents were purchased from Cam-

bridge Isotope Laboratories (Tewksbury, MA). ¹H, ¹⁹F, and ¹³C{¹H} NMR spectra were recorded on a Bruker 500 MHz NMR instrument at the indicated frequencies. Chemical shifts are reported in ppm relative to residual protic solvent resonances. Mass spectrometric measurements were performed by the University of Illinois, Urbana—Champaign MS facility, or on a Xevo Waters ESI LC/MS instrument. Methylene blue absorbances were mesured on a UV—vis spectrometer (Cary 100, Agilent Technologies, Santa Clara, CA) in PBS buffer. SF7-AM, ⁷¹ ATB-346⁷² and iminothioether 2²⁵ were synthesized by following the literature report. HeLa cells were purchased from ATCC (Manassas, VA). Cell imaging experiments were performed on a Leica DMi8 fluorescence microscope, equipped with an Andor Zyla 4.2+ sCMOS detector.

Synthesis. *SulfenyITCM-1*. Thiobenzamide (135 mg, 1.00 mmol) was dissolved in anhydrous THF (15 mL) followed by the addition of chlorocarbonylsulfenyl chloride (262 mg, 2.00 mmol) at 0 °C. The resultant solution was stirred at 0 °C for 10 min, after which the ice bath was removed, and the reaction mixture was stirred at rt for 1 h. The reaction solution was then concentrated under vacuum, and the crude product was purified by column chromatography. **SulfenyITCM-1** was isolated as yellow solid (70%). ¹H NMR (500 MHz, DMSO- d_6) δ (ppm): 8.16 (d, J = 10.0 Hz, 2H), 7.80 (d, J = 10.0 Hz, 1H), 7.66 (t, J = 10.0 Hz, 2H). ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ (ppm): 189.3, 186.1, 135.5, 131.4, 130.3, 128.5. IR (cm⁻¹): 1680, 1655, 1592, 1501, 1479, 1445, 1306, 1235, 1086, 1065, 923, 766, 683, 669. HRMS m/z [M + H]⁺ calcd for [C₈H₆NOS₂]⁺ 195.9891; found 195.9891.

SulfenylTCM-2. This was prepared from 4-methoxythiobenzmide by following the procedure described above (47 mg, 41% yield). 1 H NMR (500 MHz, DMSO- d_6) δ (ppm): 8.14 (d, J = 10.0 Hz, 2H), 7.17 (d, J = 10.0 Hz, 2H), 3.91 (s, 3H). 13 C{ 1 H} NMR (125 MHz, DMSO- d_6) δ (ppm): 188.2, 185.8, 165.3, 130.9, 123.9, 115.6, 56.4. IR (cm $^{-1}$): 2963, 2835, 1668, 1597, 1574, 1521, 1484, 1421, 1308, 1245, 1168, 1078, 1023, 925, 828, 666. HRMS m/z [M + H] $^+$ calcd for [C₉H₈NO₂S₂] $^+$ 225.9996; found 225.9999.

SulfenylTCM-3. This was prepared from 4-chlorothiobenzmide by following the procedure described above (91 mg, 81% yield). 1 H NMR (500 MHz, DMSO- d_6) δ (ppm): 8.17 (d, J = 10.0 Hz, 2H), 7.73 (d, J = 10.0 Hz, 2H). 13 C{ 1 H} NMR (125 MHz, DMSO- d_6) δ (ppm): 188.1, 186.0, 140.3, 130.3, 130.2. IR (cm $^{-1}$): 3068, 3033, 1660, 1590, 1504, 1477, 1400, 1306, 1281, 1239, 1178, 1008, 827, 666. HRMS m/z [M + H] $^+$ calcd for [C₈H₅ClNOS₂] $^+$ 229.9505; found 229.9497.

SulfenyITCM-4. This was prepared from 4-trifluoromethylthiobenzmide by following the procedure described above (104 mg, 79% yield). ¹H NMR (500 MHz, DMSO- d_6) δ (ppm): 8.35 (d, J = 10.0 Hz, 2H), 8.01 (d, J = 10.0 Hz, 2H). ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ (ppm): 188.0, 186.0, 134.9, 129.4, 127.1, 125.0, 122.9. ¹⁹F NMR (470 MHz, DMSO- d_6) δ (ppm): - 61.8. IR (cm⁻¹): 3047, 1661, 1517, 1493, 1408, 1330, 1305, 1190, 1171, 1118, 1064, 1011, 924, 845, 669. HRMS m/z [M + H]⁺ calcd for [C₉H₅F₃NOS₂]⁺ 263.9765; found 263.9760.

SulfenylTCM-5. This was prepared from thioacetamide by following the procedure described above (35 mg, 40% yield). 1 H NMR (500 MHz, DMSO- d_{6}) δ (ppm): 2.79 (s, 3H). 13 C{ 1 H} NMR (125 MHz, DMSO- d_{6}) δ (ppm): 192.9, 187.0, 22.9. IR (cm $^{-1}$): 1662, 1516, 1494, 1165, 1071, 1000, 668, 628, 589. HRMS m/z [M + H] $^{+}$ calcd for [C₃H₄NOS₂] $^{+}$ 133.9734; found 133.9735.

YZ-597 was prepared from **ATB-346** by following the procedure described above (105 mg, 87% yield). ¹H NMR (500 MHz, DMSO- d_6) δ (ppm): 8.19 (d, J = 5.0 Hz, 2H), 7.88 (s, 2H), 7.86 (s, 1H), 7.54 (d, J = 5.0 Hz, 1H), 7.34 (s, 2H), 7.32 (s, 1H), 7.19 (d, J = 10.0 Hz, 1H), 4.29 (q, J = 5.0 Hz, 1H), 3.88 (s, 3H), 1.63 (d, J = 10.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ (ppm): 188.2, 186.0, 172.8, 157.8, 155.9, 135.3, 134.0, 130.3, 129.7, 129.0, 127.8, 126.7, 126.4, 123.5, 119.4, 106.3, 55.7, 45.0, 18.8. IR (cm⁻¹): 1742, 1677, 1662, 1485, 1412, 1206, 1165, 1135, 1117, 1087, 1028, 893, 853, 844, 814. HRMS m/z [M + H]⁺ calcd for [C₂₂H₁₈NO₄S₂]⁺ 424.0677; found 424.0657.

H₂S Release from SulfenylTCMs in PBS. A SulfenylTCM stock solution (50.0 µL, 10.0 mM in DMSO) was added to 20.0 mL of PBS (pH 7.40, 10.0 mM) containing CA (25.0 μ g/mL) in a 25 mL scintillation vial. A thiol stock solution (0.100 M in H₂O) was then added to generate the desired thiol working concentrations as shown in Figures 2, 3, and 5. For H2S release in the absence of CA, the measurement was set up by following the procedure as described above in PBS with no CA addition (Figure 6). For H₂S release from YZ-597, the measurement was set up by following the procedure as described above in PBS containing CA (25.0 $\mu g/mL$) and CTAB (1.00 mM) (Figure 9). Next, 0.300 mL aliquots of the reaction mixture were transferred to UV cuvettes containing 0.300 mL of MB cocktail (0.060 mL of zinc acetate (1.00% w/v), 0.120 mL of FeCl₃ (30.0 mM in 1.20 M HCl), and 0.120 mL of N,N-dimethyl-pphenylenediamine (20.0 mM in 7.20 M HCl)) at different time points. The absorbance at 670 nm was then measured after 30 min and was converted to H₂S concentration by using the H₂S calibration curve.

Selectivity Investigations on H₂S Release. A SulfenyITCM-1 stock solution (50.0 μ L, 10.0 mM in DMSO) was added to 20.0 mL of PBS (pH 7.40, 10.0 mM) containing CA (25.0 μ g/mL) in a 25 mL scintillation vial. An analyte stock solution (100 μ L, 100 mM in H₂O) was then added. The reaction was stirred at rt for 4 h. Next, a 0.300 mL aliquot of the reaction mixture was transferred to UV cuvettes containing 0.300 mL of MB cocktail (0.060 mL of zinc acetate (1.00% w/v), 0.120 mL of FeCl₃ (30.0 mM in 1.20 M HCl), and 0.120 mL of N,N-dimethyl-p-phenylenediamine (20.0 mM in 7.20 M HCl)). The absorbance at 670 nm was then measured after 30 min and was converted to H₂S concentration by using the H₂S calibration curve.

converted to $\rm H_2S$ concentration by using the $\rm H_2S$ calibration curve. **Mechanism Investigations of H_2S Release.** SulfenylTCM-1 (0.0200 M) and BnSH (0.100 M) solutions were prepared by adding SulfenylTCM-1 (3.90 mg) and BnSH (12.4 mg) in DMSO- $d_6/\rm D_2O$ (9:1, 1.00 mL), respectively. Next, SulfenylTCM-1 (0.0200 M, 0.500 mL) was added to BnSH (0.100 M, 0.500 mL) to reach the concentrations of 0.0100 M of SulfenylTCM-1 and 0.0500 M of BnSH, respectively. The reaction process was then monitored using a Bruker 500 MHz NMR instrument.

Cellular Imaging of H₂S Release from YZ-597. HeLa cells were plated in poly-D-lysine-coated plates (MatTek) containing 2 mL of DMEM and incubated at 37 °C under 5% CO₂ for 24 h. The confluent cells were washed with PBS and then incubated with SF7-AM (5.00 μ M) and Hoechst dye (10.0 μ g/mL) for 5 min. The cells were then washed with PBS and incubated in FBS-free DMEM in the absence or presence of YZ-597 (50.0 μ M) for 30 min. Prior to imaging, cells were washed with PBS and bathed in 2 mL of PBS. Cell imaging was performed on a Leica DMi8 fluorescent microscope using DIC for bright field and standard DAPI and GFP filter cubes for fluorescence imaging, respectively. The scale bar represents 50 μ m.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06319.

 H_2S release data, NMR experiments, cell imaging, and spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*pluth@uoregon.edu

ORCID ®

Yu Zhao: 0000-0003-1250-9480

Andrea K. Steiger: 0000-0003-1655-7973 Michael D. Pluth: 0000-0003-3604-653X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Research reported in this publication was supported by the NIH (M.D.P.; R01GM113030) Dreyfus Foundation, and NSF/GRFP (A.K.S.; DGE-1309047). NMR, fluorescence microscopy, and MS instrumentation in the UO CAMCOR facility is supported by the NSF (CHE-1427987, CHE-1531189, and CHE-1625529).

REFERENCES

- (1) Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. *Physiol. Rev.* **2012**, *92* (2), 791–896.
- (2) Szabo, C. Hydrogen sulphide and its therapeutic potential. *Nat. Rev. Drug Discovery* **2007**, *6* (11), 917–935.
- (3) Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H₂S Signaling through Persulfidation. *Chem. Rev.* **2018**, 118 (3), 1253–1337.
- (4) Wallace, J. L.; Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. *Nat. Rev. Drug Discovery* **2015**, *14* (5), 329–345.
- (5) Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. *Antioxid. Redox Signaling* **2014**, 20 (5), 770–782.
- (6) Bruce King, S. Potential biological chemistry of hydrogen sulfide (H₂S) with the nitrogen oxides. *Free Radical Biol. Med.* **2013**, *55*, 1–7.
- (7) Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. *Nat. Rev. Drug Discovery* **2016**, *15* (3), 185–203
- (8) Cao, X.; Bian, J. S. The Role of Hydrogen Sulfide in Renal System. Front. Pharmacol. 2016, 7, 385–396.
- (9) Cao, X.; Cao, L.; Ding, L.; Bian, J. S. A New Hope for a Devastating Disease: Hydrogen Sulfide in Parkinson's Disease. *Mol. Neurobiol.* **2017**, *55* (5), 3789–3799.
- (10) Kimura, H. Signaling molecules: hydrogen sulfide and polysulfide. *Antioxid. Redox Signaling* **2015**, 22 (5), 362–376.
- (11) DeLeon, E. R.; Stoy, G. F.; Olson, K. R. Passive loss of hydrogen sulfide in biological experiments. *Anal. Biochem.* **2012**, 421 (1), 203–207.
- (12) Whiteman, M.; Li, L.; Rose, P.; Tan, C. H.; Parkinson, D. B.; Moore, P. K. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. *Antioxid. Redox Signaling* **2010**, *12* (10), 1147–1154.
- (13) Li, L.; Whiteman, M.; Guan, Y. Y.; Neo, K. L.; Cheng, Y.; Lee, S. W.; Zhao, Y.; Baskar, R.; Tan, C. H.; Moore, P. K. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. *Circulation* **2008**, *117* (18), 2351–2360.
- (14) Park, C. M.; Zhao, Y.; Zhu, Z.; Pacheco, A.; Peng, B.; Devarie-Baez, N. O.; Bagdon, P.; Zhang, H.; Xian, M. Synthesis and evaluation of phosphorodithioate-based hydrogen sulfide donors. *Mol. BioSyst.* **2013**, *9* (10), 2430–2434.
- (15) Zhu, Y.; Romero, E. L.; Ren, X.; Sanca, A. J.; Du, C.; Liu, C.; Karim, Z. A.; Alshbool, F. Z.; Khasawneh, F. T.; Zhou, J.; Zhong, D.; Geng, B. Clopidogrel as a donor probe and thioenol derivatives as flexible promoieties for enabling H₂S biomedicine. *Nat. Commun.* **2018**, *9* (1), 3952.
- (16) Zhao, Y.; Wang, H.; Xian, M. Cysteine-activated hydrogen sulfide (H₂S) donors. *J. Am. Chem. Soc.* **2011**, 133 (1), 15–17.
- (17) Zhao, Y.; Bhushan, S.; Yang, C.; Otsuka, H.; Stein, J. D.; Pacheco, A.; Peng, B.; Devarie-Baez, N. O.; Aguilar, H. C.; Lefer, D. J.; Xian, M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. *ACS Chem. Biol.* **2013**, 8 (6), 1283–1290.
- (18) Zhao, Y.; Yang, C.; Organ, C.; Li, Z.; Bhushan, S.; Otsuka, H.; Pacheco, A.; Kang, J.; Aguilar, H. C.; Lefer, D. J.; Xian, M. Design, Synthesis, and Cardioprotective Effects of N-Mercapto-Based Hydrogen Sulfide Donors. *J. Med. Chem.* **2015**, *58* (18), 7501–7511.
- (19) Zhao, Y.; Kang, J.; Park, C. M.; Bagdon, P. E.; Peng, B.; Xian, M. Thiol-activated gem-dithiols: a new class of controllable hydrogen sulfide donors. *Org. Lett.* **2014**, *16* (17), 4536–4539.

- (20) Foster, J. C.; Powell, C. R.; Radzinski, S. C.; Matson, J. B. S-Aroylthiooximes: a facile route to hydrogen sulfide releasing compounds with structure-dependent release kinetics. *Org. Lett.* **2014**, *16* (6), 1558–1561.
- (21) Cerda, M. M.; Hammers, M. D.; Earp, M. S.; Zakharov, L. N.; Pluth, M. D. Applications of Synthetic Organic Tetrasulfides as H2S Donors. *Org. Lett.* **2017**, *19* (9), 2314–2317.
- (22) Cerda, M. M.; Zhao, Y.; Pluth, M. D. Thionoesters: A Native Chemical Ligation-Inspired Approach to Cysteine-Triggered H₂S Donors. *J. Am. Chem. Soc.* **2018**, *140* (39), 12574–12579.
- (23) Cerda, M. M.; Newton, T. D.; Zhao, Y.; Collins, B. K.; Hendon, C. H.; Pluth, M. D. Dithioesters: simple, tunable, cysteine-selective H₂S donors. *Chem. Sci.* **2019**, *10* (6), 1773–1779.
- (24) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.; Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimo, F.; Breschi, M. C.; Calderone, V. Arylthioamides as H₂S Donors: L-Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. ACS Med. Chem. Lett. 2013, 4 (10), 904–908.
- (25) Barresi, E.; Nesi, G.; Citi, V.; Piragine, E.; Piano, I.; Taliani, S.; Da Settimo, F.; Rapposelli, S.; Testai, L.; Breschi, M. C.; Gargini, C.; Calderone, V.; Martelli, A. Iminothioethers as Hydrogen Sulfide Donors: From the Gasotransmitter Release to the Vascular Effects. *J. Med. Chem.* **2017**, *60* (17), 7512–7523.
- (26) Roger, T.; Raynaud, F.; Bouillaud, F.; Ransy, C.; Simonet, S.; Crespo, C.; Bourguignon, M. P.; Villeneuve, N.; Vilaine, J. P.; Artaud, I.; Galardon, E. New biologically active hydrogen sulfide donors. *ChemBioChem* **2013**, *14* (17), 2268–2271.
- (27) Devarie-Baez, N. O.; Bagdon, P. E.; Peng, B.; Zhao, Y.; Park, C. M.; Xian, M. Light-induced hydrogen sulfide release from "caged" gem-dithiols. *Org. Lett.* **2013**, *15* (11), 2786–2789.
- (28) Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages. *Chem. Commun.* **2014**, *50* (5), 587–589.
- (29) Venkatesh, Y.; Das, J.; Chaudhuri, A.; Karmakar, A.; Maiti, T. K.; Singh, N. D. P. Light triggered uncaging of hydrogen sulfide (H₂S) with real-time monitoring. *Chem. Commun.* **2018**, *54* (25), 3106–3109.
- (30) Xiao, Z.; Bonnard, T.; Shakouri-Motlagh, A.; Wylie, R. A. L.; Collins, J.; White, J.; Heath, D. E.; Hagemeyer, C. E.; Connal, L. A. Triggered and Tunable Hydrogen Sulfide Release from Photogenerated Thiobenzaldehydes. *Chem. Eur. J.* **2017**, 23 (47), 11294—11300.
- (31) Woods, J. J.; Cao, J.; Lippert, A. R.; Wilson, J. J. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J. Am. Chem. Soc. 2018, 140 (39), 12383–12387.
- (32) Kang, J.; Li, Z.; Organ, C. L.; Park, C. M.; Yang, C. T.; Pacheco, A.; Wang, D.; Lefer, D. J.; Xian, M. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. *J. Am. Chem. Soc.* **2016**, *138* (20), *6336*–*6339*.
- (33) Wu, J.; Li, Y.; He, C.; Kang, J.; Ye, J.; Xiao, Z.; Zhu, J.; Chen, A.; Feng, S.; Li, X.; Xiao, J.; Xian, M.; Wang, Q. Novel H₂S Releasing Nanofibrous Coating for In Vivo Dermal Wound Regeneration. *ACS Appl. Mater. Interfaces* **2016**, *8*, 27474–27481.
- (34) Shukla, P.; Khodade, V. S.; SharathChandra, M.; Chauhan, P.; Mishra, S.; Siddaramappa, S.; Pradeep, B. E.; Singh, A.; Chakrapani, H. "On demand" redox buffering by H_2S contributes to antibiotic resistance revealed by a bacteria-specific H_2S donor. *Chem. Sci.* **2017**, 8 (7), 4967–4972.
- (35) Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. *Angew. Chem., Int. Ed.* **2016**, *55* (14), 4514–4518.
- (36) Kashfi, K.; Olson, K. R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. *Biochem. Pharmacol.* **2013**, 85 (5), 689–703.

- (37) Zhao, Y.; Biggs, T. D.; Xian, M. Hydrogen sulfide (H_2S) releasing agents: chemistry and biological applications. *Chem. Commun.* **2014**, *50* (80), 11788–11805.
- (38) Szabo, C.; Papapetropoulos, A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H₂S Levels: H₂S Donors and H₂S Biosynthesis Inhibitors. *Pharmacol. Rev.* **2017**, *69* (4), 497–564.
- (39) Bora, P.; Chauhan, P.; Pardeshi, K. A.; Chakrapani, H. Small molecule generators of biologically reactive sulfur species. *RSC Adv.* **2018**, 8 (48), 27359–27374.
- (40) Hartle, M. D.; Pluth, M. D. A practical guide to working with H_2S at the interface of chemistry and biology. *Chem. Soc. Rev.* **2016**, 45 (22), 6108–6117.
- (41) Xu, S.; Hamsath, A.; Neill, D. L.; Wang, Y.; Yang, C. T.; Xian, M. Strategies for the Design of Donors and Precursors of Reactive Sulfur Species. *Chem. Eur. J.* **2019**, 25 (16), 4005–4016.
- (42) Powell, C. R.; Dillon, K. M.; Matson, J. B. A review of hydrogen sulfide (H₂S) donors: Chemistry and potential therapeutic applications. *Biochem. Pharmacol.* **2018**, *149*, 110–123.
- (43) Zhao, Y.; Pacheco, A.; Xian, M. Medicinal Chemistry: Insights into the Development of Novel H₂S Donors. *Handb. Exp. Pharmacol.* **2015**, 230, 365–388.
- (44) Wallace, J. L.; Caliendo, G.; Santagada, V.; Cirino, G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). *Br. J. Pharmacol.* **2010**, *159* (6), 1236–1246.
- (45) Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. Self-Immolative Thiocarbamates Provide Access to Triggered H₂S Donors and Analyte Replacement Fluorescent Probes. *J. Am. Chem. Soc.* **2016**, 138 (23), 7256–7259.
- (46) Levinn, C. M.; Steiger, A. K.; Pluth, M. D. Esterase-Triggered Self-Immolative Thiocarbamates Provide Insights into COS Cytotoxicity. ACS Chem. Biol. 2019, 14 (2), 170–175.
- (47) Haritos, V. S.; Dojchinov, G. Carbonic anhydrase metabolism is a key factor in the toxicity of CO₂ and COS but not CS₂ toward the flour beetle Tribolium castaneum Coleoptera: Tenebrionidae. *Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.* **2005**, *140* (1), 139–147.
- (48) Steiger, A. K.; Zhao, Y.; Pluth, M. D. Emerging Roles of Carbonyl Sulfide in Chemical Biology: Sulfide Transporter or Gasotransmitter? *Antioxid. Redox Signaling* **2018**, 28 (16), 1516–1532.
- (49) Zhao, Y.; Henthorn, H. A.; Pluth, M. D. Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. *J. Am. Chem. Soc.* **2017**, 139 (45), 16365–16376.
- (50) Zhao, Y.; Pluth, M. D. Hydrogen Sulfide Donors Activated by Reactive Oxygen Species. *Angew. Chem., Int. Ed.* **2016**, *55* (47), 14638–14642.
- (51) Chauhan, P.; Jos, S.; Chakrapani, H. Reactive Oxygen Species-Triggered Tunable Hydrogen Sulfide Release. *Org. Lett.* **2018**, *20* (13), 3766–3770.
- (52) Chauhan, P.; Bora, P.; Ravikumar, G.; Jos, S.; Chakrapani, H. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H₂S) Donors. *Org. Lett.* **2017**, *19* (1), 62–65.
- (53) Steiger, A. K.; Marcatti, M.; Szabo, C.; Szczesny, B.; Pluth, M. D. Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H₂S Donors. *ACS Chem. Biol.* **2017**, *12* (8), 2117–2123.
- (54) Powell, C. R.; Foster, J. C.; Okyere, B.; Theus, M. H.; Matson, J. B. Therapeutic Delivery of H₂S via COS: Small Molecule and Polymeric Donors with Benign Byproducts. *J. Am. Chem. Soc.* **2016**, 138 (41), 13477–13480.
- (55) Sharma, A. K.; Nair, M.; Chauhan, P.; Gupta, K.; Saini, D. K.; Chakrapani, H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H₂S) Release. *Org. Lett.* **2017**, *19* (18), 4822–4825
- (56) Stacko, P.; Muchova, L.; Vitek, L.; Klan, P. Visible to NIR Light Photoactivation of Hydrogen Sulfide for Biological Targeting. *Org. Lett.* **2018**, *20*, 4907–4911.
- (57) Zhao, Y.; Bolton, S. G.; Pluth, M. D. Light-Activated COS/H₂S Donation from Photocaged Thiocarbamates. *Org. Lett.* **2017**, *19* (9), 2278–2281.

- (58) Steiger, A. K.; Yang, Y.; Royzen, M.; Pluth, M. D. Bioorthogonal "click-and-release" donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H_2S). Chem. Commun. **2017**, 53 (8), 1378–1380.
- (59) Zhao, Y.; Steiger, A. K.; Pluth, M. D. Cysteine-activated hydrogen sulfide (H₂S) delivery through caged carbonyl sulfide (COS) donor motifs. *Chem. Commun.* **2018**, *54* (39), 4951–4954.
- (60) Zhao, Y.; Steiger, A. K.; Pluth, M. D. Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H₂S) Donation from gamma-Ketothiocarbamate Donor Motifs. *Angew. Chem., Int. Ed.* **2018**, *57* (40), 13101–13105.
- (61) Zhao, Y.; Cerda, M. M.; Pluth, M. D. Fluorogenic hydrogen sulfide (H₂S) donors based on sulfenyl thiocarbonates enable H₂S tracking and quantification. *Chem. Sci.* **2019**, *10* (6), 1873–1878.
- (62) Chen, L.; Thompson, T. R.; Hammer, R. P.; Barany, G. Synthetic, Mechanistic, and Structural Studies Related to 1,2,4-Dithiazolidine-3,5-dione. *J. Org. Chem.* **1996**, *61* (19), 6639–6645.
- (63) Barany, G.; Musier-Forsyth, K.; Xu, Q.; Chen, L.; Hammer, R. P. Sulfurization of phosphorus-containing compounds. WO Patent 1997041130, June 11, 1997.
- (64) Grosser, T.; Fries, S.; FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. *J. Clin. Invest.* **2005**, *116* (1), 4–15.
- (65) Wallace, J. L. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? *Physiol. Rev.* **2008**, 88 (4), 1547–1565.
- (66) Caliendo, G.; Cirino, G.; Santagada, V.; Wallace, J. L. Synthesis and biological effects of hydrogen sulfide (H_2S): development of H_2S -releasing drugs as pharmaceuticals. *J. Med. Chem.* **2010**, 53 (17), 6275–6286.
- (67) Chan, M. V.; Wallace, J. L. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. *Am. J. Physiol. Gastrointest. Liver Physiol.* **2013**, 305 (7), G467–G473.
- (68) Gemici, B.; Elsheikh, W.; Feitosa, K. B.; Costa, S. K.; Muscara, M. N.; Wallace, J. L. H₂S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventative potential. *Nitric Oxide* **2015**, 46, 25–31.
- (69) ClinicalTrials.gov.; NCT03220633, Study To Assess Safety, Tolerability And PK Of ATB-346 In Healthy Subjects.
- (70) ClinicalTrials.gov.; NCT03291418, To Compare the Gastro-intestinal Safety of a 14-Day Oral Dosing Regimen of ATB-346 to Sodium Naproxen in Healthy Subjects.
- (71) Lin, V. S.; Lippert, A. R.; Chang, C. J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H₂O₂-dependent H₂S production. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110* (18), 7131–7135.
- (72) Li, M.; Li, J.; Zhang, T.; Zhao, Q.; Cheng, J.; Liu, B.; Wang, Z.; Zhao, L.; Wang, C. Syntheses, toxicities and anti-inflammation of H₂S-donors based on non-steroidal anti-inflammatory drugs. *Eur. J. Med. Chem.* **2017**, 138, 51–65.