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Abstract

We study the convergence rate of the Circumcentered-Reflection Method (CRM) for
solving the convex feasibility problem and compare it with the Method of Alter-
nating Projections (MAP). Under an error bound assumption, we prove that both
methods converge linearly, with asymptotic constants depending on a parameter of
the error bound, and that the one derived for CRM is strictly better than the one
for MAP. Next, we analyze two classes of fairly generic examples. In the first one,
the angle between the convex sets approaches zero near the intersection, so that the
MAP sequence converges sublinearly, but CRM still enjoys linear convergence. In
the second class of examples, the angle between the sets does not vanish and MAP
exhibits its standard behavior, i.e., it converges linearly, yet, perhaps surprisingly,
CRM attains superlinear convergence.

Keywords Convex feasibility problem - Alternating projections - Circumcentered-
reflection method - Convergence rate

Mathematics Subject Classification 49M27 - 65K05 - 65B99 - 90C25

1 Introduction

We deal in this paper with the convex feasibility problem (CFP), defined as follows:
given closed and convex sets K, ..., K,, C R", find a point in nl’."lei.

We study the Circumcentered-Reflection method (CRM) for solving CFP under
an error bound regularity condition. CRM and generalized circumcenters were intro-
duced in [11, 12], and subsequently studied in [7-10, 14, 16] with the geometrical
appeal of accelerating classical projection/reflection based methods. We will see that
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a nonaffine setting embedded with an error bound condition provides, at least, linear
convergence of CRM. Moreover, we present a quite general instance for which CRM
converges superlinearly, opening a path for future research lines on circumcenters-
type schemes. In addition to these contributions, we show that CRM is faster than
the famous Method of Alternating Projections (MAP), even in the lack of an error
bound. MAP has a vast literature (see, for instance, [2, 3, 21, 23]) and concerns CPF
for two sets, in principle. However, the discussion below allows us to apply both
CRM and MAP to the multi-set CFP.

Two very well-known methods for CFP related to MAP are the Sequential Pro-
jection Method (SePM) and the Simultaneous Projection Method (SiPM), which
can be traced back to [18, 20] respectively, and are defined as follows Consider
the operators P,P : R" — R" given by P := =Py o...0Pg : Z[ | Py
where each Py : R" — K; is the orthogonal pl‘O]CCthIl onto K Startmg from an
arbitrary z € IR” SePM and SiPM generate sequences ()c"‘)keN and (x%),c\ given by
R+ = PRy, x"“ P(3%), respectively, where X° = 20 = z. When N K, # @, the
sequences generated by both methods are known to be globally convergent to points
belonging to N2 K;, i.e., to solve CFP. Under suitable assumptions, both meth-
ods have interesting convergence properties also in the infeasible case, i.e., when
m;’; K= @, but we will not deal with this case. See [4] for an in-depth study of these
and other projections methods for CFP.

An interesting relation between SePM and SiPM was found by Pierra [22].
Consider the sets K :=K; X XK, cR"™ U :={(,...,x) | x€R"} c R"™.
Apply SePM to the sets K, U in the product space R™, i.e., take x**! = P (Py(x¥))
starting from x° € U. Clearly, x* belongs to U for all kK € N, so that we may write
xk = (K, ..., xF) with x* € R™. It was proved in [22] that x**! = P(x¥), i.e., a step
of SePM applied to two convex sets in the product space R™™ is equivalent to a
step of SiPM in the original space R”. Thus, SePM with just two sets plays a sort of
special role and, therefore, carries a name of its own, namely MAP. Observe that in
the equivalence above one of the two sets in the product space, namely U, is a lin-
ear subspace. This fact is essential for the convergence of CRM applied for solving
CFP; see [1, 14].

Let us start to focus on the alleged acceleration effect of CRM with respect to
MAP. There is abundant numerical evidence of this effect (see [11, 13, 14, 19]); in
this paper, we will present some analytical evidence, which strengthens the results
from [14]. In view of Pierra’s reformulation [22], the general CFP can be seen as a
specific convex-affine intersection problem and since both CRM and MAP converge
for the general convex-affine intersection problem, from now on, we seek a point
common to a given closed convex set K C R” and an affine manifold U C R".

For finding a point in KN U # @, MAP and CRM iterate by means of the
operators T = PjoP, and C(-) = circ (-, Rg(-), Ry (Rg(-))), respectively, where
Ry =2P; — 1d and R, =2P; — Id are the reflection operators over K and U,
respectively. For a point x € R”, C(x), when exists, is the point equidistant to
X, R (x) and R (Rk(x)) that lies in the affine manifold determined by the latter three
points.

A first result in the analytical study of the acceleration effect of CRM over
MAP was derived in [14], where it was proved that, for all x € U, C(x) is
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well-defined and dist (C(x), K N U) < dist(T(x), K N U), where dist stands for the
Euclidean distance. The previous inequality means that the point obtained after
a CRM step is closer to (or at least no farther from) K N U than the one obtained
after a MAP step from the same point. This local (or myopic) acceleration does
not imply immediately that the CRM sequence converges faster than the MAP
one. In order to show global acceleration, we will focus on special situations
where the convergence rate of the MAP can be precisely established.

MAP is known to be linearly convergent in several special situations, e.g.,
when both K and U are affine manifolds (see [21]) or when K N U has nonempty
interior (see [3]). In Sect. 2 we will consider another such case, namely when a
certain so-called error bound (EB from now on) holds, meaning that there exists
w € (0,1) such that dist (x, K) > wdist (x, K N U) for all x € U. This error bound
resembles the regularity conditions presented in [3, 4, 15]. We will prove that in
this case both the MAP and the CRM sequences converge linearly, with asymp-
totic_constants bounded by V1 — @? for MAP, and by the strictly better bound
V1—-w?/V1+w? for CRM, thus showing that under EB, CRM is faster than
MAP. For the case of MAP, linear convergence under the error bound condition
with this asymptotic constant is already known (see, for instance, [3, Corollary
3.14]) even if U is not affine; we present it for the sake of completeness. Then,
in Sect. 3 we will exhibit two rather generic families of examples where CRM
converges indeed faster than MAP. In the first one, K C R™*! will be the epigraph
of a convex function f : R” - RU {+o0} and U c R"*! a support hyperplane of
K. We will show that in this situation, under adequate assumptions on f, the MAP
sequence converges sublinearly, while the CRM sequence converges linearly, and
we will give as well an explicit bound for the asymptotic constant of the CRM
sequence. Also, we will present a somewhat pathological example for which both
the MAP sequence and the CRM one converge sublinearly. In the second family,
K will still be the epigraph of a convex f, but U will not be a supporting hyper-
plane of K; rather it will intersect the interior of K. In this case, under not too
demanding assumptions on f, the MAP sequence converges linearly (we will give
an explicit bound of its asymptotic constant), while CRM converges superline-
arly. These results firmly corroborate the already established numerical evidence
in [14] of the superiority of CRM over MAP.

2 Preliminaries
We recall first the definition of Q-linear and R-linear convergence.

Definition 2.1 Let (%), C R" be a convergent sequence to y*. Assume that y* # y*
for all k € N. Define

k+1 1k

q :=limsup > —y‘||, and r :=limsup ”y" —y*
k— o0 ”yk - y*” k— o0
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Then, the convergence of (), is

(i) Q-superlinearly if g = 0;
(ii) Q-linearyif g € (0, 1),
(iii)) Q-sublinearly if g > 1;
(iv) R-superlinearly if r = 0;
(v) R-linearly if r € (0, 1);
(vi) R-sublinearly ifr > 1.

The values g, r are called asymptotic constants of (y*)c
It is well known that Q-linear convergence implies R-linear convergence (with the
same asymptotic constant), but the converse statement does not hold true.

We remind now the notion of Fejér monotonicity in R".

Definition 2.2 A sequence (*),cy is Fejér monotone with respect to a set M when
[ =)l < " =), forall y € M.

Proposition 2.3 If (y*),cy is Fejér monotone with respect to M then

@) (yk)keN is bounded,
(ii) if a cluster point y of (*)en belongs to M, then klim Y=

Proof See Theorem 2.16 in [4]. O
We end this section with the main convergence results for MAP and CRM.

Proposition 2.4 Take closed and convex sets K, K, C R" such that K, N K, # @.
Let Py Py be the orthogonal projections onto K;,K, respectively. Con-
sider the sequence (Z"),cy generated by MAP starting from any 7° € R", i.e.,
& = Py (P, (Z)). Then () is Fejér monotone with respect to K, N K, and con-
verges to a point ¥ € K; N K,.

Proof See [17, Theorem 4]. |
Let us present the formal definition of the circumcenter.

Definition 2.5 Let x,y,z € R" be given. The circumcenter circ (x,y,z) € R" is a
point satisfying

(i) |lcirc(x,y,2) = x|| = || circ (x,y,z) — y|| = || circ (x,y,z) — z|| and,

( i i )
circ (x,y,z) € aff {x,y,z} :=={weR" |w=x+aly—x)+ p(z—x), a,f €R}
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The point circ (x,y,z) is well and uniquely defined if the cardinality of the
set {x,y,z} is one or two. In the case in which the three points are all distinct,
circ (x,y,z) is well and uniquely defined only if x, y and z are not collinear. For
more general notions, definitions and results on circumcenters see [12, 13].

Consider now a closed convex set K C R" and an affine manifold U C R".
Let Pg,P; be the orthogonal projections onto K, U respectively. Define
Rg, R, T,C : R" > R"as

Ry =2Pc—1d, R, =2P,—1d, T =Py oPy, C(-)= circ(-,Ri(-),Ry(Rx(-))).
(2.1

Proposition 2.6 Let K C R” be a nonempty closed convex set. Then, the orthogonal
projection Py onto K is firmly nonexpansive, that is, for all x,y € R" we have

[Px00) = PeO)||” < llx = yII? = || = Pxx) = v = PrOo))||*-

Proof See [5, Theorem 4.16]. O

Proposition 2.7 Assume that K N U # @. Let (x*),y be the sequence generated by
CRM starting from any x° € U, i.e., X! = C(x*). Then,

(i) forall x € U, we have that C(x) is well defined and belongs to U,

(ii) forall x € U, it holds that ||C(x) — y|| < [T(x) = y||, foranyy € Kn U;
(iii) (xk)keN is Fejér monotone with respect to K N U;
@iv) (xk)keN converges to a point in KN U.

Proof All these results can be found in [14]: (i) is proved in Lemma 3, (ii) in Theo-
rem 2, and (iii) and (iv) in Theorem 1. O

3 Linear convergence of MAP and CRM under an error bound
assumption

We start by introducing an assumption on a pair of convex sets K,K’' C R",
denoted as EB (as in Error Bound), which will ensure linear convergence of MAP
and CRM.

EB K N K’ # @ and there exists @ € (0, 1) such that dist (x, K) > wdist (x, K N K") for
allx e K'.

Now we consider a closed and convex set K C R” and an affine manifold U C R".
Assuming that K, U satisfy Assumption EB, we will prove linear convergence of the
sequences (zX),cn and (xF),cy generated by MAP and CRM, respectively. We start
by proving that, for both methods, both distance sequences ( dist (X, K N U)); <y and
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(dist(x*, K n U))en converge linearly to 0, which will be a corollary of the next
proposition.

Proposition 3.1 Assume that K, U satisfy EB. Consider T,C : R" —» R" as in (2.1).
Then, for all x € U,

(1 = ))|x = Py @||> 2 |T0) = Py T@)||* = [|CG) = Py (C)|

3.1
with w as in Assumption EB.
Proof 1t follows easily from Proposition 2.6 that
2 2 2
|Px) = y||” < llx = ylI* = ||lx = Pr)| (3.2)

for all x € R" and all y € KN U C K. Invoking again Proposition 2.6, we get from
(3.2)
ITG) = yI* = ||PuPr) = ¥|* < ||Px@) = || = |PuPr ) = Px@)|)*
< lx=yI? = x = Px@)||” = ||Py(Px ) = Px@)||”
< lx=yI? = [Jx = Px@)||* = Ilx =yl = dist(x, K)

< |lx = ylI> — @ dist>(x, K N U)
(3.3)

for all x € U,y € Kn U, using Assumption EB in the last inequality. Take now
¥ = Pgnpy(x). Then, in view of (3.3),
1€ = o CON||* < [|C@) = Pau (T
<70 = P (T)|* < |T@) = Peap )|’
< |Jx = Prao@)||” = @ dist®(x, K 0 U)

=(1- w2)||x - PKnU(x)HZ,

(3.4)

using the definition of Py, in the first and the third inequality and Proposi-
tion 2.7(ii) in the second inequality. Note that (3.1) follows immediately from (3.4).
O

Corollary 3.2 Let (z);cn and (x*),cn, be the sequences generated by MAP and CRM
starting at any 2° € R" and any x° € U, respectively. If K, U satisfy Assumption EB,
then the sequences (dist(zX, KN U Nien and (dist G KNU Nien converge Q-line-
arly to 0, and the asymptotic constants are bounded above by \/ 1 — @?, with @ as in
Assumption EB.

Proof In view of the definition of P, (3.1) can be rewritten as

(1 —@?)dist>(x, K N U) > dist>(T(x), K N U) > dist>(C(x),KnU), (3.5)
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for all x € U. Since ¥*! = T(z), we get from the first inequality in (3.5),
(1 — w?)dist2(*, K N U) > dist> (', K n U),

using the fact that (), C U. Hence

dist ("', K n U)
_ > 2 Tl \/1 — 2.
dist @ KnU) — @ (3.6)

By the same token, using the second inequality in (3.5) and Proposition 2.7(ii), we
get

dist (+1, K 0 U)
aste L A0Y) o\ 1. .
dist(E. KN U) — @ 3D

The inequalities in (3.6) and (3.7) imply the result. O

We remark that the result for MAP holds when U is any closed and convex set,
not necessarily an affine manifold. We need U to be an affine manifold in Proposi-
tion 2.7 (otherwise, (xX), may even diverge), but this proposition is used in our
proofs only when the CRM sequence is involved.

Next, we show that, under Assumption EB, CRM achieves a linear rate with an
asymptotic constant better than the one given in Corollary 3.2.

Proposition 3.3 Let (x),oy be the sequence generated by CRM starting at any
X e U. If K, U satisfy Assumption EB, then the sequence (dist x5 Kn U))ien

. . 1-
Q-converges to 0 with the asymptotic constant bounded above by Twz’ where
w
w is as in Assumption EB.

Proof Take y* € KN U and x € U. Note that

dist> (v, K) = ||x = Py ||’
* %112
< e =y I = |Px@ = |
* N (12
= Il = Y11 = [|Px ) = PO
< =y I = |PyPx () = PyPx 0| = |PyPx@) = Px )|
= llx = 1P = [|Py(Px ) =" ||* = [Py (Pg) = Pk,

(3.8)
using the definition of orthogonal projection onto K, the fact that y* € K and Propo-
sition 2.6 in the first inequality, and again Proposition 2.6 regarding U in the second
inequality.

Now, we will invoke some results from [14] to prove that C(x) is indeed
the orthogonal projection of x onto the intersection of U with the halfspace
HY :={y € R"| (y — Pg(x),x — Py(x)) <0} containing K. In [14, Lemma 3] it
is proved that C(x) = Py nu() with H, :={y € R" | (y — Pg(x),x — Px(x)) = 0}.
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Using the arguments employed at the beginning of the proof of [14, Lemma 5], we
get

C) = Py ay®) = Pyray().

Hence, the above equality and the fact that y* € KNUCH ' NnU imply
(y* — C(x),x — C(x)) < 0and since x, P, (Pg(x)) and C(x) are collinear (see [14, Eq.
(DD, we get (y* — C(x), Py(Pg(x)) — C(x)) < 0. Thus,

1Py (Pg(0)) = y*II> 2 IC) = y*II* + 1Cx) = Py (P o). (3.9

Now, (3.9) and (3.8) imply

dist?(x, K) < [lx =y = 1C@) = y*II* = [|[C0) = PP’
— |PuPr) - P
= e =y I* = 1C@) = y*II” = | C@) = Py
< e =y I = 1CG) = y*II” = dist*(C(x), K)
< |lx = y*|I> = dist*(C(x), K n U) — dist2(C(x), K),

using the definition of the distance in the last two inequalities. Now, taking
¥* = Pgny(x) and using the error bound condition for x and C(x), we obtain

w’ dist>(x, K N U) < dist2(x, K)
< dist?(x, K n U) — dist>(C(x), K N U) — w? dist>(C(x), K N U)
dist2(x, K n U) — (1 + @*) dist2(C(x), K n U).

(3.10)
Rearranging (3.10), we get (1 + @?)dist2(C(x), K N U) < (1 — w?)dist>(x, K N U)
and, since xX**! = C(x*), we have

dist(karl,KﬁU)< [1— w?
dist(?*, KNU) ~— V 1+e?

which implies the result. O

Propositions 3.1 and 3.3 do not entail immediately that the sequences
(OF)Veens (@)en themselves converge linearly; a sequence (%),oy C R" may con-
verge to a point y € M C R”, in such a way that (dist (%, M)), <y converges linearly
to 0 but (y*),y, itself converges sublinearly. Take for instance M = {(s,0) € R?},
y* = (1/k,27*). This sequence converges to 0 € M, dist (*, M) = 27* converges lin-
early to 0 with asymptotic constant equal to 1/2, but the first component of y* con-
verges to 0 sublinearly, and hence the same holds for the sequence (y*),cy. The next
lemma, possibly of some interest on its own, establishes that this situation cannot
occur when (y¥), oy, is Fejér monotone with respect to M. The result below is similar
to [5, Theorem 5.12], however we include its proof for the sake of completeness.
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Lemma 3.4 Consider a nonempty closed convex set M C R" and (y*),cny C R™.
Assume that (y*),cy is Fejér monotone with respect to M, and that (dist (y*, M)),cn
converges R-linearly to 0. Then (Y),o converges R-linearly to some point
y* € M, with asymptotic constant bounded above by the asymptotic constant of

(dist (5, M) en-

Proof Fix k € N and note that the Fejér monotonicity hypothesis implies that, for all
j 2 ka

I = Puh)|| < [ = P = disto?, . 3.11)

By Proposition 2.3(i), (*);cy is bounded. Take any cluster point y of (y%), . Tak-
ing limits with j — coin (3.11) along a subsequence (y" )ien Of (*)en converging to
y, we get that ||y — P,,(0")|| < dist 0%, M). Since lim,_,, dist (¥, M) = 0, we con-
clude that (P,;(¥))cy converges to y, so that there exists a unique cluster point,
say y*. Therefore, lim,_ y* =y*, and hence |[y* — P,,(0})|| < dist 5%, M). Since
y* = lim,_ o, P, (%), we conclude that y* € M. Observe further that

<[y = PuOh)|| + [Pt -

v — pM(y")“ < 2dist (5, M).

-
(3.12)
=dist (X, M) +

Taking kth-root and then lim sup with £ — oo in (3.12), and using the R-linearity
hypothesis,

1/k
< lim sup 2'/* dist (y*, M) /*

k— o0

lim sup “yk -y

k—o0

= lim sup dist (¥, M)'/* < 1,
k—o0
establishing both that (y*),y converges R-linearly to y* € M and the statement on
the asymptotic constant. O

With the help of Lemma 3.4, we prove next the R-linear convergence of the MAP
and CRM sequences under Assumption EB, and give bounds for their asymptotic
constants.

Theorem 3.5 Consider a closed and convex set K C R" and an affine manifold
U C R". Assume that K, U satisfy Assumption EB. Let (ZX);cn» (F)en be the
sequences generated by MAP and CRM, respectively, starting from arbitrary points
2 € R",x° € U. Then both sequences (z*)cn and (xX),cn converge R-linearly to
points in KN U, and the asymptotic constants are bounded above by \/'1 — w?* for

2
MAP, and by i " co2 for CRM, with w as in Assumption EB.
®

Proof In view of Propositions 2.4 and 2.7(iii) and (iv), both sequences are Fejér
monotone with respect to K N U and converge to points in K N U. By Corollary 3.2,

@ Springer



R. Arefidamghani et al.

both sequences (dist(zX, K N U))ey and (dist (&, K N U)),y are Q-linearly con-
vergent to 0, and henceforth R-linearly convergent to 0. Corollary 3.2 shows that
the asymptotic constant of the sequence (dist(z%, K N U))en 1 bounded above
by V1 — w?, and Proposition 3.3 establishes that the asymptotic constant of the
sequence (dist (x*, K N U));cy is bounded above by V1 — w?//1 + »?. Finally, by
Lemma 3.4, both (z*),cy and (x*),cy are R-linearly convergent, with the announced
bounds for their asymptotic constants. O

We remark that, in view of Theorem 3.5, the upper bound for the asymp-
totic constant of the CRM sequence is substantially better than the one for the
MAP sequence. Note that the CRM bound reduces the MAP one by a factor of
V1 + w2, which increases up to \/E when w approaches 1.

4 Two families of examples for which CRM is much faster than MAP

We will present now two rather generic families of examples for which CRM is
faster than MAP. In the first one, MAP converges sublinearly while CRM con-
verges linearly; in the second one, MAP converges linearly and CRM converges
superlinearly.

In both families, we work in R™"!. K will be the epigraph of a proper con-
vex function f : R* - R U {40}, and U the hyperplane {(x,0) | x € R"} c R**!,
From now on, we consider f to be continuously differentiable in int (dom (f)),
where dom (f) := {x € R" | f(x) < +o0} and int (dom (f)) is its topological inte-
rior. Next, we make the following assumptions on f:

Al. 0 € int(dom (f)) is the unique minimizer of f.
A2. Vf(0)=0.
A3. f0)=0.

We will show that under these assumptions, MAP always converges sublinearly,
while, adding an additional hypothesis, CRM converges linearly.

Note that under hypotheses Al to A3, 0 € R" is the unique zero of f and hence
KnU={(0,0)} c R™! In view of Propositions 2.4 and 2.7, the sequences gen-
erated by MAP and CRM, with arbitrary initial points in R"*! and U, respec-
tively, both converge to (0, 0), and are Fejér monotone with respect to {(0,0)},
so that, in view of Al, for large enough k the iterates of both sequences belong
to int (dom (f)) X R. We take now any point (x,0) € U, with x # 0 and proceed to
compute Pg(x,0). Since (x,0) € K (because x # 0 and K n U = {(0,0)}), Pg(x,0)
must belong to the boundary of K, i.e., it must be of the form (u, f(u)), and u is
determined by minimizing ||(x,0) — (u,f(u))||2, so that u — x + f(u)Vf(u) =0, or
equivalently

x=u+fu)Vf(u). “.1)
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Note that since x # 0, u # 0 by A3. With the notation of Sect. 3 and bearing in mind
that T and C are the MAP and CRM operators defined in (2.1), it is easy to check
that

Pr(x,0) = (u,f(n)), and

4.2
T(x,0) = Py(Py(x.0)) = (1, 0), 42)
with u as in (4.1). Moreover,

Ry (x,0) = Qu — x,2f (u)),
Py(Rg(x,0)) = 2u —x,0), and
Ry(R(x,0)) = Qu — x, =2f (u)).

Next, we compute C(x,0) = circ ((x,0), Rg(x,0), R;;(Rg(x,0))). Suppose that
C(x,0) = (v, 5). The conditions

(v, s) = (x5, 0)[| = ||(v,5) = Rg(x, 0)|| = || (v, 8) = Ry(Ri (x, 0)) |
give rise to two quadratic equations whose solution is

[ﬂ)]( )
b= ul IV @l

=0, VW), (43

using (4.1) in the last equality.

We proceed to compute the quotients ||7(x,0)—0]/]|(x,0) =0,
[|C(x,0) — 0] /|I(x,0) — 0]]. Since both the MAP and the CRM sequences converge
to 0, these quotients are needed for determining their convergence rates. In view of
(4.2) and (4.3), these quotients reduce to |[u||/|lx]l, [Iv]l/]lx|l. We state the result of
the computation of these quotients in the next proposition.

Proposition 4.1 Take (x,0) € U with x # 0. Let T(x,0) = (u, 0) and C(x,0) = (v,0).
Then,

1T O _ lull _ 1
G, Ol [|x]| H f(u)vf( )H 4.4)
[l
with i = u/||ull,
M]:[M]l_[L] 45
[M@WI lall | = [l VA | *)
and
Ic@, o]’ < f@w) >2“wr
e O <1 —— S
meu]‘[ el v/l ) | {1l @9

Proof In view of (4.1),
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el _ [luell

lxll — llu+f@) V@l

and (4.4) follows by dividing the numerator and the denominator by ||u||.
We proceed to establish (4.5). In view of (4.3), we have

2

vl = Hu - ”vf;ﬁw(w)
-+ | L - 2 (V) "
vl 2 |
< Nl + _||é(JE?L)t)||_ ‘%u@ﬁm]
= - :néCJEZ)OH:Z’

using the gradient inequality (Vf(u), u) > f(u), which holds because fis convex and
f(0) =0. Now, (4.5) follows by dividing (4.7) by ||u||2. Finally, (4.6) follows by
llull®> _ 1T 0]

TR TEAOTEN

Next we compute the limits with x — 0 of the quotients in Proposition 4.1.

multiplying (4.5) by O

Proposition 4.2 Take (x,0) € U with x # 0. Let T(x,0) = (u, 0) and C(x,0) = (v,0).
Then,

T(x,0 .
lim sup IZCx. O)l =1 Null”

Lnh sl g = 48
VTN R TR (4.8)

and

2 2 2

lim sup [M] = lim sup [M] <1 -Iliminf L] . (4.9
w0 | G 0| w0 L Ixll =0 [ Xl IVl

Proof By convexity of f, using A3, f(y) <(Vf),y) <|IVfWI Iyl for all

y € int(dom (f)) sufficiently close to 0. Hence, for all nonzero y € int(dom (f)),

0 <fM/Iyll < IIVfWII, using Al and A3. Since lim,_, Vf(y) = 0 by Al and A2

and the convexity of f, it follows that

lii%f(y)/ llyll = 0. (4.10)

Now we take limits with x — 0 in (4.4). Since (1, 0) = P ((x, 0)) and using the con-
tinuity of projections, lim,_,,u = 0. Thus,
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imsp PO _ o PO 1
G, 0 x=0 [[(x,0)]] x>0 f( )Vf( )”
|| I
= lim L 1
e pwa] T

using (4.10) and the fact that ||i]| = ||u/||u|||]| = 1. We have proved that (4.8) holds.
Now we deal with (4.9). Taking x — 0 in (4.6), we have

2 2
lim sup [w] < |1 =1iminf < Jw > lim Su [” ||]
w0 | G0l =0\ lull IVf @l [1x]]

2
The second lim sup on the right-hand side of (4.11) is equal to lim,_,, [%] and by

(4.8) it is equal to 1 and so (4.9) follows from the already made observation that
lim,_yu=0. O

.11

We proceed to establish the convergence rates of the sequences generated by
MAP and CRM for this choice of K and U.

Corollary 4.3 Consider K, U C R"! given by K = epi (f), with f : R" - RU {+o0}
satisfying Al to A3 and U := {(x,0) | x € R"} C R"". Let (z*,0),cp and (2%, 0)ens
be the sequences generated by MAP and CRM, starting from (2°,0) € R™! and
&°,0) e U, respectively. Then,

timsup I ON _
k-0 |25, 0)|
and
2410
timsup IO (5 4.12)
k—o00 ||(.Xk,0)||
with
o f)
= liminf ——— 4.1
L= R v (4.13)

Proof Since T(z,0) = (Z*1,0), C(¥, 0) = (', 0), and lim,_ _ x* = lim,_,_ 2 = 0,
it suffices to apply Proposition 4.2 with x = z¥ in (4.8) and x = x* in (4.9).
O

We add now an additional hypothesis on f.

J@)

A4. fsatisfies hmmf _
Xl VAl
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Observe that by using the convexity of f and Cauchy-Schwarz inequality, we have
0 <f(0) < (Vf),x) < IVFIllIx]l.

Thus, Al to A3 imply fx)/(|lx]| IVfx)]) € (0,1], for all x+# 0, so that A4
just excludes the case in which the liminf above is equal to 0. Next we rephrase
Corollary 4.3.

Corollary 4.4 Consider K, U C R"! given by K = epi (f), with f : R" - RU {+o0}
satisfying Al to A3 and U := {(x,0) | x € R"} C R"\. Then the sequence gener-
ated by MAP from an arbitrary initial point converges sublinearly. If f also satisfies
hypothesis A4, then the sequence generated by CRM from an initial point in U con-
verges linearly, and its asymptotic constant is bounded above by \/1 — y% < 1, with
y as in (4.13).

Proof Immediate from Corollary 4.3 and hypothesis A4.
O

Next we discuss several situations for which hypothesis A4 holds, showing that it
is rather generic. The first case is as follows.

Proposition 4.5 Assume that f, besides satisfying Al to A3, is of class C* and V*f(0)
is nonsingular. Then, assumption A4 holds, and y > Ayin/(2Am.) > 0 where
Amins Amax @re the smallest and largest eigenvalues of V£*(0), respectively.

Proof In view of A2, A3 and the hypothesis on V£2(0), we have
1 Ami
F00 = (6 VA Ox) + odlld?) 2 TRl + o(IxlI*). (4.14)

Also, using the Taylor expansion of Vf around x = 0, Vf(x) = VZf(0)x + o(||x]]), so
that

Ill VGO = Il || 92F(0)x| + oClxl)
< IIxlP || V2£)| + oClx1) (4.15)
< A 2117 + o1,

By (4.14), (4.15),

SO o Al + o)

IV 22,1 + o(x]) (416

and the result follows by taking liminf in (4.16), since the right hand converges to

A
Uﬂ>0asx—>0. O

max
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Note that nonsingularity of V2£(0) holds when fis of class C* and strongly convex.

We consider next other instances for which assumption A4 holds. Now we deal
with the case in which f(x) = ¢(||x||) with ¢ : R - R U {+o0}, satisfying Al to
A3. This case has a one dimensional flavor, and computations are easier. The first
point to note is that

limi S ) T ()
iminf ———— = liminf ——,
=0 lx[[ IVl =0 1’ (1)

so that assumption A4 becomes:

4.17)

$@)
1’ (1)
More importantly, in this case Vf(x) and x are collinear, which allows for an improve-

ment in the asymptotic constant: we will have 1 — y instead of 1/1 — y2 in (4.12), as we
show next. We reformulate Propositions 4.1 and 4.2 for this case.

>0

A4' ¢ satisfies lim %nf
—

Proposition 4.6 Assume that f(x) = ¢(|lx|]), with ¢ : R — R U {+oc0} satisfying Al
to A3 and A4’ . Take (x,0) € U with x # 0. Let C(x,0) = (v,0). Then,

ol vl (lull)
—_— = 1 -— .
IO~ e & (ulllul “.18)
N 1 e T (- MY ()
S ol R vreon — T R e 419
(i)
Proof In this case
Vix) = Mx
Il

so that (4.1) becomes

x=0+¢wmww>m
fu

and (4.3) can be rewritten as
_O awn)
= - u.
@' (llul DIfuell

[ 1)
lul & (D llull’

Hence,
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establishing (4.18). Then, (4.19) follows from (4.18) as in the proofs of Proposi-
tions 4.1 and 4.2, taking into account (4.17). O

Corollary 4.7 Let (x*,0),cn be the sequence generated by CRM with (x°,0) € U.
Assume that f(x) = ¢(||x||) with ¢ : R - R U {400} satisfying Al to A3. Then,

. |1 0)])
limsup ——— =1-7,
A TR
with
oo Q)
yi= 111;11} %)nf IO (4.20)

If ¢ satisfies hypothesis A4’ then, the CRM sequence is Q-linearly convergent, with
asymptotic constant equal to1 — 7.

Proof 1t is an immediate consequence of Proposition 4.6(ii), in view of the defini-
tion of the circumcenter operator C, given in (2.1). O

We verify next that assumption A4’ is rather generic. It holds, e.g., if ¢ is analytic
around 0.

Proposition 4.8 If ¢ satisfies Al to A3 and is analytic around O then it satisfies A4’
andy = 1/p, where p :=min{j | $’(0) # 0}.

Proof 1In this case

¢(t) = (1/pHP O + o(?’*")

and

10 = 1/ = DIV OF +06™)

and the result follows taking limits with  — 0, taking into account (4.20). O

Note that for an analytic ¢ the asymptotic constant is always of the form 1 — 1/p
with p € N. This is not the case in general. Take, e.g., ¢(¢) = |¢|* witha € R, a > 1.
Then a simple computation shows that # = 1/a. Note that ¢ is of class C?, where p is
the integer part of a, but not of class C”*', so that Proposition 4.8 does not apply.

Take now
FO) 1= { T—/1=lxI? it el < 1,

+00, otherwise,

ie., f(x)=¢(|x|) withp(r) = 1 — /1 — 2, whent € [—1, 1], $(f) = +o0 otherwise.
Note that f satisfies Al to A3 and its effective domain is the unit ball in R". Since
¢ is analytic around 0 and ¢"'(0) # 0, we get from Proposition 4.8 that = 1/2 and
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so the asymptotic constant of the CRM sequence is also 1/2. Note that the graph
of f is the lower hemisphere of the ball B C R"! centered at (0, 1) with radius 1.
Observe also that the projection onto B of a point of the form (x,0) € R"*! is of
the form (u, t) with ¢ < 1, so it belongs to epi (f). Hence, the sequences generated
by CRM for the pair K, U with K = epi (f) and K = B coincide. It follows easily
that the sequence generated by CRM for a pair K, U where K is any ball and U is a
hyperplane tangent to the ball, converges linearly, with asymptotic constant equal
to 1/2. We remark that in all these cases the sequence generated by MAP converges
sublinearly, by virtue of Corollary 4.4.
We look now at a case where hypothesis A4’ fails. Define

-l L
f(x)::{e Ll <

400, otherwise.

so that f(x) = ¢(|lx||) with ¢(r) = e~/ when t € (=371/2,371/2) ¢(f) = +o0 oth-
erwise. Again f satisfies Al to A3. It is easy to check that ¢(r)/(t¢'(¢)) = (1/2)¢2,
so that lim,_, ¢(2)/(t¢'()) = 0 and A4’ fails. It is known that this ¢, which is of
class C* but not analytic, is extremely flat (in fact, f®(0) = 0 for all k), and not
even CRM can overcome so much flatness; in view of Corollary 4.7, in this case it
converges sublinearly, as MAP does. The examples above are also presented as a
study case in [6], illustrating the slow convergence of the proximal point algorithm,
Douglas-Rachford algorithm and alternating projections.

Let us abandon such an appalling situation, and move over to other examples
where CRM will be able to exhibit again its superiority; next, we deal with our
second family of examples. In this case we keep the framework of the first fam-
ily with just one change, namely in hypothesis A3 on f; now we will request that
f(0) < 0. With this single trick (and a couple of additional technical assump-
tions), we will achieve linear convergence of the MAP sequence and superlinear
convergence of the CRM one. We will assume also that the effective domain of
f is the whole space (differently from the previous section, we don’t have now
interesting examples with smaller effective domains; also, since now the limit of
the sequences can be anywhere, a hypothesis on the effective domain becomes
rather cumbersome). We’ll also demand that f be of class C2.

Finally, we will restrict ourselves to the case of f(x) = ¢(||x]]), with
¢ : R > RU{+o0}. This assumption is not essential, but will considerably sim-
plify our analysis. Thus, we rewrite the assumptions for ¢, in this new context. We
assume that function ¢ is proper, strictly convex and twice continuously differenti-
able, satisfying

A2'. ¢'(0)=0.
A3, ¢(0) <O.

In the remainder of the paper we will study the behavior of the MAP and CRM

sequences for the pair K, U C R™!, where K is the epigraph of f(x) = ¢(||x||), with
¢ satisfying hypotheses A2’ and A3’ above, and U := {(x,0) | x € R"} C R"™!. As
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in the previous case, Propositions 2.4 and 2.7 ensure that both sequences converge
to points in K N U. Since we are dealing with convergence rates, we will exclude the
case in which the sequences of interest have finite convergence. We continue with an
elementary property of the limit of these sequences.

Proposition 4.9 Assume that K, U are as above. Let (x*,0) be the limit of either the
MAP or the CRM sequences and t* := ||x*||. Then, ¢p(t*) = 0 and ¢'(t*) > 0.

Proof Since these sequences stay in U, remain outside K (otherwise convergence
would be finite), and converge to points in K N U, it follows that their limits must
belong to bd (K) N U, where bd (K) := {(x,f(x)) | x € R"} denotes the boundary of
K. So, we conclude that 0 = f(x*) = ¢(t*). Now, since ¢’ (0) = 0, in view of A2’, and
¢’ is strictly increasing, we conclude that ¢/(z) > 0 for all 7 > 0. Note that x* # 0,
because f(x*) = 0 and f(0) < 0 by A3’. Hence t* = ||x*|| > 0, so that ¢'(¢*) > 0.

O

Now we analyze the behavior of the operators C and 7, in this case.

Proposition 4.10 Assume that K, U C R"™! are defined as
U:={(x0)|xeR"} cR*!
and
K = epi(f)
where
J@) = ¢(llxID)

and ¢ satisfies A2' and A3'. Let T and C be the operators associated to MAP and
CRM respectively, and (z*,0) and (x*,0) the limits of the sequences (7)o and
(F)en generated by these methods, starting from some (2°,0) € R"™, and some
(x°,0) € U, respectively. Then,

T 0) = 0] |
1 ]
MO -0l T+ &A= R (421)
and
s 1C6.0) = 6%, 01 _ )

x—z* 1(x, 0) = (x*, 0)]|
@' (llxl)

Proof Since, in this case, Vf(x) = il
x

x for all x # 0, we rewrite (4.1) and (4.3)

as
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x= <1 N w> )
]
and
(llul)
< ¢'<||u||>||u||>” (4.24)

In view of (4.23) and (4.24), u, v and x are collinear. In terms of the operators C
and T, we have that x, C(x) and T(x) are collinear, so the same holds for the whole
sequences generated by MAP, CRM and hence also for their limits (z*, 0), (x*, 0).
This is a consequence of the one-dimensional flavor of this family of examples. So,
we define s := ||z*||, ¢ := ||x*||, ¥ := ||u|l, and therefore we getu = (r/s)z* = (r/t)x*.
We compute next the quotients

1T, 0 - @, 0)ll _ Ju=z"I|
160 - @Ol =21

and

[(C), 0 = 5 Ol _ v =]
lI(x, 0) — (x*, )| lle = x*1”

needed for determining the convergence rate of the MAP and CRM sequences. We
start with the MAP case.

170 - ol _ Ju—zi_ i
I 0) — @Ol =zl gz -1+ ¢(r)q§’(r)|
I s
= 4.25
= s+ 50/ (9] #29
1

()|

using (4.23) in the second equality and the fact that s = ¢(||z*||) = f(z*) = 0, estab-
lished in Proposition 4.9, in the fourth one.

Now, we perform a similar computation for the operator C, needed for the CRM
sequence.
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_ 80 \r _
ICG,0) = & Ol _ Iv—x*Il _ t‘<1 ¢'<r>r>f ’
e E S
o) r
B e
Cr=t41pP ) =1+ 1) (r)]
1 P)—d(®)
¢'(r>< r—t )‘

ooz

(4.26)

using (4.24) in the second equality, and Proposition 4.9, which implies ¢(¢) = 0, in
the fifth one.

Finally, we take limits in (4.25) with x — z* and in (4.26) with x — x*. Note that,
since u = Pg(x), lim,_, .. u = Pp(z*) = z¥, because z* € K. Hence we take limit with
r — s in the right hand side of (4.25). We also take limits with x — x* in (4.26). By
the same token, taking limit with » — ¢ in the right hand side, we get

. 17, 0) = @0l _ . 1
lim su . = lim sup
160 =G 0 o+ s¢/(r)<-¢<r)—¢<s> )‘
_ 1
B _ (4.27)
1+ slim ¢'(r) <—¢(’) () )‘
ros r—s
_ 1
1+ s¢/(s)?
and
- <¢<r> ¢<r>)
- ICCx, 0) = ™0 _ .. YO\
lim sup = lim sup

x—x* ||(x, O) - (X*so)” r—t ‘1 + [d)/(r) (V) ¢(t) ’

T <¢(r> ¢<t>>
=t @'(r) r—t (4.28)

1+ rlim ¢'(r><¢(’”) ¢<r)>‘

_¢0
_ |1 y0l _
|1+ ¢’ (1)?|

The results follow, in view of the definitions of s and ¢, from (4.27) and (4.28),
respectively. O
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@ MAP (250010 it.) © CRM (10 it.)

(a) Lack of error bound: MAP converges sublinearly and CRM linearly.

i G

(b)Presence of error bound: MAP converges linearly and CRM superlinearly.

Fig. 1 Illustrative comparison between MAP and CRM

Note that the denominators in the expressions of (4.27) and (4.28) are the
same; the difference lies in the numerators: in the MAP case it is 1; in the CRM
one, the presence of the factor (¢(r) — ¢p(#))/(r — t) makes the numerator go to 0
when r tends to z.

Corollary 4.11 Under the assumptions of Proposition 4.10 the sequence gener-
ated by MAP converges Q-linearly to a point (z*,0) € K n U, with asymptotic con-
stant equal to 1/(1 + ¢'(||z*|1)?), and the sequence generated by CRM converges
superlinearly.

Proof The result for the MAP sequence follows from (4.21) in Proposition 4.10,

observing that for x = z, we have T(x,0) = (z**!, 0). Note that the asymptotic con-
stant is indeed smaller than 1, because z* # 0, and ¢'(]|z*||) # 0 by Proposition 4.9.
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The result for the CRM sequence follows from (4.22) in Proposition 4.10, observing
that for x = x*, we have C(x, 0) = (x**1,0). 0

We now present an example that, although very simple, enables one to visualize
how fast CRM is in comparison to MAP.

Example 4.12 Let ¢ : R —» R given by ¢(¢) = |#|* — f, where a > 1 and g > 0.
Consider K, U ¢ R? such that K := epi(¢) and U is the abscissa axis. Note that,
if § =0, the error bound condition EB between K and U does not hold. For any
p > 0, though, it is easily verifiable that EB is valid. Figure 1 shows CRM and
MAP tracking a point in K N U up to a precision € > 0, with the same starting point
(1.1,0) € R%. We fix @ = 2 and take f = 0 in Fig. 1a and g = 0.06 in Fig. 1b. We
count and display the iterations of the MAP sequence (z¥),y and the CRM sequence
()c")kEN until dist (z5, K N U) < € and dist (x, K N U) < €, with € = 1073, The figures
below depict the results on MAP and CRM derived in Corollaries 4.4 and 4.11.

We emphasize that in the cases above MAP exhibits its usual behavior, i.e., lin-
ear convergence. The examples of the first family were somewhat special because,
roughly speaking, the angle between K and U goes to 0 near the intersection. On the
other hand, the superlinear convergence of CRM is quite remarkable. The additional
computations of CRM over MAP reduce to the trivial determination of the reflec-
tions and the solution of a system of two linear equations in two variables, for find-
ing the circumcenter [7, 11]. Now MAP is a typical first-order method (projections
disregard the curvature of the sets), and thus its convergence is generically no better
than linear. We have shown that the CRM acceleration improves this linear conver-
gence to superlinear in a rather large class of instances. Long live CRM!

We conjecture that CRM enjoys superlinear convergence whenever U intersects
the interior of K. The results in this section firmly support this conjecture.
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