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Abstract
Probabilistic near-term forecasting facilitates evaluation of model predictions against
observations and is of pressing need in ecology to inform environmental decision making and
effect societal change. Despite this imperative, many ecologists are unfamiliar with the widely
used tools for evaluating probabilistic forecasts developed in other fields. We address this gap by
reviewing the literature on probabilistic forecast evaluation from diverse fields including
climatology, economics, and epidemiology. We present established practices for selecting
evaluation data (end-sample hold out), graphical forecast evaluation (times-series plots with
uncertainty, Probability Integral Transform plots), quantitative evaluation using scoring rules
(log, quadratic, spherical, and ranked probability scores), and comparing scores across models
(skill score, Diebold-Mariano test). We cover common approaches, highlight mathematical
concepts to follow, and note decision points to allow application of general principles to specific
forecasting endeavors. We illustrate these approaches with an application to a long-term rodent
population time series currently used for ecological forecasting and discuss how ecology can
continue to learn from and drive the cross-disciplinary field of forecasting science.
Keywords: continuous analysis, desert pocket mouse, ecological forecasting, end-sample
holdout, forecast skill, hierarchical Bayes, prequential, score rule, time series, validation.
Introduction

Forecasting—ypredicting the future state of a system—is rapidly becoming an important
focus of ecology (Clark et al. 2001, Pennekamp et al. 2017). Understanding the accuracy and
precision of ecological forecasts is essential to improving models and using their results for
decision making. Ecological forecasting has typically focused on evaluating forecasts based on

point estimates — the expected value or average prediction for a state at some point in the future.
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However, the uncertainty of forecasts is also essential for decision making and understanding
how well models capture sources of variation (Dietz 2017). Probabilistic forecasts produce
distributions of future state values allowing the predicted uncertainty to be incorporated into
forecast evaluation (Dawid 1984, Dietze et al. 2018).

Properly evaluating probabilistic forecasts requires a unique set of tools and approaches.
These methods have been well developed in disciplines with long forecasting histories including
climatology, economics, and epidemiology, but are not familiar to many ecologists. We address
this gap by reviewing the literature on probabilistic forecast evaluation from disciplines with
established cultures, principles, and tools to help guide ecologists in the selection of best
practices for assessing probabilistic forecast performance (Winkler 1977, Dawid 1984, Gneiting
and Raftery 2007). After introducing notation and terminology, we present established practices
for: 1) selecting data to hold out for evaluation; 2) graphical assessment of performance; 3)
quantitative scoring of forecasts; and 4) comparing performance across models. We use these
methods to analyze forecasts of a long-term study of desert rodent populations and provide
simplified example code for readers to apply to their own systems.
Notation and Terminology

We base our coverage of forecast evaluation on the following notation and terminology
for data, models, and approaches (Fig. 1). Consider a time series of samples n in 1...N of
variable y (¥, in Y;.y), collected through time (t, in t;.y). y can be discrete or continuous and
samples can be taken at fixed or variable intervals. The observed Y;.y is but one realization
drawn from the unknowable generating distribution G,., where G, is the distribution of possible
states at ¢, (Fig. 1a). The last datum is the forecast origin o (Tashman 2000). We use models m

in 1...M to gain inference about G,.y and make forecasts p in 1...P of y after y,, where the
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time between o and p is the lead time or forecast horizon (L, _ ., Fig. 1a) and models predict
samples 0+1to 0+P (Y|,41).0+p)) With a total forecast horizon of t, |,,,. Thus, each model m
needs to fit Y., then predict Y ;. s p) With its distribution H ‘";m:‘jo,fp} across the horizon (Fig. 1a;
Appendix S1). For fitting and predicting, we use data in hand to validate our models, iterating
the evaluation over time via a probabilistic and sequential (prequential sensu Dawid 1984)
approach to testing existing data, compared to validating models only after future data are
collected (Makridakis et al. 1993). Prequential methods are well-defined, preferred in established
fields (Dawid 1984), and implementable in ecological forecasting (Dietze et al. 2018).
Holding Out Data For Forecast Validation

The validation procedure defines how the data are split into those used to fit the model
(training data) and those reserved to evaluate its predictions (test data). Because the goal of
forecasting is predicting the next data in a time series (Dawid 1984), the dominant paradigm in
forecasting validation is end-sample holdout, where the last k observations are used for testing
(Fig. 1b; Fildes and Makridakis 1995, Tashman 2000). Simulation and empirical evaluations
show that end-sample holdout methods produce realistic distributions for future data (Tashman
2000) and training and testing errors are also typically very weakly correlated (Makridakis 1986,
Makridakis and Winkler 1989). Other approaches or modifications including cross-validation
(Bergmeir et al. 2018) and end-sample holdout with buffers (Cerqueira et al. 2020) are also used
in forecasting. Cross-validation, which selects test data from across the entire data set, can
increase the number of evaluations, avoiding issues with few evaluations being an unstable
estimate of model skill (Tashman 2000). Adding buffers to end-sample holdout has recently been
proposed to address the influence of autocorrelation (Cerqueira et al. 2020). However, the main

purpose of forecasting is to predict data starting at the time step following the last observation
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(Fig. 1a), making standard end-sample holdout the closest validation approach to the forecasting
task. Indeed, the best models validated using end-sample holdout tend to outperform those
validated via cross-validation when tested on novel future data (Fildes and Makridakis 1995).

Using end-sample holdout, we define a break in our time series (Y;.y) using forecast
origin t,, resulting in a training set of o values (Y;.,) and a test set of N—o=P values (Y|,41):n)-
This break focuses validation on quantifying how well a model’s forecast distribution H,, .y
matches the observations in the test set Y|,.,).y, Where matching is defined by a score (see
Scoring Functions; Dawid 1984). To cover the range of expected values, the number of samples
allocated to the test set (via the location of 0) should cover at least the longest forecast horizon
required by the main application (Tashman 2000). That is, if the model makes 12-month-ahead
forecasts, the holdout data set should cover at least one year of observations.

One end-sample holdout results in a single forecast evaluation for each model, which can
be insufficient for describing skill. This is especially true if the data display cyclic or seasonal
dynamics, in which case performance of each forecast will vary as a function of its origin (Pack
1990). Therefore, we recommend using rolling forecast origin validation, where multiple
forecasts are made with the origin moved forward in the series (Fig. 1b; Armstrong 1985).
Rolling origins generate robust estimates of skill and facilitate analyses of skill as a function of
factors like lead time (Makridakis and Winkler 1989). Larger holdouts allow for more forecasts
of the target horizon, but may not be an option for shorter time series (Tashman 2000).

A critical decision for rolling origin evaluations is whether each step forward should
include just an update to the data or if the model should also be re-fit (Tashman 2000). Although
it is generally preferable to update the model at each step in the evaluation, re-optimization can

be computationally intensive and requires technical knowledge not broadly available in ecology
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(Tashman 2000). In prequential methods, however, iterative forecasts replace done-all-at-once
evaluations, easing computational burdens (Dawid 1984, Dietze et al. 2018). This is aided via
continuous analysis systems that re-run models when data are updated (White et al. 2019)—in
essence, an automated system of rolling origin, fixed horizon, recalibrating end-sample holdout
validations, to which each new (fixed origin end-sample holdout) validation is added (Fig. 1b).
Graphical Evaluation

Graphical evaluation provides key insight into model appropriateness over the training
and test sets (Dietze 2017). In forecasting, where data are explicitly temporal, it is helpful to plot
the time series of predictions and observed values with training data to show past dynamics (Fig.
la). Ecological models often have multiple levels of uncertainty and non-linearities (Hooten and
Hobbs 2015) not well summarized by quantiles, necessitating the plotting of distributions or
representative draws (Dietze 2017). A plot of model residuals over time can highlight persisting
temporal autocorrelations. In addition, a plot of predicted-vs.-observed values will ideally follow
a 1:1 line with deviation appropriate to model uncertainty (Appendix S1: Fig. S1).

The Probability Integral Transform (PIT) is a diagnostic plot with a solid statistical basis
and a long history in forecasting. It comprises the values of the predictive cumulative distribution
functions (CDFs) evaluated at the observed values (Appendix S1: Table S1; Dawid 1984). If
observed values match predictive distributions and the predictive distributions are continuous,
the PIT has a standard uniform distribution (Dawid 1984), which can be checked informally
using plots (Appendix S1: Fig. S1). The uniformity of the PIT is necessary but not sufficient for
a forecast to match the generating distribution (Hamill 2001). PIT histograms and CDFs allow
comparison to a uniform and deviations have specific meanings: skew indicates biased central

tendency, U-shapes underdispersion, and hump-shapes overdispersion (Appendix S1: Fig. S1;
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Gneiting et al. 2007). The PIT has been extended to discrete distributions via approximations that
add noise (Smith 1985) or use a conditional CDF (Czado et al. 2009; Appendix S1: Table S1).
Scoring Rules

Scoring rules are quantitative measures of the fit of the forecast to the test data (Brier

1950; Appendix S1). The score (s) of how point observation Y, matches model m’s forecast

distribution (H},) is measured using rule r’s function S": s,"=S r(H s Yal. A model’s average

score across multiple observations is §,,, .y (Table 1). Here, we use a positive orientation: higher

score is better. Although scores are typically framed in terms of distributions, they are defined
for point forecasts and many simplify to classical point-based metrics. Key attributes of rules are
encompassed in the concept of (strict) propriety (Dawid 1998; Appendix S1). A proper function
is convex and optimizes at the true distribution; a strictly proper function is strictly convex and
optimizes only at the true distribution (Good 1952, Winkler and Murphy 1968). Proper rules
encourage forecasts to maximize reward and strictly proper rules ensure unique solutions (de
Finetti 1962). Several strictly proper rules can handle discrete as well as continuous distributions
(Table 1; Gneiting and Raftery 2007). Each rule has strengths and weaknesses and forecasters
often use multiple rules to leverage their attributes (Ray and Reich 2018).

The Log Score is the logarithm of the predictive probability evaluated at the observed
value (Table 1; Good 1952). The log score is the only proper rule that depends solely on the
probability distribution at the observed count (i.e., it is local; Benedetti 2010). It is relatively
simple to calculate and corresponds to a number of classic properties including Shannon entropy,
Kullback-Leibler divergence, and predictive deviance (Gneiting and Raftery 2007). Although
simple and popular, the log score can be insensitive to how far the true distribution is from the

prediction and hypersensitive to small differences in probabilities (Selten 1998, Gneiting and
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Raftery 2007), so caution should be used when employing it if rare values are observable.

The Quadratic (Brier) Score is the average squared error of the probability forecasts
where the observations are either matched or not (Table 1; Brier 1950). It extends the mean
squared error from point to distributional forecasts (Winkler 1996) and can be generalized to the
Power Score (Table 1; Selten 1998). Weaknesses of the Brier score include that it is not local (it
depends on events that did not happen), can result in counter-intuitive values for rare and very
common events because it uses absolute differences, and can require many samples to account
for inflation of score and skill score variance by autocorrelation (Wilks 20108).

The Spherical Score is strictly proper and symmetric, so named because it standardizes
the probability to a point on the unit sphere via division by its Euclidean norm (Table 1; Roby
1965). In contrast to the log score, the spherical score is hypersensitive near medial probabilities,
and thus incentivizes matching the central tendency of the predicted distribution (Selten 1998).
As such, the spherical and log scores produce complementary information regarding model
performance. Similar to the quadratic score, the spherical score can be generalized to the
pseudospherical (Table 1; Gneiting and Raftery 2007).

The Ranked Probability Score (RPS) defines a squared function that compares CDFs of a
forecast and observation over a discrete number of categories (Table 1; Epstein 1969). The RPS
generalizes the binary quadratic score to more than two categories (Czado et al. 2009) and is
expanded to continuous variables as the Continuous RPS (CRPS; Matheson and Winkler 1976),
the integral of quadratic scores for binary forecasts at all real-valued thresholds (Table 1).
Favorably, the RPS considers the shape and tendency of forecast distributions, is sensitive to
distance (rewards distributions closer to the observation), uses the CDF (more stable than the

PDF/PMF; Hersbach 2000), and generalizes mean absolute error (facilitating comparison of
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point and probabilistic forecasts; Gneiting and Raftery 2007). Concerns with the RPS include its
sensitivity to unusually large predicted or observed values (Candille and Talagrand 2005) and
computation, the latter of which recent work alleviates (Appendix S1).
Comparing Model Scores

Once models have been scored on the same data with the same function, they can be
quantitatively and statistically compared to each other as their scores form empirical distributions

(Makridakis and Winkler 1989, Gneiting and Raftery 2007). The skill score () standardizes skill

—m  —ref
n " Sn
<opt __ ref?

Sn Sn

. . . =m — .
values for comparisons. The skill score of model m is s, = where 57 is the score of a

reference model (e.g., the marginal distribution of the predictand such as a smooth of historical
values; Gneiting and Raftery 2007) and s is the score of an ideal forecast (maximal value;
Murphy 1973). Skill scores are equal to 0 for the reference forecast and 1 for an optimal forecast;
a positive score means the forecast was better than the reference, a negative score means it was
worse. Although skill scores provide standardized comparisons, they are generally not proper
(see above) even if the underlying scoring function is proper (Murphy 1973).

Frequentist tests of forecasts are robust as long as correlations among scores are modeled
(Makridakis and Winkler 1989). The Diebold-Mariano (D-M) Test is the main method for such
comparisons and evaluates the significance of differences between forecast skill using z-tests that
account for correlated errors (Diebold and Mariano 1995; Appendix S1). The test is based on the
difference between scores for any two forecasts, which has an expected value of 0 under a null
hypothesis of no difference. The formal test statistic is then the standardized mean difference,
which has an expected standard normal distribution under the null (Diebold and Mariano 1995).
Serial autocorrelation in scores is addressable using standard robust equations (Appendix S1).

While scores are typically aggregated across test data for quantitative comparisons,

9



208 graphing sample-level scores and comparing across models can also provide useful insight
(Gneiting et al. 2007). For example, plotting scores as a function of covariates can identify model

210 differences associated with external forces. Similarly, plots of scores as a function of lead time
allow comparison of how skill decays over the forecast horizon (Petchey et al. 2015). Graphical

212  comparisons are bolstered through a cache of evaluations built via the prequential approach
(Dawid 1984, Dietz et al. 2018, White et al. 2019), as apparent patterns may be artefactual.

214 Example: Pocket Mouse Population Counts

To demonstrate prequential ecological forecasting, we use a subset of data collected at a

216 long-term study in the Chihuahuan Desert (AZ, USA; Brown 1998) that is actively used for
ecological forecasting (White et al. 2019). Small mammals have been trapped on 24 plots with

218 49 traps per plot every four weeks since 1977 (512 trappings over the course of the study;
Appendix S2). On some plots, the dominant genus Dipodomys (kangaroo rats) has been

220 excluded. Here, we model counts of the desert pocket mouse (Chaetodipus penicillatus) in one
kangaroo-rat exclosure plot (Fig. 2a). We forecast 12 counts (following White et al. 2019) from a

222 true origin of sample 500 as if it were the final sample and compare them to the true observations
from samples 501-512.

224 We fit three Bayesian time series models (Appendix S2) with the same right-truncated
Poisson observation model with log-scale mean density (A=¢") and maximum of 49 (the number

226 oftraps; double captures are rare: ~0.01%) and one of three process models: random walk (RW),
first-order autoregressive (AR(1)), and seasonal first-order AR (sAR(1); given the species’

228 seasonal variation; Fig. 2a). We validated the models across a training period from sample 200 to
500 using rolling origin end-sample evaluation (Figs. 1, 2) beginning with a test origin of 300

230 and increasing in steps of 1 to a final test origin of 499, with test data being the subsequent 12

10
20
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samples (up to and including 500). For the true origin (500), the test data were 501-512: a single
realization of observations (Fig. 2a,b). We fit the models using Markov Chain Monte Carlo via
JAGS (Plummer 2003) in R (R Core Team 2020) (Data S1) and used the log (for comparison to
likelihood) and rank probability (to incorporate full predictive distributions) scores for
evaluations (Table 1). We graphically assessed the fit of the rolling and true origin predictions
using non-random discrete PIT histograms (Table 1, Czado et al. 2009). A simplified application
of these methods is detailed in Appendix S3 for translation to other systems.

Across the rolling-origin validation test sets, the random walk and sAR(1) were both well
calibrated, albeit with a slight excess of variance, as evidenced by their slightly peaked PIT
histograms (Fig. 2¢). Comparatively, the AR(1)’s PIT histogram showed modality at the upper
range, indicating negative bias (Fig. 2¢; c.f. Appendix S1: Fig. S1). The sAR(1) was the best
model with respect to both scoring functions across the rolling-origins (Fig. 2d). Yet for the final
test, the AR(1) performed best (Fig. 2f) because its negative bias better matched the realized data
(Fig. 2b). This provides an important lesson: the best long-term model (sAR(1)) was not best for
the short term. Rather, the biased AR(1) was best in this specific evaluation of this case study.
Discussion

Taking a probabilistic approach to forecasting and evaluation is important for developing
models that produce both accurate point predictions and useful estimates of uncertainty (Dietze
2017). In developing approaches to evaluate probabilistic forecasts ecologists can learn from
fields with more established histories of forecasting. However, knowledge and skill transfer
among disciplines is not one-way in the application of probabilistic forecasting to ecology
(Pennekamp et al. 2017) and there are many active areas of research in forecasting science where

ecologists can make important contributions (Dietze 2017). For example, ecological data often
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violate assumptions of forecast evaluation approaches due to non-normality, multiple levels of
hierarchical variation, uncertainty in observations, feedbacks, non-linearities, and autocorrelation
(Hooten and Hobbs 2015). Thus, while standard practices developed in other disciplines provide
a foundation for quantitatively evaluating probabilistic ecological forecasts, ecology can help
generalize these methods, develop new tools, and further the theory of probabilistic forecasting.
As ecology continues to develop its forecasting culture we envision a key next step being
the incorporation of these probabilistic evaluation methods into iterative forecasting processes.
Iterative forecasts involve a series of steps including selecting models, identifying a validation
approach, fitting the models to available training data, generating predictions with uncertainties
for test data, and then evaluating model predictions for the test data, with each iteration involving
multiple components (Dietze et al. 2018). The fitting, predicting, and evaluating steps can be
automated (White et al. 2019), and should use the probabilistic methods described in this review
when possible, as opposed to point-prediction methods approaches. However, much of the true
potential of prequential forecasting also involves direct researcher engagement with selecting
and evaluating new models and continually improving methods for evaluation (Dietze et al.
2018). We hope that the graphical methods and evaluation approaches described here and further
demonstrated in Appendix S3 can help provide a route forward for these efforts. Finally, as new
models are explored and incorporated into ecological forecasts, developing ensembles of
forecasts will become increasingly important. There is much to learn from fields with more
established forecasting cultures about best practices for ensembling probabilistic forecasts (e.g.,
Gneiting et al. 2007, Ray and Reich 2018).
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Name Formula
Log log(fH" Yn
Quadratic (Brier) 2f 4 ¥ _(” o .| 2)2
Power Of(fH" yn)a—l_(a_l)(”an yn) a)a
Spherical fuly,

HfH" yn 2
Pseudo-spherical (fH" v a-1

(Han(yn o !
Ranked Probabili R
anked Probability _k;w(FHn(k)_l(ynSk))z

n: sample, H : predictive distribution, Y,: observed value (i.e., a single data point), F’:

cumulative distribution function, f: probability density or mass function, X||p: p-norm of x (

I x||p :(Z |X‘P)%), a: generalization parameter, 1: the characteristic function (

): 1,Ay, <k

1|y, <k
(y" 0,Ay,>k

). For continuous variables, summations are replaced with integrals.
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Figure 1. (a) Time series of N samples of variable y broken into a training set Y., used to fit the
model that will forecast the test set Y|,.1).0+p- At €ach time step t,, the observation Y, is one
realization from the underlying generating distribution G,, shown with the insets. Probabilistic
forecasts H, are made for each time step forward from the forecast origin o at time t, through the
forecast horizon to the final sample at time {,,,=ty. The comparison between the forecast (grey)
and generating (black) distributions for the first forecast at o+1 is shown in the rightmost subset.
(b) Fixed and rolling origin end-sample evaluation on a mock data set of 17 observed samples
and a forecast horizon of three samples. Open squares are training data, filled squares are test
data, and dashed-line squares are not-yet-observed data. Origins for model test (11,_, estimates of
the test data) and true (1,,,, estimates of not-yet-observed data) forecasts are noted by the bold
squares. As additional data are collected, the number of model tests (grey squares) grows in the
rolling evaluation, whereas the fixed evaluation always has the same number of tests (three). In
combination with probabilistic forecasting (a) the rolling origin approach forms the basis of the
prequential approach.

Figure 2. (a) Time series and histogram of C. penicillatus counts in plot 19 since 1993-08-17
(sample 200). The rolling origin end-sample period (300 to 500) is denoted with the lighter grey
rectangle and the final true test period (501 to 512) is the darker grey rectangle. (b) Predictive
distributions for the three models (violins, delineated by color as shown by name) and observed
data for the final true test period. (c,e) Probability Integral Transform histograms and (d,f)
ranked probability and log scores for the models (RW: Random Walk, AR(1): first-order
AutoRegressive, sSAR(1): seasonal AR(1)) evaluated for the test period up to sample 500 (c,d)
and for the final test with forecast origin of sample 500 (e,f). Dashed lines in (c,e) show uniform

distributions and circled scores in (d, f) are best. (Sketch based on https://flic.kr/p/dhSSgy.)
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