
Adaptive-HMD: Accurate and Cost-Efficient
Machine Learning-Driven Malware Detection

using Microarchitectural Events

Yifeng Gao∗, Hosein Mohammadi Makrani‡, Mehrdad Aliasgari§,
Amin Rezaei§, Jessica Lin∗, Houman Homayoun‡, and Hossein Sayadi§

∗Department of Computer Science, George Mason University, VA, USA
‡Department of Electrical and Computer Engineering, University of California, Davis, CA, USA

§Department of Computer Engineering and Computer Science, California State University, Long Beach, CA, USA

Abstract—To address the high complexity and computational
overheads of conventional software-based detection techniques,
Hardware Malware Detection (HMD) has shown promising re-
sults as an alternative anomaly detection solution. HMD methods
apply Machine Learning (ML) classifiers on microarchitectural
events monitored by built-in Hardware Performance Counter
(HPC) registers available in modern microprocessors to rec-
ognize the patterns of anomalies (e.g., signatures of malicious
applications). Existing hardware malware detection solutions
have mainly focused on utilizing standard ML algorithms to
detect the existence of malware without considering an adaptive
and cost-efficient approach for online malware detection. Our
comprehensive analysis across a wide range of malicious soft-
ware applications and different branches of machine learning
algorithms indicates that the type of adopted ML algorithm
to detect malicious applications at the hardware level highly
correlates with the type of the examined malware, and the
ultimate performance evaluation metric (F-measure, robustness,
latency, detection rate/cost, etc.) to select the most efficient
ML model for distinguishing the target malware from benign
program. Therefore, in this work we propose Adaptive-HMD, an
accurate and cost-efficient machine learning-driven framework
for online malware detection using low-level microarchitectural
events collected from HPC registers. Adaptive-HMD is equipped
with a lightweight tree-based decision-making algorithm that
accurately selects the most efficient ML model to be used for
the inference in online malware detection according to the users’
preference and optimal performance vs. cost (hardware overhead
and latency) criteria. The experimental results demonstrate that
Adaptive-HMD achieves up to 94% detection rate (F-measure)
while improving the cost-efficiency of ML-based malware detec-
tion by more than 5X as compared to existing ensemble-based
malware detection methods.

Keywords- Hardware Malware Detection, Machine Learning, Mi-
croarchitectural Events, Cost Analysis.

I. INTRODUCTION

The fast-growing complexity of modern computing plat-
forms has led to emergence of new security vulnerabilities,
making them suitable targets for sophisticated cyber attacks
such as malware [1], [2]. Malicious software or malware is
the general term for a group of malicious programs developed
by cyber attackers to perform harmful tasks like damaging
or disabling computer systems, networks, and mobile devices
often taking partial control over a digital device’s operations or
leaking sensitive data and personally identifiable information
[3], [4]. According to a recent McAfee Labs threat report more

than 67 millions new malware variants have been discovered
in only the first quarter of 2019 with nearly 40% increase as
compared to the last quarter of 2018 [5].

To cope with with the malware attacks variations and pro-
tect the integrity and confidentiality of the authenticated users’
information, security researchers have constantly attempted
to upgrade the endpoint protection mechanisms (e.g., anti-
malware software tools) as the last layer of defense. Such
solutions though effective, relied on signature-based or pattern
matching analysis categorized as conventional software-based
detection techniques that have shown to be inefficient mostly
imposing significant complexity and computational overheads
on the system. In addition, they can be bypassed using obfus-
cation or polymorphism methods [2], [6], [7], [8].

To overcome the performance and computational over-
head of traditional malware detection techniques, Hardware
Malware Detection (HMD) has emerged by employing low-
level microarchitectural events of running applications on the
target system. These events are collected through Hardware
Performance Counters (HPCs) registers [9], [10], [11] that
are special-purpose registers implemented in modern micro-
processors to capture the hardware-related events of profiled
applications. HMD methods have shown the suitability of
standard machine learning (ML) algorithms applied on HPCs
information in detecting patterns of malicious applications
[9], [10], [11], [12], [13], [14]. On the other side, the con-
siderable growth of mobile platforms and Internet-of-Things
(IoT) devices development has further intensified the impact of
malware threats. In particular, there are some important factors
influencing the security vulnerability of embedded systems and
IoTs such as limited available resources, low computational
capacity, and significant number of computing nodes in the
network [8], [15], [16] that need to be considered in the design
process of the adopted HMD method in modern platforms.

In this paper, we have addressed major challenges involved
with an accurate and cost-efficient microarchitectural malware
detection that have been ignored in previous works. In par-
ticular, existing HMD techniques have ignored presenting a
comprehensive and balanced trade-off analysis between per-
formance (e.g., detection rate) and implementation costs (e.g.,
hardware overhead) of the ML-based detectors at the proces-
sor’s hardware level. However, our comprehensive examina-
tion across different types of malware and machine learning
algorithms used for HPC-based malware detection shows that

	

978-1-6654-3370-9/21/$31.00 ©2021 IEEE

	

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

Ro
bu

st
 S

ys
te

m
 D

es
ig

n
(IO

LT
S)

 |
 9

78
-1

-6
65

4-
33

70
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IO
LT

S5
28

14
.2

02
1.

94
86

70
1

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

the type of ML algorithm to classify malicious applications in
HMD techniques highly relies on two important factors. First,
it depends on the type of malicious applications (e.g., Virus,
Worm, Rootkit, etc.) and varies across various malware classes.
Second, it correlates with the ultimate performance criteria
(F-measure, Area Under the Curve, latency, performance/cost,
etc.) to select the most efficient ML model for the inference
in online malware detection and classification according to the
users’ preference and optimal performance vs. cost (hardware
overhead and latency).

In response, in this work we propose Adaptive-HMD, an
accurate and cost-efficient machine learning-driven framework
for online malware detection using microarchitectural events
collected from HPC registers. Adaptive-HMD is equipped with
an intelligent and lightweight tree-based decision-maker that
accurately selects the most efficient ML model to be used for
the inference in online HMD according to the adjusted tuning
parameters (e.g., malware class, evaluation metric, available
resources, etc.). To the best of our knowledge, this is the
first work that addresses the challenge of performance vs.
cost-efficiency trade-off analysis for ML-based online malware
detection using hardware performance counter features. As we
will show in this work, given the high implementation cost
of complex but accurate ML models (e.g., neural networks)
for detecting malware at the hardware level, a cost-sensitive
selection model is required that accounts for impact of both
detection performance and implementation cost of the base
ML models and determines the best malware detector. The
results of this work will assist the designers in making effective
architectural decisions to develop accurate and cost-effective
intelligent countermeasures for securing modern computing
systems against emerging cyber attacks, especially in edge
platforms and resource-constrained devices.

The remainder of this paper is organized as follows.
Section II presents the motivations and challenges of proposing
hardware-based online malware detection using ML tech-
niques. Next, the details of the proposed Ml-driven malware
detection approach is described in Section III. Further, the
comprehensive evaluation of experimental results is presented
in section IV. Lastly, Section V concludes this study.

II. MOTIVATIONS

This section highlights the motivations of proposing an
adaptive hardware malware detection framework using illus-
trative case studies.

A. Importance of Efficient ML Model Selection at Run-Time
To demonstrate the importance of proposing an efficient

and cost-sensitive model selection for online hardware mal-
ware detection, we examined five different machine learning
models including Sequential minimal optimization (SMO),
Multi-Layer Perceptron (MLP), One Rule (OneR), and De-
cision Tree (RepTree and JRip) algorithms in the task of
detecting 5,164 contaminated HPC interval samples. Figure 1
shows the pairwise performance comparison between these five
ML classifiers. The values in ith rows and jth column indicate
the percentage of tested samples that can be successfully
identified by the ith model but cannot be correctly recognized
by jth model. For instance, according to the value in the 2nd
row and 1st column, in around 14.65% of tested HPC intervals,
MLP-based classifier correctly recognizes samples that are

Fig. 1: Performance comparison of different ML models for hardware
malware detection

misclassified by SMO-based malware detector (malware or
benign). In addition, according to the figure, there is no perfect
ML model for effective HMD. Some samples that could be
easily identified by a simple ML model such as OneR are
still surprisingly difficult to be identified by more advanced
machine learning models. This highlights the necessity of
presenting a cost-sensitive decision-making model to build
an accurate and robust malware detection that analyzes all
base ML models and attempts to select the most efficient ML
classifier for recognizing the malicious patterns at run-time
based on user’s preference and available underlying resources.

B. Can Ensemble of the ML Models Help?
Ensemble learning is a well-known technique for its ability

to greatly enhance classification performance by integrating
results from multiple weak classifiers [17], [18]. However, as
we show in this work directly applying the ensemble approach
by combining multiple ML classifiers for hardware malware
detection task incurs significant overhead in terms of latency,
area, and complexity to the system. For instance, suppose that
we deploy five ML models shown in Figure 1 to build an
ensemble classifier to boost up the performance of HMD. As
a result, for each input sample the algorithm will need to run
all five base classifiers to detect malware. The computation
cost of the ensemble-based malware detection is clearly much
greater than using a single machine learning model.

As a case study to highlight this issue, Figure 2 illustrates
the performance vs. cost (e.g., latency) of three different en-
semble methods (Majority Voting, Average Voting, and Stack-
ing) compared with the proposed method, Adaptive-HMD. The
x-axis and y-axis in Figure 2 represent the model latency
(ns) and detection performance rate (F-measure), respectively.
As seen, ensemble methods typically deliver large costs in
terms of latency with different levels of F-measure as the
detection rate metric. For instance, although Stacking method
delivers more than 95% detection rate, it has a large latency
which makes it less practical for efficient hardware malware
detection especially in resource-limited computing systems.
Therefore, the objective of the proposed work is achieving a
higher or similar performance level as ensemble methods while
dramatically reducing the associated overhead and computation
cost of hardware malware detection.

III. OVERVIEW OF Adaptive-HMD
In this section, we describe the proposed machine learning-

driven approach for accurate and cost-efficient hardware mal-





Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

Fi g. 2: P erf or m a n c e vs. C ost (e. g., l at e n c y) tr a d e- off a n al ysis of
e ns e m bl e al g orit h ms a n d t h e pr o p os e d m et h o d

w ar e d et e cti o n. Fi g ur e 3 d e pi cts a n o v er vi e w of t h e pr o p os e d
A d a pti v e- H M D fr a m e w or k. As s e e n, A d a pti v e- H M D c o nsists
of t w o m aj or st e ps i n cl u di n g of fli n e a n al ysis (d at a c oll e cti o n
pr o c ess) a n d o nli n e d et e cti o n (m o d el s el e cti o n a n d m al w ar e
d et e cti o n pr o c ess) t h at will b e dis c uss e d i n d et ails b el o w.

A. Mi cr o ar c hit e ct ur al E v e nts M o nit ori n g a n d A n al ysis

T h e of fli n e a n al ysis st e p of A d a pti v e- H M D r e pr es e nts t h e
d at a c oll e cti o n pr o c ess i n w hi c h a wi d e r a n g e of b e ni g n a n d
m al w ar e a p pli c ati o ns ar e e x e c ut e d o n a n I nt el X e o n X 5 5 5 0
s yst e m r u n ni n g U b u nt u 1 4. 0 4 wit h Li n u x 4. 4 K er n el. T h e t ar-
g et pr o c ess or h osts 4 H P C r e gist ers t o pr o fil e t h e a p pli c ati o ns.
Vari o us b e ni g n a n d m al w ar e a p pli c ati o ns ar e e x e c ut e d. T h e
b e ni g n a p pli c ati o ns i n cl u d e r e al- w orl d w or kl o a ds c o m prisi n g
Mi B e n c h [1 9] a n d S P E C 2 0 0 6 [2 0], Li n u x s yst e m pr o gr a ms,
br o ws ers, a n d t e xt e dit ors, a n d m al w ar e a p pli c ati o ns ar e
c oll e ct e d fr o m Vir us T ot al a n d Vir us S h ar e o nli n e r e p osit ori es
i n cl u di n g W or m, Vir us, Tr oj a n, a n d B a c k d o or cl ass es. T h e
mi cr o ar c hit e ct ur al e v e nts ar e c oll e ct e d usi n g Perf t o ol at s a m-
pli n g r at e of 1 0 ms a n d ar e m o nit or e d b y pr o fili n g a p pli c ati o ns
vi a Li n u x C o nt ai n ers (L X C) [2 1]. L X C is c o nsi d er e d as a n
is ol at e d e n vir o n m e nt w hi c h u nli k e c o m m o n virt u al pl atf or ms
s u c h as V M War e or Virt u al B o x, off ers a c c ess t o a ct u al h ar d-
w ar e p erf or m a n c e c o u nt ers d at a i nst e a d of e m ul ati n g H P Cs.

D et er mi ni n g t h e pr o mi n e nt mi cr o ar c hit e ct ur al e v e nts is
a n i m p ort a nt st e p f or d e v el o pi n g a c c ur at e a n d ef fi ci e nt M L
cl assi fi ers [1 1], [2 2], [2 3]. T o eff e cti v el y s el e ct t h e t o p H P C
f e at ur es, as s h o w n i n Fi g ur e 3 w e first a d o pt C orr el ati o n
Attri b ut e E v al u ati o n t o c al c ul at e P e ars o n c orr el ati o n b et w e e n
e a c h e v e nt a n d t ar g et cl ass a n d r a n k all t h e m o nit or e d e v e nts.
N e xt, w e a p pl y Pri n ci pl e C o m p o n e nt A n al ysis (P C A) t o fi n d
t h e b est H P Cs s uit e d f or tr ai ni n g t h e M L- b as e d m al w ar e
d et e ct ors. P C A is a cl ass of di m e nsi o n all y r e d u cti o n t e c h ni q u es
t h at c a pt ur es m ost of t h e d at a v ari ati o n b y r ot ati n g t h e ori gi n al
d at a t o a n e w v ari a bl e i n a n e w di m e nsi o n [2 4], [2 5]. We us e
P C A t o r e d u c e t h e f e at ur es a n d a p pl y a hi er ar c hi c al cl ust eri n g
t e c h ni q u e t o gr o u p si mil ar f e at ur es a n d i d e nti fi e d t h e t o p 4
H P Cs t o c a pt ur e t h e b e h a vi or of s p e ci fi c cl ass of m al w ar e. T h e
f e at ur e r e d u cti o n r es ults i n di c at e t h at t h e t o p 4 H P C e v e nts ar e
t h e s a m e a cr oss v ari o us cl ass es of m al w ar e t h at i n cl u d e br a n c h
i nstr u cti o ns, c a c h e r ef er e n c es, br a n c h miss es, a n d n o d e-st or es.

B. A d a pti v e- H M D Tr ai ni n g a n d Testi n g

H er e, w e pr es e nt t h e d et ails of tr ai ni n g a n d t esti n g of
A d a pti v e- H M D f or eff e cti v e o nli n e m al w ar e d et e cti o n usi n g
mi cr o ar c hit e ct ur al e v e nts. As ill ustr at e d i n Fi g ur e 3, t h e o nli n e
m al w ar e d et e cti o n pr o c ess i n A d a pti v e- H M D c o nsists of a

Offli n e A n al y si s: D at a C oll e cti o n Pr o c e s s

S el e ct s t h e b e st d et e ct or
b a s e d o n u s er’s pr ef er e n c e

M L D et e ct or 1

M L D et e ct or 2

M L D et e ct or 3

M L D et e ct or N

…

B e ni g n

M al w ar e
D e ci si o n Tr e e -b a s e d

S el e cti o n M o d el

S et of M L -b a s e d D et e ct ors:
A d a pti v e -H M D a d o pt s t h e m o st effi ci e nt M L

M o d el t o d et e ct m al w ar e

O nli n e D et e cti o n: M o d el S el e cti o n & M al w ar e D et e cti o n Pr o c e s s

R e d u c e d H P C
s a m pl e s

Pri n ci pl e C o m p o n e nts
A n al ysis (P C A)

Attri b ut e E v al u ati o n
1

2

A p pli c ati o n s (M al w ar e / B e ni g n)
r u n ni n g o n t h e t ar g et s y st e m

F e at ur e
E xtr a cti o n

Mi cr o ar c hit e ct ur al F e at ur e s
A n al y si s: I d e ntif yi n g t h e
m o st pr o mi n e nt H P C s

M al w ar e

B e ni g n

F e at ur e
R e d u cti o n

H P C F e at ur e s ar e c oll e ct e d

vi a P erf T o ol e v er y 1 0 m s fr o m
t h e u n d erl yi n g pr o c e s s orB ac k d o or

Vir us

Tr oj a n

W or m

Fi g. 3: O v er vi e w of A d a pti v e- H M D f or o nli n e m al w ar e d et e cti o n

u ni fi e d m a c hi n e l e ar ni n g- b as e d s el e cti o n m o d el (m o d el s) a n d
N M L- b as e d a n o m al y d et e ct ors (A i : i = 0 , 1 , ..., N − 1). T h e
s el e cti o n m o d el pri m aril y ai ms at fi n di n g t h e m ost a c c ur at e
a n d ef fi ci e nt M L- b as e d m o d el fr o m t h e s et of b as e M L-
b as e d a n o m al y d et e ct ors gi v e n t h e o bs er v e d H P C f e at ur es
f or d et e cti n g t h e c orr es p o n di n g cl ass of m al w ar e at r u n-
ti m e. I n a d diti o n, e a c h M L d et e ct or A i i n A d a pti v e- H M D is
i m pl e m e nt e d as a bi n ar y m a c hi n e l e ar ni n g cl assi fi er t o i d e ntif y
w h et h er t h e o bs er v e d H P C r e c or d is m al w ar e or b e ni g n.

Al g o rit h m 1 A d a pti v e- H M D Tr ai ni n g Pr o c ess

I n p ut : Tr ai ni n g H P C I nt er v al S a m pl es H = h 1 . . . hN , L a b el L =
l1 . . . lN . S et of u ntr ai n e d b as e d m o d el { A i |i = 1 . . . M } , u ntr ai n e d
s el e cti o n m o d el m o d el s

O ut p ut : S el e cti o n M o d el m o d el s a n d b as e d a n o m al y d et e ct ors s et { A i |i =
1 . . . M }

f o r i ← 1 t o M d o

A i ← Fitti n g M o d el(H ,L , A i)

l ati ← E v al u at e L at e n c y(A i)

a r e a i ← E v al u at e Ar e a O v er h e a d(A i)

f o r j ← 1 t o N d o

p i, j ← C orr e ct Pr e di ct Pr o b(A i , hj)

e n d f o r

e n d f o r

s ← s c o r e (p, C o st l a t , C o sta r e a)

B ← Ar g m a x O v erI(s)

m o d el s = Fitti n g M o d el(H ,B ,m o d el s)

r et u r n : m o d el s a n d { A i |i = 1 . . . M }

T h e tr ai ni n g pr o c ess of A d a pti v e- H M D is d es cri b e d i n
Al g orit h m 1 t h at i n cl u d es t w o p hr as es. Gi v e n a n i n p ut tr ai ni n g
d at a wit h ass o ci at e d l a b els (m al w ar e or b e ni g n), t h e fr a m e w or k
first tr ai ns e a c h i n di vi d u al b as e M L- b as e d d et e ct or s e p ar at el y.
T h es e b as e d et e ct ors i n cl u d e diff er e nt al g orit h ms i n cl u di n g
S M O, M L P, O n e R, R e p Tr e e, a n d J Ri p t h at ar e s el e ct e d fr o m
di v ers e br a n c h es of m a c hi n e l e ar ni n g (r e gr essi o n, n e ur al n et-
w or k, d e cisi o n tr e e, a n d r ul e- b as e d) w hi c h ar e i n cl usi v e t o
m o d el b ot h li n e ar a n d n o nli n e ar pr o bl e ms a n d t h eir pr e di cti o n
m o d el c a n b e a bi n ar y cl assi fi er t h at is c o nsist e nt wit h t h e
m al w ar e d et e cti o n pr o bl e m.

N e xt, t h e al g orit h m r e c or ds all pr e di cti o n r es ults g e n er at e d
fr o m b as e M L- b as e d d et e ct ors (d e n ot es p w h er e p i, j r e pr es e nts
t h e c o n fi d e n c e t h at A i b as e cl assi fi er c a n c orr e ctl y cl assif y
j t h i n p ut s a m pl e), as w ell as t h e ass o ci at e d l at e n c y a n d
ar e a o v er h e a d (C o st l a t a n d C o st a r e a , r es p e cti v el y). I n t h e
s e c o n d p hr as e, A d a pti v e- H M D tr ai ns a li g ht w ei g ht d e cisi o n
tr e e- b as e d s el e cti o n m o d el t o i d e ntif y t h e b est d et e ct or. T o
t his ai m, A d a pti v e- H M D a d o pts a J Ri p cl assi fi er, a n ef fi ci e nt
a n d a c c ur at e d e cisi o n tr e e- b as e d cl assi fi er, as t h e s el e cti o n





A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v of C alif D a vi s. D o w nl o a d e d o n D e c e m b er 0 4, 2 0 2 1 at 0 1: 2 7: 1 9 U T C fr o m I E E E X pl or e. R e stri cti o n s a p pl y.

model. Utilizing JRip minimizes the latency and area over-
heads caused by selection step in the proposed framework.
As we show in this work, Adaptive-HMD can obtain better or
similar performance as compared to the best base specialized
ML-based malware detector. It further enables the user to
adjust the cost of the detection mechanism while maintaining
a high detection performance rate. Concretely, a criteria score
s is evaluated based on the ML-based detector output and the
associated cost, per sample for each detector. For each sample,
the best detector is determined by the one that has the largest s
value (stored in B). Then, the selection model is trained based
on the best detector label B and the input samples H . The
score function score(.) in Adaptive-HMD is defined by:

score(hj .Ai) = P (gt|hj , Ai) + αC(Costlat, Costarea) (1)

where P (gt|hj , Ai) indicates the probability that the type of
incoming data hj can be correctly predicted by Ai classifier,
and Costlat, Costarea denotes the latency and area overhead
of Ai classifier. In addition, the α parameter is used to
determine the overall trade-off between performance and cost
of the deployed ML model. When α is large, the model will
tend to select a low-cost model algorithm and vice versa.
The score function enables Adaptive-HMD to adaptively select
the most accurate and cost-efficient base ML-based malware
detector at run-time according to user’s preferences and target
evaluation criteria.

Given than the cost has different scale as compared with
P (gt|hj , Ai), before combining the penalty of cost with model,
we use a Softmax [26] function to normalize the cost into same
value range as p(gt|hj , Ai) as follows:

C(Costlat, Costarea) =
expβpenalty(Costlat,Costarea)∑
expβpenalty(Costlat,Costarea)

(2)

in which penalty(lati, areai) which is a weighted sum of
latency and area overhead cost is defined as:

penalty(Costlat, Costarea) = γCostlat + (1− γ)Costarea
(3)

where γ models user’s preference and cost of the detection
mechanism (e.g., latency and area overhead). Furthermore, β is
a hyper-parameter to adjust the penalty for a high cost model.
Concretely, choosing a small β makes the penalty generated
from a high cost ML model significantly larger than the low
cost model. If β is a large value, C(.) tends to have a similar
value across all models. Therefore, the difference of C(.) value
between high cost and low cost models is negligible.

Algorithm 2 Adaptive-HMD Testing Process

Input: Testing HPC Interval Sample h, Set of based model {Ai|i =
1 . . .M}, selection model model′s
Output: Predicted label l

b← model′s.predict(h)

l← A′b.predict(h)

return: l

Algorithm 2 presents the testing process of Adaptive-
HMD. Intuitively, different from the training process, only one

ML-based detector (most efficient) is adopted to distinguish
malware from benign class. In particular, given a newly ob-
served sample h, Adaptive-HMD first calls the selection model
model′s to predict which ML model in the base model set A
is the best classifier for predicting the label. The selected base
malware detector A′

b is used to identify whether o is contam-
inated. In this way, Adaptive-HMD does not require to obtain
results of all the base detectors while offering an accurate and
efficient result, which can significantly reduce the cost of the
model. In traditional HMD methods where there is no adaptive
selection model, since we need to use model’s output to make
decisions, the total cost by computing all models during the
online detection process is Cost =

∑
Costi (i = 1 . . .M).

Whereas, in the proposed framework, by adding a selection
model to adaptively select the best detector, Adaptive-HMD
avoids computing the latency and area overhead of all base
malware detectors in A and it only considers the cost of
the best ML classifier for online detection process, hence,
achieving a significant cost improvement.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we analyze the experimental results of
Adaptive-HMD and examine the effectiveness of the proposed
framework across various evaluation metrics. All the ML-based
detectors and the selection model are implemented through
Weka data mining toolbox [27].

A. Performance Evaluation Metrics
Evaluating the performance of machine learning classifiers

is an important step in implementing effective ML-based
countermeasures. The standard evaluation metrics used for
performance analysis of Adaptive-HMD are listed in Table I.
For analyzing the detection rate, malicious application samples
are considered as positive instances. Hence, the True Positive
Rate (TPR) represents the proportion of correctly identified
positive instances, or malicious samples. The True Negative
Rate (TNR) also evaluates the specificity that measures the
proportion of correctly identified benign files or negative
samples. In addition, the False Positive Rate (FPR) is the rate
of benign files that are wrongly classified as malware.

The F-measure (F-score) in ML is interpreted as a weighted
average of the precision (p) and recall (r). The precision
is the proportion of the sum of true positives versus the
sum of positive instances and the recall is the proportion of
instances that are predicted positive of all the instances that
actually belong to the positive class. The Detection Accuracy
further measures the rate of the correctly classified positive
and negative samples. Area Under the Curve (AUC) is another
important evaluation metric for checking any ML model’s
performance at various threshold settings that corresponds to
the area under the Receiver Operating Characteristic (ROC)
graph. The AUC metric shows how well a classification model
is capable of distinguishing between different classes.

Finally, running ML classifiers at the processor hardware-
level requires a comprehensive evaluation of both the perfor-
mance and computation costs of the detectors. Therefore, to
concurrently account for the impact of detection rate and cost-
efficiency of the detectors, in this work we propose to examine
the performance and computation cost via the detection rate
per cost (Efficiency Score) formulated as below:





Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Evaluation metrics for performance of ML-based detection

Evaluation Metric Description
True Positive (TP) Correct positive prediction
False Positive (FP) Incorrect positive prediction
True Negative (TN) Correct negative prediction
False Negative (FN) Incorrect negative prediction

Precision P = TP/(FP + TP)
Recall: True Positive Rate TPR = TP/(TP + FN)

F-measure (F-score) Fmeasure = 2× (P ×R)/(P +R)
Detection Accuracy ACC = (TP + TN)/(TP + FP + TN + FN)

Area Under the Curve AUC =
∫ 1
0 TPR(x)dx =

∫ 1
0 P (A > τ(x))dx

Efficiency =
FMeasure×AUC

Costtype
(4)

where type ∈ {latency, area}, and AUC and FMeasure are
computed via Equations described in Table I.

B. Hardware Implementations of the ML-based Detectors
Application of machine learning for developing efficient

hardware-based security countermeasures requires a thorough
analysis of detection rate (accuracy, F-measure, etc.) of an
algorithm as well as design area and response time (latency)
overhead of ML classifiers. In other words, accounting for the
impact of both detection rate and implementation cost of the
models is a critical evaluation process in selecting the most
accurate and cost-efficient detectors. Therefore, we develop
the experimented ML-based malware detectors at the hardware
level and analyze their associated area and latency overheads.
To this aim, we leverage Vivado HLS compiler to develop
the HDL implementation of the classifiers on Xilinx Virtex 7
FPGA. This analysis not only helps us to have a realization
of the complexity of the proposed framework in terms of a
number of logic gates (which can be similarly proportional
to an ASIC implementation) but also assists in analyzing the
design implementation overhead and cost in a heterogeneous
FPGA+CPU architecture which is emerging in SoC designs.

Table II, reports the hardware implementation results of
base ML classifiers in Adaptive-HMD. Given that malware de-
tection latency depends on the underlying processor frequency
that executes the detection model, the latency is considered as
the number of clock cycles (cycles @10 ns). Moreover, the
area overhead is calculated using the total number of utilized
LUTs, FFs, and DSP units in the FPGA. As seen from Table
II, as expected the MLP classifier has led to a significant area
and latency overhead, as compared to other ML classifiers.

TABLE II: Hardware implementation cost of base ML-based anomaly
detectors used in Adaptive-HMD

ML Model Latency (Cycles @10 ns) Area (LUTs + FFs + DSPs)
SGD 22 2466
MLP 102 25667

RepTree 3 377
OneR 1 292
Jrip 2 156

As mentioned before, the selection model in Adaptive-
HMD is a JRip classifier, and all five ML models listed in Table
II are used as base malware detectors. Adaptive-HMD’s cost
consists of two parts including the cost of the selection model
and the cost of the selected base model. Since Adaptive-HMD

Fig. 4: Selection model prediction accuracy in Adaptive-HMD

only calls one model for malware detection, we evaluate the
average running cost of Adaptive-HMD by taking latency and
area overheads into consideration using the following equation:

Costtype =
∑

model∈M

Nmodel
N

Costtype,model + Costtype,s

(5)
where N denotes the total number of HPC interval samples
and model ∈ M = {SGD,MLP,RepTree,OneR, JRip}.
Nmodel denotes the total number of times that a model is
chosen by the selection model. Costtype,model and Costtype,s
define the latency/area overhead of base classifier and the
cost of selection model, respectively. Similarly, areamodel
and areas denote the area overhead for the base model and
selection model, respectively.

C. Selection Model Accuracy in Adaptive-HMD
Figure 4 illustrates the prediction accuracy of model se-

lection in Adaptive-HMD. We examine the effectiveness of
Adaptive-HMD across all four different types of malware. The
performance is evaluated by the accuracy of the proposed
model to correctly choose the best base model. Given that there
exists no prior HMD work that has focused on the proposed
problem, here we compare Adaptive-HMD against random
guess technique to demonstrate the nontrivial effectiveness and
improvement of our proposed HMD. According to the figure,
both Adaptive-HMD with α = 0 and α = 1 can achieve
approximately 90% accuracy in all four types of malware
detection tasks whereas random guess can only achieve 20%
accuracy. The result highlights the effectiveness of Adaptive-
HMD in correctly selecting the best ML model to be used
for accurate and efficient detection of anomalies based on the
input HPC features at run-time.

D. Performance and Cost Analysis in Adaptive-HMD
To further evaluate the performance of Adaptive-HMD, we

compare it with classical ensemble machine learning models
that are also deployed in recent HMD works such as [13].
Ensemble learning model in machine learning primarily aims
at combining multiple base classifiers to improve the classifi-
cation accuracy [17], [28]. We compare the four different base-
lines including Stacking [29], Majority Vote, Max Probability
Vote, and Vote Average-based Ensemble model [28]. For the
purpose of thorough and fair comparison, all algorithms adopt
the same set of based models used in Adaptive-HMD.

Figure 5 demonstrates the performance results of Adaptive-
HMD on malware detection under F-score and AUC metrics
as compared with ensemble-based detectors. Due to space lim-
itation, in this figure we only report the results for Trojan and
Worm detection. It is observed that Adaptive-HMD achieves





Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

(a) Trojan

(b) Worm

Fig. 5: F-measure and AUC results of Adaptive-HMD in detecting
Trojan and Worm as compared with ensemble-based detectors

similar performance compared with the ensemble models.
The results indicate that compared with the three Voting-
based ensemble approaches, Adaptive-HMD achieves a similar
or better detection performance across all types of malware
tested under F-measure, while observing slightly performance
degradation under AUC evaluation. Furthermore, the efficiency
score analysis of Adaptive-HMD with two best α scores
against all baseline models is shown in Figure 6. As seen, by
taking the implementation cost into consideration, Adaptive-
HMD achieves a significant improvement as compared with
all baseline models. In addition, compared with Adaptive-HMD
with α = 0 in which there is no cost penalty, α = 1 achieves
a better efficiency score. This is because Adaptive-HMD with
α = 1 has the capability to avoid selecting the high cost model
to further achieve the best accuracy per cost performance.

(a) Latency efficiency score

(b) Area overhead efficiency score

Fig. 6: Efficiency trade-off analysis for different malware types

We also evaluate the performance of Adaptive-HMD with
respect to different α values. The performance vs. α com-

parison results for Trojan and Worm malware detection in
Adaptive-HMD are reported in Tables II and III. In these two
malware detection tasks, α = 0 can achieve the best detection
rate (AUC, F-score, recall, and precision) but at the cost of
significant latency and area overheads. As the α increased,
the computation cost of Adaptive-HMD is decreased under the
cost of losing accuracy performance. This is because Adaptive-
HMD tends to strongly avoid using the high cost model when
α is large. This selection strategy may reduce some degree
of accuracy performance when the penalty is large. Hence,
α value highly depends on the user’s preference, available
resources in the underlying processor, and target evaluation
criteria (performance vs. cost). The results indicate that when
α = 1 Adaptive-HMD achieves a significant cost-efficiency
improvement while maintaining similar level of detection rate
for the best ML model.

TABLE III: Adaptive-HMD performance with different α in Trojan

α Latency Area AUC F-score recall precision
0 22.051 2808.579 0.946 0.939 0.950 0.928
1 4.490 911.211 0.927 0.923 0.942 0.905
5 4.151 873.924 0.921 0.918 0.934 0.902

10 4.139 871.692 0.925 0.924 0.942 0.906
100 4.000 876.000 0.853 0.853 0.858 0.848

TABLE IV: Adaptive-Shield performance with different α in Worm

α Latency Area AUC F-score recall precision
0 24.645 3541.834 0.941 0.936 0.904 0.970
1 4.274 893.665 0.910 0.911 0.908 0.915
5 4.106 872.932 0.926 0.914 0.892 0.937

10 4.064 871.127 0.906 0.903 0.884 0.924
100 4.000 876.000 0.874 0.877 0.855 0.899

V. CONCLUSION

According to the recent security analysis reports, malicious
software attacks have witnessed an increase at an alarming
rate in numbers, variants, and harmful purposes. Hardware
Malware Detection (HMD) techniques have presented the
suitability of Machine Learning (ML) classifiers applied on
applications’ low-level features to distinguish malware from
benign programs with reduced complexity as compared to tra-
ditional software-based methods. Existing HMD solutions have
mainly used standard ML algorithms to recognize the patterns
of malicious software without offering an adaptive malware
detection model to address the trade-off between the detection
accuracy and cost-efficiency. In response, in this work we
propose Adaptive-HMD, an accurate and cost-efficient machine
learning-based framework to facilitate online malware detec-
tion using low-level microarchitectural features collected from
processor’s performance counter registers. Adaptive-HMD is
based on a lightweight and cost-sensitive tree-based decision-
maker that accurately determines the most efficient ML classi-
fier to be adopted for the inference in online malware detection
according to the users’ preference and optimal performance vs.
implementation cost. The experimental results indicate that our
proposed approach could achieve up to closely 94% detection
rate while significantly lowering the implementation cost of
hardware malware detection.

REFERENCES
[1] H. Wang and et al., “Mitigating cache-based side-channel attacks

through randomization: A comprehensive system and architecture level





Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

analysis,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1414–1419.

[2] Z. He and et al., “When machine learning meets hardware cybersecurity:
Delving into accurate zero-day malware detection,” in 2021 22nd
International Symposium on Quality Electronic Design (ISQED), 2021,
pp. 85–90.

[3] A. Bettany and M. Halsey, “What is malware?” in Windows Virus and
Malware Troubleshooting. Springer, 2017, pp. 1–8.

[4] H. Sayadi and et al., “Recent advancements in microarchitectural secu-
rity: Review of machine learning countermeasures,” in 2020 IEEE 63rd
International Midwest Symposium on Circuits and Systems (MWSCAS).
IEEE, 2020, pp. 949–952.

[5] M. Labs, “Mcafee labs threats report,” Aug August 2019.

[6] G. Jacob and et al., “Behavioral detection of malware: from a survey
towards an established taxonomy,” Journal in Computer Virology, vol. 4,
no. 3, pp. 251–266, Aug 2008.

[7] A. Souri and R. Hosseini, “A state-of-the-art survey of malware
detection approaches using data mining techniques,” Human-centric
Computing and Information Sciences, vol. 8, no. 1, pp. 1–22, 2018.

[8] S. M. P. Dinakarrao and et al., “Cognitive and scalable technique for
securing iot networks against malware epidemics,” IEEE Access, vol. 8,
pp. 138 508–138 528, 2020.

[9] J. Demme and et al., “On the feasibility of online malware detection
with performance counters,” in International Symposium on Computer
Architecture (ISCA). ACM, 2013, pp. 559–570.

[10] A. Tang and et al., “Unsupervised anomaly-based malware detection us-
ing hardware features,” in International Workshop on Recent Advances
in Intrusion Detection (RAID). Springer, 2014, pp. 109–129.

[11] H. Sayadi and et al., “Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis and clas-
sification,” in 2018 55th ACM/ESDA/IEEE Design Automation Confer-
ence (DAC), 2018, pp. 1–6.

[12] B. Singh and et al., “On the detection of kernel-level rootkits using
hardware performance counters,” in ASIA Conference on Computer and
Communications Security (ASIACCS), 2017, pp. 483–493.

[13] K. N. Khasawneh and et al., “Ensemble learning for low-level hardware-
supported malware detection,” in International Workshop on Recent
Advances in Intrusion Detection (RAID), 2015, pp. 3–25.

[14] H. Sayadi and et al., “Stealthminer: Specialized time series machine
learning for run-time stealthy malware detection based on microar-
chitectural features,” in Proceedings of the 2020 on Great Lakes
Symposium on VLSI, 2020, pp. 175–180.

[15] A. Mosenia and N. K. Jha, “A comprehensive study of security of
internet-of-things,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 4, pp. 586–602, Oct 2017.

[16] H. Sayadi and et al., “Customized machine learning-based hardware-
assisted malware detection in embedded devices,” in 17th IEEE In-
ternational Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018, pp. 1685–1688.

[17] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 1–15.

[18] H. M. Makrani and et al., “Energy-aware and machine learning-based
resource provisioning of in-memory analytics on cloud,” in Proceedings
of the ACM Symposium on Cloud Computing, 2018, pp. 517–517.

[19] M. R. Guthaus and et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in IISWC’01, Dec 2001, pp. 3–14.

[20] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[21] M. Helsely, “Lxc: Linux container tools,” in IBM developer works
technical library, 2009.

[22] H. Liu and et al., Feature selection for knowledge discovery and data
mining. Springer Science & Business Media, 2012, vol. 454.

[23] G. Yan and et al., “Exploring discriminatory features for automated
malware classification,” in Detection of Intrusions and Malware, and
Vulnerability Assessment. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 41–61.

[24] S. Wold and et al., “Principal component analysis,” Chemometrics
and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37 – 52, 1987,
proceedings of the Multivariate Statistical Workshop for Geologists and
Geochemists.

[25] A. E. Serpen G., “Host-based misuse intrusion detection using pca
feature extraction and knn classification algorithms,” in Intelligent Data
Analysis, 2018.

[26] B. Gao and L. Pavel, “On the properties of the softmax function with
application in game theory and reinforcement learning,” arXiv preprint
arXiv:1704.00805, 2017.

[27] M. Hall and et al., “The weka data mining software: An update,” vol. 11,
no. 1, p. 10–18, 2009.

[28] J. Kittler, “Combining classifiers: A theoretical framework,” Pattern
analysis and Applications, vol. 1, no. 1, pp. 18–27, 1998.

[29] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better
than selecting the best one?” Machine learning, vol. 54, no. 3, pp. 255–
273, 2004.





Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 04,2021 at 01:27:19 UTC from IEEE Xplore. Restrictions apply.

