

2

4 Evaluating Probabilistic Ecological Forecasts

6 Juniper L. Simonis^{1,2†}, Ethan P. White¹, S. K. Morgan Ernest¹

8 ¹Wildlife Ecology and Conservation, University of Florida

²DAPPER Stats, 3519 NE 15th Ave., Suite 467, Portland, OR 97212, USA

10

12

14

16

18

20

22

†Corresponding author; e-mail: simonis@dapperstats.com

24 Abstract

Probabilistic near-term forecasting facilitates evaluation of model predictions against
26 observations and is of pressing need in ecology to inform environmental decision making and
effect societal change. Despite this imperative, many ecologists are unfamiliar with the widely
28 used tools for evaluating probabilistic forecasts developed in other fields. We address this gap by
reviewing the literature on probabilistic forecast evaluation from diverse fields including
30 climatology, economics, and epidemiology. We present established practices for selecting
evaluation data (end-sample hold out), graphical forecast evaluation (times-series plots with
32 uncertainty, Probability Integral Transform plots), quantitative evaluation using scoring rules
(log, quadratic, spherical, and ranked probability scores), and comparing scores across models
34 (skill score, Diebold-Mariano test). We cover common approaches, highlight mathematical
concepts to follow, and note decision points to allow application of general principles to specific
36 forecasting endeavors. We illustrate these approaches with an application to a long-term rodent
population time series currently used for ecological forecasting and discuss how ecology can
38 continue to learn from and drive the cross-disciplinary field of forecasting science.

Keywords: continuous analysis, desert pocket mouse, ecological forecasting, end-sample
40 holdout, forecast skill, hierarchical Bayes, prequential, score rule, time series, validation.

Introduction

42 Forecasting—predicting the future state of a system—is rapidly becoming an important
focus of ecology (Clark et al. 2001, Pennekamp et al. 2017). Understanding the accuracy and
44 precision of ecological forecasts is essential to improving models and using their results for
decision making. Ecological forecasting has typically focused on evaluating forecasts based on
46 point estimates – the expected value or average prediction for a state at some point in the future.

However, the uncertainty of forecasts is also essential for decision making and understanding

48 how well models capture sources of variation (Dietz 2017). Probabilistic forecasts produce
distributions of future state values allowing the predicted uncertainty to be incorporated into
50 forecast evaluation (Dawid 1984, Dietze et al. 2018).

Properly evaluating probabilistic forecasts requires a unique set of tools and approaches.

52 These methods have been well developed in disciplines with long forecasting histories including
climatology, economics, and epidemiology, but are not familiar to many ecologists. We address
54 this gap by reviewing the literature on probabilistic forecast evaluation from disciplines with
established cultures, principles, and tools to help guide ecologists in the selection of best
56 practices for assessing probabilistic forecast performance (Winkler 1977, Dawid 1984, Gneiting
and Raftery 2007). After introducing notation and terminology, we present established practices
58 for: 1) selecting data to hold out for evaluation; 2) graphical assessment of performance; 3)
quantitative scoring of forecasts; and 4) comparing performance across models. We use these
60 methods to analyze forecasts of a long-term study of desert rodent populations and provide
simplified example code for readers to apply to their own systems.

62 **Notation and Terminology**

We base our coverage of forecast evaluation on the following notation and terminology

64 for data, models, and approaches (Fig. 1). Consider a time series of samples n in $1 \dots N$ of
variable y (y_n in $y_{1:N}$), collected through time (t_n in $t_{1:N}$). y can be discrete or continuous and
66 samples can be taken at fixed or variable intervals. The observed $y_{1:N}$ is but one realization
drawn from the unknowable generating distribution $G_{1:N}$, where G_n is the distribution of possible
68 states at t_n (Fig. 1a). The last datum is the *forecast origin* o (Tashman 2000). We use models m
in $1 \dots M$ to gain inference about $G_{1:N}$ and make forecasts p in $1 \dots P$ of y after y_o , where the

70 time between o and p is the *lead time* or *forecast horizon* ($t_{o \rightarrow (o+p)}$; Fig. 1a) and models predict
samples $o+1$ to $o+P$ ($y_{(o+1):(o+P)}$) with a total forecast horizon of $t_{o \rightarrow (o+P)}$. Thus, each model m
72 needs to fit $y_{1:o}$ then predict $y_{(o+1):(N+P)}$ with its distribution $H_{(o+1):(o+P)}^m$ across the horizon (Fig. 1a;
Appendix S1). For fitting and predicting, we use data in hand to validate our models, iterating
74 the evaluation over time via a probabilistic and sequential (*prequential* sensu Dawid 1984)
approach to testing existing data, compared to validating models only after future data are
76 collected (Makridakis et al. 1993). Prequential methods are well-defined, preferred in established
fields (Dawid 1984), and implementable in ecological forecasting (Dietze et al. 2018).

78 **Holding Out Data For Forecast Validation**

The validation procedure defines how the data are split into those used to fit the model
80 (*training data*) and those reserved to evaluate its predictions (*test data*). Because the goal of
forecasting is predicting the next data in a time series (Dawid 1984), the dominant paradigm in
82 forecasting validation is *end-sample holdout*, where the last k observations are used for testing
(Fig. 1b; Fildes and Makridakis 1995, Tashman 2000). Simulation and empirical evaluations
84 show that end-sample holdout methods produce realistic distributions for future data (Tashman
2000) and training and testing errors are also typically very weakly correlated (Makridakis 1986,
86 Makridakis and Winkler 1989). Other approaches or modifications including cross-validation
(Bergmeir et al. 2018) and end-sample holdout with buffers (Cerqueira et al. 2020) are also used
88 in forecasting. Cross-validation, which selects test data from across the entire data set, can
increase the number of evaluations, avoiding issues with few evaluations being an unstable
90 estimate of model skill (Tashman 2000). Adding buffers to end-sample holdout has recently been
proposed to address the influence of autocorrelation (Cerqueira et al. 2020). However, the main
92 purpose of forecasting is to predict data starting at the time step following the last observation

(Fig. 1a), making standard end-sample holdout the closest validation approach to the forecasting

94 task. Indeed, the best models validated using end-sample holdout tend to outperform those

validated via cross-validation when tested on novel future data (Fildes and Makridakis 1995).

96 Using end-sample holdout, we define a break in our time series ($y_{1:N}$) using forecast

origin t_o , resulting in a training set of o values ($y_{1:o}$) and a test set of $N-o=P$ values ($y_{(o+1):N}$).

98 This break focuses validation on quantifying how well a model's forecast distribution $H_{(o+1):N}$

matches the observations in the test set $y_{(o+1):N}$, where matching is defined by a score (see

100 **Scoring Functions**; Dawid 1984). To cover the range of expected values, the number of samples

allocated to the test set (via the location of o) should cover at least the longest forecast horizon

102 required by the main application (Tashman 2000). That is, if the model makes 12-month-ahead

forecasts, the holdout data set should cover at least one year of observations.

104 One end-sample holdout results in a single forecast evaluation for each model, which can

be insufficient for describing skill. This is especially true if the data display cyclic or seasonal

106 dynamics, in which case performance of each forecast will vary as a function of its origin (Pack

1990). Therefore, we recommend using *rolling forecast origin* validation, where multiple

108 forecasts are made with the origin moved forward in the series (Fig. 1b; Armstrong 1985).

Rolling origins generate robust estimates of skill and facilitate analyses of skill as a function of

110 factors like lead time (Makridakis and Winkler 1989). Larger holdouts allow for more forecasts

of the target horizon, but may not be an option for shorter time series (Tashman 2000).

112 A critical decision for rolling origin evaluations is whether each step forward should

include just an update to the data or if the model should also be re-fit (Tashman 2000). Although

114 it is generally preferable to update the model at each step in the evaluation, re-optimization can

be computationally intensive and requires technical knowledge not broadly available in ecology

116 (Tashman 2000). In prequential methods, however, iterative forecasts replace done-all-at-once
evaluations, easing computational burdens (Dawid 1984, Dietze et al. 2018). This is aided via
118 *continuous analysis* systems that re-run models when data are updated (White et al. 2019)—in
essence, an automated system of rolling origin, fixed horizon, recalibrating end-sample holdout
120 validations, to which each new (fixed origin end-sample holdout) validation is added (Fig. 1b).

Graphical Evaluation

122 Graphical evaluation provides key insight into model appropriateness over the training
and test sets (Dietze 2017). In forecasting, where data are explicitly temporal, it is helpful to plot
124 the time series of predictions and observed values with training data to show past dynamics (Fig.
1a). Ecological models often have multiple levels of uncertainty and non-linearities (Hooten and
126 Hobbs 2015) not well summarized by quantiles, necessitating the plotting of distributions or
representative draws (Dietze 2017). A plot of model residuals over time can highlight persisting
128 temporal autocorrelations. In addition, a plot of predicted-vs.-observed values will ideally follow
a 1:1 line with deviation appropriate to model uncertainty (Appendix S1: Fig. S1).

130 The *Probability Integral Transform* (PIT) is a diagnostic plot with a solid statistical basis
and a long history in forecasting. It comprises the values of the predictive cumulative distribution
132 functions (CDFs) evaluated at the observed values (Appendix S1: Table S1; Dawid 1984). If
observed values match predictive distributions and the predictive distributions are continuous,
134 the PIT has a standard uniform distribution (Dawid 1984), which can be checked informally
using plots (Appendix S1: Fig. S1). The uniformity of the PIT is necessary but not sufficient for
136 a forecast to match the generating distribution (Hamill 2001). PIT histograms and CDFs allow
comparison to a uniform and deviations have specific meanings: skew indicates biased central
138 tendency, U-shapes underdispersion, and hump-shapes overdispersion (Appendix S1: Fig. S1;

Gneiting et al. 2007). The PIT has been extended to discrete distributions via approximations that

140 add noise (Smith 1985) or use a conditional CDF (Czado et al. 2009; Appendix S1: Table S1).

Scoring Rules

142 Scoring rules are quantitative measures of the fit of the forecast to the test data (Brier

1950; **Appendix S1**). The score (s) of how point observation y_n matches model m 's forecast

144 distribution (H_n^m) is measured using rule r 's function $S^r: s_n^{rm} = S^r(H_n^m, y_n)$. A model's average

score across multiple observations is $\bar{s}_{[o+1]:N}^{rm}$ (Table 1). Here, we use a positive orientation: higher

146 score is better. Although scores are typically framed in terms of distributions, they are defined

for point forecasts and many simplify to classical point-based metrics. Key attributes of rules are

148 encompassed in the concept of (*strict*) *propriety* (Dawid 1998; **Appendix S1**). A proper function

is convex and optimizes at the true distribution; a strictly proper function is *strictly* convex and

150 optimizes *only* at the true distribution (Good 1952, Winkler and Murphy 1968). Proper rules

encourage forecasts to maximize reward and strictly proper rules ensure unique solutions (de

152 Finetti 1962). Several strictly proper rules can handle discrete as well as continuous distributions

(Table 1; Gneiting and Raftery 2007). Each rule has strengths and weaknesses and forecasters

154 often use multiple rules to leverage their attributes (Ray and Reich 2018).

The *Log Score* is the logarithm of the predictive probability evaluated at the observed

156 value (Table 1; Good 1952). The log score is the only proper rule that depends solely on the

probability distribution at the observed count (i.e., it is *local*; Benedetti 2010). It is relatively

158 simple to calculate and corresponds to a number of classic properties including Shannon entropy,

Kullback-Leibler divergence, and predictive deviance (Gneiting and Raftery 2007). Although

160 simple and popular, the log score can be *insensitive* to how far the true distribution is from the

prediction and *hypersensitive* to small differences in probabilities (Selten 1998, Gneiting and

162 Raftery 2007), so caution should be used when employing it if rare values are observable.

The *Quadratic (Brier) Score* is the average squared error of the probability forecasts

164 where the observations are either matched or not (Table 1; Brier 1950). It extends the mean
squared error from point to distributional forecasts (Winkler 1996) and can be generalized to the
166 *Power Score* (Table 1; Selten 1998). Weaknesses of the Brier score include that it is not local (it
depends on events that did not happen), can result in counter-intuitive values for rare and very
168 common events because it uses absolute differences, and can require many samples to account
for inflation of score and skill score variance by autocorrelation (Wilks 20108).

170 The *Spherical Score* is strictly proper and symmetric, so named because it standardizes
the probability to a point on the unit sphere via division by its Euclidean norm (Table 1; Roby
172 1965). In contrast to the log score, the spherical score is hypersensitive near medial probabilities,
and thus incentivizes matching the central tendency of the predicted distribution (Selten 1998).
174 As such, the spherical and log scores produce complementary information regarding model
performance. Similar to the quadratic score, the spherical score can be generalized to the
176 pseudospherical (Table 1; Gneiting and Raftery 2007).

The *Ranked Probability Score* (RPS) defines a squared function that compares CDFs of a
178 forecast and observation over a discrete number of categories (Table 1; Epstein 1969). The RPS
generalizes the binary quadratic score to more than two categories (Czado et al. 2009) and is
180 expanded to continuous variables as the *Continuous RPS* (CRPS; Matheson and Winkler 1976),
the integral of quadratic scores for binary forecasts at all real-valued thresholds (Table 1).
182 Favorably, the RPS considers the shape and tendency of forecast distributions, is sensitive to
distance (rewards distributions closer to the observation), uses the CDF (more stable than the
184 PDF/PMF; Hersbach 2000), and generalizes mean absolute error (facilitating comparison of

point and probabilistic forecasts; Gneiting and Raftery 2007). Concerns with the RPS include its

186 sensitivity to unusually large predicted or observed values (Candille and Talagrand 2005) and

computation, the latter of which recent work alleviates (**Appendix S1**).

188 Comparing Model Scores

Once models have been scored on the same data with the same function, they can be

190 quantitatively and statistically compared to each other as their scores form empirical distributions

(Makridakis and Winkler 1989, Gneiting and Raftery 2007). The *skill score* (\dot{s}) standardizes skill

192 values for comparisons. The skill score of model m is $\dot{s}_n^m = \frac{\bar{s}_n^m - \bar{s}_n^{ref}}{\bar{s}_n^{opt} - \bar{s}_n^{ref}}$, where \bar{s}_n^{ref} is the score of a

reference model (e.g., the marginal distribution of the predictand such as a smooth of historical

194 values; Gneiting and Raftery 2007) and \bar{s}_n^{opt} is the score of an ideal forecast (maximal value;

Murphy 1973). Skill scores are equal to 0 for the reference forecast and 1 for an optimal forecast;

196 a positive score means the forecast was better than the reference, a negative score means it was

worse. Although skill scores provide standardized comparisons, they are generally not proper

198 (see above) even if the underlying scoring function is proper (Murphy 1973).

Frequentist tests of forecasts are robust as long as correlations among scores are modeled

200 (Makridakis and Winkler 1989). The *Diebold-Mariano (D-M) Test* is the main method for such

comparisons and evaluates the significance of differences between forecast skill using z-tests that

202 account for correlated errors (Diebold and Mariano 1995; **Appendix S1**). The test is based on the

difference between scores for any two forecasts, which has an expected value of 0 under a null

204 hypothesis of no difference. The formal test statistic is then the standardized mean difference,

which has an expected standard normal distribution under the null (Diebold and Mariano 1995).

206 Serial autocorrelation in scores is addressable using standard robust equations (**Appendix S1**).

While scores are typically aggregated across test data for quantitative comparisons,

208 graphing sample-level scores and comparing across models can also provide useful insight
(Gneiting et al. 2007). For example, plotting scores as a function of covariates can identify model
210 differences associated with external forces. Similarly, plots of scores as a function of lead time
allow comparison of how skill decays over the forecast horizon (Petchey et al. 2015). Graphical
212 comparisons are bolstered through a cache of evaluations built via the prequential approach
(Dawid 1984, Dietz et al. 2018, White et al. 2019), as apparent patterns may be artefactual.

214 **Example: Pocket Mouse Population Counts**

To demonstrate prequential ecological forecasting, we use a subset of data collected at a
216 long-term study in the Chihuahuan Desert (AZ, USA; Brown 1998) that is actively used for
ecological forecasting (White et al. 2019). Small mammals have been trapped on 24 plots with
218 49 traps per plot every four weeks since 1977 (512 trappings over the course of the study;
Appendix S2). On some plots, the dominant genus *Dipodomys* (kangaroo rats) has been
220 excluded. Here, we model counts of the desert pocket mouse (*Chaetodipus penicillatus*) in one
kangaroo-rat exclosure plot (Fig. 2a). We forecast 12 counts (following White et al. 2019) from a
222 true origin of sample 500 as if it were the final sample and compare them to the true observations
from samples 501-512.

224 We fit three Bayesian time series models (**Appendix S2**) with the same right-truncated
Poisson observation model with log-scale mean density ($\lambda = e^{x_n}$) and maximum of 49 (the number
226 of traps; double captures are rare: ~0.01%) and one of three process models: random walk (RW),
first-order autoregressive (AR(1)), and seasonal first-order AR (sAR(1); given the species'
228 seasonal variation; Fig. 2a). We validated the models across a training period from sample 200 to
500 using rolling origin end-sample evaluation (Figs. 1, 2) beginning with a test origin of 300
230 and increasing in steps of 1 to a final test origin of 499, with test data being the subsequent 12

samples (up to and including 500). For the true origin (500), the test data were 501-512: a single
232 realization of observations (Fig. 2a,b). We fit the models using Markov Chain Monte Carlo via
JAGS (Plummer 2003) in R (R Core Team 2020) (**Data S1**) and used the log (for comparison to
234 likelihood) and rank probability (to incorporate full predictive distributions) scores for
evaluations (Table 1). We graphically assessed the fit of the rolling and true origin predictions
236 using non-random discrete PIT histograms (Table 1, Czado et al. 2009). A simplified application
of these methods is detailed in **Appendix S3** for translation to other systems.

238 Across the rolling-origin validation test sets, the random walk and sAR(1) were both well
calibrated, albeit with a slight excess of variance, as evidenced by their slightly peaked PIT
240 histograms (Fig. 2c). Comparatively, the AR(1)'s PIT histogram showed modality at the upper
range, indicating negative bias (Fig. 2c; c.f. Appendix S1: Fig. S1). The sAR(1) was the best
242 model with respect to both scoring functions across the rolling-origins (Fig. 2d). Yet for the final
test, the AR(1) performed best (Fig. 2f) because its negative bias better matched the realized data
244 (Fig. 2b). This provides an important lesson: the best long-term model (sAR(1)) was not best for
the short term. Rather, the biased AR(1) was best in this specific evaluation of this case study.

246 **Discussion**

Taking a probabilistic approach to forecasting and evaluation is important for developing
248 models that produce both accurate point predictions and useful estimates of uncertainty (Dietze
2017). In developing approaches to evaluate probabilistic forecasts ecologists can learn from
250 fields with more established histories of forecasting. However, knowledge and skill transfer
among disciplines is not one-way in the application of probabilistic forecasting to ecology
252 (Pennekamp et al. 2017) and there are many active areas of research in forecasting science where
ecologists can make important contributions (Dietze 2017). For example, ecological data often

254 violate assumptions of forecast evaluation approaches due to non-normality, multiple levels of
hierarchical variation, uncertainty in observations, feedbacks, non-linearities, and autocorrelation
256 (Hooten and Hobbs 2015). Thus, while standard practices developed in other disciplines provide
a foundation for quantitatively evaluating probabilistic ecological forecasts, ecology can help
258 generalize these methods, develop new tools, and further the theory of probabilistic forecasting.

As ecology continues to develop its forecasting culture we envision a key next step being
260 the incorporation of these probabilistic evaluation methods into iterative forecasting processes.

Iterative forecasts involve a series of steps including selecting models, identifying a validation
262 approach, fitting the models to available training data, generating predictions with uncertainties
for test data, and then evaluating model predictions for the test data, with each iteration involving
264 multiple components (Dietze et al. 2018). The fitting, predicting, and evaluating steps can be
automated (White et al. 2019), and should use the probabilistic methods described in this review
266 when possible, as opposed to point-prediction methods approaches. However, much of the true
potential of prequential forecasting also involves direct researcher engagement with selecting
268 and evaluating new models and continually improving methods for evaluation (Dietze et al.
2018). We hope that the graphical methods and evaluation approaches described here and further
270 demonstrated in **Appendix S3** can help provide a route forward for these efforts. Finally, as new
models are explored and incorporated into ecological forecasts, developing ensembles of
272 forecasts will become increasingly important. There is much to learn from fields with more
established forecasting cultures about best practices for ensembling probabilistic forecasts (e.g.,
274 Gneiting et al. 2007, Ray and Reich 2018).

Acknowledgements

276 This work was funded by the National Science Foundation (DEB-1622425 to Ernest and

DEB-1929730 to Ernest and White) and the Gordon and Betty Moore Foundation (GBMF4563

278 to White) and informed by discussions at the 2019 Ecological Forecasting Initiative Conference.

Literature Cited

280 Armstrong, J. S. 1985. *Long-range forecasting*. Wiley Interscience. New York, New York, USA.

Benedetti, R. 2010. Scoring rules for forecast verification. *Monthly Weather Review* **138**:203-

282 211.

Bergmeir, C., R. J. Hyndman, and B. Koo. 2018. A note on the validity of cross-validation for

284 evaluating autoregressive time series prediction. *Computational Statistics and Data Analysis*

120:70-83.

286 Brier, G. W. 1950. Verification of forecasts expressed in terms of probability. *Monthly Weather Review* **78**:1-3.

288 Brown, J. H. 1998. The desert granivory experiments at portal. In *Experimental Ecology*, W. L. Resetarits, Jr. and J. Bernardo (Eds.). Oxford University Press, Oxford, UK. pp 71-95.

290 Candille, G. and O. Talagrand. 2005. Evaluation of probabilistic prediction systems of a scalar variable. *Quarterly Journal of the Royal Meteorological Society* **131**:2131-2150.

292 Cerqueira, V., L. Torgo, and I. Mozetič. 2020. Evaluating time series forecasting models: An empirical study on performance estimation methods. *Machine Learning* **109**:1997-2028.

294 Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, et al. 2001. Ecological forecasts: an emerging imperative. *Science* **293**:657–660.

296 Czado, C., T. Gneiting, and L. Held. 2009. Predictive model assessment for count data. *Biometrics* **65**:1254-1261.

298 Dawid, A. P. 1984. Statistical theory: The prequential approach. *Journal of the Royal Statistical Society. Series A (General)* **147**:278-292.

- 300 Dawid, A. P. 1998. Coherent Measures of Discrepancy, Uncertainty and Dependence, with
Applications to Bayesian Predictive Experimental Design. Research Report 139, University
302 College London, Dept. of Statistical Science.
- de Finetti, B. 1962. Does It make sense to speak of 'Good Probability Appraisers'? In *The*
304 *Scientist Speculates*, I. J. Good (Ed.). Basic Books, New York. pp 357-363.
- Diebold F. X. and R. S. Mariano RS. 1995. Comparing predictive accuracy. *Journal of Business*
306 and *Economic Statistics* **13**:253-263.
- Dietze, M. 2017. Ecological Forecasting. Princeton University Press, Princeton, N. J., USA.
- 308 Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M B. Hooten, et al. 2018. Iterative
near-term ecological forecasting: needs, opportunities, and challenges. *Proceedings of the*
310 *Natural Academy of Sciences* **115**:1424-1432.
- Epstein, E. S. 1969. A scoring system for probability forecasts of ranked categories. *Journal of*
312 *Applied Meteorology* **8**:985-987.
- Fildes, R. and S. Makridakis. 1995. The impact of empirical accuracy studies on time series
314 analysis and forecasting. *International Statistical Review* **63**:289-308.
- Gneiting, T., F. Balabdaoui, and A. E. Raftery. 2007. Probabilistic forecasts, calibration and
316 sharpness. *Journal of the Royal Statistical Society, Series B: Statistical Methodology* **69**:243-
268.
- 318 Gneiting, T. and A. E. Raftery. 2007. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association **102**:359-378.
- 320 Good, I. J. 1952. Rational decisions. *Journal of the Royal Statistical Society, Series B: Statistical*
Methodology **14**:107-114.
- 322 Hamill, T. M. 2001. Interpretation of rank histograms for verifying ensemble forecasts. *Monthly*

- 324 Hersbach, H. 2000. Decomposition of the Continuous Ranked Probability Score for ensemble prediction systems. *Weather and Forecasting* **15**:559-570.
- 326 Hooten, M. B., and N. T. Hobbs. 2015. Bayesian Models: A Statistical Primer for Ecologists. Princeton University Press, Princeton, New Jersey, USA.
- 328 Makridakis, S. 1986. The art and science of forecasting; an assessment and future directions. *International Forecasting* **2**:15-39.
- 330 Makridakis, S. and Winkler, R. L. 1989. Sampling distributions of post-sample forecasting errors. *Journal of the Royal Statistical Society, Series C: Applied Statistics* **38**:331-342.
- 332 Makridakis, S., C. Chatfield, M. Hibon, M. Lawrence, T. Mills, et al. 1993. The M2 competition: a real life judgmentally-based forecasting study. *International Journal of Forecasting* **9**:5-29.
- 334 Matheson, J. E., and R. L. Winkler. 1976. Scoring rules for continuous probability distributions. *Management Science* **22**:1087-1095.
- 336 Murphy, A. H. 1973. Hedging and skill scores for probability forecasts. *Journal of Applied Meteorology* **12**:215-223.
- 338 Pack, D. J. 1990. In defense of ARIMA modeling. *International Journal of Forecasting* **6**:211-218.
- 340 Pennekamp, F., M. W. Adamson, O. L. Petchey, J. C. Poggiale, M. Aguiar, et al. 2017. The practice of prediction: What can ecologists learn from applied, ecology-related fields? *Ecological Complexity* **32**:156-167.
- 344 Petchey, O. L., M. Pontarp, T. M. Massie, S. Kefi, A. Ozgul, et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. *Ecology Letters* **18**:597-611.

- 346 Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs
sampling. *Proceedings of the 3rd International Workshop on Distributed Statistical*
- 348 *Computing*, K. Hornik, F. Leisch, and A. Zeileis, eds. ISSN 1609-395X.
- R Core Team. 2020. R: A language and environment for statistical computing. v4.0.3. R
350 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
- Ray, E. L. and N. G. Reich. 2018. Prediction of infection disease epidemics via weighted density
352 ensembles. *PLoS Computational Biology* **14**:e1005910.
- Roby, T. B. 1965. *Belief States: A Preliminary Empirical Study*. Decision Science Laboratory,
354 United States Air Force. L.G. Hascom Field, Bedford, Massachusetts, USA.
- Selten, R. 1998. Axiomatic Characterization of the Quadratic Scoring Rule. *Experimental*
356 *Economics* **1**:43-62.
- Smith, J. Q. 1985. Diagnostic checks of non-standard time series models. *Journal of Forecasting*
358 **4**:283-291.
- Stone, M. 1977. An asymptotic equivalence of choice of model by cross-validation and Akaike's
360 criterion. *Journal of the Royal Statistical Society Series B: Statistical Methodology* **39**:44-47.
- Tashman, T. J. 2000. Out-of-sample tests of forecasting accuracy: an analysis and review.
362 *International Journal of Forecasting* **16**:437-450.
- White, E. P., G. M. Yenni, S. Taylor, E. Christensen, E. Bledsoe, et al. 2019. Developing an
364 automated iterative near-term forecasting system for an ecological study. *to Methods in
Ecology and Evolution* **10**:332-344.
- 366 Wilks, D.S. 2010. Sampling distributions of the Brier score and Brier skill score under serial
dependence. *Quarterly Journal of the Royal Meteorological Society* **136**:2109-2118
- 368 Winkler R. L., A. H. Murphy. 1968. "Good" probability assessors. *Journal of Applied*

Meteorology 7:751-758.

370 Winkler, R. L. 1977. Rewarding expertise in probability assessment. In *Decision Making and Change in Human Affairs*, H. Jungermann and G. de Zeeuw, eds. D. Reidel, Dordrecht,

372 Holland. pp. 127-140.

Winkler, R. L. 1996. Scoring rules and the evaluation of probabilities. *Test* 5:1-60.

374 **Table 1.** Commonly used scoring rules, all defined as positively oriented.

Name	Formula
Log	$\log(f_{H_n}(y_n))$
Quadratic (Brier)	$2f_{H_n}(y_n) - (\ f_{H_n}(y_n)\ _2)^2$
Power	$\alpha(f_{H_n}(y_n))^{\alpha-1} - (\alpha-1)(\ f_{H_n}(y_n)\ _\alpha)^\alpha$
Spherical	$\frac{f_{H_n}(y_n)}{\ f_{H_n}(y_n)\ _2}$
Pseudo-spherical	$\frac{(f_{H_n}(y_n))^{\alpha-1}}{(\ f_{H_n}(y_n)\ _\alpha)^{\alpha-1}}$
Ranked Probability	$-\sum_{k=-\infty}^{\infty} (F_{H_n}(k) - 1(y_n \leq k))^2$

n : sample, H_n : predictive distribution, y_n : observed value (i.e., a single data point), F :

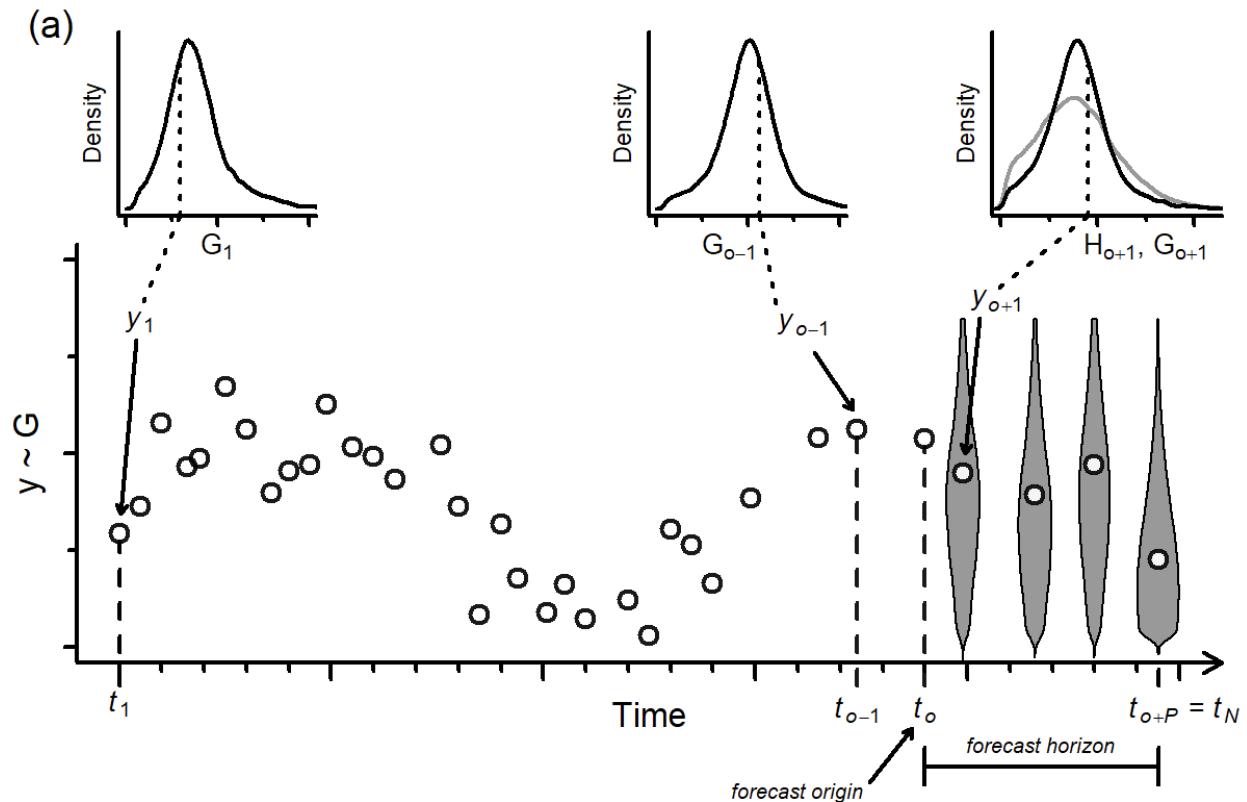
376 cumulative distribution function, f : probability density or mass function, $\|x\|_p$: p -norm of x (

$\|x\|_p = (\sum |x|^p)^{\frac{1}{p}}$), α : generalization parameter, 1 : the characteristic function (

378 $1(y_n \leq k) = \begin{cases} 1, & \wedge y_n \leq k \\ 0, & \wedge y_n > k \end{cases}$). For continuous variables, summations are replaced with integrals.

380 **Figure 1.** (a) Time series of N samples of variable y broken into a training set $y_{1:o}$ used to fit the
 model that will forecast the test set $y_{(o+1):(o+p)}$. At each time step t_n , the observation y_n is one
 382 realization from the underlying generating distribution G_n , shown with the insets. Probabilistic
 forecasts H_n are made for each time step forward from the forecast origin o at time t_o through the
 384 forecast horizon to the final sample at time $t_{o+p} = t_N$. The comparison between the forecast (grey)
 and generating (black) distributions for the first forecast at $o+1$ is shown in the rightmost subset.
 386 (b) Fixed and rolling origin end-sample evaluation on a mock data set of 17 observed samples
 and a forecast horizon of three samples. Open squares are training data, filled squares are test
 388 data, and dashed-line squares are not-yet-observed data. Origins for model test ($n_{o_{test}}$, estimates of
 the test data) and true ($n_{o_{true}}$, estimates of not-yet-observed data) forecasts are noted by the bold
 390 squares. As additional data are collected, the number of model tests (grey squares) grows in the
 rolling evaluation, whereas the fixed evaluation always has the same number of tests (three). In
 392 combination with probabilistic forecasting (a) the rolling origin approach forms the basis of the
 prequential approach.

394 **Figure 2.** (a) Time series and histogram of *C. penicillatus* counts in plot 19 since 1993-08-17
 (sample 200). The rolling origin end-sample period (300 to 500) is denoted with the lighter grey
 396 rectangle and the final true test period (501 to 512) is the darker grey rectangle. (b) Predictive
 distributions for the three models (violins, delineated by color as shown by name) and observed
 398 data for the final true test period. (c,e) Probability Integral Transform histograms and (d,f)
 ranked probability and log scores for the models (RW: Random Walk, AR(1): first-order
 400 AutoRegressive, sAR(1): seasonal AR(1)) evaluated for the test period up to sample 500 (c,d)
 and for the final test with forecast origin of sample 500 (e,f). Dashed lines in (c,e) show uniform
 402 distributions and circled scores in (d, f) are best. (Sketch based on <https://flic.kr/p/dhSSgy.>)



(b)

□ Training datum □ Test datum □ Not yet observed datum □ Forecast origin

Single Origin

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Test origin = 14															$n_{0\text{test}}$					
True origin = 17																$n_{0\text{true}}$				

Rolling Origin

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Test origin = 10														$n_{0\text{test}}$						
Test origin = 11														$n_{0\text{test}}$						
Test origin = 12														$n_{0\text{test}}$						
Test origin = 13														$n_{0\text{test}}$						
Test origin = 14														$n_{0\text{test}}$						
Test origin = 15														$n_{0\text{test}}$						
Test origin = 16														$n_{0\text{test}}$						
True origin = 17															$n_{0\text{true}}$					

