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Abstract
We study the convergence rate of the Circumcentered-Reflection Method (CRM) for 
solving the convex feasibility problem and compare it with the Method of Alter-
nating Projections (MAP). Under an error bound assumption, we prove that both 
methods converge linearly, with asymptotic constants depending on a parameter of 
the error bound, and that the one derived for CRM is strictly better than the one 
for MAP. Next, we analyze two classes of fairly generic examples. In the first one, 
the angle between the convex sets approaches zero near the intersection, so that the 
MAP sequence converges sublinearly, but CRM still enjoys linear convergence. In 
the second class of examples, the angle between the sets does not vanish and MAP 
exhibits its standard behavior, i.e., it converges linearly, yet, perhaps surprisingly, 
CRM attains superlinear convergence.

Keywords  Convex feasibility problem · Alternating projections · Circumcentered-
reflection method · Convergence rate

Mathematics Subject Classification  49M27 · 65K05 · 65B99 · 90C25

1  Introduction

We deal in this paper with the convex feasibility problem (CFP), defined as follows: 
given closed and convex sets K1,… ,Km ⊂ ℝ

n , find a point in ∩m
i=1

Ki.
We study the Circumcentered-Reflection method (CRM) for solving CFP under 

an error bound regularity condition. CRM and generalized circumcenters were intro-
duced in [11, 12], and subsequently studied in [7–10, 14, 16] with the geometrical 
appeal of accelerating classical projection/reflection based methods. We will see that 
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a nonaffine setting embedded with an error bound condition provides, at least, linear 
convergence of CRM. Moreover, we present a quite general instance for which CRM 
converges superlinearly, opening a path for future research lines on circumcenters-
type schemes. In addition to these contributions, we show that CRM is faster than 
the famous Method of Alternating Projections (MAP), even in the lack of an error 
bound. MAP has a vast literature (see, for instance, [2, 3, 21, 23]) and concerns CPF 
for two sets, in principle. However, the discussion below allows us to apply both 
CRM and MAP to the multi-set CFP.

Two very well-known methods for CFP related to MAP are the Sequential Pro-
jection Method (SePM) and the Simultaneous Projection Method (SiPM), which 
can be traced back to [18, 20] respectively, and are defined as follows. Consider 
the operators P̂,P ∶ ℝ

n
→ ℝ

n given by P̂ ∶= PKm
◦… ◦PK1

 , P ∶=
1

m

∑m

i=1
PKi

 , 
where each PKi

∶ ℝ
n
→ Ki is the orthogonal projection onto Ki . Starting from an 

arbitrary z ∈ ℝ
n , SePM and SiPM generate sequences (x̂k)k∈ℕ and (x̄k)k∈ℕ given by 

x̂k+1 = �P(x̂k) , x̄k+1 = P(x̄k) , respectively, where x̄0 = x̂0 = z . When ∩m
i=1

Ki ≠ � , the 
sequences generated by both methods are known to be globally convergent to points 
belonging to ∩m

i=1
Ki , i.e., to solve CFP. Under suitable assumptions, both meth-

ods have interesting convergence properties also in the infeasible case, i.e., when 
∩m
i=1

Ki = � , but we will not deal with this case. See [4] for an in-depth study of these 
and other projections methods for CFP.

An interesting relation between SePM and SiPM was found by Pierra  [22]. 
Consider the sets K ∶= K1 ×⋯ × Km ⊂ ℝ

nm, U ∶= {(x,… , x) ∣ x ∈ ℝ
m} ⊂ ℝ

nm . 
Apply SePM to the sets K,U in the product space ℝnm , i.e., take xk+1 = PU

(
PK(x

k)
)
 

starting from x0 ∈ U . Clearly, xk belongs to U for all k ∈ ℕ , so that we may write 
xk = (xk,… , xk) with xk ∈ ℝ

n . It was proved in [22] that xk+1 = P(xk) , i.e., a step 
of SePM applied to two convex sets in the product space ℝn×m is equivalent to a 
step of SiPM in the original space ℝn . Thus, SePM with just two sets plays a sort of 
special role and, therefore, carries a name of its own, namely MAP. Observe that in 
the equivalence above one of the two sets in the product space, namely U , is a lin-
ear subspace. This fact is essential for the convergence of CRM applied for solving 
CFP; see [1, 14].

Let us start to focus on the alleged acceleration effect of CRM with respect to 
MAP. There is abundant numerical evidence of this effect (see [11, 13, 14, 19]); in 
this paper, we will present some analytical evidence, which strengthens the results 
from [14]. In view of Pierra’s reformulation [22], the general CFP can be seen as a 
specific convex-affine intersection problem and since both CRM and MAP converge 
for the general convex-affine intersection problem, from now on, we seek a point 
common to a given closed convex set K ⊂ ℝ

n and an affine manifold U ⊂ ℝ
n.

For finding a point in K ∩ U ≠ � , MAP and CRM iterate by means of the 
operators T = PU◦PK and C(⋅) = circ (⋅,RK(⋅),RU(RK(⋅))) , respectively, where 
RK = 2PK − Id and RU = 2PU − Id are the reflection operators over K and U, 
respectively. For a point x ∈ ℝ

n , C(x), when exists, is the point equidistant to 
x,RK(x) and RU(RK(x)) that lies in the affine manifold determined by the latter three 
points.

A first result in the analytical study of the acceleration effect of CRM over 
MAP was derived in [14], where it was proved that, for all x ∈ U , C(x) is 



1 3

The circumcentered‑reflection method achieves better rates…

well-defined and dist (C(x),K ∩ U) ≤ dist (T(x),K ∩ U) , where dist stands for the 
Euclidean distance. The previous inequality means that the point obtained after 
a CRM step is closer to (or at least no farther from) K ∩ U than the one obtained 
after a MAP step from the same point. This local (or myopic) acceleration does 
not imply immediately that the CRM sequence converges faster than the MAP 
one. In order to show global acceleration, we will focus on special situations 
where the convergence rate of the MAP can be precisely established.

MAP is known to be linearly convergent in several special situations, e.g., 
when both K and U are affine manifolds (see [21]) or when K ∩ U has nonempty 
interior (see [3]). In Sect. 2 we will consider another such case, namely when a 
certain so-called error bound (EB from now on) holds, meaning that there exists 
� ∈ (0, 1) such that dist (x,K) ≥ � dist (x,K ∩ U) for all x ∈ U . This error bound 
resembles the regularity conditions presented in [3, 4, 15]. We will prove that in 
this case both the MAP and the CRM sequences converge linearly, with asymp-
totic constants bounded by 

√
1 − �2 for MAP, and by the strictly better bound √

1 − �2∕
√
1 + �2 for CRM, thus showing that under EB, CRM is faster than 

MAP. For the case of MAP, linear convergence under the error bound condition 
with this asymptotic constant is already known (see, for instance, [3, Corollary 
3.14]) even if U is not affine; we present it for the sake of completeness. Then, 
in Sect.  3 we will exhibit two rather generic families of examples where CRM 
converges indeed faster than MAP. In the first one, K ⊂ ℝ

n+1 will be the epigraph 
of a convex function f ∶ ℝ

n
→ ℝ ∪ {+∞} and U ⊂ ℝ

n+1 a support hyperplane of 
K. We will show that in this situation, under adequate assumptions on f, the MAP 
sequence converges sublinearly, while the CRM sequence converges linearly, and 
we will give as well an explicit bound for the asymptotic constant of the CRM 
sequence. Also, we will present a somewhat pathological example for which both 
the MAP sequence and the CRM one converge sublinearly. In the second family, 
K will still be the epigraph of a convex f, but U will not be a supporting hyper-
plane of K; rather it will intersect the interior of K. In this case, under not too 
demanding assumptions on f, the MAP sequence converges linearly (we will give 
an explicit bound of its asymptotic constant), while CRM converges superline-
arly. These results firmly corroborate the already established numerical evidence 
in [14] of the superiority of CRM over MAP.

2 � Preliminaries

We recall first the definition of Q-linear and R-linear convergence.

Definition 2.1  Let (yk)k∈ℕ ⊂ ℝ
n be a convergent sequence to y∗ . Assume that yk ≠ y∗ 

for all k ∈ ℕ . Define

q ∶= lim sup
k→∞

‖‖yk+1 − y∗‖‖
‖‖yk − y∗‖‖

, and r ∶= lim sup
k→∞

‖‖‖y
k − y∗

‖‖‖
1∕k

.
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Then, the convergence of (yk)k∈ℕ is 

	 (i)	 Q-superlinearly if q = 0;
	 (ii)	 Q-lineary if q ∈ (0, 1);
	 (iii)	 Q-sublinearly if q ≥ 1;
	 (iv)	 R-superlinearly if r = 0;
	 (v)	 R-linearly if r ∈ (0, 1);
	 (vi)	 R-sublinearly if r ≥ 1.

The values q, r are called asymptotic constants of (yk)k∈ℕ.
It is well known that Q-linear convergence implies R-linear convergence (with the 

same asymptotic constant), but the converse statement does not hold true.
We remind now the notion of Fejér monotonicity in ℝn.

Definition 2.2  A sequence (yk)k∈ℕ is Fejér monotone with respect to a set M when 
‖‖yk+1 − y‖‖ ≤ ‖‖yk − y‖‖ , for all y ∈ M.

Proposition 2.3  If (yk)k∈ℕ is Fejér monotone with respect to M then 

	 (i)	 (yk)k∈ℕ is bounded;
	 (ii)	 if a cluster point ȳ of (yk)k∈ℕ belongs to M, then lim

k→∞
yk = ȳ.

Proof  See Theorem 2.16 in [4]. 	�  ◻

We end this section with the main convergence results for MAP and CRM.

Proposition 2.4  Take closed and convex sets K1,K2 ⊂ ℝ
n such that K1 ∩ K2 ≠ � . 

Let PK1
,PK2

 be the orthogonal projections onto K1,K2 respectively. Con-
sider the sequence (zk)k∈ℕ generated by MAP starting from any z0 ∈ ℝ

n , i.e., 
zk+1 = PK2

(PK1
(zk)) . Then (zk)k∈ℕ is Fejér monotone with respect to K1 ∩ K2 and con-

verges to a point z∗ ∈ K1 ∩ K2.

Proof  See [17, Theorem 4]. 	�  ◻

Let us present the formal definition of the circumcenter.

Definition 2.5  Let x, y, z ∈ ℝ
n be given. The circumcenter circ (x, y, z) ∈ ℝ

n is a 
point satisfying 

	 (i)	 ‖ circ (x, y, z) − x‖ = ‖ circ (x, y, z) − y‖ = ‖ circ (x, y, z) − z‖ and,
	 ( i i ) 	

circ (x, y, z) ∈ aff {x, y, z} ∶= {w ∈ ℝ
n ∣ w = x + �(y − x) + �(z − x), �, � ∈ ℝ}

.
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The point circ (x, y, z) is well and uniquely defined if the cardinality of the 
set {x, y, z} is one or two. In the case in which the three points are all distinct, 
circ (x, y, z) is well and uniquely defined only if x, y and z are not collinear. For 
more general notions, definitions and results on circumcenters see [12, 13].

Consider now a closed convex set K ⊂ ℝ
n and an affine manifold U ⊂ ℝ

n . 
Let PK ,PU be the orthogonal projections onto K,  U respectively. Define 
RK ,RU , T ,C ∶ ℝ

n
→ ℝ

n as

Proposition 2.6  Let K ⊂ ℝ
n be a nonempty closed convex set. Then, the orthogonal 

projection PK onto K is firmly nonexpansive, that is, for all x, y ∈ ℝ
n we have

Proof  See [5, Theorem 4.16]. 	�  ◻

Proposition 2.7  Assume that K ∩ U ≠ � . Let (xk)k∈ℕ be the sequence generated by 
CRM starting from any x0 ∈ U , i.e., xk+1 = C(xk) . Then, 

	 (i)	 for all x ∈ U , we have that C(x) is well defined and belongs to U;
	 (ii)	 for all x ∈ U , it holds that ‖C(x) − y‖ ≤ ‖T(x) − y‖ , for any y ∈ K ∩ U;
	 (iii)	 (xk)k∈ℕ is Fejér monotone with respect to K ∩ U;
	 (iv)	 (xk)k∈ℕ converges to a point in K ∩ U.

Proof  All these results can be found in [14]: (i) is proved in Lemma 3, (ii) in Theo-
rem 2, and (iii) and (iv) in Theorem 1. 	�  ◻

3 � Linear convergence of MAP and CRM under an error bound 
assumption

We start by introducing an assumption on a pair of convex sets K,K′ ⊂ ℝ
n , 

denoted as EB (as in Error Bound), which will ensure linear convergence of MAP 
and CRM. 

EB	K ∩ K� ≠ � and there exists � ∈ (0, 1) such that dist (x,K) ≥ � dist (x,K ∩ K�) for 
all x ∈ K�.

Now we consider a closed and convex set K ⊂ ℝ
n and an affine manifold U ⊂ ℝ

n . 
Assuming that K, U satisfy Assumption EB, we will prove linear convergence of the 
sequences (zk)k∈ℕ and (xk)k∈ℕ generated by MAP and CRM, respectively. We start 
by proving that, for both methods, both distance sequences ( dist (zk,K ∩ U))k∈ℕ and 

(2.1)
RK = 2PK − Id , RU = 2PU − Id , T = PU◦PK , C(⋅) = circ (⋅,RK(⋅),RU(RK(⋅))).

��PK(x) − PK(y)
��
2
≤ ‖x − y‖2 − ��(x − PK(x)) − (y − PK(y))

��
2
.
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( dist (xk,K ∩ U))k∈ℕ converge linearly to 0, which will be a corollary of the next 
proposition.

Proposition 3.1  Assume that K, U satisfy EB. Consider T ,C ∶ ℝ
n
→ ℝ

n as in (2.1). 
Then, for all x ∈ U,

with � as in Assumption EB.

Proof  It follows easily from Proposition 2.6 that

for all x ∈ ℝ
n and all y ∈ K ∩ U ⊂ K . Invoking again Proposition 2.6, we get from 

(3.2)

for all x ∈ U, y ∈ K ∩ U , using Assumption EB in the last inequality. Take now 
y = PK∩U(x) . Then, in view of (3.3),

using the definition of PK∩U in the first and the third inequality and Proposi-
tion 2.7(ii) in the second inequality. Note that (3.1) follows immediately from (3.4). 	
� ◻

Corollary 3.2  Let (zk)k∈ℕ and (xk)k∈ℕ be the sequences generated by MAP and CRM 
starting at any z0 ∈ ℝ

n and any x0 ∈ U , respectively. If K, U satisfy Assumption EB, 
then the sequences ( dist (zk,K ∩ U))k∈ℕ and ( dist (xk,K ∩ U))k∈ℕ converge Q-line-
arly to 0, and the asymptotic constants are bounded above by 

√
1 − �2 , with � as in 

Assumption EB.

Proof  In view of the definition of PK∩U , (3.1) can be rewritten as

(3.1)
(1 − �2)‖‖x − PK∩U(x)

‖‖
2
≥ ‖‖T(x) − PK∩U(T(x))

‖‖
2
≥ ‖‖C(x) − PK∩U(C(x))

‖‖
2
,

(3.2)��PK(x) − y��
2
≤ ‖x − y‖2 − ��x − PK(x)

��
2

(3.3)

‖T(x) − y‖2 = ��PU(PK(x)) − y��
2
≤ ��PK(x) − y��

2
− ��PU(PK(x)) − PK(x)

��
2

≤ ‖x − y‖2 − ��x − PK(x)
��
2
− ��PU(PK(x)) − PK(x)

��
2

≤ ‖x − y‖2 − ��x − PK(x)
��
2
= ‖x − y‖2 − dist 2(x,K)

≤ ‖x − y‖2 − �2 dist 2(x,K ∩ U)

(3.4)

‖‖C(x) − PK∩U(C(x))
‖‖
2
≤ ‖‖C(x) − PK∩U(T(x))

‖‖
2

≤ ‖‖T(x) − PK∩U(T(x))
‖‖
2
≤ ‖‖T(x) − PK∩U(x)

‖‖
2

≤ ‖‖x − PK∩U(x)
‖‖
2
− �2 dist 2(x,K ∩ U)

= (1 − �2)‖‖x − PK∩U(x)
‖‖
2
,

(3.5)(1 − �2) dist 2(x,K ∩ U) ≥ dist 2(T(x),K ∩ U) ≥ dist 2(C(x),K ∩ U),
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for all x ∈ U . Since zk+1 = T(zk) , we get from the first inequality in (3.5),

using the fact that (zk)k∈ℕ ⊂ U . Hence

By the same token, using the second inequality in (3.5) and Proposition 2.7(ii), we 
get

The inequalities in (3.6) and (3.7) imply the result. 	�  ◻

We remark that the result for MAP holds when U is any closed and convex set, 
not necessarily an affine manifold. We need U to be an affine manifold in Proposi-
tion 2.7 (otherwise, (xk)k∈ℕ may even diverge), but this proposition is used in our 
proofs only when the CRM sequence is involved.

Next, we show that, under Assumption EB, CRM achieves a linear rate with an 
asymptotic constant better than the one given in Corollary 3.2.

Proposition 3.3  Let (xk)k∈ℕ be the sequence generated by CRM starting at any 
x0 ∈ U . If K,  U satisfy Assumption EB, then the sequence ( dist (xk,K ∩ U))k∈ℕ 

Q-converges to 0 with the asymptotic constant bounded above by 
√

1 − �2

1 + �2
, where 

� is as in Assumption EB.

Proof  Take y∗ ∈ K ∩ U and x ∈ U . Note that

using the definition of orthogonal projection onto K, the fact that y∗ ∈ K and Propo-
sition 2.6 in the first inequality, and again Proposition 2.6 regarding U in the second 
inequality.

Now, we will invoke some results from [14] to prove that C(x) is indeed 
the orthogonal projection of x onto the intersection of U with the halfspace 
H+

x
∶= {y ∈ ℝ

n ∣ ⟨y − PK(x), x − PK(x)⟩ ≤ 0} containing K. In [14, Lemma 3] it 
is proved that C(x) = PHx∩U

(x) with Hx ∶= {y ∈ ℝ
n ∣ ⟨y − PK(x), x − PK(x)⟩ = 0} . 

(1 − �2) dist 2(zk,K ∩ U) ≥ dist 2(zk+1,K ∩ U),

(3.6)
dist (zk+1,K ∩ U)

dist (zk,K ∩ U)
≤

√
1 − �2.

(3.7)
dist (xk+1,K ∩ U)

dist (xk,K ∩ U)
≤

√
1 − �2.

(3.8)

dist 2(x,K) = ��x − PK(x)
��
2

≤ ‖x − y∗‖2 − ��PK(x) − y∗��
2

= ‖x − y∗‖2 − ��PK(x) − PK(y
∗)��

2

≤ ‖x − y∗‖2 − ��PU(PK(x)) − PU(PK(y
∗))��

2
− ��PU(PK(x)) − PK(x)

��
2

= ‖x − y∗‖2 − ��PU(PK(x)) − y∗��
2
− ��PU(PK(x)) − PK(x)

��
2
,
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Using the arguments employed at the beginning of the proof of [14, Lemma 5], we 
get

Hence, the above equality and the fact that y∗ ∈ K ∩ U ⊂ H+
x
∩ U imply 

⟨y∗ − C(x), x − C(x)⟩ ≤ 0 and since x, PU(PK(x)) and C(x) are collinear (see [14, Eq. 
(7)]), we get ⟨y∗ − C(x),PU(PK(x)) − C(x)⟩ ≤ 0 . Thus,

Now, (3.9) and (3.8) imply

using the definition of the distance in the last two inequalities. Now, taking 
y∗ = PK∩U(x) and using the error bound condition for x and C(x), we obtain

Rearranging (3.10), we get (1 + �2) dist 2(C(x),K ∩ U) ≤ (1 − �2) dist 2(x,K ∩ U) 
and, since xk+1 = C(xk) , we have

which implies the result. 	�  ◻

Propositions  3.1 and 3.3 do not entail immediately that the sequences 
(xk)k∈ℕ, (z

k)k∈ℕ themselves converge linearly; a sequence (yk)k∈ℕ ⊂ ℝ
n may con-

verge to a point y ∈ M ⊂ ℝ
n , in such a way that ( dist (yk,M))k∈ℕ converges linearly 

to 0 but (yk)k∈ℕ itself converges sublinearly. Take for instance M = {(s, 0) ∈ ℝ
2} , 

yk =
(
1∕k, 2−k

)
 . This sequence converges to 0 ∈ M , dist (yk,M) = 2−k converges lin-

early to 0 with asymptotic constant equal to 1/2, but the first component of yk con-
verges to 0 sublinearly, and hence the same holds for the sequence (yk)k∈ℕ . The next 
lemma, possibly of some interest on its own, establishes that this situation cannot 
occur when (yk)k∈ℕ is Fejér monotone with respect to M. The result below is similar 
to [5, Theorem 5.12], however we include its proof for the sake of completeness.

C(x) = PHx∩U
(x) = PH+

x
∩U(x).

(3.9)‖PU(PK(x)) − y∗‖2 ≥ ‖C(x) − y∗‖2 + ‖C(x) − PU(PK(x))‖2.

dist 2(x,K) ≤ ‖x − y∗‖2 − ‖C(x) − y∗‖2 − ��C(x) − PU(PK(x))
��
2

− ��PU(PK(x)) − PK(x)
��
2

= ‖x − y∗‖2 − ‖C(x) − y∗‖2 − ��C(x) − PK(x)
��
2

≤ ‖x − y∗‖2 − ‖C(x) − y∗‖2 − dist 2(C(x),K)

≤ ‖x − y∗‖2 − dist 2(C(x),K ∩ U) − dist 2(C(x),K),

(3.10)

�2 dist 2(x,K ∩ U) ≤ dist 2(x,K)

≤ dist 2(x,K ∩ U) − dist 2(C(x),K ∩ U) − �2 dist 2(C(x),K ∩ U)

= dist 2(x,K ∩ U) − (1 + �2) dist 2(C(x),K ∩ U).

dist (xk+1,K ∩ U)

dist (xk,K ∩ U)
≤

√
1 − �2

1 + �2
,
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Lemma 3.4  Consider a nonempty closed convex set M ⊂ ℝ
n and (yk)k∈ℕ ⊂ ℝ

n . 
Assume that (yk)k∈ℕ is Fejér monotone with respect to M, and that ( dist (yk,M))k∈ℕ 
converges R-linearly to 0. Then (yk)k∈ℕ converges R-linearly to some point 
y∗ ∈ M , with asymptotic constant bounded above by the asymptotic constant of 
( dist (yk,M))k∈ℕ.

Proof  Fix k ∈ ℕ and note that the Fejér monotonicity hypothesis implies that, for all 
j ≥ k,

By Proposition 2.3(i), (yk)k∈ℕ is bounded. Take any cluster point ȳ of (yk)k∈ℕ . Tak-
ing limits with j → ∞ in (3.11) along a subsequence (ykj )j∈ℕ of (yk)k∈ℕ converging to 
ȳ , we get that ‖‖ȳ − PM(y

k)‖‖ ≤ dist (yk,M) . Since limk→∞ dist (yk,M) = 0 , we con-
clude that (PM(y

k))k∈ℕ converges to ȳ , so that there exists a unique cluster point, 
say y∗ . Therefore, limk→∞ yk = y∗ , and hence ‖‖y∗ − PM(y

k)‖‖ ≤ dist (yk,M) . Since 
y∗ = limk→∞ PM(y

k) , we conclude that y∗ ∈ M . Observe further that

Taking kth-root and then lim sup with k → ∞ in (3.12), and using the R-linearity 
hypothesis,

establishing both that (yk)k∈ℕ converges R-linearly to y∗ ∈ M and the statement on 
the asymptotic constant. 	�  ◻

With the help of Lemma 3.4, we prove next the R-linear convergence of the MAP 
and CRM sequences under Assumption EB, and give bounds for their asymptotic 
constants.

Theorem  3.5  Consider a closed and convex set K ⊂ ℝ
n and an affine manifold 

U ⊂ ℝ
n . Assume that K,  U satisfy Assumption EB. Let (zk)k∈ℕ, (xk)k∈ℕ be the 

sequences generated by MAP and CRM, respectively, starting from arbitrary points 
z0 ∈ ℝ

n, x0 ∈ U . Then both sequences (zk)k∈ℕ and (xk)k∈ℕ converge R-linearly to 
points in K ∩ U , and the asymptotic constants are bounded above by 

√
1 − �2 for 

MAP, and by 
√

1 − �2

1 + �2
 for CRM, with � as in Assumption EB.

Proof  In view of Propositions  2.4 and 2.7(iii) and (iv), both sequences are Fejér 
monotone with respect to K ∩ U and converge to points in K ∩ U . By Corollary 3.2, 

(3.11)
‖‖‖y

j − PM(y
k)
‖‖‖ ≤

‖‖‖y
k − PM(y

k)
‖‖‖ = dist (yk,M).

(3.12)

‖‖‖y
k − y∗

‖‖‖ ≤
‖‖‖y

k − PM(y
k)
‖‖‖ +

‖‖‖PM(y
k) − y∗

‖‖‖
= dist (yk,M) +

‖‖‖y
∗ − PM(y

k)
‖‖‖ ≤ 2 dist (yk,M).

lim sup
k→∞

‖‖‖y
k − y∗

‖‖‖
1∕k

≤ lim sup
k→∞

21∕k dist (yk,M)1∕k

= lim sup
k→∞

dist (yk,M)1∕k < 1,
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both sequences ( dist (zk,K ∩ U))k∈ℕ and ( dist (xk,K ∩ U))k∈ℕ are Q-linearly con-
vergent to 0, and henceforth R-linearly convergent to 0. Corollary  3.2 shows that 
the asymptotic constant of the sequence ( dist (zk,K ∩ U))k∈ℕ is bounded above 
by 

√
1 − �2 , and Proposition  3.3 establishes that the asymptotic constant of the 

sequence ( dist (xk,K ∩ U))k∈ℕ is bounded above by 
√
1 − �2∕

√
1 + �2 . Finally, by 

Lemma 3.4, both (zk)k∈ℕ and (xk)k∈ℕ are R-linearly convergent, with the announced 
bounds for their asymptotic constants. 	�  ◻

We remark that, in view of Theorem  3.5, the upper bound for the asymp-
totic constant of the CRM sequence is substantially better than the one for the 
MAP sequence. Note that the CRM bound reduces the MAP one by a factor of √
1 + �2 , which increases up to 

√
2 when � approaches 1.

4 � Two families of examples for which CRM is much faster than MAP

We will present now two rather generic families of examples for which CRM is 
faster than MAP. In the first one, MAP converges sublinearly while CRM con-
verges linearly; in the second one, MAP converges linearly and CRM converges 
superlinearly.

In both families, we work in ℝn+1 . K will be the epigraph of a proper con-
vex function f ∶ ℝ

n
→ ℝ ∪ {+∞} , and U the hyperplane {(x, 0) ∣ x ∈ ℝ

n} ⊂ ℝ
n+1 . 

From now on, we consider f to be continuously differentiable in int ( dom (f )) , 
where dom (f ) ∶= {x ∈ ℝ

n ∣ f (x) < +∞} and int ( dom (f )) is its topological inte-
rior. Next, we make the following assumptions on f: 

	A1.	 0 ∈ int ( dom (f )) is the unique minimizer of f.
	A2.	 ∇f (0) = 0.
	A3.	 f (0) = 0.

We will show that under these assumptions, MAP always converges sublinearly, 
while, adding an additional hypothesis, CRM converges linearly.

Note that under hypotheses A1 to A3, 0 ∈ ℝ
n is the unique zero of f and hence 

K ∩ U = {(0, 0)} ⊂ ℝ
n+1 . In view of Propositions 2.4 and 2.7, the sequences gen-

erated by MAP and CRM, with arbitrary initial points in ℝn+1 and U, respec-
tively, both converge to (0,  0), and are Fejér monotone with respect to {(0, 0)} , 
so that, in view of A1, for large enough k the iterates of both sequences belong 
to int ( dom (f )) ×ℝ . We take now any point (x, 0) ∈ U , with x ≠ 0 and proceed to 
compute PK(x, 0) . Since (x, 0) ∉ K (because x ≠ 0 and K ∩ U = {(0, 0)} ), PK(x, 0) 
must belong to the boundary of K, i.e., it must be of the form (u,  f(u)), and u is 
determined by minimizing ‖(x, 0) − (u, f (u))‖2 , so that u − x + f (u)∇f (u) = 0 , or 
equivalently

(4.1)x = u + f (u)∇f (u).
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Note that since x ≠ 0 , u ≠ 0 by A3. With the notation of Sect. 3 and bearing in mind 
that T and C are the MAP and CRM operators defined in (2.1), it is easy to check 
that

with u as in (4.1). Moreover,

Next, we compute C(x, 0) = circ ((x, 0),RK(x, 0),RU(RK(x, 0))) . Suppose that 
C(x, 0) = (v, s) . The conditions 

 give rise to two quadratic equations whose solution is

using (4.1) in the last equality.
We proceed to compute the quotients ‖T(x, 0) − 0‖∕‖(x, 0) − 0‖ , 

‖C(x, 0) − 0‖∕‖(x, 0) − 0‖ . Since both the MAP and the CRM sequences converge 
to 0, these quotients are needed for determining their convergence rates. In view of 
(4.2) and (4.3), these quotients reduce to ‖u‖∕‖x‖, ‖v‖∕‖x‖ . We state the result of 
the computation of these quotients in the next proposition.

Proposition 4.1  Take (x, 0) ∈ U with x ≠ 0 . Let T(x, 0) = (u, 0) and C(x, 0) = (v, 0) . 
Then,

with ū = u∕‖u‖,

and

Proof  In view of (4.1),

(4.2)
PK(x, 0) = (u, f (u)), and

T(x, 0) = PU(PK(x, 0)) = (u, 0),

RK(x, 0) = (2u − x, 2f (u)),

PU(RK(x, 0)) = (2u − x, 0), and

RU(RK(x, 0)) = (2u − x,−2f (u)).

‖(v, s) − (x, 0)‖ = ��(v, s) − RK(x, 0)
�� = ��(v, s) − RU(RK(x, 0))

��

(4.3)s = 0, v = u −

�
f (u)

‖x − u‖

�2
(x − u) = u −

f (u)

‖∇f (u)‖2
∇f (u),

(4.4)
‖T(x, 0)‖
‖(x, 0)‖ =

‖u‖
‖x‖ =

1

����
ū +

f (u)

‖u‖∇f (u)
����

(4.5)
�
‖C(x, 0)‖
‖T(x, 0)‖

�2
=

�
‖v‖
‖u‖

�2
≤ 1 −

�
f (u)

‖u‖ ‖∇f (u)‖

�2
,

(4.6)
�
‖C(x, 0)‖
‖(x, 0)‖

�2
≤

�
1 −

�
f (u)

‖u‖ ‖∇f (u)‖

�2
��

‖u‖
‖x‖

�2
.
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and (4.4) follows by dividing the numerator and the denominator by ‖u‖.
We proceed to establish (4.5). In view of (4.3), we have

using the gradient inequality ⟨∇f (u), u⟩ ≥ f (u) , which holds because f is convex and 
f (0) = 0 . Now, (4.5) follows by dividing (4.7) by ‖u‖2 . Finally, (4.6) follows by 

multiplying (4.5) by 
‖u‖2

‖x‖2
=

‖T(x, 0)‖2

‖(x, 0)‖2
 . 	�  ◻

Next we compute the limits with x → 0 of the quotients in Proposition 4.1.

Proposition 4.2  Take (x, 0) ∈ U with x ≠ 0 . Let T(x, 0) = (u, 0) and C(x, 0) = (v, 0) . 
Then,

and

Proof  By convexity of f, using A3, f (y) ≤ ⟨∇f (y), y⟩ ≤ ‖∇f (y)‖ ‖y‖ for all 
y ∈ int ( dom (f )) sufficiently close to 0. Hence, for all nonzero y ∈ int ( dom (f )) , 
0 < f (y)∕‖y‖ ≤ ‖∇f (y)‖ , using A1 and A3. Since limy→0 ∇f (y) = 0 by A1 and A2 
and the convexity of f, it follows that

Now we take limits with x → 0 in (4.4). Since (u, 0) = PK((x, 0)) and using the con-
tinuity of projections, limx→0 u = 0 . Thus,

‖u‖
‖x‖ =

‖u‖
‖u + f (u)∇f (u)‖

(4.7)

‖v‖2 =
�����
u −

f (u)

‖∇f (u)‖2
∇f (u)

�����

2

= ‖u‖2 +
�

f (u)

‖∇f (u)‖

�2
− 2

f (u)

‖∇f (u)‖2
⟨∇f (u), u⟩

≤ ‖u‖2 +
�

f (u)

‖∇f (u)‖

�2
− 2

�
f (u)

‖∇f (u)‖

�2

= ‖u‖2 −
�

f (u)

‖∇f (u)‖

�2
,

(4.8)lim sup
x→0

‖T(x, 0)‖
‖(x, 0)‖ = lim

x→0

‖u‖
‖x‖ = 1

(4.9)lim sup
x→0

�
‖C(x, 0)‖
‖(x, 0)‖

�2
= lim sup

x→0

�
‖v‖
‖x‖

�2
≤ 1 − lim inf

x→0

�
f (x)

‖x‖ ‖∇f (x)‖

�2
.

(4.10)lim
y→0

f (y)∕‖y‖ = 0.
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using (4.10) and the fact that ‖ū‖ = ‖u∕‖u‖‖ = 1 . We have proved that (4.8) holds. 
Now we deal with (4.9). Taking x → 0 in (4.6), we have

The second lim sup on the right-hand side of (4.11) is equal to limx→0

�
‖u‖
‖x‖

�2
 and by 

(4.8) it is equal to 1 and so (4.9) follows from the already made observation that 
limx→0 u = 0 . 	�  ◻

We proceed to establish the convergence rates of the sequences generated by 
MAP and CRM for this choice of K and U.

Corollary 4.3  Consider K,U ⊂ ℝ
n+1 given by K = epi (f ) , with f ∶ ℝ

n
→ ℝ ∪ {+∞} 

satisfying A1 to A3 and U ∶= {(x, 0) ∣ x ∈ ℝ
n} ⊂ ℝ

n+1 . Let (zk, 0)k∈ℕ and (xk, 0)k∈ℕ , 
be the sequences generated by MAP and CRM, starting from (z0, 0) ∈ ℝ

n+1 and 
(x0, 0) ∈ U , respectively. Then,

and

with

Proof  Since T(zk, 0) = (zk+1, 0) , C(xk, 0) = (xk+1, 0) , and limk→∞ xk = limk→∞ zk = 0 , 
it suffices to apply Proposition 4.2 with x = zk in (4.8) and x = xk in (4.9).

	�  ◻

We add now an additional hypothesis on f. 

	A4.	 f satisfies lim inf
x→0

f (x)

‖x‖ ‖∇f (x)‖ > 0.

lim sup
x→0

‖T(x, 0)‖
‖(x, 0)‖ = lim

x→0

‖T(x, 0)‖
‖(x, 0)‖ = lim

x→0

1

����
ū +

f (u)

‖u‖∇f (u)
����

= lim
u→0

1

����
ū +

f (u)

‖u‖∇f (u)
����

=
1

‖ū‖ = 1,

(4.11)

lim sup
x→0

�
‖C(x, 0)‖
‖(x, 0)‖

�2
≤

�
1 − lim inf

x→0

�
f (u)

‖u‖ ‖∇f (u)‖

�2
�
lim sup

x→0

�
‖u‖
‖x‖

�2
.

lim sup
k→∞

‖‖(zk+1, 0)‖‖
‖‖(zk, 0)‖‖

= 1

(4.12)lim sup
k→∞

��(xk+1, 0)��
��(xk, 0)��

≤
√
1 − �2,

(4.13)� ∶= lim inf
x→0

f (x)

‖x‖ ‖∇f (x)‖ .
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Observe that by using the convexity of f and Cauchy-Schwarz inequality, we have

Thus, A1 to A3 imply f (x)∕(‖x‖ ‖∇f (x)‖) ∈ (0, 1] , for all x ≠ 0 , so that A4 
just excludes the case in which the lim inf above is equal to 0. Next we rephrase 
Corollary 4.3.

Corollary 4.4  Consider K,U ⊂ ℝ
n+1 given by K = epi (f ) , with f ∶ ℝ

n
→ ℝ ∪ {+∞} 

satisfying A1 to A3 and U ∶= {(x, 0) ∣ x ∈ ℝ
n} ⊂ ℝ

n+1 . Then the sequence gener-
ated by MAP from an arbitrary initial point converges sublinearly. If f also satisfies 
hypothesis A4, then the sequence generated by CRM from an initial point in U con-
verges linearly, and its asymptotic constant is bounded above by 

√
1 − 𝛾2 < 1 , with 

� as in (4.13).

Proof  Immediate from Corollary 4.3 and hypothesis A4.
	�  ◻

Next we discuss several situations for which hypothesis A4 holds, showing that it 
is rather generic. The first case is as follows.

Proposition 4.5  Assume that f, besides satisfying A1 to A3, is of class C2 and ∇2f (0) 
is nonsingular. Then, assumption A4 holds, and 𝛾 ≥ 𝜆min∕(2𝜆max) > 0 where 
�min, �max are the smallest and largest eigenvalues of ∇f 2(0) , respectively.

Proof  In view of A2, A3 and the hypothesis on ∇f 2(0) , we have

Also, using the Taylor expansion of ∇f  around x = 0 , ∇f (x) = ∇2f (0)x + o(‖x‖) , so 
that

By (4.14), (4.15),

and the result follows by taking lim inf in (4.16), since the right hand converges to 
𝜆min

2𝜆max

> 0 as x → 0 . 	�  ◻

0 ≤ f (x) ≤ ⟨∇f (x), x⟩ ≤ ‖∇f (x)‖‖x‖.

(4.14)f (x) =
1

2

�
x,∇2f (0)x

�
+ o(‖x‖2) ≥

�min

2
‖x‖2 + o(‖x‖2).

(4.15)

‖x‖ ‖∇f (x)‖ = ‖x‖ ���∇
2f (0)x

��� + o(‖x‖2)

≤ ‖x‖2���∇
2f (0)

��� + o(‖x‖2)

≤ �max‖x‖2 + o(‖x‖2).

(4.16)
f (x)

‖x‖ ‖∇f (x)‖ ≥
�min‖x‖2 + o(‖x‖2)
2�max‖x‖2 + o(‖x‖2)
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Note that nonsingularity of ∇2f (0) holds when f is of class C2 and strongly convex.
We consider next other instances for which assumption A4 holds. Now we deal 

with the case in which f (x) = �(‖x‖) with � ∶ ℝ → ℝ ∪ {+∞} , satisfying A1 to 
A3. This case has a one dimensional flavor, and computations are easier. The first 
point to note is that

so that assumption A4 becomes: 

A4′	� � satisfies lim inf
t→0

𝜙(t)

t𝜙�(t)
> 0.

 More importantly, in this case ∇f (x) and x are collinear, which allows for an improve-
ment in the asymptotic constant: we will have 1 − � instead of 

√
1 − �2 in (4.12), as we 

show next. We reformulate Propositions 4.1 and 4.2 for this case.

Proposition 4.6  Assume that f (x) = �(‖x‖) , with � ∶ ℝ → ℝ ∪ {+∞} satisfying A1 
to A3 and A4′ . Take (x, 0) ∈ U with x ≠ 0 . Let C(x, 0) = (v, 0) . Then, 

	 (i)	

	 (ii)	

Proof  In this case

so that (4.1) becomes

and (4.3) can be rewritten as

Hence,

(4.17)lim inf
x→0

f (x)

‖x‖ ‖∇f (x)‖ = lim inf
t→0

�(t)

t��(t)
,

(4.18)
‖C(x, 0)‖
‖T(x, 0)‖ =

‖v‖
‖u‖ = 1 −

�(‖u‖)
��(‖u‖)‖u‖ ,

(4.19)lim sup
x→0

‖C(x, 0)‖
‖(x, 0)‖ = 1 − lim inf

x→0

f (x)

‖x‖ ‖∇f (x)‖ = 1 − lim inf
t→0

�(t)

t��(t)
.

∇f (x) =
��(‖x‖)
‖x‖ x

x =

�
1 +

�(‖u‖)��(u)

‖u‖

�
u,

v =

�
1 −

�(‖u‖)
��(‖u‖)‖u‖

�
u.

‖v‖
‖u‖ = 1 −

�(‖u‖)
��(‖u‖)‖u‖ ,
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establishing (4.18). Then, (4.19) follows from (4.18) as in the proofs of Proposi-
tions 4.1 and 4.2, taking into account (4.17). 	� ◻

Corollary 4.7  Let (xk, 0)k∈ℕ be the sequence generated by CRM with (x0, 0) ∈ U . 
Assume that f (x) = �(‖x‖) with � ∶ ℝ → ℝ ∪ {+∞} satisfying A1 to A3. Then,

with

If � satisfies hypothesis A4′ then, the CRM sequence is Q-linearly convergent, with 
asymptotic constant equal to 1 − 𝛾̂.

Proof  It is an immediate consequence of Proposition 4.6(ii), in view of the defini-
tion of the circumcenter operator C, given in (2.1). 	�  ◻

We verify next that assumption A4′ is rather generic. It holds, e.g., if � is analytic 
around 0.

Proposition 4.8  If � satisfies A1 to A3 and is analytic around 0 then it satisfies A4′ , 
and 𝛾̂ = 1∕p , where p ∶= min{j ∣ �(j)(0) ≠ 0}.

Proof  In this case 

 and 

 
 and the result follows taking limits with t → 0 , taking into account (4.20). 	�  ◻

Note that for an analytic � the asymptotic constant is always of the form 1 − 1∕p 
with p ∈ ℕ . This is not the case in general. Take, e.g., �(t) = |t|� with � ∈ ℝ , 𝛼 > 1 . 
Then a simple computation shows that 𝛾̂ = 1∕𝛼 . Note that � is of class Cp , where p is 
the integer part of � , but not of class Cp+1 , so that Proposition 4.8 does not apply.

Take now

i.e., f (x) = �(‖x‖) with �(t) = 1 −
√
1 − t2 , when t ∈ [−1, 1],�(t) = +∞ otherwise. 

Note that f satisfies A1 to A3 and its effective domain is the unit ball in ℝn . Since 
� is analytic around 0 and ���(0) ≠ 0 , we get from Proposition 4.8 that 𝛾̂ = 1∕2 and 

lim sup
k→∞

‖‖(xk+1, 0)‖‖
‖‖(xk, 0)‖‖

= 1 − 𝛾̂ ,

(4.20)𝛾̂∶= lim inf
t→0

𝜙(t)

t𝜙�(t)
.

�(t) = (1∕p!)�(p)(0)tp + o(tp+1)

t��(t) = (1∕(p − 1)!)�(p)(0)tp + o(tp+1),

f (x) ∶=

�
1 −

�
1 − ‖x‖2, if ‖x‖ ≤ 1,

+∞, otherwise,
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so the asymptotic constant of the CRM sequence is also 1/2. Note that the graph 
of f is the lower hemisphere of the ball B ⊂ ℝ

n+1 centered at (0, 1) with radius 1. 
Observe also that the projection onto B of a point of the form (x, 0) ∈ ℝ

n+1 is of 
the form (u,  t) with t < 1 , so it belongs to epi (f ) . Hence, the sequences generated 
by CRM for the pair K, U with K = epi (f ) and K = B coincide. It follows easily 
that the sequence generated by CRM for a pair K, U where K is any ball and U is a 
hyperplane tangent to the ball, converges linearly, with asymptotic constant equal 
to 1/2. We remark that in all these cases the sequence generated by MAP converges 
sublinearly, by virtue of Corollary 4.4.

We look now at a case where hypothesis A4′ fails. Define

so that f (x) = �(‖x‖) with �(t) = e−1∕t
2 , when t ∈ (−3−1∕2, 3−1∕2),�(t) = +∞ oth-

erwise. Again f satisfies A1 to A3. It is easy to check that �(t)∕(t��(t)) = (1∕2)t2 , 
so that limt→0 �(t)∕(t�

�(t)) = 0 and A4′ fails. It is known that this � , which is of 
class C∞ but not analytic, is extremely flat (in fact, f (k)(0) = 0 for all k), and not 
even CRM can overcome so much flatness; in view of Corollary 4.7, in this case it 
converges sublinearly, as MAP does. The examples above are also presented as a 
study case in [6], illustrating the slow convergence of the proximal point algorithm, 
Douglas-Rachford algorithm and alternating projections.

Let us abandon such an appalling situation, and move over to other examples 
where CRM will be able to exhibit again its superiority; next, we deal with our 
second family of examples. In this case we keep the framework of the first fam-
ily with just one change, namely in hypothesis A3 on f; now we will request that 
f (0) < 0 . With this single trick (and a couple of additional technical assump-
tions), we will achieve linear convergence of the MAP sequence and superlinear 
convergence of the CRM one. We will assume also that the effective domain of 
f is the whole space (differently from the previous section, we don’t have now 
interesting examples with smaller effective domains; also, since now the limit of 
the sequences can be anywhere, a hypothesis on the effective domain becomes 
rather cumbersome). We’ll also demand that f be of class C2.

Finally, we will restrict ourselves to the case of f (x) = �(‖x‖) , with 
� ∶ ℝ → ℝ ∪ {+∞} . This assumption is not essential, but will considerably sim-
plify our analysis. Thus, we rewrite the assumptions for � , in this new context. We 
assume that function � is proper, strictly convex and twice continuously differenti-
able, satisfying 

A2′.	� ��(0) = 0.
A3′.	� 𝜙(0) < 0.

In the remainder of the paper we will study the behavior of the MAP and CRM 
sequences for the pair K,U ⊂ ℝ

n+1 , where K is the epigraph of f (x) = �(‖x‖) , with 
� satisfying hypotheses A2′ and A3′ above, and U ∶= {(x, 0) ∣ x ∈ ℝ

n} ⊂ ℝ
n+1 . As 

f (x) ∶=

�
e−‖x‖

−2

, if ‖x‖ ≤
1√
3
,

+∞, otherwise.
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in the previous case, Propositions 2.4 and 2.7 ensure that both sequences converge 
to points in K ∩ U . Since we are dealing with convergence rates, we will exclude the 
case in which the sequences of interest have finite convergence. We continue with an 
elementary property of the limit of these sequences.

Proposition 4.9  Assume that K, U are as above. Let (x∗, 0) be the limit of either the 
MAP or the CRM sequences and t∗ ∶= ‖x∗‖ . Then, �(t∗) = 0 and 𝜙�(t∗) > 0.

Proof  Since these sequences stay in U, remain outside K (otherwise convergence 
would be finite), and converge to points in K ∩ U , it follows that their limits must 
belong to bd (K) ∩ U , where bd (K) ∶= {(x, f (x)) ∣ x ∈ ℝ

n} denotes the boundary of 
K. So, we conclude that 0 = f (x∗) = �(t∗) . Now, since ��(0) = 0 , in view of A2′ , and 
�′ is strictly increasing, we conclude that 𝜙�(t) > 0 for all t > 0 . Note that x∗ ≠ 0 , 
because f (x∗) = 0 and f (0) < 0 by A3′ . Hence t∗ = ‖x∗‖ > 0 , so that 𝜙�(t∗) > 0 . 	
� ◻

Now we analyze the behavior of the operators C and T, in this case.

Proposition 4.10  Assume that K,U ⊂ ℝ
n+1 are defined as 

 and 

 where 

 and � satisfies A2′ and A3′ . Let T and C be the operators associated to MAP and 
CRM respectively, and (z∗, 0) and (x∗, 0) the limits of the sequences (zk)k∈ℕ and 
(xk)k∈ℕ generated by these methods, starting from some (z0, 0) ∈ ℝ

n+1 , and some 
(x0, 0) ∈ U , respectively. Then,

and

Proof  Since, in this case, ∇f (x) =
��(‖x‖)
‖x‖ x for all x ≠ 0 , we rewrite (4.1) and (4.3) 

as

U ∶= {(x, 0) ∣ x ∈ ℝ
n} ⊂ ℝ

n+1

K = epi (f )

f (x) = �(‖x‖)

(4.21)lim sup
x→z∗

‖T(x, 0) − (z∗, 0)‖
‖(x, 0) − (z∗, 0)‖ =

1

1 + ��(‖z∗‖)2

(4.22)lim sup
x→z∗

‖C(x, 0) − (x∗, 0)‖
‖(x, 0) − (x∗, 0)‖ = 0.
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and

In view of (4.23) and (4.24), u, v and x are collinear. In terms of the operators C 
and T, we have that x, C(x) and T(x) are collinear, so the same holds for the whole 
sequences generated by MAP, CRM and hence also for their limits (z∗, 0), (x∗, 0) . 
This is a consequence of the one-dimensional flavor of this family of examples. So, 
we define s ∶= ‖z∗‖ , t ∶= ‖x∗‖ , r ∶= ‖u‖ , and therefore we get u = (r∕s)z∗ = (r∕t)x∗ . 
We compute next the quotients

and

needed for determining the convergence rate of the MAP and CRM sequences. We 
start with the MAP case.

using (4.23) in the second equality and the fact that s = �(‖z∗‖) = f (z∗) = 0 , estab-
lished in Proposition 4.9, in the fourth one.

Now, we perform a similar computation for the operator C, needed for the CRM 
sequence.

(4.23)x =

�
1 +

�(‖u‖)��(‖u‖)
‖u‖

�
u

(4.24)v =

�
1 −

�(‖u‖)
��(‖u‖)‖u‖

�
u.

‖(T(x), 0) − (z∗, 0)‖
‖(x, 0) − (z∗, 0)‖ =

‖u − z∗‖
‖x − z∗‖

‖(C(x), 0) − (x∗, 0)‖
‖(x, 0) − (x∗, 0)‖ =

‖v − x∗‖
‖x − x∗‖ ,

(4.25)

‖T(x, 0) − (z∗, 0)‖
‖(x, 0) − (z∗, 0)‖ =

‖u − z∗‖
‖x − z∗‖ =

s
���
r

s
− 1

���
s
���
r

s
− 1 + �(r)��(r)

���
=

�r − s�
�r − s + s��(r)�(r)�

=
1

����
1 + s��(r)

�
�(r)−�(s)

r−s

�����

,



	 R. Arefidamghani et al.

1 3

using (4.24) in the second equality, and Proposition 4.9, which implies �(t) = 0 , in 
the fifth one.

Finally, we take limits in (4.25) with x → z∗ and in (4.26) with x → x∗ . Note that, 
since u = PK(x) , limx→z∗ u = PK(z

∗) = z∗ , because z∗ ∈ K . Hence we take limit with 
r → s in the right hand side of (4.25). We also take limits with x → x∗ in (4.26). By 
the same token, taking limit with r → t in the right hand side, we get

and

The results follow, in view of the definitions of s and t, from (4.27) and (4.28), 
respectively. 	�  ◻

(4.26)

‖C(x, 0) − (x∗, 0)‖
‖(x, 0) − (x∗, 0)‖ =

‖v − x∗‖
‖x − x∗‖ =

t
����

�
1 −

�(r)

��(r)r

�
r

t
− 1

����
t
���
r

t
− 1 + �(r)��(r)

���

=

����

�
1 −

�(r)

r��(r)

�
r − t

����
�r − t + t�(r)��(r))� =

���r − t −
�(r)

��(r)

���
�r − t + t�(r)��(r)�

=

����
1 −

1

��(r)

�
�(r)−�(t)

r−t

�����
����
1 + t��(r)

�
�(r)−�(t)

r−t

�����

,

(4.27)

lim sup
x→z∗

‖T(x, 0) − (z∗, 0)‖
‖(x, 0) − (z∗, 0)‖ = lim sup

r→s

1
����
1 + s��(r)

�
�(r)−�(s)

r−s

�����
=

1
�����
1 + s lim

r→s
��(r)

�
�(r) − �(s)

r − s

������
=

1

1 + s��(s)2

(4.28)

lim sup
x→x∗

‖C(x, 0) − (x∗, 0)‖
‖(x, 0) − (x∗, 0)‖ = lim sup

r→t

����
1 −

1

��(r)

�
�(r)−�(t)

r−t

�����
����
1 + t��(r)

�
�(r)−�(t)

r−t

�����

=

�����
1 − lim

r→t

1

��(r)

�
�(r) − �(t)

r − t

������
�����
1 + t lim

r→t
��(r)

�
�(r) − �(t)

r − t

������

=

���1 −
��(t)

��(t)

���
��1 + t��(t)2��

= 0.
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Note that the denominators in the expressions of (4.27) and (4.28) are the 
same; the difference lies in the numerators: in the MAP case it is 1; in the CRM 
one, the presence of the factor (�(r) − �(t))∕(r − t) makes the numerator go to 0 
when r tends to t.

Corollary 4.11  Under the assumptions of Proposition  4.10 the sequence gener-
ated by MAP converges Q-linearly to a point (z∗, 0) ∈ K ∩ U , with asymptotic con-
stant equal to 1∕(1 + ��(‖z∗‖)2) , and the sequence generated by CRM converges 
superlinearly.

Proof  The result for the MAP sequence follows from (4.21) in Proposition  4.10, 
observing that for x = zk , we have T(x, 0) = (zk+1, 0) . Note that the asymptotic con-
stant is indeed smaller than 1, because z∗ ≠ 0 , and ��(‖z∗‖) ≠ 0 by Proposition 4.9. 

(a)

(b)

Fig. 1   Illustrative comparison between MAP and CRM
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The result for the CRM sequence follows from (4.22) in Proposition 4.10, observing 
that for x = xk , we have C(x, 0) = (xk+1, 0) . 	�  ◻

We now present an example that, although very simple, enables one to visualize 
how fast CRM is in comparison to MAP.

Example 4.12  Let � ∶ ℝ → ℝ given by �(t) = |t|� − � , where 𝛼 > 1 and � ≥ 0 . 
Consider K,U ⊂ ℝ

2 such that K ∶= epi (�) and U is the abscissa axis. Note that, 
if � = 0 , the error bound condition EB between K and U does not hold. For any 
𝛽 > 0 , though, it is easily verifiable that EB is valid. Figure  1 shows CRM and 
MAP tracking a point in K ∩ U up to a precision 𝜀 > 0 , with the same starting point 
(1.1, 0) ∈ ℝ

2 . We fix � = 2 and take � = 0 in Fig. 1a and � = 0.06 in Fig. 1b. We 
count and display the iterations of the MAP sequence (zk)k∈ℕ and the CRM sequence 
(xk)k∈ℕ until dist (zk,K ∩ U) ≤ � and dist (xk,K ∩ U) ≤ � , with � = 10−3 . The figures 
below depict the results on MAP and CRM derived in Corollaries 4.4 and 4.11.

We emphasize that in the cases above MAP exhibits its usual behavior, i.e., lin-
ear convergence. The examples of the first family were somewhat special because, 
roughly speaking, the angle between K and U goes to 0 near the intersection. On the 
other hand, the superlinear convergence of CRM is quite remarkable. The additional 
computations of CRM over MAP reduce to the trivial determination of the reflec-
tions and the solution of a system of two linear equations in two variables, for find-
ing the circumcenter [7, 11]. Now MAP is a typical first-order method (projections 
disregard the curvature of the sets), and thus its convergence is generically no better 
than linear. We have shown that the CRM acceleration improves this linear conver-
gence to superlinear in a rather large class of instances. Long live CRM!

We conjecture that CRM enjoys superlinear convergence whenever U intersects 
the interior of K. The results in this section firmly support this conjecture.
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