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Abstract

Variable order structures model situations in which the comparison between two points
depends on a point-to-cone map. In this paper, inexact projected gradient methods for
solving smooth constrained vector optimization problems on variable ordered spaces
are presented. It is shown that every accumulation point of the generated sequences
satisfies the first-order necessary optimality condition. Moreover, under suitable con-
vexity assumptions for the objective function, it is proved that all accumulation points
of any generated sequences are weakly efficient points. The convergence results are
also derived in the particular case in which the problem is unconstrained and even
if inexact directions are taken as descent directions. Furthermore, we investigate the
application of the proposed method to optimization models where the domain of the
variable order map coincides with the image of the objective function. In this case,
similar concepts and convergence results are presented. Finally, some computational
experiments designed to illustrate the behavior of the proposed inexact methods versus
the exact ones (in terms of CPU time) are performed.
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1 Introduction

Variable order structures are a natural extension of the well-known fixed (partial)
order given by a closed, pointed and convex cone; see Eichfelder (2014). This kind
of orderings model situations in which the comparison between two points depends
on a set-valued map. These problems have recently received much attention from the
optimization community due to their broad application to several different areas. Vari-
able order structures (VOS), given by a point-to-cone valued map, were well studied
in Eichfelder (2014), Eichfelder (2011), Engau (2008), motivated by important appli-
cations. VOS appear in medical diagnosis (Eichfelder 2014), portfolio optimization
(Wiecek 2007), capability theory of well-being (Bao et al. 2015b), psychological mod-
eling (Bao et al. 2015a), consumer preferences (John 2001, 2006) and location theory,
etc; see, for instance, Baatar and Wiecek (2006), Engau (2008). The main goal is to
model elements of a certain set such that their objective function evaluation cannot be
improved by the image of any other feasible point with respect to the variable order. So,
their mathematical description corresponds to the so-called Optimization Problem(s)
on Variable Ordered Spaces (OPVOS(s)). For the reasons mentioned above, although
the variable order setting is arelatively new avenue of research, several papers and even
books have been published with many real-life problems modeled via this approach.

An interesting application of vector optimization with a variable structure is given
in the theory of consumer demand in economics by John (2001, 2006). These papers
present a local and global theory to explain consumer behaviors. In the local approach,
it is assumed that the consumer faces a nonempty set of feasible alternatives, A C
R". By contrast with the global approach, a local preference only requires that the
consumer is able to rank alternatives in a small neighborhood of a given commodity
bundle relative to that bundle. This idea can be represented by a comparative economic
function g: R” — R such that y in a neighborhood of y is interpreted to be better
than y if and only if g(¥)7 (y — ¥) < 0. The choice set assigned to A in the local
theory is then given by

cyi={veA:vyed ¢ v-m =0}
This leads to a set-valued map K : R” = R" defined by
K@F) = {d eR": gTd > 0} .

Note that the above point-to-cone map K defines the variable order and it satisfies the
main assumptions of this paper under a suitable condition on the image of the feasible
alternatives A by g, g(A). If the consumer is interested in an alternative y € A such
thatVy € A,g(3) 7 (y=y) > 0,theny—y € K(y)forally € A,ie., A C {3}+K ().
Furthermore, the consumer is looking for alternatives y € A such that

Vy e A\[Y}, g (v —) <0,
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forall y € A\{y}, y — ¥ ¢ K(¥). This means that the consumer prefers alternatives
y € A such that A\(y — K(y)) = {y}, i.e., minimal points of the vector optimization
problem with variable domination structure ming y s.t. y € A are desired.

OPVOS(s) have been studied in Eichfelder and Duc Ha (2013), in the sense of
finding a minimizer of the image of a vector function, with respect to a variable
ordered structure depending on points in the image. Itis a particular case of the problem
described in Eichfelder (2011), where the goal of the model is to find a minimum of a
set. Here we will consider a partial (variable) order defined by the cone-valued map,
which is used to define our problem. We want to point out that OPVOSs generalize the
classical vector optimization problems. Indeed, they correspond to the case in which
the order is defined by a constant cone valued map. Many approaches have been
proposed to solve the classical constrained vector optimization, such as projected
gradient methods, proximal points iterations, weighting technique schemes, Newton-
like and subgradient methods; see, for instance, Bello Cruz (2013), Bello Cruz and
Lucambio Pérez (2014), Bonnel et al. (2005), Grafia Drummond et al. (2008), Fliege
et al. (2009), Jahn (1984), Grafia Drummond and Iusem (2004), Bello Cruz et al.
(2011), Fukuda and Grafia Drummond (2011, 2013), Luc (1987), Fliege and Svaiter
(2000), Grana Drummond and Svaiter (2005). It is worth noting that, as far as we know,
only a few of these schemes mentioned above have been proposed and studied in the
variable ordering setting; as, e.g., the steepest descent algorithm and sub-gradient-like
algorithm for unconstrained problems, and a Newton-like method; see, for instance,
Bento et al. (2018), Bello Cruz and Bouza Allende (2014), Bello Cruz et al. (2014).
The use of extensions of these iterative algorithms to the variable ordering setting is
currently a promising idea. So, it is important to find efficient solution algorithms for
solving this kind of model.

In this paper, we present the projected gradient method with an inexact strategy for
solving constrained variable order vector problems because of its simplicity and the
adaptability to the vector structure of the problem. Moreover, we derive the conver-
gence of the inexact projected gradient method for the unconstrained problem under
variable order generalizing (Fukuda and Grafia Drummond 2013). Finally, analogous
results are obtained if the variable order is given by a point-to-cone map whose domain
coincides with the image of the objective function.

This work is organized as follows. The next section provides some notations and
preliminary results that will be used in the remainder of this paper. We also recall
the concept of K-convexity of a function on a variable ordered space and present
some properties of this class. Section3 is devoted to the presentation of the inexact
projected gradient algorithm. Section4 devotes to present that every accumulation
point of the generated sequence satisfies the first-order necessary optimality condition.
Moreover, under K-convexity of the objective function, all accumulation points are
shown to be weakly efficient in Sect. 4. Section5 discusses the properties of this
algorithm when the variable order is taken as a cone-value set from the image of the
objective function. Section 6 introduces some examples illustrating the behavior of
both proposed methods. Finally, some final remarks are given.
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2 Preliminaries

In this section we present some preliminary results and definitions. First we intro-
duce some useful notations. Throughout this paper, p := ¢ indicates that p is
defined to be equal to ¢ and we write N for the nonnegative integers {0, 1, 2, ...}.
The canonical inner product in R” will be denoted by (-, -) and the induced norm
by || - ||. The closed ball centered at x with radius r > 0 is represented by
B(x,r) := {y € R" : dist(x,y):=|y—x|| < r} and also the sphere by
S(x,r) := {y € B(x,r) : dist(x, y) = r}. Given two bounded sets A and B, we
will consider dg (A, B) as the Hausdorff distance, i.e.

dy (A, B) := max { sup inf dist(a, b), sup inf dist(a, b) } ,

acAbeB beBa€

or equivalently dg (A, B) =inf{e >0: A C B and B C A.}, where
D¢ := Ugepf{x € R" : dist(d, x) < €}

is the e-enlargement of any set D. The set D¢ and int(D) denote the complement
and the interior of of D, respectively. The set conv(D) is used for the convex hull of
D, i.e., the intersection of all convex sets containing D. If D is closed and convex,
we define the orthogonal projection of x onto D, denoted by Pp(x), as the unique
point in D such that | Pp(x) — y|| < ||x — y|| for all y € D. Given the partial order
structure induced by a closed, convex and pointed (if x, —x € K then x = 0) cone /C,
the concept of infimum of a sequence can be defined. Indeed, for a sequence (xF)ken
and a cone /C, the point x* is infy{x*} if and only if (x* — x*)ren C K, and there
is not x such that x — x* € K, x # x* and (x¥ — x)rey C K. We say that K has
the Daniell property if for all sequence (xF)ren such that (xF — x¥t1) .y C K and
for some £, (x¥ — X)ren C K, then limg_, oo x* = inf{x¥}. Here we assume that
K (x), x € R",is a convex, pointed, and closed cone, which guarantees that K (x) has
the Daniell property as was shown in Luc (2008). For each x € R”, the dual cone of
K (x) is defined as K*(x) := {w € R™ : (w, y) >0, forall y € K(x)}. As usual, the
graph of a set-valued map K : dom(K) C R" == R"™ is the set Gph(K) := {(x, y) €
R" x R™ : y € K(x)} and its domain is dom(K) := {x € R" | K (x) # @}. Finally,
we remind that the mapping K is closed if Gph(K) is a closed subset of R" x R"™.
Next, we will define the constrained vector optimization problem on variable
ordered spaces, which finds a K-minimizer of the vector function F: R* — R™
in the set C as
K —min F(x), x €C. (D)

Here C is a nonempty convex and closed subset of R” and K : R" = R™ is a point-
to-cone map, where for each x € R”, K (x) is a pointed, convex and closed cone with
nonempty interior. We say that the point x* € C is a minimizer of problem (1) if for
all x € C,

F(x) — F(x*) ¢ —K(x")\{0}.
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The set of all minimizers (or efficient solutions) of problem (1) is denoted by S*.

As in the case of classical vector optimization, related solution concepts such
as weak efficiency and stationarity can be extended to the constrained setting. The
point x* € C is a weak solution of problem (1) iff for all x € C, F(x) — F(x™) ¢
—int(K (x*)), S is the set of all weak solution points. We want to point out that this
definition corresponds with the concept of weak minimizer given in Eichfelder (2011).
On the other hand, if F is a continuously differentiable function, the point x* € C is sta-
tionary, if and only if, foralld € C —x* :={v e R" : v =c¢—x™, forsome ¢ € C},
we have

Jr(x*)d ¢ —int(K (x™)), (2)

where Jr denotes the Jacobian matrix of F. The set of all stationary points will be
denoted by S°.

Now we present a version of Proposition 2.1 of Bello Cruz and Bouza Allende
(2014), which is an extension of Lemma 5.2 of Fukuda and Grafia Drummond (2011)
for constrained OPVOS.

Proposition 2.1 Let x* € C be a weak solution of problem (1). If F is a continuously
differentiable function (i.e., F € C'), then x* is a stationary point.

Proof Suppose that x* € C is a weak solution of problem (1). Fix d € C — x*.
By definition there exists ¢ € C, such that d = ¢ — x™. Since C is a convex set,
forall @ € [0, 1], x* + ad € C. Since x* € C is a weak solution of problem (1),
F(x*+ad) — F(x*) ¢ —int(K (x*)). Hence,

F(x* +ad) — F(x*) € (—int(K (x™)))°. 3)

The Taylor expansion of F at x™ leadsusto F(x*+ad) = F(x*)+aJr(x™)d +o().
The last equation together with (3) implies o Jr (x*)d +o(«) € (—int(K (x*)))¢. Using
that (—int(K (x*)))¢ is a closed cone, and since o > 0, it follows that

* 0(0[) . #1\\C
Jr(x™)d + o € (—int(K (x™)))".

Taking limit in the above inclusion, when « goes to 0, and using the closedness of
(—int(K (x*)))¢, we obtain that Jr (x*)d € (—int(K (x*)))¢, establishing thatx* € S°.
O

In classical optimization, stationarity is also a sufficient condition for weak min-
imality under convexity assumptions. For vector optimization problems on variable
ordered spaces, the convexity concept was introduced in Definition 3.1 of Bello Cruz
and Bouza Allende (2014) as follows:

Definition 2.2 We say that F' is a K-convex function on C if for all A € [0, 1],
x,x eC,

FOx + (1 =03 e AF(x) + (1 = M)F &) — KOx + (1 — W)5F).
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It is worth noting that in the variable order setting the convexity of epi(F) := {(x, y) €
R" x R™| F(x) € y — K(x)} is equivalent to the K-convexity of F if and only if
K (x) = K forall x € R";see Proposition 3.1 of Bello Cruz and Bouza Allende (2014).
As already shown in Bello Cruz and Bouza Allende (2014), K -convex functions have
directional derivatives under natural assumptions; see Proposition 3.5 of Bello Cruz
and Bouza Allende (2014). In particular, if Gph(K) is closed and F € C lis K -convex,
then we have the gradient inclusion inequality as follows:

F(x)—F(x)eJr(x)(x —Xx)+ K(x), x,xeC.

In the next proposition, we study the relation between stationarity, descent directions
and the weak solution concept in the constrained sense for problem (1) extending to
the variable order setting the results presented in Proposition 1 of Grafia Drummond
and Iusem (2004) and Lemma 5.2 of Fukuda and Grafia Drummond (2011).

Proposition 2.3 Let K be a point-to-cone and closed mapping, and F € C' be a
K -convex function. Then:

(i) The point x* € C is a weak solution of problem (1) if and only if it is a stationary
point.

(ii) Ifforalld € C —x*, Jp(x*)d ¢ —K (x*)\{0}, then x* is a minimizer of problem
(1).

Proof (i) Let x* € S*, where S° is the set of the stationary points. If x* € C is
not a weak minimizer then there exists x € C such that —k; := F(x) — F(x*) €
—int(K (x*)). By the convexity of F, for some k» € K (x*), we have

—k1 =Fx)— F(&x™) = Jr(x™)(x —x*) + kp.
It follows from the above equality that
JP(x)(x = x*) = —(k1 + k2). “4)

Moreover, since K (x*) is a convex cone, k; € int(K (x*)) and kp € K(x™), it holds
that k1 + kp € int(K (x*)). Thus, the last two equalities imply that Jr(x*)(x — x*) €
—int(K (x*)), which contradicts the fact that x* is a stationary point because x belongs
to C and hence x — x* € C — x*. The converse implication was already shown in
Proposition2.1.

(i1) By contradiction suppose that there exists x € C suchthat F(x)—F(x*) = —k;,
where k1 € K (x*)\{0}. Combining the previous condition with (4), it follows that

Jr(x")(x —x™) = —(k; + k) € —K(x™).
Using that Jp(x*)(x —x™) ¢ —K (x*)\{0}, we get that (k; + k2) = 0, and as ky, k> €
K (x*), k1 = —kp. It follows from the pointedness of the cone K (x*) thatk; = kp = 0,

contradicting the fact that k1 # O. |
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It is worth mentioning that the concept of K-convexity for F' depends on the point-
to-cone mapping K. Thus, this general approach covers several convexity concepts,
from the scalar setting to the vector one, and it can be used to model a large number
of applications; see, for instance, Bao et al. (2015a), Bao et al. (2015b), Eichfelder
(2014). In Section 5 we discuss another variable order when the point-to-cone map
depends on the image set of F, such kind of variable orders were introduced and
studied in Bello Cruz et al. (2014), Bello Cruz and Bouza Allende (2014).

The Inexact Projected Gradient Method to solve problem (1) is presented in the
next section.

3 The inexact projected gradient method

This section is devoted to present an inexact projected gradient method for solving
constrained smooth problems equipped with a variable order. This method uses an
Armijo-type line-search, which is done on inexact descent feasible directions. The
proposed scheme here has two main differences with respect to the approach introduced
in Bello Cruz and Bouza Allende (2014). (i) it solves constrained problems. (ii) it
accepts approximate directions with some tolerance. It can be as an extension to the
variable order setting of the one defined in Fukuda and Grafia Drummond (2013) for
vector optimization.

In the following, several constrained concepts and results will be presented and
proved, which will be used in the convergence analysis of the proposed method below.

We start this section by presenting some definitions and basic properties of some
auxiliary functions and sets, which will be useful in the convergence analysis of the
proposed algorithms. Firstly, we define the set-valued mapping G : R"” = R™, which
for each x, defines the set of the normalized generators of K*(x),i.e. G(x) € K*(x)N
S(0, 1) is a compact set such that conv(G(x)) is K*(x). Note that there smaller sets
than K*(x) NS(0, 1) that fulfill those properties; see, for instance, Jahn (1986, 2004),
Luc (1989). On the other hand, assuming that F' € C ! we consider the support function
p:R*" x R" — R as

— T
px,w) = yrence;l())(c)y w. (5)

The function p(x, w) was extensively studied for vector optimization in Proposition
3.1 of Fukuda and Grafia Drummond (2011) and it is useful to define the useful
auxiliary function ¢: R" x R" — R, as

¢(x,v) ;= max yTJp(x)v. (6)
yeG(x)

Then, we are ready to introduce the following auxiliary subproblem, for each x € R"
and 8 > 0, as

[ v]?
min T+,3¢(X,U) . (Py)

veC—x
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Remark 3.1 Since G (x) is compact, the function ¢ (x, -): R” — R is well defined for
each x € R". Moreover, it is a continuous function.

The next proposition provides a characterization of stationarity using the auxiliary
function ¢, defined in (6). It can be as an extension for the variable vector optimiza-
tion setting of Lemma 2.4 of Fukuda and Grafia Drummond (2013). Moreover, the
unconstrained version of the following proposition can be found in Proposition 4.1 of
Bello Cruz and Bouza Allende (2014).

Proposition 3.2 The following statements hold:

(i) Foreach x € R", maxyeg(x) yI'w < 0ifand only if © € —int(K (x)).
(ii) The point x is not stationary if and only if there exists v € C — x such that
¢(x,v) <O.
| 2v]|>
2

(iii) If¢(x,v) < Oand B > O, thenthere exists . > O such that

0 for all » € (0, A].
(iv) For each x € R", subproblem (Py) has a unique solution, denoted by v(x).

+B¢(x, Av) <

Proof (i) The result of this item follows as in Proposition 4.1(i) of Bello Cruz and
Bouza Allende (2014).

(ii) Note that, fixing x, it follows from (6) that ¢ (x, v) = p(x, Jr(x)v). Then, by
the definition of stationarity and item (i), the statement holds true.

(111) It follows from the definition of ¢ (x, v) that ¢ (x, -) is a positive homogeneous
function. Thus, for all A > 0,

[ Av]|?
2

2
+ Bp(x, Av) :A(A%—I—ﬁqﬁ(x,v)). (7)

2
Since ¢ (x, v) < 0, there exists A > 0 small enough such that X@ + Bp(x,v) <O.

[ 2v]?

Hence, (7) together with the above inequality implies that

for all A € (0, 1], as desired.
(iv) Using the definition of the function ¢ (x, v), given in (7), it is easy to prove that

¢ (x, -) is a sublinear function as well. Hence, ¢ (x, -) is a convex function, and then,

2
v . . . . :
—“ 2” + B¢ (x, v) is a strongly convex function. Since C is a convex set, C — x is also

+ Bp(x, Av) < 0,

convex and therefore, subproblem ( Py ) has a unique minimizer. O

Based on Proposition3.2(iii), we can define v(x) as the unique solution of
subproblem (Py) and y(x,v) is an element of the compact set G(x) such that
y(x, VT Jr(x)v = ¢(x, v). Next we will discuss about the continuity of the func-
tion

oo
S+ BB v(), ®)

which is related with the one defined in (35) of Grana Drummond and Iusem (2004).

Op(x) =
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The following proposition is the constrained version of Proposition 4.2 in Bello
Cruz and Bouza Allende (2014). Items (i)-(i1), (iii) and (iv) are extensions for the
variable vector optimization setting of Proposition 3 of Grafia Drummond and Iusem
(2004), Proposition 2.5 of Fukuda and Grafia Drummond (2013) and Proposition 3.4
of Fukuda and Grafia Drummond (2011), respectively.

Proposition 3.3 Ler F € C' and fix B > 0. Then, the following hold

(i) Op(x) <0 forall x € C.
(ii) x € C is a stationary point if and only if 0g(x) = 0.
(iti) vl = 28I (x) | for all x € C.
(iv) If G is a closed map, then 0g is an upper semi-continuous function on C.

0 2
Proof (i) Note thatas 0 € C — x forall x € C and 0g(x) < % + Bp(x,0) =0.
(i1) As shown in Proposition 3.2(ii), x is a non stationary point if and only if for
some v € C — x, ¢(x,v) < 0. Then, by Proposition 3.2(iii), there exists v € C — x
)\2
such that ?Hf)“z + 1B (x, V) < 0 and hence Og(x) < 0.

lo ()%
2

(iii) By (1), 0 > 6g(x) = + By(x, v(x))TJF(x)v(x). Then, after some

algebra, we get

lo ()12

5 < =By, v Jr(x)v(x) < Bllyx, ve) T Jr)v)].

Using that || y(x, v(x))| = 1, it follows from the above inequality that

lv() 12
2

< BIVF ) vl

and the result follows after dividing the above inequality by the positive term
[v()I/2 # 0.

(iv) Now we prove the upper semi-continuity of the function 5. Let (x*)ren be
a sequence converging to x. Take X € C such that v(x) = X — x and also denote
1% = vk 4+ x* Ttis clear that, forall k € N, £ — xk € € — x¥, and so,

sk k2
emﬂdzlﬁ—31J—+ﬂ¢uﬁfk—xﬂ
Al
- 2
1% — x*? R
:———;——+4w5hm%Xx—xh. 9)

+ B (xk, 2 — xb)

Since each y; = y(xk, £ — x5 belongs to the compact set G(x*) < K*(xF n
S(0,1) € B(0, 1) for all k € N, then the sequence (yx)xen is bounded. Therefore,
there exists a convergent subsequence of (yx)ren. We can assume without lost of

@ Springer



Author's personal copy

J.Y. Bello-Cruz, G. B. Allende

generality that limy_, oo Y = y, and also since G is closed, y € G(x). Taking limit in
(9), we get

I£ — X412

lim sup Qﬁ(xk) < lim sup + ,BYkTJF(xk)()E - xk)

k— o0 k—o00 2
a 2
IR — x|
2
A 2
x — x|l
S -
2

+ By Ir(0) (& — x)
+ Bop(x, X —x) = 6g(x).

Then, the function g, defined in (8), is upper semi-continuous. O

Lemma 3.4 Consider any x,x € C and z € R". If JF is locally Lipschitz around x
forallx € C, dy(G(x), G(X)) < Lgllx — X|| for some Lg > 0 and C is bounded,
then

|p(x,2) =&, 2)| < Llx — 2|,

for some L > 0. Hence, for all v € R", ¢ (-, v) is a continuous function on C.
Proof By Proposition 4.1(iv) of Bello Cruz and Bouza Allende (2014), and using the
Lipschitz assumption for G in C, p(x, w), defined in (5), is also a Lipschitz function
for all (x, w) € C x W for any bounded subset W C R". That is

lp(x1, wi) — p(x2, wo)| < Lilxy — 22l + lwy — woll, (10)
forall X1,x2 € C and wy, wp € W, where |w;|| < M,i =1, 2w1th M > 0 and

L:= = LgM. Let (xF) ey be a sequence convergmg to x and ¥ := vk +x*. So, taking
(10) for x; = x, x3 = x5, w; = Jr(x)(ZF = x%) and wy = Jp () &F = xF), we get

o (v, TP = ) = p(x*, Tr b = 20))
< Llx = x* 4+ 1 (Jr(x) = Jr(F) @ — X0
< Llx — x* 4 |Tp(x) — JRGO) [I1EF = x5,

because of the compactness of C and the continuity of Jr, || JF X)GEE=x) <M
forall kK € Nand x € C. Noting that

Bx, & —xh) = ok, B = xh) = o (v, @)@ = 00) = p (K TR G - 5h)
and due to JF is locally Lipschitz and (10), it follows that
Bx, 2 = x5 — (K, 7 = 25| = (L + LpD e - 2, (11)

forallx e C vzith L= LgM and L the Lipschitz constant of Jr and M > 0 such
| % — xK|| < M for all k € N. This proves the continuity of ¢ in the first argument. O
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Now we can prove the lower semicontinuity of 6g by following similar ideas of the
result presented in Proposition 3.4 of Fukuda and Grafia Drummond (2011) for vector
optimization.

Proposition 3.5 Let F € C' and consider any x, % € C with C bounded. Then, if
dg(G(x), G(x)) < Lg|lx — x|| for some Lg > 0 and JF is locally Lipschitz around
x for all x € C, 0g is a lower semicontinuous function on C.

Proof We consider the function 6g(x). Note further that

%% — x]|?
2

=055 + B D (r, £ — ) — g (F, £ - b+

5 (x) < B (x, #F —x) +

o 2 o 2
I — X = 1%* = x¥)
2

= 05(x5) + B [¢(x, #—x) — gk, &k — xk)]

1 .
+ 3 [ 26— i -
Thus, taking limit in the previous inequality and using Lemma 3.4, we get
lim ¢(x, £ — x) — p (¥, £F = x5y = 0.
k—o00

Also, it is follows that limy_, o 5 [[lx[I> — [[x* 2] — (£F, x* — x) = 0. Hence,

05(x) < liminf {eﬁ(x") 4B [¢(x, R x) — gk, &% — xk)]

2 k2
[l Bl }

(x5, x% —x) + 5

= lim inf 6 (x*),
k— 00

establishing the desired result. O

Now we recall the concept of §-approximate direction introduced in Definition 3.1
of Fukuda and Grafia Drummond (2013) which in turn extends definition (4) of Fliege
and Svaiter (2000).

Definition 3.6 Letx € Cand 8 > 0.Given$ € [0, 1), we say that v is a §-approximate
2

solution of subproblem (Py) if v € C — x and B¢ (x, v) + % < (1 -80sx). If

v # 0 we say that v is a §-approximate direction at x.

Hence, from a numerical point of view, it would be interesting to consider algorithms
in which the line-search is given over a §-approximate direction at x for subproblem
(Py) instead of on an exact solution of it.
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Remark 3.7 Note that if the solution of subproblem (Py) is 0, then the only possible
d-approximate solution is v = 0. In other case, since 6g(x) < 0, there exist feasible
directions v such that

lv]?
B (x.v) + = € [B50). (1 = )85 (x)].
In particular v(x), the solution of subproblem ( P, ), is always a §-approximate direction
at x.

Next we present an inexact algorithm for solving problem (1). The algorithm requires
the following exogenous parameters: § € [0, 1) and o,y € (0, 1) and 0 < B < ,3 <
+00.

Inexact Projected Gradient Method (IPG Method). Assume that g € [B , ,3] for
all k e N.

Initialization Take x° € R” and By.

Iterative step Given x* and B, compute v* a §-approximate direction at x* for

. {Ilvll2 k }
min " + B, v) | . (P)
veC—xk 2

If v* = 0, then stop. Otherwise compute
(k) := min {j eN: F(b) — FOk 4+ y7v%) + oyl Jp (ke K(xk)} . (12)

Set ¥t = xk 4 0k € €, with y, = /P,

It is worth noting that IPG Method extends Algorithm 3.3 of Fukuda and Grafia
Drummond (2013) to the variable order setting. Note that v = 0 if and only if x is
stationary. Indeed, the fact v = 0 implies x¥ stationary follows from Definition 3.6
combined with Proposition 3.3 (i)-(ii); while the converse implication is a consequence
of Definition 3.6 together with the fact that 6, (x*) < Bre (x¥, vF) + 1/2]|v¥||%. Next
proposition proves that the stepsize y; is well defined for all k € N, i.e., there exists a
finite j (k) that fulfills the Armijo-type rule given in (12) at each step of IPG Method.
The proof of the next result uses a similar idea to the presented in Proposition 2.2 of
Fukuda and Grafia Drummond (2013).

Proposition 3.8 Subproblem (12) has solution, i.e., there exists an index j(k) is a
nonnegative integer which is solution of (12).

Proof If v* = 0 then IPG Method stops. Otherwise, if v # 0 then by Proposi-
tion3.3(ii), x* is not a stationary point and 6g, (x¥) < 0. Moreover,

2
o

B (x*, vF) < Brop (6, vF) + < (1 -8)8,(x") < 0.

Note further that ¢(xk, vk = MAaX e (xk) ylJrp (x¥)v* < 0. Thus, it follows from
Proposition 3.2(i) that
Jr(xFk e —int(K (x5)). (13)
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Using the Taylor expansion of F at x*, we obtain that
FO') + oy JpD* — FO! 4+ 970" = (0 = Dy Jp (9  +or)). (14)

Since o < 1 and K (x%) is a cone, it follows from (13) that (o — l)ijF(xk)vk €
int(K (x¥)). Then, there exists £ € N such that, for all j = £, we get (0 —
Dyl Jg (xFyvk + o(yl) e K (x%). Combining the last inclusion with (14), we obtain
F(x* + oyl Jp(xF)vk — F(xk 4+ y7v5) € K (xF) forall j > ¢. Hence (12) holds for
jk) =¢. O

Remark 3.9 After this proposition, it is clear that given (xk, v5), j(k) is well-defined
and it can be computed by implementing a backtracking procedure in the iterative
step of IPG Method. Furthermore, the sequence generated by IPG Method is always
feasible. Indeed, as x*, xk + 0% € C, vk € (0, 1]and C is convex, Kkl = xk +ykvk €
C.

4 Convergence analysis of IPG method

In this section we prove the convergence of IPG Method presented in the previous
section. First we consider the general case and then the result is refined for K-convex
functions. From now on, (x¥);cy denote the sequence generated by IPG Method. We
begin the section with the following lemma.

Lemma4.1 Let F € C'. Assume that Uyec K (x) C K, where K is a closed, pointed

and convex cone. If x* is an accumulation point of (x*)ren, then limy_, o F (x*) =
F(x™).

Proof Let x* be any accumulation point of the sequence (xF)ken and denote (x*)gen
a subsequence of (x¥)ken such that limg_, oo x%* = x*. It follows from the definition
of Armijo-type line-search in (12) that

F(xM — F(xX) — oy Jr Fvh € —K (x5). (15)

Since IPG Method does not stop after finitely many steps, vx # 0, which means
that (b(xk, k) < 0. By Proposition 3.2(i), this means that Jg (xF)vk e —int(K (x5)).
Multiplying the last inclusion by oy > 0 and summing with (15), we get from the
convexity of K (x%) that

F* ) — FOK) — oy Jr W + oy Jr (X9 ok e —int(K (x5)).

Thus, F(x**1) — F(x*) € —int(K (x¥)). Since Uyec K (x) € K from assumption, it
holds that int(K (x)) € int(K) for all x, and F(x**!) — F(x*) € —int(K). Hence,
(F(x*)ren is decreasing with respect to cone K. The continuity of F imply that
limy_ o0 F(x'*) = F(x*). Then, to prove that the whole sequence (F (x*))ken con-
verges to F'(x*), we use the fact that the whole sequence (F (") ken is decreasing
with respect to cone K, which is a closed, pointed and convex cone; see, for instance,
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Proposition 3.1, pages 90, 91 of Peressini (1967) and Example 23.4 of Isac and Tammer
(2010). Thus, we get that limy_, o F(xky = F(x*), as desired. O

We present an analogous result as was proved in Proposition 3.3(iii) where v* is

a §-solution of subproblem (ka), which gives us a upper bound for the norm of v*.
Next lemma is a version of Proposition 2.5 of Fukuda and Grafia Drummond (2013)
to the variable order setting.

Lemma 4.2 Let (x¥)ren be the sequence generated by IPG Method. Then, ||vk I <
28111 7r () -

k2
Proof By the definition of §-approximate direction Bx¢ (x*, v¥) + % < {1 -
805, (x*). As was shown in Proposition3.3(ii), (1 — 8)fg, (x*) < 0, since x* € C.
k2
Thus, HUZH < - ,8k¢(xk, vk) and the result follows as in Proposition 3.3(iii). O

Next, we prove the stationarity of the accumulation points of the generated
sequence. Some arguments used in the proof of the next theorem are similar to those of

Theorem 3.5 of Fukuda and Grafia Drummond (2013) and Theorem 5.1 of Bello Cruz
and Bouza Allende (2014) for fixed and variable vector optimization, respectively.

Theorem 4.3 Suppose that

(a) Uyec K (x) C K, where K is a closed, pointed and convex cone.

(b) The map G is closed.

(c) dg(G(x), G(x)) < Lgllx — x|, forall x,x € C.

(d) JF is a locally Lipschitz function around x, for all x € C.
Then, all the accumulation points of (x¥)ren the sequence generated by TPG
Method are stationary points of problem (1).

Proof Let x* be an accumulation point of the sequence (x*)ken. Denote (x*)gen any
convergent subsequence to x*. Since F € C!, Lemma4.2 implies that the subsequence
(vV*)ey is also bounded and hence has a convergent subsequence. Without loss of
generality, we assume that CLTES converges to v*, B;, and y;, converge to B, > ,5
and y*, respectively. Recall that p(x, w) = max,ecG(x) ylw.

By definition we have F(x*y — F(xh) — oyiJF (xkyk e —K. Using Propo-
sition 3.2(i), implies that p (xik, F(xkhy — F(xk) — aykJF(xk)vk) < 0. Since the
function p is sublinear, as shown in Proposition 3.2 (iv), we get

p (x5 PN = F6M) < oy (34, Jr ). (16)

Using the semilinear property for p in the second argument, we can rewrite (16) as
p (x5 FGH) = p (¥ FGHD) = —opp (+F, Jr(cht) 2 0.

Now considering the subsequences (x%*)ien and (v*)en, where v'¢ = v(x%*) on this
inequality, we have

lim [,0 (xi", F(xik)) —p (xik, F(xi"H))] > —o lim y;,p (xik, Jp(xik)vik) > 0.
k—o00 k— 00
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As already was observed in the proof of Lemma 3.4, from (¢) and (d) we have that p is
continuous and moreover from Lemma4.1, we have limy_, oo F(x¥) = F(x*). Thus,

lim [,0 (x"k, F(x"k)> — 0 (xik, F(xik+1))] = p (x*, F(x") = p (x*, Fx*)) =

k— 00

These facts imply that limg_, i, 0 (xik, JF (xik)vik) = 0. Hence we can split our
analysis in two cases y* > 0 and y* = 0.
Case 1 y* > 0. Here

lim ¢ (', v%) = lim p (xi", JF(xik)vik) —0. (17)
k— 00 k— 00
Suppose that
0p,(x*) = [v(x*)I12/2 + Bep (x*, v(x*)) < —€ < 0, (18)

where v(x*) = X — x* with X € C. Due to the continuity of ¢ (-, -) in both arguments,
Lemma3.4 and (17) imply that

(1= (11—

maxgeN Pr B

o, vh) > —

for k large enough. After note that (B;)xen is a positive and bounded sequence, then

1-6
111272 + By (x'*, v'%) = By (x'*, 1) > ﬁlk( 7 )< > —(1=4d)e. (19)

By definition of the subsequence (v'*);en, we have, for all v € C — x'* and v €
C — x',

2
[’ ||

2
(1-19) <u+ﬂlk¢( & v)) > (1-58)6p, (x") = + By (%, ') (20)

2

2
Combining (19) and (20), we obtain that (1 —§) (& + Bid(x x' v)) —(1-=9%)e.
In particular consider 0¥ = % — x. Dividing by (1 — §) > 0, we obtain
9% 1%

2

+ Bipp (x, 0F) > —e.

By the continuity of function ¢ with respect to the first argument and taking
limit in the previous inequality, lead us to the following inequality ||v(x*)||?/2 +
B*¢(x*, v(x*)) > —e. This fact and (18) imply

llo™)|I1?

—€> TS + B (X", v(x™)) = —e,
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which is a contradiction. Thus, we can conclude that 6g, (x*) > 0 and, hence, using
Proposition 3.3, x* is a stationary point if lim sup;_, o, i, > 0.
Case 2 y* = 0. We consider the previously defined convergent subsequences

(XY kN, (Big)keNs (W )ken, (Vii)keN convergent to x*, By, v* and y* = 0, respec-
tively. Since B, > 0, we get that

[ve |2
zﬂik

p (xik, JF(xik)vik> <p (xik, JF(xik)vik) +
Since vt is a §-approximate direction at x'* for (P,;; ), see Definition 3.6, then

irn2 .
[ o™l - (1-19)
2:8ik ,Bik

0 (xik, Jp(xi")vi"> + Qﬁik (x'*) < 0.

Recalling that C is closed and (b) and (c) hold by Propositions 3.3 and 3.5, we have

that 6 is a continuous function. Taking limits above, we get p(x™, Jp(x™)v*) <
lv*||?
2B o . '

F(x™) + oy?Jp(x'*)v'* — K(x'%), as there exists Yii, € G(x'*) such that

(F(x' + y9v't) — F(x*) — oy?Jp(x"*)v'k, 3;,) > 0, it holds that

< 0. Fix ¢ € N. Then, for k large enough F(x'* + yv'*) ¢

P (xik, F(x* 4 y2y'%) — F(x') — ay‘f]p(xi")vik) > 0.
Taking limit as k tends to +00, and using that p is a continuous function, then
0 (x*, F(x* + y?v*) — F(x*) — aquF(x*)v*) > 0.

But p(x, -) is a positive homogeneous function, so,

F(x* 4%y — F(x*
) (x*’ (x* + y7v*) — F(x¥) _OJF(X*)U*> > 0.
yq
Taking limit as ¢ tends to +00, we obtain p (x*, (1 — o) Jr(x*)v™) > 0. Finally, since
o (x*, Jp(x*)v*) < 0, itholds p (x*, Jp(x™)v*) = 0 and by Proposition 3.2(ii), this
is equivalent to say that x* € S%. i

The above result generalizes Theorem 5.1 of Bello Cruz and Bouza Allende (2014),
where the exact steepest descent method for unconstrained problems was studied.
Recall that at the exact variant of the algorithm, the direction v¥ is computed as an exact
solution of problem (P,«). In order to fill the gap between these two cases, we present
two direct consequences of the above result, the inexact method for unconstrained
problems and the exact method for the constrained problem.

Corollary 4.4 Suppose that conditions (a)-(d) of Theorem4.3 are fulfilled. Then all
accumulation points of the sequence (x*)ien generated by the exact variant of TIPG
Method are stationary points of problem (1).

@ Springer



Author's personal copy

On inexact projected gradient methods for...

Proof Apply Theorem4.3 to the case § = 0. O

Corollary 4.5 Suppose that conditions (a)-(d) of Theorem4.3 are fulfilled for C = R".
If (Br)keN is a bounded sequence, then all accumulation points of (M) ken computed
by IPG Method are stationary points of problem (1).

Proof Directly by applying Theorem4.3 for C = R”. O

The result presented in Theorem 4.3 assumes the existence of accumulation points.
We want to emphasize that this is a fact that takes place even when the projected
gradient method is applied to the solution of classical scalar problems, i.e., m = 1
and K (x) = R;.. The convergence of the whole sequence generated by the algorithm
is only possible under stronger assumptions as convexity. Now, based on quasi-Fejér
theory, we will prove the existence of accumulation points for the sequence generated
by IPG Method when we assume that F' is K-convex. We start by presenting its
definitions and its properties.

Definition 4.6 Let S be a nonempty subset of R"”. A sequence (zkzkeN is said to be
quasi-Fejér convergent to § if and only if for all x € S, there exists k and a summable
sequence (&x)ren C R4 such that 1250 — x |12 < 12X — x||?> + & for all k > k.

This definition originates in Browder (1967) and has been further elaborated in
Tusem et al. (1994). A useful result on quasi-Fejér sequences is the following.

Fact4.7 If (M) ien is quasi-Fejér convergent to S then,

(i) The sequence (Z*)xen is bounded.
(ii) If an accumulation point of (zK)ken belongsto S, then the whole sequence (ZF)ken
converges.

Proof See Theorem 1 of Burachik et al. (1995). O

Next, we introduce the following definition, which is an adaptation of Definition
4.2 of Fukuda and Grafia Drummond (2013) and together with Proposition4.9 gives
us a condition for finding approximate directions for IPG Method without computing
exact directions.

Definition 4.8 Letx € C. A direction v € C —x is scalarization compatible (or simply
s-compatible) at x if there exists w € conv(G(x)) such that v = Pc_x(—BJr(x)w).

In the following proposition we present the relation between inexact and s-
compatible directions.

Proposition 4.9 Letx € C, w € conv(G(x)), v = Pc_x(—BJr(x)w) and § € [0, 1).
If

)
Bo(Jr(x)v) = (1 =8)B{w, Jr(x)v) — §||v||2,

then v is a 6-approximate projected gradient direction.
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Proof See Proposition 4.3 of Fukuda and Grafia Drummond (2013). O

We start the analysis with a technical result which is an extension to the variable
order case of Lemma 5.3 of Fukuda and Grafia Drummond (2013).

Lemma 4.10 Suppose that F is K-convex. Let (xk)keN be a sequence generated
by IPG Method where v* is an s-compatible direction at x*, given by vk =
Pe_ ok (—BrJr (xF)wh), with wk € conv(G(x*)) for all k € N. If for a given X € C
we have F (%) — F(x*) € —K (x*), then

I = %17 < o = 202 2Bemel (W, T ()Y,
Proof Since x**! = x* 4+ vk, we have [|x* 1 — %2 = [|x* — 2|12 + 20 )? -
2y (vF, & — xK). Let us analyze the rightmost term of the above expression. It fol-
lows from the definition of v¥ and the obtuse angle property of projections that
(=B Jr (xF)wk — vk, v —vk) <0, forall v € C — x¥. Takingv = % —x* € C — xK
on the above inequality, we obtain

— (W, & — xF) < Bk, TR @E = xF)) — Br(wh, T — J]oF 2.

Now, it follows from the convexity of F that (wX, Jp(x*)(x — x%)) < (w*, F(X) —
F(x¥)). Alsothe fact F(£) =g 1) F(x¥),ie., F(£)—F(x) € —K (x¥), together with
wk e K*(x*) imply that (w*, F(*) — F(x¥)) < 0. Moreover, by using Jr (x*)v* €
int(— K (x%)) and w* in conv(G (x%)) = K*(x¥), we have (w*, Jr(x*)v¥) < 0. Thus,
we get

— (", & = xb) < Bl (!, Tr ) = 1002
The result follows because y; € (0, 1]. O

We still need to make a couple of supplementary assumptions, which are standard
in convergence analysis of classical (scalar-valued) methods and its extensions to the
vector optimization setting.

Assumption 4.4 Let (Z)ken € F(C) be a sequence such that K — e K(x5)
forallk e Nand z € F(C), ¥ — 7z € K for some closed, convex and pointed cone
IC, Uren K (x*) C K. Then there exists £ € C such that F (%) <x zX for all k € N,
i.e., F(X) — zK € =K. In this case, we say that the sequence (zX)ken is bounded from
below with respect to K.

Recently, it was observed in Kim et al. (2018) that this assumption could be replaced
by assuming that the restriction of F on C has compact sections. This assumption
is related to the completeness of the image of F. It is important to mention that
completeness is a standard assumption for ensuring the existence of efficient points in
vector problems in Luc (1989).

Assumption 4.5 The search direction v* is s-compatible at x¥, that is to say, v¥ =
PC_xk(—,BJF(xk)ka), where wk € conv(G (x%)) for all k € N where Pc_k 1s the
orthogonal projection onto C — x*.
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This assumption holds automatically in the exact case. Moreover, it has been widely
used in the literature in the vector case; see, for instance, Fukuda and Grafia Drummond
(2013). A version of these assumptions is also used in Fukuda and Grafia Drummond
(2013) when the partial order is given by a constant cone.

The next result is an extension to the variable order setting of Theorem 5.6 of
Fukuda and Grafnia Drummond (2013).

Theorem 4.11 Assume that F is K-convex and that Assumptions 4.4 and 4.5 hold. If
int(Nken K (xX)) # @ and there exists K, a pointed, closed and convex cone such that
K (x*) c K forall k € N, then every sequence generated by IPG Method is bounded
and its accumulation points are weakly efficient solutions.

Proof Let us consider the set T := {x € C : F(x*y — F(x) € K(x%), forall k}, and
take X € T, which exists as consequence of Assumption 4.4 together with (12) and
the fact that Ugen K (x%) € KC. Since F is a K-convex function and Assumption 4.5
holds, it follows from Lemma4.10 that

I = 212 < 1 = 212 4 280 (wk, T (b)), (1)

for all k € N. By the definition of vk, it is a descent condition. This means that
—Jr(x*)vF € K (x%). Hence (wk, Jp(x*)v*) < 0. Then,

||xk+1 2

2=k =212 < 2Byl (wF, Tr )oY | < =280 (wb, Tp ()05, (22)

On the other hand as /C is a closed, convex and pointed cone with nonempty interior, *
is also a closed, convex and pointed cone with nonempty interior. Since K (x*) ¢ IC,
it holds that K* C K*(x*). Hence K* C MienK*(x%). Let wy, ..., wm € K* be a
basis of R” which exists because int(K™) # .

Then, there exist o}, ..., a¥ € Rsuch that wk = "7 | a¥w;. Substituting in (22),

m
I — 212 — = 217 < 2B Y e (e, TR (). (23)

i=1

On the other hand, since —Jr(x*)v* € K(x5), wi,...,0m € K* € K*(x¥) and
Bi. vk > 0 for all k € N, it holds (wi, =28y Jr(x*)v¥) > 0. Without loss of
generality, we can assume that |w; || = 1 because the normalized non-null vectors are
still a basis of R”. Then, af‘ is uniformly bounded, i.e. there exists M > 0 such that

forall k, i |a¥| < M. Hence,

m
I — 212 = xF = 21 < —2M B Y (i, Tr ()b, (24)

i=1
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By the Armijo-type line-search in (12), F(xkh— F(xky— vko JF (xFyk e —K (xb).
Recall that w; € Ngen K *(x*), we obtain

(0, F(x*) — F(x¥t1y)

o

> (w;, —y I ()b,

It follows from (24) that

i=1

For the Fejér convergence of (xF)ren to T, it is enough to prove that the term
B SN (i, F(x*) — F(x*t1)) > 0 is summable at all k € N. Since B¢ < B for
allk e N,

n m m

B Y (o, F(X) = FOM) < B oy, %) — FO"Hh). (26)
= i=1

k=0 i=1

As consequence of the Armijo-type line-search, we have F R —=FkHYhY e K5 ¢
K. So, (F(x"))en is a decreasing sequence with respect to /. Furthermore by
Assumption 4.4, it is bounded from below, also with respect to the order given by
IC, by F(x), where X € T. Hence, Proposition 3.1, pages 90, 91 of Peressini (1967)
implies that the sequence (F (") ken converges and using (26) in the inequality below,
we get

o0 m n m

. ky _ k+1\y 1 ) ky k+1
DB fwi FGN) — FMh) = Tim Y e Y (@i, F& = FGH)
k=0 = k=0 =1

i=1

< B lim Y (o, FGO) = FG")
i=1

3

B i FG®) — lim F(x"*h)
i=l

(wi, Fx%) — FR)) < +o0.

NE

p

1

So, the quasi-Fejér convergence is fulfilled.

Since X is an arbitrary element of 7, it is clear that (M) ken converges quasi-Fejér
to 7. Hence, by Fact4.7, it follows that (x%) keN 18 bounded. Therefore, (xk )keN has at
least one accumulation point, which, by Theorem 4.3 is stationary. By Proposition 2.3,
this point is also weakly efficient solution, because F is K-convex. Moreover, since
C is closed and the whole sequence is feasible, then this accumulation point belongs
to C. |
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5 Another variable order

As was noticed in Section 6 of Bello Cruz et al. (2014) the variable order structure can
be formulated in two different ways. Moreover, Examples 3.1 and 3.2 in Bello Cruz
et al. (2014) illustrate the differences in considering one order or the other. Thus, the
variable order for the optimization problem may also depend on a new order by using
the cone value mapping K: dom(K ) C R™ = R™ where K (y) is a convex, closed
and pointed cone for all y € F(C) C R" where C is the feasible set. It is worth noting
that the domain of the new mapping K isin R” and to guarantee the well definition
of the variable order below F(C) C dom(K ). So, by asking convex1ty, closedness
and pointedness of K (y) for all y € F(C), those conditions hold for K (F(x)) for all
x € C. Note further that the ordering considered in the previous sections is defined
by applications whose domain is R”. As already discussed in Bello Cruz et al. (2014),
convexity can be defined and convex functions satisfy nice properties such as the
existence of subgradients in the nonsmooth case.
Given a closed and convex set C, we say that x* € C solves the optimization
problem
K —min F(x) s.t. x € C, (27)

if, forall x € C,
F(x) — F(x*) ¢ —K(F (x*))\{0}.

Here we can assume that K : F (C) € R™ = R™. We shall mention that the main
difference between the above problem and problem (1) yields in the definition of the
variable order given now by K. For a more detailed study of the properties of the
minimal points and their characterizations and convexity concept on this case; see
(Eichfelder 2014; Bello Cruz et al. 2014).

In this framework, the definitions of weak solutions and stationary points are anal-
ogous. The main difference is that instead of K (x*), the cone K (F(x™*)) is considered
to define the variable partial order. That is, the point x* is stationary, if and only if for
alld € C — x*, we have Jp(x™)d ¢ —int(K (F(x*))). Then, similarly as in the case
of problem (1), the following holds.

Proposition 5.1 If F is a continuously differentiable function and C is a convex set,
weak solutions of problem (27) are stationary points. Moreover if F is also convex
with respect to K, the converse is true.

Proof 1t follows the same lines of the proofs of Propositions 2.1 and2.3. The Taylor
expansion of F' combined with the closedness of K (F(x*)) imply the result. O

The inexact algorithm is adapted in the following way

F-Inexact Projected Gradient Method (FIPG Method). Given 0 < 8 < B < ,3 <
400,86 € (0,1]and o, y € (0, 1).

Initialization Take x° € R” and By.
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Iterative step Given x* and B¢, compute v* a §-approximate direction at x¥ for
(Q,). If v*¥ = 0, then stop. Otherwise compute

¢(k) := min {e e N: F(x¥) + oy Up(Fyk — Fk + %) e IE(F(x"))} .

(28)
Set x¥T1 = xk 4 yok e €, with y = W,
Here the auxiliary problem (Q,«) is defined as
[l K
min §—— 4+ Brp(x",v) ¢, (Qyr)
veC—xk 2
where ¢ : R" x R" — R,
¢(x,v):= max y! Jr(x)v, (29)
yeG(F(x))

for G : R = R™ generator of I%*(F(x)) = [I%(F(x))]*.

With this ordering, the function ¢ characterizes the stationarity. Furthermore, sub-
problem (Q ) has a unique solution, which is vk = 0 if and only if x* is a stationary
point. Results analogous to those proven in Propositions 3.3 and 3.5 are also true.
These facts imply that FIPG Method is well defined, i.e., if it stops, then the com-
puted point is stationary, and in the other case, there exists £(k) which satisfies the
Armijo-type line-search (28). So, only the convergence of a sequence generated by it
must be studied.

As in the last section, we analyze the convergence of the functional values sequence

(F (x%))ken.

Lemma 5.2 Suppose that x* is an accumulation point of (x*)ren of the sequence
generated by FIPG Method. If U, cc K (F (x)) C K, where K is a closed, pointed and
convex cone, then limg_, oo F (x¥) = F(x*).

Proof The result is again proven by the existence of a non-increasing sequence with
an accumulation point. O

Next, with the help of the last Lemma, we summarize the convergence of the
generated sequence with the following result.

Theorem 5.3 Suppose that

(a) U xeck (F(x)) C IC, where K is a a closed, pointed and convex cone.

(b) The map G o F is closed.

(c) du(G(F(x)), G(F(%))) < Lgrllx —%||, forall x,x € C.

(d) JF is a locally Lipschitz function around x for all x € C.
Then, all accumulation points of (O ren generated by FIPG Method are sta-
tionary points of problem (27).

Proof 1t follows from the same lines of the proof of Theorem4.3. |
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We want to point out that in the last theorem the condition
du(G(F(x)), G(F(%))) < Lgrllx — x|, Vx,xe€C

replaces the similar one given in Theorem4.3, i.e., dg(G(y), G(9)) < Lglly — JI,
for all y, y € C. Moreover, if F is Lipschitz on C, then this last condition implies the
condition (c) in Theorem 5.3 by taking y = F(x) and y = F ().

Next result is an extension to the variable order setting of Theorem 5.2 of Fukuda
and Grafia Drummond (2013).

Theorem 5.4 Assume that F is K -convex and additionally:

(a) If (ZFVken C F(C) is a sequence such that K — e I%(F(xk)) for all
k € Nand z € C, 7¥ — z € K for some closed, convex and pointed cone K,
Uren K (F(x%)) € K, then there exists £ € C such that F (%) < z¥ forall k € N.

(b) The search direction v* is s-compatible atxk e, v* = Pe_ o (—BJF (KT wky,
where w* € conv(G(F (x*))), for all k € N.

(c) int(Mken K (F(x5))) # @. )

(d) There exists KC, a pointed, closed and convex cone such that K (F k) c K for
all k € N.

Then every sequence generated by FIPG Method is bounded and its accumula-
tion points are weakly efficient solutions.

Proof 1t follows from the same lines of the proof of Theorem4.11 using now the new
variable order structure. O

6 lllustrative examples

In this section, we present three examples, two for problem (1) and one for problem
(27), illustrating how both proposed methods work starting at ten different random
initial points. We verify our assumptions in each problem and make some compar-
isons between the proposed methods by changing the inexactness of the approximate
gradient direction.

The algorithms were implemented in MATLAB R2012 and ran on an Intel(R)
Atom(TM) CPU N270 at 1.6GHz. All starting points are not solutions and are ran-
domly generated. The stopping criteria were ||v¥|| < 10™* and also when a maximum
of 30-iterations is reached. The solutions were displayed with four digits, CPU time
was recorded in seconds, and the number of iterations was also displayed in each
case. Our numerical tests were performed with B; constant equal 1. Despite the fact
that it may not be an easy task to compute the positive dual cone of a given cone,
the computation of (approximate) directions is, in general, complicated. Indeed, after
the definition, the exact optimal value of problem (P,) must be known. The use of
s-compatible directions at iteration k of the proposed methods, see Definition4.8, is
recommended in the case in which the exact projection onto the set C — x* is not too
complicated.
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This is the case for the set of feasible solutions in the next example. Clearly, in all
examples below, the defining order cone-valued mappings are closed maps, and their
generators are Lipschitz with respect to the Hausdorff distance.

Example 6.1 We consider the vector problem as (1) with
K —min F() = (x+1,22+1), st x €0, 1],
where F : R — R? and the variable order is given by K : R = R2,
K(x):= {(Z1,ZQ) eR*:21 >0, P+ 1Dz — (x+ D2z < 0}.

In this model the closed interval [0, ~/2 — 1] & [0, 0.4142] is the set of minimizers.

The IPG Method was run ten times by using ten random initial points, outside
of the set of minimizers, and each time it ended at solution points, which have been
obtained after the verification of the stopping criterion.

The method gives the following data:

Note that in all cases above optimal solutions were obtained. Moreover, to illustrate
how the inexactness of the IPG Method affects the performance (average of CPU time
and the average of the number of iterations for 10 instances) of the convergence is
considering different values of the approximate direction parameter 8.

The above table shows that when the inexactness increases, the number of iterations
increases. However, the CPU time decreases from § = 0 to § = 0.5, hence in the last
value of § the CPU time slightly increases.

The next example is a non-convex problem corresponding to the model studied in the
previous section.

Example 6.2 [cf. Example 4.13 of Eichfelder and Duc Ha (2013)] Consider the fol-
lowing vector problem as problem (27)

K —min F(x1,xp) = (x%,x%), s.t.m < x12 +x% < 2m,

where F: R? — R? and the variable order is given by the cone K:R? = R?,

T
K(y) = {Z = (z1,22) €R? 1 ||z]|2 < [(_21 _11) Y] z/ﬂ} :

The set of solutions (stationary points) of this problem is directly computed by using
the definition of §° given in (2) as

{(xl,xz) eR*:xf+x3=m or x%—l—x%:Zn}.

The FIPG Method computes the following points:
Note that the solutions computed at all iterations of the proposed method belong to
the set of optimal solutions.
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S-Approximation Parameters §=0 §=0.25 6=0.5 6 =0.75
Average of CPU Time 0.4819 0.2232 0.0244 0.0251
Average of N2 Iterations 9 15 19 21
1.0
g * Inexact CPU Time
* Exact CPU Time
0.8 .
0.6 1
0.4 1
0.2 1 ’ ”
004 e ¢ . * . . . .
2 4 6 é 10

Fig.1 Example6.1

The last example from Section 9.2 of the book (Eichfelder 2014) is widely studied.
Example 6.3 [cf. Example 9.5 of Eichfelder (2014)] Consider the following problem
K —min F(x) = (x1,x2), st. xeC

where

C = {x = (x1,x2) € [0, 7] x [0, ]

2 2 1 xl
Xy +x3 — 1 — — cos| 16arctan | — >0,
10 X2 .

(x] = 0.5)2 4+ (x2 — 0.5)%2 < 0.5.

Consider the map K : R? = R?, given by

2
K(x) = {z eR?: |z]l2 < .—xTz}.
min;—i2 X;

The IPG Method stating at ten random initial points performs as follows:

In this case, the maximum number of iterations is achieved. Nevertheless, good
approximations to minimal elements have been computed at each of the ten instances
presented in the above table.

For all the above examples, we compare the exact and inexact versions by taking

the same initial points (10 in total on the “x” axes) in term of the CPU time (in seconds
on the “y” axes); see figures below (Figs. 1, 2, 3).
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Fig.3 Example6.3

This shows that the inexact versions are significantly faster (CPU Time), in almost
all instances than the exact ones.

However, for all initial points of the above examples, the exact versions of the
proposed methods take fewer iterations than the inexact ones to converge to a solu-
tion. It is worth emphasizing that the exact versions have to solve exactly the harder
subproblems P« and Q .« to find the descent direction at each iteration k. This is a
serious drawback for the computational implementation point of view (avoidable for

the above examples), making the exact implementation inefficient in general.
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7 Final remarks

The projected gradient method is one of the classical and basic schemes for solving
smooth constrained optimization problems. In this paper, we have extended the inex-
act scheme proposed in Fukuda and Grafia Drummond (2013) for constrained vector
optimization problems. The proposed methods solve smooth and constrained vector
optimization problems under a variable ordering by taking inexact descent directions.
Both methods are able to find the solution of problem (1) using less effort from a
computational viewpoint, and it considers all the possible combinations: constrained-
unconstrained, and exact-inexact in the variable order setting. This inexact projected
approach promotes future research on other efficient variants for these kinds of prob-
lems.

As itis shown in the examples above, it is more effective and implementable than the
exact one. Moreover, constrained variable optimization problems can now be solved
by using inexact directions, which improves the result presented in Bello Cruz and
Bouza Allende (2014). However, the full convergence of the generated sequence to a
weakly efficient solution is still an open problem in variable order settings.

Another important solution concept is non-domination, which is used for optimizing
set-valued maps under the variable structure. A variant of the proposed approach
can also be considered using the condition Jg (xF)v € — Uyec K (x) as the descent
direction at each step k. However, this approach will converge to a stationary point,
as in the case we have proposed. Non-dominated points are also minimizers under
well-known conditions. A future research direction would be to find, in this case, how
we can guarantee that the algorithm converges to non-dominated points. Set-valued
optimization is also an interesting topic and finding algorithms that compute points
that at least fulfill conditions, such as those presented in Theorem 3.3 in Durea et al.
(2015), 1s important.

Future work will also be addressed to investigate for some particular instances
of this problem the case in which the objective function is a non-smooth function,
extending the projected subgradient method proposed in Bello Cruz (2013) to the
variable order setting.

The numerical behavior of these approaches under K -convexity of the non-smooth
objective function remains open, and it is a promising direction to be investigated.
Despite its computational shortcomings, it hopefully sets the foundations of future
research into more efficient and general algorithms for this setting.
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