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Abstract

In this paper, we study the complexity of the forward—backward splitting method with
Beck—Teboulle’s line search for solving convex optimization problems, where the
objective function can be split into the sum of a differentiable function and a nons-
mooth function. We show that the method converges weakly to an optimal solution in
Hilbert spaces, under mild standing assumptions without the global Lipschitz conti-
nuity of the gradient of the differentiable function involved. Our standing assumptions
is weaker than the corresponding conditions in the paper of Salzo (SIAM J Optim
27:2153-2181, 2017). The conventional complexity of sublinear convergence for the
functional value is also obtained under the local Lipschitz continuity of the gradient of
the differentiable function. Our main results are about the linear convergence of this
method (in the quotient type), in terms of both the function value sequence and the itera-
tive sequence, under only the quadratic growth condition. Our proof technique is direct
from the quadratic growth conditions and some properties of the forward—backward
splitting method without using error bounds or Kurdya-tf.ojasiewicz inequality as in
other publications in this direction.
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1 Introduction

In this paper, we mainly consider an optimization problem of minimizing the sum
of two convex functions, one of which is differentiable and the other is nondifferen-
tiable. Many problems in this format have appeared in different fields of science and
engineering including machine learning, compressed sensing, and image processing.
A particular class of this problem is the so-called ¢;-regularized problem that usually
provides sparse solutions with many applications in signal processing and statistics
[1-3].

Among many methods solving the aforementioned optimization problems, the
forward—backward splitting method (FBS in brief, known also as the proximal gradient
method) [2,4-9] is very popular due to its simplicity and efficiency. It is well-known
that this method is globally convergent to an optimal solution with the complexity
Ok~ ') on the iterative cost values under the assumption that the gradient of the
differentiable function is globally Lipschitz continuous [6]. An important advance
was due to [10], where the sublinear convergence was improved to o(k~!) in Hilbert
spaces. Independently, by using some line searches motivated from the work of Tseng
[11] and under a more restricted step size rule, Bello-Cruz and Nghia [12] achieve the
same complexity with the milder assumption that the aforementioned gradient is only
locally Lipschitz continuous in finite-dimensional spaces. The results in [12] were fur-
ther extended in [13] to different line searches for the FBS method and more general
classes of optimization problems even in infinite-dimensional spaces. A recent work
of Bauschke, Bolte, and Teboulle [14] also tackles the absence of Lipschitz continuous
gradient by introducing the so-called NoLips algorithm close to the FBS method with
the involvement of Bregman distance. Their algorithm provides the sublinear com-
plexity & (%) and guarantees the global convergence with an additional hypothesis
about the closedness of the domain of an auxiliary Legendre function defined there.
Unfortunately, the latter assumption as well as those in [12] are not satisfied for the
Poisson inverse regularized problems with Kullback—Leibler divergence [15,16], one
of the main applications in [14]. This situation was overcome in [13] by using the
FBS method and would be revisited again in our sequence [17] with further advanced
achievements on the linear convergence in the quotient type (often referred as Q-linear
convergence). Indeed, Salzo in [13, Section 4] proposed some new hypotheses to avoid
the standard assumptions [6,10,12] on the domain of cost functions. Although these
hypotheses are valid in many natural situations of optimization problems, some non-
trivial parts of them can be further relaxed. In Sect. 3, by reanalyzing the theory of the
FBS method in [12,13], we relax and weaken several conditions assumed in [13] to
acquire the same global convergence and sublinear complexity in Hilbert spaces.' The
proof of many results in this section modifies our corresponding ones in [12] under
the simplified standing assumptions. This section is not a major part of the paper, but
the corresponding results will be used intensively in our main Sect. 4.

The central part of our paper, Sect. 4 devotes to the linear convergence of the FBS
method without the global Lipschitz continuity of gradient mentioned above in finite

1 We are indebted to some remarks from one referee that allow us to extend the results from finite dimensions
to Hilbert spaces in the current version.
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dimensions. Despite the popularity of the FBS method, the linear convergence of this
method has been established recently by using Kurdya-t.ojasiewicz inequality [ 18-22]
(even for nonconvex optimization problems) or some error bound conditions [23-27]
with the base from [28]. Those conditions are somehow equivalent in convex settings;
see, e.g., [18,19,25]. Linear convergence of the FBS method was also obtained in
Hilbert spaces [5] for Lasso problems under some nontrivial conditions such as finite
basis injectivity and strict sparsity pattern. These conditions were fully relaxed in the
papers [19,20], which also work in infinite dimensions for more general optimization
problems. Our results can be also extended to infinite dimensions by following some
ideas of [19], but for simplicity, we restrict ourselves on finite dimensions in this sec-
tion. Our approach is close to the works of Drusvyatskiy and Lewis [25] and Garrigos,
Rosasco, and Villa [19,20] by using the so-called quadratic growth condition known
also as 2-conditioned property. However, our proof of linear convergence is more
direct just from quadratic growth condition without using Kt inequality as in [18-21]
or the error bound [28] as in [23,25] and reveals the Q-linear convergence for the FBS
sequence rather than the R-one obtained in all the aforementioned works. Some of our
linear rates are sharper than those in [19,25]. The property of quadratic growth condi-
tion is indeed automatic in many classes of optimization problems including Poisson
inverse regularized problem [14-16], least-square £ regularized problems [3,5,6,19],
group Lasso [23] or under mild second-order conditions on initial data [2,30-34]; see
our second part [17] for further studies in this direction.

2 Preliminaries

Throughout the paper, % is a Hilbert space, where || - || and (-, -) denote the cor-
responding norm and inner product in J#. We use I'g() to denote the set of
proper, lower semicontinuous, and convex functions on J7. Let h € T'g(7), we
write domh = {x € J7: h(x) < +oco}. The subdifferential of & at x € dom £ is
defined by

oh(x) ={ve: (v,x —x) <hx)—h(x), x € H}. (D

We say h satisfies the quadratic growth condition at x with modulus « > 0 if there
exists € > 0 such that

h(x) > h(X) + gdz(x; 0h)~1(0)) forall x € B.(%). )

Moreover, if in additionally (3h)~1(0) = {&}, h is said to satisfy the strong quadratic
growth condition at X with modulus «.

Some relationship between the quadratic growth condition and the so-called metric
subregularity of the subdifferential could be found in [18,29-31,34] even for the case
of nonconvex functions. The quadratic growth condition (2) is also called quadratic
Sfunctional growth property in [26] when £ is continuously differentiable over a closed
convex set. In [19,20], & is said to be 2-conditioned on B, (x) if it satisfies the quadratic
growth condition (2).
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The quadratic growth condition is slightly different in [25] as follows:
h(x) > h(x) + %dz(x; (3h)~'(0)) forall x €[h <h*+v] A3)

for some constants ¢, v > 0, where [h < h* +v] ;= {x € : h(x) < h* + v}
and 2™ :=inf h(x) = h(x). It is easy to check that this growth condition implies (2).

Indeed, suppose that (3) is satisfied for some c, v > 0 Define 1 := ,/ 27“ and note that

X € [h < h* 4+ v]. Take any x € B, (%), if x € [h < h™ + V], inequality (2) is trivial.
If x ¢ [h < h* 4 v], it follows that

h(x)=h(E) + v = h(D)+=n>>hE) + <lx — 2% > hE) + <d?(x: 0h) 10
> = STz X)+2||x x|° = (X)+2 (x; (0h)~(0)),

which clearly verifies (2). Thus, (2) is weaker than (3), but it is equivalent to the local
version of (3):

h(x) > h(%) + %dz(x; 0h)~1(0)) forall x €[h < h* +v]NB.(X)

for some constants c, v, ¢ > 0. This property has been showed recently in [18, Theo-
rem 5] to be equivalent to the fact that & satisfies the Kurdyka-L.ojasiewicz inequality
with order %

To complete this section, we recall two important notions of linear convergence in
our study. Let 1 be a real number such that 0 < p < 1. A sequence (x¥)en C 7 is
said to be R-linearly convergent to x* with rate u if there exists M > 0 such that

Ix* = x*|| < Mk = 6(u*) forall k e N.

We say (x¥)ien is Q-linearly convergent to x* with rate j if there exists K € N with
5D — x| < wllx® — x*|| forall k> K.

From the definitions, it can be directly verified that Q-linear convergence implies

R-linear convergence with the same rate. On the other hand, in general, R-linear
convergence does not imply Q-linear convergence.

3 Global Convergence of Forward-Backward Splitting Methods in
Hilbert Spaces

Throughout the paper, we consider the following optimization problem

m;l; F(x) = f(x) +g(), )

X €S

where f, g € ['o(J¢) and f is differentiable on int(dom f) Ndom g; see our standing
assumptions below. This section reanalyzes the theory for forward—backward splitting
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(FBS) methods:
X = prox,, ,(F — ax V£ (x*) 5)

with the proximal operator defined later in (8) and the stepsize oy > 0, when the

gradient V f is not globally Lipschitz continuous [12,13]. The results here will be

employed in our main topic about the linear convergence of the FBS method in Sect. 4.

The convergence of the FBS method without Lipschitz continuity of V f was stud-

ied in [12] via some line searches with the standard assumption dom g C dom f

together with some assumptions on the continuity of V f. In [13], Salzo simplified

these assumptions and significantly extended it to more general frameworks via many
line searches. It is worth noting that the standard assumption dom g C dom f, used in

[12], is not satisfied by several important optimization problems including the Poisson

inverse regularized problems with Kullback—Leibler divergence [15,16]. This situa-

tion was overcome in [13, Section 4 and 5] with the following assumptions on f and

g:

H1. f, g € I'y(J7) are bounded from below with int (dom f) N dom g # @.

H2. f is differentiable on int(dom f) N dom g, V f is uniformly continuous on any
weakly compact subset of int(dom f) N dom g, and V f is bounded on any sub-
level sets of F.

H3. For x € int(dom f) Ndom g, {F < F(x)} C int(dom f) Ndom g, and

d({F < F(x)}; # \ int(dom f)) > 0. ()

These assumptions hold under some mild conditions; see [13, Proposition 4.2] for
details. However, they are not trivial even in finite dimensions. Throughout the paper,
we focus on the FBS method with the popular Beck—Teboulle line search [6] that was
also studied in [13]. Next, following the techniques used in [12,13], we show that the
global convergence of the FBS method holds true under the below simplified standing
assumptions that relax some conditions from H1-H3:

Al. f,g € T9(s%) and int(dom f) Ndom g # ¢.

A2. fisdifferentiable at any pointinint(dom f)Ndom g, V f is uniformly continuous
on any weakly compact subset of int(dom f) N dom g.

A3. For any x € int(dom f) Ndom g, {F < F(x)} C int(dom f) N dom g and for
any weakly compact subset 2" of {F < F(x)} we have

d(2: # \ int(dom f)) > 0. (7

Remark 3.1 (The standing assumptions in finite dimensions) When dim .7 < oo, A2
means that f is continuously differentiable on int(dom f) N dom g. Moreover, in A3
the distance gap requirement (7) is automatically true as 2" N (S \ int(dom f)) = ¢
and 2 is compact. On the other hand, the condition (6) is still nontrivial; see the
example below.

Clearly, some boundedness assumptions in H1-H2 are relaxed in our A1-A2.
Moreover, the positive distance gap requirement (6) in (H3) is slightly stronger than
(7)in (A3). But, it should be noted that condition (6) can, in general, be easier to verify
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in infinite-dimensional spaces. Even in finite dimensions, (A1-A3) are strictly weaker
than (H1-H3). To see this, consider p € {1, 2},

Cpi={x = (x1,x2) € R*: x1x2 > p,x1 > 0,x2 > 0},

and f, g : R* » RU {400} be defined as f(x) = —logx; —logx; if x € IRi+ and
00 otherwise, and g(x) = éc, (x) where 8¢, is the indicator function of the set C;
defined above. It can be directly verified that the assumptions (A1-A3) are satisfied.
On the other hand, H1 fails because f is unbounded on

int(dom f)Ndomg =R, NCy =C; = {(x1,x2)

eR?: xix2 > 1,x1 >0, x3 > 0}.

Moreover, (2, 1) € int(dom f)Ndom g andsince F(2,1) = (f+g)(2,1) = —log2,
we get

{x: F(x) < —log2} = {(x1,x2) € R?: x1x3 >2,x1 > 0,x >0} = Cs.

So, clearly H2 also fails because V f(x1,x2) = —%, —%) is unbounded on

the sublevel set of F above. Finally, observing that (%,k) € Cr and (0,k) €
R2\int (dom f) = IRZ\IR_ZH, we see that

d({F < —log2}; R*\int (dom f))

li 2 0
= lim — =0.
k—o0 k

2
.2 2 :

This shows that H3 fails in this case.
Next, let us recall the proximal operator prox, : A — dom g given by

prox,(z) :== (Id + 3g) " '(z) forall ze #, ®)

which is well-known to be a single-valued mapping with full domain. With « > 0, it
is easy to check that

Z — Prox,,(z)
—————— € 0g(prox,,(z)) forall z € . )

Let S* be the optimal solution set to problem (4) and x* be in int(dom f) N dom g
due to our assumption A3. Then, x* € S* iff

0€d(f+g(x™) =Vfix") +adgk™). (10)
The following lemma, a consequence of [4, Theorem 23.47] is helpful in our proof of

the finite termination of Beck—Teboulle’s line search under our standing assumptions.
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Lemma 3.1 Let g € To(F) and let @ > 0. Then, for every x € dom g, we have
proxag(x) —x as o 0. (1

Under our standing assumptions, we define the proximal forward—backward oper-
ator

J : [int(dom f) Ndomg] x R4y — domg
by
J(x,a) = proxag(x —aVf(x)) forall x €int(dom f) Ndomg, o > 0. (12)
The following result is essentially from [12, Lemma 2.4]. Even if the standing assump-

tions are different, the proof is quite similar. A more general variant of this result could
be found in [35, Lemma 3].

Lemma 3.2 For any x € int(dom f) N dom g, we have
Zlx—J@anl = lx—J @) = lx—J(x.aD| forall a>a;> 0. (13)
aj

Proof By using (9) and (12) with z = x — oV f(x), we have

x—aVfx)—Jx, )
o

€ 3g(J(x,a)) (14)

for all @ > 0. For any p > 1 > 0, it follows from the monotonicity of dg and (14)
that

m%x—mvﬂﬂ—lwﬂﬁ_x—mVﬂM—JwaQJ@ﬂﬁ_Jma»
[0%) 23]
=<x —JGiea) = I, al), x—=J(x,a1)) — (x — J(x,az))>
[0%) o1
I —J@ el = I
- [0%) o
1 1
+ (— + —) (x — J(x,a2), x — J(x, 1))
(0%} o]
N e ARl E e A0
- o) o]
1 1
+(—+—)M—Jaﬂm«w—1uﬂow
(6%) o1

This gives us that
o
(I = J o)l =l = I o)) - (e = T el = 2l = T el <0
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Since ® > 1, we derive (13) and thus complete the proof of the lemma. O
oy
Next, let us present Beck—Teboulle’s backtracking line search [6], which is specifi-
cally useful for forward—backward methods when the Lipschitz constant of V f is not
known or hard to estimate.

Linesearch BT (Beck-Teboulle’s Line Search)
Given x € int(dom f) Ndomg,o > 0and0 <6 < 1.
Input. Seto = o and J(x, o) = proxag(x —aV f(x)) with x € dom g.

While f(J(x, @) > f(x) +(Vf(x), J(x,a) —x) + %Hx — J(x,oz)||2, do
o =0a.
End While

Output. .

The output « in this line search will be denoted by LS (x, o, 6). Let us show the well-
definedness and finite termination of this line search under the standing assumptions
A1-A3 below.

Proposition 3.1 (Finite Termination of Beck—Teboulle’s Line Search) Suppose that
assumptions A1-A2 hold. Then, for any x € int(dom f) N dom g, we have

(i) The above line search terminates after finitely many iterations with the positive
outputa = LS(x, o, 0).
(i) [lx — ull* — |/ (x, @) — u|l* = 2a[F (J (x, @) — F ()] for any u € .
1
i) F(J(x,a)—F(x) < —2—_||](x, @) —x||? < 0. Consequently, by A3, J (x, @) €
o
int(dom f) N dom g.
Proof Take any x € int(dom f) N dom g. Let us justify (i) first. Note that J (x, «) is
well-defined for any o > 0 because V f(x) exists due to assumption A2. If x € S*,
where S* is the optimal solution set to problem (4), then x = J(x, o) due to (10)
and (9). Thus, the line search stops with zero step and gives us the output ¢ and
x = J(x,0) € int(dom f) Ndomg. If x ¢ S*, suppose by contradiction that the

line search does not terminate after finitely many steps. Hence, for all @ € & =
(0,00, 0067, ...} it follows that

1
(Vix), J(x,0) —x) + Ellx —Jx o) < fUx.a) = fx). (15
Since prox,, is non-expansive, we have

10, @) = x| < [[prox g (x — @V £(x)) = prox,, (0| + [prox,,, (x) — x|

(16)
< al[VF)l 4 llprox,g (x) — x].

Lemma 3.1 tells us that

|J(x,a) —x|]] >0 as « | 0. a7
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Since x € int(dom f), there exists £ € N such that J(x, @) € int(dom f) for all
ae P =0l oo . )P
Thanks to the convexity of f, we have
fx) — fUx,a) > (VFJ(x,a),x —J(x,a) for aeP. (18)

This inequality together with (15) implies

1
5o @) = xI? < (VI (J(xo0) = V(). I () =)

< |VAGx. ) =V 1 @) —x]l,
which yields J(x, o) 7# x and

I/ (x, 0) — x|l
<—

0 <2|Vf(J(x @) = Vf)| forall « € 2. (19)

Since ||x — J(x,a)|| - O0as o — 0 by (17), J(x,a) € int(dom f) N dom g for
sufficiently small @ > 0. Due to the continuity of V f at x € int(dom f) N dom g by
assumption A2, we obtain from (19) that

Ir = J(x 0ll _

lim 0. (20)
a—0,aeP’ o
. . : x—J(x, o)
Applying (9) withz = x—a'V f(x) givesus that ——— -V f(x) € 9g(J (x, @)).
o

Taking « — 0, we have —V f(x) € dg(x) due to the demiclosedness of the subd-
ifferentials; see, e.g., [38, Theorem 4.7.1 and Proposition 4.2.1(i)]. It follows that
0 € Vf(x) + dg(x), which contradicts the hypothesis that x ¢ S* by (10). Hence,
the line search terminates after finitely many steps with the output « .

To proceed the proof of (ii), note that

1
S @) = fO) + V), T, @) —x) + o= llx = S (x, ol @

Moreover, by (9) , we have

x—J(x,a) _
— Vfx) € dg(J(x,a)).
Pick any u € J#, we get from the latter that

x—J(x,a)

gw) —g(J(x,a)) = < —Vfx),u—J(x, &)>. (22)
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Note also that f () — f(x) > (V f(x), u — x).This together with (22) and (21) gives
us that

Fu) = (f + @) > f(x) +g(J(x, &)
+ <¢ — V) u—J(x, &)> + (V) u—x)
= f(0) + g (x. @) + é<x — TG @) u— T, @)+ (V). T(x, @) — x)

1 1
> f(J(x,a)) +g(J(x,51))+a<x —J(x, @), M*J(x,&)%ﬁllf(x,&) —x|%
It follows that
1
(x = J(x,a), J(x,a) —u) > a[F(J(x,a)) — F(u)] — Ellf(x, @) —x|I%.

Since 2(x — J (x, &), J (x, &) —u) = |lx —ul> = |/ (x, &) — x> = |/ (x, &) —u]%,
the latter implies that

lx = ul® = 1 (x, @) — ull* = 2a[F (J (x, @) — F(u)],

which clearly ensures (ii).

Finally, (iii) is a direct consequence of (ii) with u = x. It follows that J(x, @)
belongs to the sublevel set {FF < F(x)}. By assumption A3, J(x, @) € int(dom f).
The proof is complete. O

Now, we recall the forward—backward splitting method with line search proposed
by [6] as following.

Forward-Backward Splitting Method with Backtracking Line Search (FBS
method)

Step 0. Take x° € int(dom f) Ndomg, o > 0and0 < 0 < 1.
Step k. Set

K= Tk, o) = prox,, , (xF — e V £ (x5)) (23)

with @_1 := o and

o = LS(xX, a1, 0). (24)

The following result which is a direct consequence of Proposition 3.1 plays the central
role in our study.

Corollary 3.1 (Well-definedness of the FBS method) Let x° € int(dom f) N dom g.
The sequence (x*)ien from the FBS method is well-defined, x* € int (dom f) N g,
and f is differentiable at any x* for all k € N. Moreover, for any x € ¢, we have

(i) flx% = x|> = x5 = x| > 204 [F (T — F(o)].
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. 1
(i) F*h — Frby < —Enx"“ —xk)2

Proof Thanks to Proposition 3.1(iii), x¥ € int(dom f)Ndom g and f is differentiable
at any xk by assumption A2. This verifies the well-definedness of (x¥)ren. Moreover,
both (i) and (ii) are consequence of (ii) and (iii) from Proposition 3.1 by replacing
u=x,x=x5a&=oaand J(x,@) = J(x*, o) = x¥+1. O

The following result recovers the global convergence of the FBS method without
supposing the Lipschitz continuity on the gradient V f in [13, Theorem 3.18] and [12,
Theorem 4.2] with our simplified assumptions (A1 — A3). The proof is similar to that
of [12, Theorem 4.2] with some modifications and ideas from [13].

Theorem 3.1 (Global Convergence of the FBS Method) Let (x¥) e be the sequence
generated from the FBS method. The following statements hold:

() If S* % 0, then (x*)reN weakly converges to a point in S*. Moreover,
lim F(x*) = min F(x). 25
Jim (") min (x) (25)
(i) If §* = @, then we have
lim ||x*|| = +00 and lim F(x*) = inf F(x).
k—o0 k— 00 xeH

Proof Let us justify (i) by supposing that S* # (. By Corollary 3.1(i), for any x* € §*
we have

k= x* )% — IxF T — x*)12 = 20 [F(FT) — F(x*)] > 0. (26)

It follows that the sequence (x*);cn is Fejér monotone with respect to §*. Thus, it is
bounded according to [4, Proposition 5.4]. Define M := sup{||xk —x*: ke N} <
~+oo for some x* € §*, we get from (26) that

0 < 20 [F (k1) — F(x®)] < [|lx% — x*)| — [xF ! — x%)?
= (lx* — x|+ [lF = x* ) - (k= %) = [k = x|
< 2M||xk — xk+1.

This yields that
”xk — yk+l I

0<FGMY—Fux* <M (27)

(7%
Note further from Corollary 3.1(ii) that

20[F(x*) — F(x*)] = 204 [F(xF) — F*Hh] > [k — xKH1)12,
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As (F(x¥)ren is decreasing and bounded below by F(x*), the latter implies

00 > 20[F(x") = F(x)] = ) 20 [F (") = FM ] = ) = X117 28)
k=0 k=0

Thus, [[x*—x**1|| = 0ask — oco.Letx be aweak accumulation point of (x¥);cn. Let
us find a subsequence (x"*); <N weakly converging to x. As F is L.s.c. and convex, it is
also weakly l.s.c.. Moreover, since (F(x*))pen is decreasing, we have F(x% > F(%).
According to assumptions A2 and A3, f is differentiable at x € int(dom f) Ndom g.
As (ax)reN 1s decreasing by the construction of the line search in the FBS method,
a:= lim o = lim oy, exists.

k— 00 k— 00 . o, _—
Case 1: & > 0. Note from (9) and (23 that *— 2 v/ O) = x™

€ dg(x™th,

Oy
which implies
XM — xnk+1
+ VM) — V(™) e VM) 4 gg (et (29)
Nk

o |

Applying Corollary 3.1(ii), we have — 0 as the sequence

Olnk
||xnk _ xnk+1 ”

(F(xk))ke]N is decreasing and thus converging. Since o, > @ > 0, ”
ng

also converges to 0. Moreover, note from (28) that || x* — x| — 0, ||V f (x*) —
V f(x™*+1)|| — 0 due to the uniform continuity of V f on the weakly compact set
%, ™ )pen, " en} of [F < F(x%)] as in assumption A2.

Taking k — oo in (29) gives us that 0 € V f(x) + dg(x) due to the demiclosedness
of the subdifferentials, which implies x € S*. Furthermore, since (F N gen is
decreasing, (25) is a consequence of (27).

Upye

Case 2: « = 0. Define &, := — > a, > 0and ™ = J (x”k, &,,k) € domg. It

follows from the definition of Linesearch BT that

FE™) > FM) 4 (VM) 8% = 2%) 4 ™ =3P (0)
O{nk
Due to Lemma 3.2, we have
6 — 7| = % — T, )| < S X — T, )|

ng

1
= 2™ - X" =0,

which tells us that ("%);cn weakly converges to X € int(dom f) N dom g. Define
o = {X, (x")ren). It follows that o7 C [F < F(x°)], which is weakly compact.
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By assumption A3, d(<7, 2 \ int(dom f)) > 0. As ||x"* — X" || — 0, we find some
K > Osuchthat x"* € int(dom f) and thus x"* € int(dom f)Ndom g forany k > K.
Hence, V f(x"r) is well-defined by assumption A2. It follows that

FEM) = fE™) +(VFE™), x™ = 2%).

This together with (30) gives us that

" — R < (V f(x") — V f(R%), "k — {7

28,
< IVFE™) = VEE - [lx™ — 2.

Hence, we have

. 1 .
IVf&"™) =V FE™) = % [l — 2. €1y

ng

As {)E, (X" ) peN, (X" )ke]N} is a weakly compact subset of int(dom f) N dom g and
|| X" — x| — 0, assumption A2 tells us that ||V f (x"*) —V f(x")|| — Oask — oo.
We derive from (31) that

1
lim —[|x" — ™| = 0. (32)

k—00 Oy
Applying (9) with z = x"* — @, V f (x"'*) gives us that
.Xnk _ )’(‘/.nk

R X
—— =V @E") +

Uny (o478

e _ & W f(xM) —
Ay, Af(x ) — X c Vf()?”") + ag()/enk).

By letting k — o0, it is similar to the conclusion after (29) that 0 € V f(x) + dg(x)
due to the demiclosedness of the subdifferentials, i.e., x € S*. To proceed the proof
of (25) in this case, we observe from Lemma 3.2 that

s — 2l = |

o
X g (T, 2k
( o )

|2 I = TG, @)l = [l — 2,

o ot

This together with (32) yield — 0as k — oo. Since (F(x))ren is

n
decreasing, we derive from the latter alfld (27) that

) X _xnk+1
0= tim p XX

> lim F™ ) — F(x*) = lim F() — F(x*) >0,
k— 00 Opy, k— 00 k— 00

which ensures (25).
From the above two cases, we have (25) and the fact that any weak accumulation
point of the Fejér sequence (x¥);cn belongs to S*. The classical Fejér theorem [4,
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Theorem 5.5] tells us that (x¥)zen weakly converges to some point of $*. This verifies
(i) of the theorem.

The proof for the second part (ii) follows the same lines in the proof of [12, Theo-
rem 4.2]. O

The following proposition shows that when f is locally Lipschitz continuous, the
step size ay is bounded below by a positive number. The second part of this result
coincides with [6, Remark 1.2].

Proposition 3.2 (Boundedness from Below for the Step Sizes) Let (xk)kEN and
(ak)keN be the two sequences generated from the FBS method. Suppose that S* # )
and that the sequence (x¥)icnN is converging to some x* € S*. If V f is locally Lip-
schitz continuous around x* with modulus L, then there exists some K € N such
that

0
akzmin{oq(,z} >0 forall k> K. (33)
Consequently, for k > K the line search LS(x*, ay_1,0) needs at most log,
(min {1, al%]) steps.

Furthermore, if V f is globally Lipschitz continuous on int(dom f) N dom g with
uniform modulus L then o > min{o, %}for all k € N. In this case, line search

LS(xk, ak—1, 0) needs at most log, (min{l, %}) steps for any k.

Proof To justify, suppose that $* # #, the sequence (x*)c is converging to x* € S*,
and that V f is locally Lipschitz continuous around x* with constant L > 0. We find
some ¢ > ( such that

IVf@) =V DI < Lllx =yl forall x,yeBs(x"), (34)

where B, (x*) is the closed ball in . with center x* and radius ¢. Since (x*);cn is
converging to x*, there exists some K € N such that

0
Ik —x* < ——— <& forall k>K (35)
2+6
with 0 < 6 < 1 defined in Linesearch BT. We claim that

0
o} > min {Olkh Z} forall k> K. (36)

Suppose by contradiction that oy < min{o—1, %}. Then, oy < ak—1, and so, the loop
in Linesearch BT at (xk, aj—1) needs more than one iteration. Define ¢y = %" >0
and £ := J(x¥, &), we have

FGH > £ +(VEEE, 2 = x5 + %nx" — &k, (37)
k
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Furthermore, it follows from Lemma 3.2 that

A

K Ak k koA Ak k [ k+1
[x® = X% = lIx" = J (", el sa—kllx —Jx ,ozk)||=5||x — X

This together with (35) yields

2% — x*| < 125 — x5+ fa* — X
1
< 5||x" — x4k = x|

1 26¢ fe
-0 2406 246

A

€. (38)

Since x¥, £F € B, (x*) by (35) and (38), we get from (34) that

FGH = £G5) —(VFEb, 2= x5

1
= f (VR +1@F = x%)) = v ek, 25 = x5ar
0

1 L
< f tL||£F = x*)2dr = E||)2" —xN2.
0

Combining this with (37) yields &; > % and thus o > %. This is a contradiction.

If there is some H > K with H € N such that oy > %, we get from (36) that
o > % for all k > H. Otherwise, o < % for any k > K, which implies that
ar = ak—1 = ag forall k > K due to (36) and the decreasing property of (otx)reN-
In both cases, we have (33).

Now suppose that the line search LS (xk, ak—1, 0) needs d repetitions. It follows
from (33) that

d _ d . 0
ag0® > ap = ox—160° > min KT

which tells us that d < log (min {1, (YKLL} )
Finally, suppose that V f is globally Lipschitz continuous with modulus L on
int(dom f) Ndom g subset of int(dom f). By using Proposition 3.1(iii), we can repeat

the above proof without concerning ¢, K and replace (36) by o > min {a, %} O

Next, we present the conventional complexity o(k_l) of the FBS method [10,
Theorem 3] but under our standing assumptions and that V f is locally Lipschitz
continuous. The complexity remains valid when replacing the local Lipschitz condition
there by the weaker one that the step size {e*} is bounded below by a positive number;
see Proposition 3.2. This idea was initiated in [12, Theorem 4.3] in finite dimensions
and extended to different kinds of line searches in Hilbert spaces in [13], e.g., [13,
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Corollary 3.20]. For the completeness, we provide a short proof 2, which could be
obtained by following the method of proof as in [13, Theorem 3.18(iii)(d)] as well.

Theorem 3.2 (Sublinear Convergence of the FBS Method) Let xF)Vren be the
sequence generated in the FBS method. Suppose that S* # @ and that V f is locally
Lipschitz continuous around any point in S*. Then,

Jim k[F (") — min F(x)] = 0. (39)

Proof By Proposition 3.2, aj is bounded below by some « > 0. Take any x* € S*,
we obtain from Corollary 3.1(i) that

K — x| = K — X2 > 2a[F(xFTY — F(x™)] > 0. (40)

As ||x* — x*||? is decreasing, (||x¥ — x*||?)ren is converging. Given ¢ > 0, there
exists K € N (large enough) such that |[xX+% — x*||2 — |xK — x*||?| < ¢, for any
k € N. It follows from (40) that

k+K—1
e > xX —x* P = K = T (e == T =)
=K
k+K—1
=20 ) [FG™hH = Fal.

(=K

Since (F(x%)) is decreasing, we get that

e > 20k(F (Xt — F(x*)) = 2« (K + k) (FXH0 — F(x™)),

k
K +k
which implies that

0< likm inf k(F(x*) — F(x*)) < limsupk(F (x*) — F(x*))
— 0 k—o00
= lim sup(K + k) (F(X ) — F(x*)) < 21
07

k— 00

This verifies (39) and completes the proof of the theorem. O

4 Local Linear Convergence of Forward-Backward Splitting Methods

In this section, we obtain the local Q-linear convergence for the FBS method under the
quadratic growth condition and local Lipschitz continuity of V f, which is automatic
in many problems including Lasso problem and Poisson linear inverse regularized

2 We are grateful to one of the referees whose remarks lead us to this simple proof.
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problem. R-linear convergence of the FBS method has been established under some
different assumptions such as Kurdya-tL.ojasiewicz inequality with order %; see, e.g.,
[18]. Q-linear convergence of the iterative sequence F (xk) are also obtainedin [18-21].
Our results are close to [19, Theorem 4.5(iii)] and [25, Theorem 3.2 and Corollary 3.7].
However, we focus on the local linear convergence; the proof also suggests a direct way
to obtain linear convergence of the FBS method from the quadratic growth condition
without going through the error bound or Kurdya-Lojasiewicz inequality. Convexity
does not appear explicitly in the proof, but it is hidden in the properties of the FBS
method in Sect. 3. This could be important for further study in linear convergence
of the FBS method for solving nonconvex optimization problems under the quadratic
growth condition. In order to concentrate on the idea and avoid the complication
between weak convergence and strong convergence of the sequence (x¥)zcn as in
Theorem 3.1, we suppose throughout this section that

S is a finite-dimensional space.

As explained in Remark 3.1, in this case, the standing assumptions A1-A3 can be
simplified as assumptions A1-A2 and assumption A3 is superfluous. The traditional
FBS method with global Lipschitz property on V f also attains linear convergence in
infinite dimensions [19, Theorem 4.5(iii)] under the so-called 2-Lojasiewicz property
on a nonempty set Q C .7 and the assumption that the whole sequence (x*);en
belong to 2; see [19, Section 4.2] for some choices of 2. Remark 4.2 below also notes
that our results could be extended to infinite-dimensional Hilbert spaces.

Our first result about the R-linear convergence of the FBS method is not quite new
[18-20,23,25], but it does not require the global Lipschitz assumption on V f and will
be improved later in our main Theorem 4.1. Moreover, the R-rates here are sharper
(or smaller) than those obtained in [19,25] under the quadratic growth conditions; see
Remark 4.1 below for further details.

Proposition 4.1 (R-linear Convergence under Quadratic Growth Condition) Let
(xM)ren be the sequence generated from the FBS method. Suppose that S* is not
empty and let x* € S* be the convergent point of (x*)rew as in Theorem 3.1. Suppose
further that V f is locally Lipschitz continuous around x* with constant L > 0. If F
satisfies the quadratic growth condition at x* with modulus k > 0, then there exists
some K € N such that

d(x*t1; g* <;d k. gx Il k>K 41
(x ,)_m(x,)fora > K, (41)

where o := min {a K, %} Consequently, we have

F(x* — min F(x) = 0((1 4+ ax)™5), (42)
xeH
K — ) = O((1 4 ax)~?). (43)

If, in addition, V f is globally Lipschitz continuous on int(dom f) N dom g with con-
stant L, a could be chosen as min {a, %} which is independent of K.
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Proof Since F satisfies the quadratic growth condition at x* with modulus x > 0,
there exists ¢ > 0:

F(x) — F(x*) > %dz(x; S*) forall x e B,(x*). (44)

Since (x¥)eN converges to x* and V £ is locally Lipschitz continuous around x*, we
find from Proposition 3.2 some constant K € N such that oy > « and xk e B.(x*)
for any k > K. Denote the projection from x onto the set $* by ITg+(x). Combining
(44) with Corollary 3.1(i) implies that

d> (ks §%) — d2 (M 8% =l = T (9 |2 — " = T (79 )2
> 20y [F (xF1) — F (Mg (x%))] (45)
> 2a[F (XY — F(x™)] > axd?>(x*T: 5%)
for all k > K. This clearly verifies (41).

To justify (42), note from (41) that d(x*; §*) = O((1 + ouc)’%). This together
with (45) allows us to find some M > 0 such that

1
0<FMh — F(x*) < 2—d2(xk; ¥y < M(1 +ak)™® forall k eN,
(07

which clearly ensures (42). To verify (43), we derive from Corollary 3.1(ii) that

x5 — XN < V20 [F(xk) — F(xkH)] < V20 [F(xK) — F(x*)]
< V2o M(1 +ax)"'T.

Since (x*) e converges to x*, it follows from the latter inequality that

o0 o0
I — 2= Y (I == =2t = D — X
j=k+1 j=k+1

IA

o0 .
V2o M1 +a) 2y (1 +an)?
=0

=+20M(1 + ax)—§[1 -1+ ouc)‘%]‘l,

which verifies (43). To complete, we repeat the above proof with the note from
Proposition 3.2 that oy > min{o, %} when V f is globally Lipschitz continuous on
int(dom f) N dom g with constant L. O

For the special case g(x) = §x(x), the indicator function to a closed convex set
X C R", the obtained linear convergence of (d (x*; $*))ren in (41) is close to the
[26, Theorem 12].

Next, we present the promised Q-linear convergence of the FBS method for both
the objective value sequence (F(x¥))ren and the iterative sequence (x¥);en. We
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also point out that Q-linear convergence on the cost sequence (F (x¥))ren has been
discovered in the recent papers [18—21] under the standard assumption on global Lip-
schitz continuity of the gradient V f. In our result, V f is locally Lipschitz continuous;
moreover, the Q-linear convergence of (xk )keN obtained here is new.

Theorem 4.1 (Q-linear Convergence under Quadratic Growth Condition) Let (R een
be the sequences generated from the FBS method. Suppose that S* # 0 and let
x* € §* be the convergent point of (x*)ren as in Theorem 3.1. Suppose further that
V f is locally Lipschitz continuous around x* with constant L > 0. If F satisfies the
quadratic growth condition at x* with modulus k > 0, there exists K € N such that

1
e — ) < N e — 2% (46)
I+

—Vl““tlwuk) ~ ()] 47)

k+1y *
[F(x™) = F(x7)| = it ar

forany k > K, where o := min {aK, %}
If, in addition, V f is globally Lipschitz continuous on int(dom f) N dom g with
constant L > 0, o could be chosen as min {0, %}

Proof Since F satisfies the quadratic growth condition at x* with modulus ¥ > 0, we
also have (44). This together with Corollary 3.1(i) gives us that

K =x*| 2= ¥ =x*)12 > 2a[F (T —F(x™)] > axd?(x*1; %) forall x € S*,
(48)
when k > K for some large K € IN. Moreover, for any r > k > K, we get that
Ix" = Mge D | < ! = Mge FFH || = d(F 1 8%).
Taking r — oo gives us that ||x* — g« (x*T1) || < d(x¥T1; §%). It follows that

e — o) < A = T D T R — %) < 2d (Y 5.

This together with (48) implies that

k 2 k+1 2, 9K gl 2 oK k+1 2
ok — 22 T — P = (14 ) I -,

which clearly verifies (46).
To see the second conclusion, we note from (41) that

L [ B R | I R L ]
> d(x"; 8% —d(* 5%
= B (d6T1 5% + aeks 59) (49)
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with B := Fm fork > K sufficiently large. We derive from this, Corollary 3.1(ii),

and (49) that

1 1 2
F(Xk) _ F(xk+l) > ||Xk+l —.X'k||2 > (d(xk, S*) —d(xk'H; S*))
20

= 50 >
i k. q¥y _ k+1. ox k. o* k+1. ox*

zzak(d(x,S) d(x ,S))(d(x,5)+d(x ,S))
B k. ¢%\2 _ k+1. ¢xy2

ZE(d(x,S) d(x ,S)). (50)

On the other hand, we get from Corollary 3.1(i) that

1
20

(a0t 5777 a1 592) 2 2 (1 = e P = 1 = e (e P)
20
> FO') — F (Mg ().

This together with (50) imply

Feh = P = g FH = P (69 | = B[ FOH) = Fn |

It follows that F (x*) — F(x*) > (1 + B)[F(x**t!) — F(x*)], which clarifies (47). O

It is worth noting that Proposition 4.1 and Theorem 4.1 remain valid if we replace
the local Lipschitz continuity of V f by the weaker one that all the step sizes o are
bounded below by o > 0.

Remark 4.1 (Linear convergence rate comparisons) If V f is globally Lipschitz con-
tinuous with constant L and o0 = %, Linesearch BT does not proceed new step due
to the Descent Lemma, i.e., oy = o for any k.3 The involvement of 6 is not neces-
sary, hence o can be chosen as 1/L in Theorem 4.1. For this special case, we now
summarize the comparison of the derived linear convergence rate with the ones in the
literature as below:

1
V1+ak
1 .

m

1
V14ak and

are also sharper than the R-rate obtained in [25,

— For the convergence rate of (xk )keN: Our derived R-linear convergence rate

is sharper (or smaller) than the corresponding R-linear convergence rate

[19, Theorem 4.2(iii)]. Moreover, our derived R-linear convergence rate
1
Theorem 3.2 and Corollary 3.6], whichis /1 — ﬁ withy = k' 4+1)(14L1)

and t = L~ !, Indeed, with some simple algebras, we have

» 1 ak 1 4 4 3ak
() (- 27) =0+ D) (- ora) =+ et 1o

3 This observation comes from one of the referees.

Q-linear convergence rate
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So, ./1 L 1 > 1 , and hence, our derived rate is sharper here.

T2y JITE T Vtax
— For the convergence rate of (F (x*))ken: Our Q-linear convergence rate for F (x")
is bigger than the one (1 + %)_1 in [19, Theorem 4.2(iii)]. This can be seen by
noticing

Vitac+1 1 1 1

— = T > T

At this moment, we are not sure that whether our Q-linear convergence rate for the
function value could be improved as in [19] without passing to the 2-Lojasiewicz
property and global Lipschitz continuity. This would be a future direction of
research.

Remark 4.2 (Extension to Hilbert spaces) Our results above could be extended to
infinite-dimensional Hilbert spaces .7 by further assuming that the initial point x°
belongs to the ball B, (x*) in the quadratic growth condition (44), where x* is the weak
convergence limit point of (xk )keN as in Theorem 3.1. To see this, since the distances
xk — x*| are decreasing as in Corollary 3.1(i), xk e B,(x*) for all k € N. The
inequalities (45) do not change. Hence, d (xk; §%) linearly converges to 0. As (Y een
is Fejér monotone with respect to $* by Corollary 3.1(1), (x*)zen strongly converges
to x*; see [4, Theorem 5.11]. This strong convergence of (x*)<n in Hilbert space is
similar to [19, Theorem 4.1 and first part of Example 4.11] with different explanation.
The rest of the proofs of Proposition 4.1 and Theorem 4.1 remain.

Next, we obtain a sharper Q-linear convergence rate of (x¥);cny under a stronger
assumption: strong quadratic growth condition, which will be used in our subsequent
part [17].

Corollary 4.1 (Sharper Q-linear convergence rate under strong quadratic growth con-
dition) Let (x)ien be the sequence generated from the FBS method. Suppose that
the solution set S* is not empty and let x* € S* be the convergent point of (x*)reN
as in Theorem 3.1. Suppose further that V f is locally Lipschitz continuous around x*
with constant L > 0. If F satisfies the strong quadratic growth condition at x* with
modulus k > 0, then there exists some K € N such that for any k > K we have

1
5T — x| < ——|Ix* — x*|| with o := min{ag, — .
V1 +ax { L }
Proof This is a direct consequence of Proposition 4.1 with §* = {x*}. O

The assumption that F satisfies the quadratic growth condition in above results is
automatic for a broad class of so-called piecewise linear-quadratic functions [36,
Definition 10.20] defined below. Some other class of optimization problems satisfying
this property will be discussed further in [17].

Definition 4.1 (Convex Piecewise Linear-Quadratic Functions) A function 47 €
[o(J7) is called convex piecewise linear-quadratic if dom & is a union of finitely
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many polyhedral sets, relative to each of which A (x) is given the expression of the
form %(x, Ax) + (b, x) + ¢ for some scalar ¢ € R, vector b € R" and a symmetric
positive semi-definite matrix A € R"*",

To end this section, we show next that the FBS method (5) has local uniform Q-
linear rate when solving optimization problem, where the cost function is a convex
piecewise linear-quadratic function.

Corollary 4.2 (Local Linear Convergence for Piecewise Linear-Quadratic Functions)
Let (x¥)ien and (o) e be the sequences generated from the FBS method. Suppose
that F = f + g is a convex piecewise linear-quadratic function, the solution set
S* is nonempty, and that V f is locally Lipschitz continuous around any point in S*.
Then, the sequences (xF) e and (F (x%)) e are globally convergent to some optimal
solution and optimal value respectively with local Q-linear rates. Furthermore, if V f
is globally Lipschitz continuous on int(dom f) N dom g, (x*)ren and (F (x*))ren
are globally convergent with uniform local linear rates.

Proof Suppose that the sequence (x*);cy converges to some x* € S* by Theorem 3.1.
Since F is a convex piecewise linear-quadratic function, the graph of 9 F is polyhedral.
By combining [37, Theorem 3H.1] and [30, Theorem 3.3], we obtain that F satisfies
the quadratic growth condition at any minimizer with uniform modulus. It follows
from Theorem 4.1 that (xk)kelN and (F (xk))kelN are locally convergent to some x*
and the optimal value F (x*), respectively, with Q-linear rate.

To complete the proof, suppose that V f is globally Lipschitz continuous on
int(dom f) N dom g with constant L. It follows from the last part of Theorem 4.1
that o could be chosen as min{o, %}. Since the modulus of quadratic growth condition
of F is uniform as discussed above, the linear rate in Theorem 4.1 is independent of
the choice of initial points. O

5 Conclusions

In this paper, we reanalyze the theory of FBS methods in Hilbert spaces and mainly
study the Q-linear convergence of this method for solving nonsmooth convex opti-
mization problems without the global Lipchitz continuity on V f. The quadratic
growth condition plays significant roles in our analysis. It is well-recognized that KE.-
inequality with order %, which is a stronger condition than quadratic growth condition
at minimizer in nonconvex settings, is a very useful tool to guarantee the conver-
gence of many proximal-type algorithms. In future research, we intend to study the
connection of quadratic growth condition with KL inequality and their effects on the
convergence of proximal algorithms for nonconvex optimization problems.
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