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Abstract

Probabilistic near-term forecasting facilitates evaluation of model predictions against 

observations and is of pressing need in ecology to inform environmental decision making and 

effect societal change. Despite this imperative, many ecologists are unfamiliar with the widely 

used tools for evaluating probabilistic forecasts developed in other fields. We address this gap by 

reviewing the literature on probabilistic forecast evaluation from diverse fields including 

climatology, economics, and epidemiology. We present established practices for selecting 

evaluation data (end-sample hold out), graphical forecast evaluation (times-series plots with 

uncertainty, Probability Integral Transform plots), quantitative evaluation using scoring rules 

(log, quadratic, spherical, and ranked probability scores), and comparing scores across models 

(skill score, Diebold-Mariano test). We cover common approaches, highlight mathematical 

concepts to follow, and note decision points to allow application of general principles to specific 

forecasting endeavors. We illustrate these approaches with an application to a long-term rodent 

population time series currently used for ecological forecasting and discuss how ecology can 

continue to learn from and drive the cross-disciplinary field of forecasting science.

Keywords: continuous analysis, desert pocket mouse, ecological forecasting, end-sample 

holdout, forecast skill, hierarchical Bayes, prequential, score rule, time series, validation.

Introduction

Forecasting—predicting the future state of a system—is rapidly becoming an important 

focus of ecology (Clark et al. 2001, Pennekamp et al. 2017). Understanding the accuracy and 

precision of ecological forecasts is essential to improving models and using their results for 

decision making. Ecological forecasting has typically focused on evaluating forecasts based on 

point estimates – the expected value or average prediction for a state at some point in the future. 
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However, the uncertainty of forecasts is also essential for decision making and understanding 

how well models capture sources of variation (Dietz 2017). Probabilistic forecasts produce 

distributions of future state values allowing the predicted uncertainty to be incorporated into 

forecast evaluation (Dawid 1984, Dietze et al. 2018). 

Properly evaluating probabilistic forecasts requires a unique set of tools and approaches. 

These methods have been well developed in disciplines with long forecasting histories including 

climatology, economics, and epidemiology, but are not familiar to many ecologists. We address 

this gap by reviewing the literature on probabilistic forecast evaluation from disciplines with 

established cultures, principles, and tools to help guide ecologists in the selection of best 

practices for assessing probabilistic forecast performance (Winkler 1977, Dawid 1984, Gneiting 

and Raftery 2007). After introducing notation and terminology, we present established practices 

for: 1) selecting data to hold out for evaluation; 2) graphical assessment of performance; 3) 

quantitative scoring of forecasts; and 4) comparing performance across models. We use these 

methods to analyze forecasts of a long-term study of desert rodent populations and provide 

simplified example code for readers to apply to their own systems.

Notation and Terminology

We base our coverage of forecast evaluation on the following notation and terminology 

for data, models, and approaches (Fig. 1). Consider a time series of samples n in 1. ..N  of 

variable y (yn in y1 :N), collected through time (t n in t 1: N). y can be discrete or continuous and 

samples can be taken at fixed or variable intervals. The observed y1 :N is but one realization 

drawn from the unknowable generating distribution G1 :N, where Gn is the distribution of possible 

states at t n (Fig. 1a). The last datum is the forecast origin o (Tashman 2000). We use models m 

in 1. ..M  to gain inference about G1 :N and make forecasts p in 1…P of y after yo, where the 
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time between o and p is the lead time or forecast horizon (t o→(o+p ); Fig. 1a) and models predict 

samples o+1 to o+P (y (o+1 ): (o+P )) with a total forecast horizon of t o→(o+P ). Thus, each model m 

needs to fit y1 :o then predict y (o+1 ): (N+P ) with its distribution H (o+1 ): (o+P )

m  across the horizon (Fig. 1a; 

Appendix S1). For fitting and predicting, we use data in hand to validate our models, iterating 

the evaluation over time via a probabilistic and sequential (prequential sensu Dawid 1984) 

approach to testing existing data, compared to validating models only after future data are 

collected (Makridakis et al. 1993). Prequential methods are well-defined, preferred in established 

fields (Dawid 1984), and implementable in ecological forecasting (Dietze et al. 2018).

Holding Out Data For Forecast Validation 

The validation procedure defines how the data are split into those used to fit the model 

(training data) and those reserved to evaluate its predictions (test data). Because the goal of 

forecasting is predicting the next data in a time series (Dawid 1984), the dominant paradigm in 

forecasting validation is end-sample holdout, where the last k  observations are used for testing 

(Fig. 1b; Fildes and Makridakis 1995, Tashman 2000). Simulation and empirical evaluations 

show that end-sample holdout methods produce realistic distributions for future data (Tashman 

2000) and training and testing errors are also typically very weakly correlated (Makridakis 1986, 

Makridakis and Winkler 1989). Other approaches or modifications including cross-validation 

(Bergmeir et al. 2018) and end-sample holdout with buffers (Cerqueira et al. 2020) are also used 

in forecasting. Cross-validation, which selects test data from across the entire data set, can 

increase the number of evaluations, avoiding issues with few evaluations being an unstable 

estimate of model skill (Tashman 2000). Adding buffers to end-sample holdout has recently been 

proposed to address the influence of autocorrelation (Cerqueira et al. 2020). However, the main 

purpose of forecasting is to predict data starting at the time step following the last observation 
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(Fig. 1a), making standard end-sample holdout the closest validation approach to the forecasting 

task. Indeed, the best models validated using end-sample holdout tend to outperform those 

validated via cross-validation when tested on novel future data (Fildes and Makridakis 1995). 

Using end-sample holdout, we define a break in our time series (y1 :N) using forecast 

origin t o, resulting in a training set of o values (y1 :o) and a test set of N−o=P values (y (o+1 ):N). 

This break focuses validation on quantifying how well a model’s forecast distribution H ( o+1 ):N  

matches the observations in the test set y ( o+1 ):N , where matching is defined by a score (see 

Scoring Functions; Dawid 1984). To cover the range of expected values, the number of samples 

allocated to the test set (via the location of o) should cover at least the longest forecast horizon 

required by the main application (Tashman 2000). That is, if the model makes 12-month-ahead 

forecasts, the holdout data set should cover at least one year of observations. 

One end-sample holdout results in a single forecast evaluation for each model, which can 

be insufficient for describing skill. This is especially true if the data display cyclic or seasonal 

dynamics, in which case performance of each forecast will vary as a function of its origin (Pack 

1990). Therefore, we recommend using rolling forecast origin validation, where multiple 

forecasts are made with the origin moved forward in the series (Fig. 1b; Armstrong 1985). 

Rolling origins generate robust estimates of skill and facilitate analyses of skill as a function of 

factors like lead time (Makridakis and Winkler 1989). Larger holdouts allow for more forecasts 

of the target horizon, but may not be an option for shorter time series (Tashman 2000). 

A critical decision for rolling origin evaluations is whether each step forward should 

include just an update to the data or if the model should also be re-fit (Tashman 2000). Although 

it is generally preferable to update the model at each step in the evaluation, re-optimization can 

be computationally intensive and requires technical knowledge not broadly available in ecology 
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(Tashman 2000). In prequential methods, however, iterative forecasts replace done-all-at-once 

evaluations, easing computational burdens (Dawid 1984, Dietze et al. 2018). This is aided via 

continuous analysis systems that re-run models when data are updated (White et al. 2019)—in 

essence, an automated system of rolling origin, fixed horizon, recalibrating end-sample holdout 

validations, to which each new (fixed origin end-sample holdout) validation is added (Fig. 1b). 

Graphical Evaluation  

Graphical evaluation provides key insight into model appropriateness over the training 

and test sets (Dietze 2017). In forecasting, where data are explicitly temporal, it is helpful to plot 

the time series of predictions and observed values with training data to show past dynamics (Fig. 

1a). Ecological models often have multiple levels of uncertainty and non-linearities (Hooten and 

Hobbs 2015) not well summarized by quantiles, necessitating the plotting of distributions or 

representative draws (Dietze 2017). A plot of model residuals over time can highlight persisting 

temporal autocorrelations. In addition, a plot of predicted-vs.-observed values will ideally follow 

a 1:1 line with deviation appropriate to model uncertainty (Appendix S1: Fig. S1). 

The Probability Integral Transform (PIT) is a diagnostic plot with a solid statistical basis 

and a long history in forecasting. It comprises the values of the predictive cumulative distribution 

functions (CDFs) evaluated at the observed values (Appendix S1: Table S1; Dawid 1984). If 

observed values match predictive distributions and the predictive distributions are continuous, 

the PIT has a standard uniform distribution (Dawid 1984), which can be checked informally 

using plots (Appendix S1: Fig. S1). The uniformity of the PIT is necessary but not sufficient for 

a forecast to match the generating distribution (Hamill 2001). PIT histograms and CDFs allow 

comparison to a uniform and deviations have specific meanings: skew indicates biased central 

tendency, U-shapes underdispersion, and hump-shapes overdispersion (Appendix S1: Fig. S1; 
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Gneiting et al. 2007). The PIT has been extended to discrete distributions via approximations that 

add noise (Smith 1985) or use a conditional CDF (Czado et al. 2009; Appendix S1: Table S1). 

Scoring Rules

Scoring rules are quantitative measures of the fit of the forecast to the test data (Brier 

1950; Appendix S1). The score (s) of how point observation yn matches model m’s forecast 

distribution (H n
m) is measured using rule r’s function Sr: snrm=Sr (H n

m , y n). A model’s average 

score across multiple observations is s( o+1 ):N
rm  (Table 1). Here, we use a positive orientation: higher 

score is better. Although scores are typically framed in terms of distributions, they are defined 

for point forecasts and many simplify to classical point-based metrics. Key attributes of rules are 

encompassed in the concept of (strict) propriety (Dawid 1998; Appendix S1). A proper function 

is convex and optimizes at the true distribution; a strictly proper function is strictly convex and 

optimizes only at the true distribution (Good 1952, Winkler and Murphy 1968). Proper rules 

encourage forecasts to maximize reward and strictly proper rules ensure unique solutions (de 

Finetti 1962). Several strictly proper rules can handle discrete as well as continuous distributions 

(Table 1; Gneiting and Raftery 2007). Each rule has strengths and weaknesses and forecasters 

often use multiple rules to leverage their attributes (Ray and Reich 2018). 

The Log Score is the logarithm of the predictive probability evaluated at the observed 

value (Table 1; Good 1952). The log score is the only proper rule that depends solely on the 

probability distribution at the observed count (i.e., it is local; Benedetti 2010). It is relatively 

simple to calculate and corresponds to a number of classic properties including Shannon entropy, 

Kullback-Leibler divergence, and predictive deviance (Gneiting and Raftery 2007). Although 

simple and popular, the log score can be insensitive to how far the true distribution is from the 

prediction and hypersensitive to small differences in probabilities (Selten 1998, Gneiting and 
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Raftery 2007), so caution should be used when employing it if rare values are observable. 

The Quadratic (Brier) Score is the average squared error of the probability forecasts 

where the observations are either matched or not (Table 1; Brier 1950). It extends the mean 

squared error from point to distributional forecasts (Winkler 1996) and can be generalized to the 

Power Score (Table 1; Selten 1998). Weaknesses of the Brier score include that it is not local (it 

depends on events that did not happen), can result in counter-intuitive values for rare and very 

common events because it uses absolute differences, and can require many samples to account 

for inflation of score and skill score variance by autocorrelation (Wilks 20108).

The Spherical Score is strictly proper and symmetric, so named because it standardizes 

the probability to a point on the unit sphere via division by its Euclidean norm (Table 1; Roby 

1965). In contrast to the log score, the spherical score is hypersensitive near medial probabilities, 

and thus incentivizes matching the central tendency of the predicted distribution (Selten 1998). 

As such, the spherical and log scores produce complementary information regarding model 

performance. Similar to the quadratic score, the spherical score can be generalized to the 

pseudospherical (Table 1; Gneiting and Raftery 2007). 

The Ranked Probability Score (RPS) defines a squared function that compares CDFs of a 

forecast and observation over a discrete number of categories (Table 1; Epstein 1969). The RPS 

generalizes the binary quadratic score to more than two categories (Czado et al. 2009) and is 

expanded to continuous variables as the Continuous RPS (CRPS; Matheson and Winkler 1976), 

the integral of quadratic scores for binary forecasts at all real-valued thresholds (Table 1). 

Favorably, the RPS considers the shape and tendency of forecast distributions, is sensitive to 

distance (rewards distributions closer to the observation), uses the CDF (more stable than the 

PDF/PMF; Hersbach 2000), and generalizes mean absolute error (facilitating comparison of 
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point and probabilistic forecasts; Gneiting and Raftery 2007). Concerns with the RPS include its 

sensitivity to unusually large predicted or observed values (Candille and Talagrand 2005) and 

computation, the latter of which recent work alleviates (Appendix S1). 

Comparing Model Scores

Once models have been scored on the same data with the same function, they can be 

quantitatively and statistically compared to each other as their scores form empirical distributions 

(Makridakis and Winkler 1989, Gneiting and Raftery 2007). The skill score (ṡ) standardizes skill 

values for comparisons. The skill score of model m is ṡn
m
=
sn
m
−sn

ref

sn
opt

−sn
ref , where sn

ref  is the score of a 

reference model (e.g., the marginal distribution of the predictand such as a smooth of historical 

values; Gneiting and Raftery 2007) and sn
opt is the score of an ideal forecast (maximal value; 

Murphy 1973). Skill scores are equal to 0 for the reference forecast and 1 for an optimal forecast; 

a positive score means the forecast was better than the reference, a negative score means it was 

worse. Although skill scores provide standardized comparisons, they are generally not proper 

(see above) even if the underlying scoring function is proper (Murphy 1973).

Frequentist tests of forecasts are robust as long as correlations among scores are modeled 

(Makridakis and Winkler 1989). The Diebold-Mariano (D-M) Test is the main method for such 

comparisons and evaluates the significance of differences between forecast skill using z-tests that 

account for correlated errors (Diebold and Mariano 1995; Appendix S1). The test is based on the 

difference between scores for any two forecasts, which has an expected value of 0 under a null 

hypothesis of no difference. The formal test statistic is then the standardized mean difference, 

which has an expected standard normal distribution under the null (Diebold and Mariano 1995). 

Serial autocorrelation in scores is addressable using standard robust equations (Appendix S1). 

While scores are typically aggregated across test data for quantitative comparisons, 
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graphing sample-level scores and comparing across models can also provide useful insight 

(Gneiting et al. 2007). For example, plotting scores as a function of covariates can identify model 

differences associated with external forces. Similarly, plots of scores as a function of lead time 

allow comparison of how skill decays over the forecast horizon (Petchey et al. 2015). Graphical 

comparisons are bolstered through a cache of evaluations built via the prequential approach 

(Dawid 1984, Dietz et al. 2018, White et al. 2019), as apparent patterns may be artefactual. 

Example: Pocket Mouse Population Counts

To demonstrate prequential ecological forecasting, we use a subset of data collected at a 

long-term study in the Chihuahuan Desert (AZ, USA; Brown 1998) that is actively used for 

ecological forecasting (White et al. 2019). Small mammals have been trapped on 24 plots with 

49 traps per plot every four weeks since 1977 (512 trappings over the course of the study; 

Appendix S2). On some plots, the dominant genus Dipodomys (kangaroo rats) has been 

excluded. Here, we model counts of the desert pocket mouse (Chaetodipus penicillatus) in one 

kangaroo-rat exclosure plot (Fig. 2a). We forecast 12 counts (following White et al. 2019) from a 

true origin of sample 500 as if it were the final sample and compare them to the true observations 

from samples 501-512. 

We fit three Bayesian time series models (Appendix S2) with the same right-truncated 

Poisson observation model with log-scale mean density (λ=exn) and maximum of 49 (the number 

of traps; double captures are rare: ~0.01%) and one of three process models: random walk (RW), 

first-order autoregressive (AR(1)), and seasonal first-order AR (sAR(1); given the species’ 

seasonal variation; Fig. 2a). We validated the models across a training period from sample 200 to 

500 using rolling origin end-sample evaluation (Figs. 1, 2) beginning with a test origin of 300 

and increasing in steps of 1 to a final test origin of 499, with test data being the subsequent 12 
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samples (up to and including 500). For the true origin (500), the test data were 501-512: a single 

realization of observations (Fig. 2a,b). We fit the models using Markov Chain Monte Carlo via 

JAGS (Plummer 2003) in R (R Core Team 2020) (Data S1) and used the log (for comparison to 

likelihood) and rank probability (to incorporate full predictive distributions) scores for 

evaluations (Table 1). We graphically assessed the fit of the rolling and true origin predictions 

using non-random discrete PIT histograms (Table 1, Czado et al. 2009). A simplified application 

of these methods is detailed in Appendix S3 for translation to other systems.

Across the rolling-origin validation test sets, the random walk and sAR(1) were both well 

calibrated, albeit with a slight excess of variance, as evidenced by their slightly peaked PIT 

histograms (Fig. 2c). Comparatively, the AR(1)’s PIT histogram showed modality at the upper 

range, indicating negative bias (Fig. 2c; c.f. Appendix S1: Fig. S1). The sAR(1) was the best 

model with respect to both scoring functions across the rolling-origins (Fig. 2d). Yet for the final 

test, the AR(1) performed best (Fig. 2f) because its negative bias better matched the realized data 

(Fig. 2b). This provides an important lesson: the best long-term model (sAR(1)) was not best for 

the short term. Rather, the biased AR(1) was best in this specific evaluation of this case study.

Discussion

Taking a probabilistic approach to forecasting and evaluation is important for developing 

models that produce both accurate point predictions and useful estimates of uncertainty (Dietze 

2017).  In developing approaches to evaluate probabilistic forecasts ecologists can learn from 

fields with more established histories of forecasting. However, knowledge and skill transfer 

among disciplines is not one-way in the application of probabilistic forecasting to ecology 

(Pennekamp et al. 2017) and there are many active areas of research in forecasting science where 

ecologists can make important contributions (Dietze 2017). For example, ecological data often 
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violate assumptions of forecast evaluation approaches due to non-normality, multiple levels of 

hierarchical variation, uncertainty in observations, feedbacks, non-linearities, and autocorrelation 

(Hooten and Hobbs 2015). Thus, while standard practices developed in other disciplines provide 

a foundation for quantitatively evaluating probabilistic ecological forecasts, ecology can help 

generalize these methods, develop new tools, and further the theory of probabilistic forecasting.

As ecology continues to develop its forecasting culture we envision a key next step being 

the incorporation of these probabilistic evaluation methods into iterative forecasting processes. 

Iterative forecasts involve a series of steps including selecting models, identifying a validation 

approach, fitting the models to available training data, generating predictions with uncertainties 

for test data, and then evaluating model predictions for the test data, with each iteration involving 

multiple components (Dietze et al. 2018). The fitting, predicting, and evaluating steps can be 

automated (White et al. 2019), and should use the probabilistic methods described in this review 

when possible, as opposed to point-prediction methods approaches. However, much of the true 

potential of prequential forecasting also involves direct researcher engagement with selecting 

and evaluating new models and continually improving methods for evaluation (Dietze et al. 

2018). We hope that the graphical methods and evaluation approaches described here and further 

demonstrated in Appendix S3 can help provide a route forward for these efforts. Finally, as new 

models are explored and incorporated into ecological forecasts, developing ensembles of 

forecasts will become increasingly important. There is much to learn from fields with more 

established forecasting cultures about best practices for ensembling probabilistic forecasts (e.g., 

Gneiting et al. 2007, Ray and Reich 2018).
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Table 1. Commonly used scoring rules, all defined as positively oriented. 

Name Formula 
Log log ( f H n

( yn ))
Quadratic (Brier) 2 f H n

( yn )−(‖f H n
( yn )‖2)

2

Power α ( f H n
( yn ))

α−1
−(α−1 ) (‖f H n

( yn )‖α)
α

Spherical f H n
( yn )

‖f Hn ( yn )‖2
Pseudo-spherical ( f H n

( y n) )
α−1

(‖f H n
( yn )‖α )

α−1

Ranked Probability
− ∑
k=−∞

∞

(FH n
(k )−1 ( yn≤k ))

2

n: sample, H n: predictive distribution, yn: observed value (i.e., a single data point), F: 

cumulative distribution function, f : probability density or mass function, ‖x‖p: p-norm of x (

‖x‖p=(∑|x|
p )
1
p), α : generalization parameter, 1: the characteristic function (

1 ( yn≤k )={1 ,∧ yn≤k0 ,∧ yn>k
). For continuous variables, summations are replaced with integrals.
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Figure 1. (a) Time series of N  samples of variable y broken into a training set y1 : o used to fit the 

model that will forecast the test set y ( o+1 ): (o+P ). At each time step t n, the observation yn is one 

realization from the underlying generating distribution Gn, shown with the insets. Probabilistic 

forecasts H n are made for each time step forward from the forecast origin o at time t o through the 

forecast horizon to the final sample at time t o+p=tN. The comparison between the forecast (grey) 

and generating (black) distributions for the first forecast at o+1 is shown in the rightmost subset. 

(b) Fixed and rolling origin end-sample evaluation on a mock data set of 17 observed samples 

and a forecast horizon of three samples. Open squares are training data, filled squares are test 

data, and dashed-line squares are not-yet-observed data. Origins for model test (notest, estimates of 

the test data) and true (notrue, estimates of not-yet-observed data) forecasts are noted by the bold 

squares. As additional data are collected, the number of model tests (grey squares) grows in the 

rolling evaluation, whereas the fixed evaluation always has the same number of tests (three). In 

combination with probabilistic forecasting (a) the rolling origin approach forms the basis of the 

prequential approach.

Figure 2. (a) Time series and histogram of C. penicillatus counts in plot 19 since 1993-08-17 

(sample 200). The rolling origin end-sample period (300 to 500) is denoted with the lighter grey 

rectangle and the final true test period (501 to 512) is the darker grey rectangle. (b) Predictive 

distributions for the three models (violins, delineated by color as shown by name) and observed 

data for the final true test period. (c,e) Probability Integral Transform histograms and (d,f) 

ranked probability and log scores for the models (RW: Random Walk, AR(1): first-order 

AutoRegressive, sAR(1): seasonal AR(1)) evaluated for the test period up to sample 500 (c,d) 

and for the final test with forecast origin of sample 500 (e,f). Dashed lines in (c,e) show uniform 

distributions and circled scores in (d, f) are best. (Sketch based on https://flic.kr/p/dhSSgy.)
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