

A comparative metabologenomic approach reveals new mechanistic insights into *Streptomyces* antibiotic crypticity

Yunci Qi*¹, Keshav K. Nepal*¹, Joshua A. V. Blodgett^{1#}

¹Department of Biology, Washington University in St Louis. 1 Brookings Dr. St Louis, MO 63130

*Denotes equal contributors

[#]To whom correspondence should be addressed:

10 Department of Biology, Washington University in St Louis, 133 Rebstock Hall, 1 Brookings Dr.
11 CB#1137, St Louis MO 63130. Email: jblodgett@wustl.edu Ph: 1 314 935 6233

12 Classification: Physical Sciences: Chemistry; Biological Sciences: Microbiology

22 **Significance**

23 *Streptomyces* genomes harbor an immense trove of biosynthetic gene clusters (BGCs)
24 that encode for drug-like molecules. However, only a fraction of these readily yield expected
25 products. To investigate why this is, we used polycyclic tetramate macrolactam (PTM) antibiotic
26 production as a model system. By comparing the genomes and PTM production profiles of
27 several closely-related *Streptomyces griseus* clade members, we uncovered two distinct
28 mechanisms that differentiate more robust producers from weaker ones. The first involves
29 small insertion-deletion lesions in PTM BGC promoters that significantly modulate production.
30 The second mechanism involves biosynthetic pathway interactions where robust PTM
31 producers unexpectedly benefit from griseorhodin co-production and weaker producers lack
32 the pathway. We highlight comparative metabologenomics as a powerful approach to
33 understand antibiotic crypticity.

34

35 **Abstract**

36 *Streptomyces* genomes harbor numerous biosynthetic gene clusters (BGCs) encoding for
37 drug-like compounds. While some of these BGCs readily yield expected products, many do not.
38 Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological
39 mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam
40 (PTM) antibiotic production is widespread within the *Streptomyces* genus, and examples of
41 active and cryptic PTM BGCs are known. To reveal new insights into the causes of biosynthetic
42 crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a
43 panel of *S. griseus* clade strains that included both poor and robust PTM producers. By
44 comparing the genomes and PTM production profiles of these strains, we systematically
45 mapped PTM promoter architecture within the group, revealed that these promoters are
46 directly activated via the global regulator AdpA, and discovered that small promoter insertion-
47 deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also
48 revealed an unexpected link between robust PTM expression and griseorhodin pigment co-

49 production, with weaker *S. griseus* -clade PTM producers being unable to produce the latter
50 compound. This study highlights promoter indels and biosynthetic interactions as important
51 genetically-encoded factors that impact BGC outputs, providing mechanistic insights that will
52 undoubtedly extend to other *Streptomyces* BGCs. We highlight comparative metabologenomics
53 as a powerful approach to expose genomic features that differentiate strong antibiotic
54 producers from weaker ones. This should prove useful for rational discovery efforts and is
55 orthogonal to current engineering and molecular signaling approaches now standard in the
56 field.

57

58 **Introduction**

59 Many therapeutics derive from natural products and their synthetic analogs (1).
60 Historically, *Streptomyces* and related actinobacteria were heavily screened for these
61 molecules, which resulted in numerous essential medicines. These include many clinical
62 antibiotics (2), and there is an urgent need for new anti-infectives to counter increasing drug-
63 resistance (3). A massive reservoir of uncharacterized biosynthetic gene clusters (BGCs)
64 encoding drug-like molecules resides within *Streptomyces* genomes, which has triggered
65 resurgent interest in these organisms (4). However, a large proportion of these BGCs fail to
66 produce detectable levels of the expected compounds under laboratory conditions. This
67 phenomenon of cryptic or silent metabolism thus poses a significant hurdle to genomics-driven
68 drug discovery (5, 6). Silent BGCs are often thought to be transcriptionally deficient, and
69 synthetic biology, cell signaling, and stress mechanisms are commonly used to activate silent
70 BGCs for molecule discovery (7). Despite decades of research on the regulation of antibiotic
71 production in *Streptomyces* (8, 9), a deeper mechanistic understanding of *Streptomyces* silent
72 metabolism is still needed to access the full biosynthetic potential of these organisms to
73 overcome the drug discovery gap (10).

74 Here, we employed a comparative metabologenomic approach to dissect why certain
75 *Streptomyces* strains are ready antibiotic producers while others have apparently silent BGCs.

76 Polycyclic tetramate macrolactam (PTM) antibiotics were specifically targeted in this study
77 because they provide an opportune model system for multi-strain comparative analyses. This is
78 because PTM BGCs can contain as few as three genes (11), greatly simplifying regulatory
79 studies. Another advantage of PTM BGCs is their relative commonality (12). A survey of
80 bacterial genomes in GenBank published in June 2016 reported over 80 PTM BGCs were
81 detected within 669 *Streptomyces* genomes available on GenBank at the time (13), and this
82 commonality is leverageable for in-depth comparisons between PTM producers. The
83 environmentally and biotechnologically important *Streptomyces griseus* clade (14) was
84 identified as a particularly advantageous cohort for these comparisons because multiple strains
85 within it had established active or cryptic PTM BGCs (12, 15), plus several additional family
86 members with sequenced genomes and yet-unstudied PTM clusters were available from public
87 collections. Finally, PTM biosynthesis is increasingly understood, and this foundational
88 knowledge was necessary to enact a targeted metabolomics approach to document sensitive
89 production differences. PTMs have experienced intense study towards understanding their
90 unusual hybrid non-ribosomal peptide/polyketide origins, investigating PTM therapeutic
91 potential, and leveraging their ease of manipulation via synthetic biology (13).

92 This study was initiated by comparing the genomes and PTM production profiles among
93 a cohort of PTM locus-bearing *S. griseus* clade strains, which included known examples of both
94 strong and poor PTM producers. This led to the discovery of a subclade that has consistently
95 higher PTM production and PTM BGC promoter strengths compared to the rest of the test
96 strains. Despite the exceptional commonality of PTM biosynthetic loci in *Streptomyces* bacteria,
97 PTM regulation remains poorly understood. To reveal how promoter sequence variations might
98 underpin the observed PTM phenotype differences, the promoter driving production in the
99 robust producer *Streptomyces* sp. strain JV180 was thus mapped and compared against the rest
100 of the clade. Overall, many promoter features appeared to be largely conserved within the
101 group, regardless of host-strain PTM capability. Additionally, the well-characterized global
102 regulator AdpA (16) was confirmed to play a direct positive role on PTM locus control through
103 gene deletion, binding site mutation, and *in vitro* binding experiments. AdpA binding sites were

104 detected in the PTM promoters of all tested clade members, where they display a contextually
105 unusual arrangement downstream of promoter -10 boxes. Critically, comparisons of strong and
106 weak PTM promoters from several *S. griseus* clade members identified a 2-3 bp indel, located
107 between the -10 box and AdpA operator site, that strongly influences PTM production
108 strength. Yet another PTM control mechanism that differentiates weak from stronger PTM
109 producers was discovered following the mutagenesis of strain JV180's griseorhodin BGC. Weak
110 *S. griseus* clade PTM producers natively lack griseorhodin BGCs, and loss of the JV180 cluster
111 severely curtailed PTM production. Further dissection revealed that strain JV180's PTM
112 production likely benefits from PTM-griseorhodin co-expression via a yet-uncharacterized
113 transcriptional mechanism. In sum, this work revealed two new mechanisms by which stronger
114 and weaker PTM producers are differentiated, and it highlights the application of targeted
115 comparative metabogenomics to cohorts of related strains to successfully reveal otherwise
116 difficult-to-detect genomic features that tune antibiotic production.

117

118 **Results**

119 **The *S. griseus* clade is an ideal model group to compare and reveal genetic underpinnings of** 120 **PTM crypticity**

121 Several features of the *S. griseus* clade make the group attractive for comparison-based
122 approaches to reveal BGC silencing mechanisms. Clade-member *Streptomyces* sp. strain JV180
123 readily produces PTM compounds (12, 17), while *S. griseus* subsp. *griseus* strain IFO13350
124 harbors a silent PTM BGC (15, 18). Nevertheless, promoter refactoring of the IFO13350 PTM
125 BGC and its expression in a heterologous host successfully yielded PTMs with 5/5-carbocyclic
126 ring systems, proving the functionality of its encoded enzymes. The PTM production status of
127 most other clade members remained unknown, and to benefit from the increased analytical
128 depth afforded by expanded cohort sizes, several additional clade-members having PTM loci in
129 their sequenced genomes (19) were obtained from public strain repositories (JV251-JV258). To
130 complete the cohort, the environmental clade-member *Streptomyces* sp. strain SP18CM02,

131 whose genome was recently reported by our group (17), (Table S1) was also included. The
132 phylogenetic relationships of these strains were inferred through multi-locus phylogeny (14)
133 (Fig. S1). Importantly, the PTM BGCs of these strains appeared to be orthologous. This was
134 based on several observations, including that their PTM BGCs share identically-ordered
135 biosynthetic genes (*ftdABCDEF*), and the chromosomal regions that immediately flank their
136 respective PTM BGCs also have identical gene content (see Fig 1A for a PTM BGC diagram
137 representative of all strains studied here, and the figure legend for additional detail). Finally,
138 the PTM enzymes encoded within each studied BGC also shared high pairwise identities to
139 those of strain JV180 (Table S4).

140 To assess and compare PTM production in these strains, the robust PTM-producing
141 strain JV180 served as an archetype. Strain JV180 PTM production was extensively analyzed
142 using approaches similar to those reported for clifednamide-type PTM analyses in other
143 *Streptomyces* by our group (20). Putative PTM peaks were identified using $^{13}\text{C}_5$ -labeled
144 ornithine precursor incorporation and diagnostic daughter-ion production following collision-
145 induced dissociation in liquid-chromatography coupled tandem mass spectrometry (LC-
146 MS/MS). These target the conserved ornithine-derived tetramate region, which has two
147 possible hydroxylation states (see Fig. S2B-E, S3). As expected, all PTM peaks identified through
148 these methods were absent when the JV180 PTM BGC was deleted ($\Delta\text{ftdABCDEF}$; Fig. 1A, S2A),
149 yielding a high-confidence set of *S. griseus* clade PTM congeners for quantitative production
150 comparisons.

151 The remaining *S. griseus* clade strains were then grown under several conditions, and
152 their extracts were analyzed via LC-MS/MS and UV spectrometry for PTM production (see
153 Methods). As expected from orthologous PTM BGC's, all producing strains gave PTM signals
154 that largely overlapped with those established in JV180, but strain-to-strain differences in
155 quantity and relative PTM congener ratios were observed. From these comparative PTM
156 production data, an interesting trend emerged. Strains JV180, SP18CM02, and JV251-253
157 displayed robust PTM production while the remaining strains generally showed little production
158 (Fig. 1B, S4-S6). We noted that these strains belong to a distinct subclade on the *S. griseus* clade

159 phylogenetic tree (Fig. S1, group VI in green), suggesting they might share a conserved genetic
160 basis for increased PTM production versus the other studied clade-members. Interestingly,
161 these comparative production analyses revealed a clear bias for higher PTM production on solid
162 media over shake-flask cultures for all tested strains (Fig. 1B). The strongest PTM producers
163 continued to have the highest production in liquid media as well. Throughout, to obtain
164 consistent transcriptional information, liquid media was used. Further, in agreement with prior
165 publications, PTM production could be detected by UV absorbance in JV180 (12), while strain
166 IFO13350 produced insufficient PTMs for detection using this method (Fig. S7A). In contrast,
167 our PTM targeted LC-MS/MS analyses revealed detectable production in all tested clade
168 members, but the amounts varied widely by strain. This suggests prior efforts to characterize
169 weak PTM producers may have overlooked scant actual production due to inherent UV
170 limitations, overcome here by MS/MS methodology (Fig. S7B, C).

171

172 **PTM promoter sequence heterogeneity contributes to differences in antibiotic production**

173 Because the most robust PTM production was found in strains of the JV180 subclade,
174 we hypothesized that comparing these genomes against other *S. griseus* clade strains could
175 reveal specific differences that underpin the observed production disparities. PTM BGC
176 transcriptional differences were immediately targeted as a potential mechanism. While weak
177 transcription is often implicated in the cryptic biosynthesis literature, this assertion is often
178 speculative or left without mechanistic investigation (21). The possibility of PTM biosynthetic
179 enzyme defects in some strains was ruled out as a potential cause. This is because all tested
180 strains have high PTM BGC protein-sequence identity (Table S4), and previous transcriptional
181 refactoring experiments were able to successfully activate the cryptic PTM BGC of strain
182 IFO13350 in heterologous hosts as a demonstration of BGC functionality (15, 18).

183 Possible strain-linked differences in PTM BGC transcription were initially explored by
184 comparing the presumed PTM promoter regions of each strain tested here. *S. griseus* clade
185 PTM BGCs have a simple and conserved gene arrangement with minimal intergenic gaps,

186 suggestive of a single operon (Fig. S8A). PCR amplification of cDNA intergenic junctions
187 confirmed that the JV180 PTM BGC is transcribed as a single operon (Fig. S8B).

188 Phylogenetic analysis of the ~500 nt located upstream of the first gene in each studied
189 PTM BGC, *ftdA*, formed two groups: one by JV180-like strains and one by the remaining strains
190 (these sequences are hereafter referred to as JV180- or IFO13350-like *P_{ftdA}*'s, respectively; Fig.
191 1C, S9). To test if the sequence differences in *P_{ftdA}* regions are transcriptionally relevant, we
192 leveraged the strong PTM producer JV180. JV180 represents a uniform background to eliminate
193 complicating metabolic and genetic variables inherent to strain-to-strain comparisons. After
194 replacing the native promoter region of JV180 with the corresponding region of the other 10 *S.*
195 *griseus* clade strains in this study, we generally observed higher PTM production and *ftdB*
196 transcription from JV180-like *P_{ftdA}*'s than IFO13350-like *P_{ftdA}*'s (Fig. 1D, E). This supports the idea
197 that stronger PTM producers might result from inherently stronger promoters.

198 Surmising that the basic transcriptional machinery of all *S. griseus* clade-members
199 should be highly similar, we also hypothesized that if JV180-like *P_{ftdA}*'s are stronger than
200 IFO13350-like *P_{ftdA}*'s, then introducing the former promoter type into strain IFO13350's PTM
201 BGC should increase PTM production and transcription. However, exhaustive attempts to
202 introduce the necessary plasmids to engineer increased production in IFO13350 (and other
203 group member JV257; Fig. S1) failed by both conjugation and protoplast transformation.
204 Instead, the effects of *P_{ftdA}* sequence variation were assayed in strain IFO13350 using a *xyIE* (22)
205 reporter gene chromosomally integrated into the Φ C31 site. Controls testing the efficacy of
206 colorimetric *XylE* assays in both strains JV180 and IFO13350 were successful when using the
207 strong constitutive promoter *P_{ermE*}*, but both *P_{ftdA_JV180}* and *P_{ftdA_IFO13350}* failed to drive
208 observable *XylE* in both strains. However, RT-qPCR assays to detect *xyIE* transcripts were
209 successful in making the desired comparison, confirming *P_{ftdA_JV180}* to be stronger than
210 *P_{ftdA_IFO13350}* in both JV180 and IFO13350 hosts (Fig. S10). Together, the above data supported a
211 model where *P_{ftdA}* sequence variations might significantly influence PTM production or silence.
212 While BGC promoter heterogeneity is a concept that remains underexplored in the biosynthetic
213 literature, the idea of tuning BGC outputs through promoter strength is grounded in numerous

214 studies where silent BGCs can be activated by replacing their native promoters with stronger
215 ones (see recent review 23).

216

217 **Mapping promoter regions of the JV180 PTM BGC enables structure-function comparisons**

218 Existing PTM regulatory knowledge is sparse (24, 25), including within the *S. griseus*
219 clade. Our above results suggested that *S. griseus* clade PTM regulation involves *cis*-regulatory
220 elements located directly upstream of *ftdA* (~500 nt), although we could not rule out additional
221 influences from *trans*-regulatory elements. To define the PTM promoter architecture of these
222 strains, the transcriptional start site (TSS) of strain JV180 was mapped via circular Rapid
223 Amplification of cDNA Ends (5'-cRACE). The putative TSS was a cytosine residue 195 nt
224 upstream of the predicted start codon of *ftdA* (Fig. S11). Likely -10 and -35 boxes were
225 assigned based upon established spacing (26, 27) (Fig. 2A). The high sequence conservation
226 between the -35 box and the TSS (82.4% - 100% pairwise sequence identity) suggested that all
227 examined *S. griseus* clade strains share the same core promoter (-35, -10 and TSS).

228 To better resolve P_{ftdA} promoter architecture and probe for the presence of *cis*-
229 regulatory signatures upstream of the predicted -35 boxes, a series of nested deletions in this
230 region were created in JV180 (Fig. 2A). PTM transcription and production in these deletions
231 were largely unaffected, except where the putative -35 box was disrupted (Fig. 2A,
232 Δ -528_-31). This confirmed the position of the JV180 -35 box, and suggested this region lacks
233 any critical regulatory residues (Fig. 2B, C). Further, we observed highly variable sequence
234 conservation within this region upstream for all studied *S. griseus* clade strains (38.2% - 97.8%
235 pairwise sequence identity). This contrasts with the more strict sequence conservation seen in
236 the core promoter region (-35, -10 and TSS).

237 The -10 boxes and TSS residues of all examined strains are perfectly conserved, but
238 several single nucleotide polymorphisms (SNPs) differentiate the -35 boxes of the IFO13350-
239 like P_{ftdA} 's (Fig. 2A, red box) from the strictly conserved -35 boxes of the JV180 group (Fig. 2A,
240 green box). It is known that changes in bacterial -35 boxes can greatly affect promoter strength

241 (28, 29), and could thus affect metabolite production. Therefore, a panel of JV180 mutants
242 carrying each observed -35 box SNP in the IFO13350 group was created and tested for PTM
243 production and transcription (Fig. S12A). Overall, the IFO13350 group -35 box SNPs failed to
244 significantly change PTM production and only slightly decreased transcription in the chimeric
245 JV180 hosts (Fig. S12B, C). These differences were subtle compared to the far more substantial
246 ones seen in our ~500 nt replacements upstream of the *ftdA* gene (Fig. 1D and E), indicating
247 P_{ftdA} strength differences must originate through mechanisms other than -35 box differences.

248

249 **AdpA positively regulates *S. griseus* clade PTM BGCs**

250 Many *Streptomyces* mRNAs contain long 5' untranslated regions (5' UTRs) (26, 27), and
251 these can contribute to regulatory tuning. The DNA regions encoding 5' UTRs can modulate
252 gene expression through direct regulator binding (30), and their corresponding mRNAs can
253 further modulate expression via riboswitches (31) or other RNA secondary structures (32). A
254 series of ~20 nt deletions were constructed (Fig. 2D) across the 195 nt 5' UTR region of JV180 to
255 probe contributions to PTM regulation. This revealed multiple lesions with strongly decreased
256 PTM production and transcript levels, while others had little effect (Fig. 2E, F). mFold (33)
257 modeling to reveal possible 5'UTR mRNA secondary structures across *S. griseus* clade strains
258 yielded several energetically favored outputs, and we surmise some of the deleterious
259 mutational effects seen in JV180 might stem from the disruption of these types of structures
260 (Fig 2D inset, Fig. S13-17).

261 While *S. griseus* clade P_{ftdA} 5' UTR folding remains to be further explored, the above
262 deletions were particularly useful for identifying a critical region that we subsequently
263 characterized as an AdpA binding site (Fig. 2D-F; Δ29_48, Fig. S9). AdpA is a global regulator
264 that is well-studied in strain IFO13350, where it is known to bind >500 chromosomal sites via its
265 weak consensus sequence TGGCSNGWWY (34). *S. griseus* AdpA is involved in the hierarchical
266 control of morphological differentiation, the production of streptomycin and other antibiotics,
267 and several other important processes (see review (16)). Prior ChIP-Seq and RNA-seq data

268 indicated that AdpA might bind upstream of IFO13350's PTM BGC (35), but because prior
269 efforts to elicit PTM production from wild-type IFO13350 were unsuccessful (15, 18), the
270 biological significance of AdpA's interaction with the gene cluster was tenuous. Our searches for
271 potential AdpA consensus motifs within the P_{ftdA} regions of the studied *S. griseus* clade strains
272 revealed an imperfect inverted repeat 29-48 nt downstream of the TSS in the JV180 P_{ftdA} (within
273 the 5' UTR region) that was conserved in all *S. griseus* clade strains examined. Because our
274 nested deletions revealed that this sequence is essential for JV180 PTM production (Fig. 2D-F,
275 $\Delta 29_48$, Fig. S9), it renewed the notion that AdpA might positively regulate PTM expression.

276 Several experiments were carried out to investigate whether AdpA regulates P_{ftdA} ,
277 including *adpA* deletion and complementation analysis, mutating the putative AdpA binding site
278 in P_{ftdA} , and *in vitro* binding assays. As expected from prior *adpA* studies in strain IFO13350 (36),
279 deletion of the JV180 ortholog ($\Delta adpA$) led to the loss of morphological differentiation and
280 pigmentation (Fig. S18). PTM production and BGC transcription were also abrogated in JV180,
281 and these defects were rescued by ectopically expressing either native *adpA*, its IFO13350
282 ortholog (97% amino acid identity vs JV180 AdpA) or by replacing P_{ftdA} with the strong
283 constitutive promoter P_{ermE^*} to drive PTM BGC expression independent of AdpA (Fig. 3A, B,
284 S19). These results were consistent with AdpA being a transcriptional activator for P_{ftdA} .
285 However, in bacterial regulation, regulators binding downstream of the RNA polymerase
286 complex typically cause transcriptional down-shifts (37, 38). Thus, the location of the putative
287 AdpA operator site downstream of the conserved -10 box is unusual for a transcriptional
288 activator. Importantly, another AdpA-activated promoter with a downstream operator site
289 controls *S. griseus* IFO13350's *adsA*, encoding an extracytoplasmic function sigma factor (30).
290 This precedent thus supports the idea that AdpA could positively regulate PTM expression
291 despite its atypical putative binding arrangement in P_{ftdA} .

292 AdpA-DNA co-crystallization studies indicate that the protein binds target operators as a
293 homoduplex that recognizes a highly variable motif, containing four core invariant guanosine
294 and cytosine nucleotides (Fig. 3C, bold residues in gray box) (34). In all *S. griseus* clade P_{ftdA}
295 promoters studied here, these invariant residues were perfectly conserved, and introducing a

296 transversion mutation at any one of these nucleotides abrogated JV180 PTM production and
297 transcription (Fig. 3C-E). This additional evidence further suggests that the identified region acts
298 as a functional AdpA operator. Exchanging the JV180 AdpA operator site with that from
299 IFO13350 was PTM proficient although it showed a slight decrease in PTM titer and *ftdB*
300 transcription (Fig. 3C-E). AdpA- P_{ftdB} interactions were further examined via electrophoretic
301 mobility shift assays (EMSA) using operator sequences from JV180 and IFO13350, plus the
302 critical point mutants that disrupt essential DNA-AdpA interactions. As expected, recombinant
303 histidine-tagged AdpA bound the JV180 and IFO13350 P_{ftdB} AdpA binding sites (Fig. 3F, G) but
304 failed to shift operators with the *in vivo* tested point mutations (Fig. 3H, S20). Together, our *in*
305 *vivo* and *in vitro* data strongly suggest that AdpA directly binds P_{ftdB} in both JV180 and
306 IFO13350, but also indicate that the native SNPs (Fig. 3C, red residues) in the non-essential
307 residues of the AdpA operator sites are not the main cause of PTM expression differences seen
308 between P_{ftdB_JV180} and $P_{ftdB_IFO13350}$ (Fig. 3D,E).

309

310 **Comparative promoter analyses reveal an indel “switch” that tunes P_{ftdB} strength and PTM
311 production**

312 Aside from the AdpA operator, the JV180 P_{ftdB} 5' UTR truncation experiments revealed
313 that the 28 nucleotides between the TSS and the AdpA binding site are also critical for PTM
314 expression (Fig. 2B-F, Δ2_28). Nucleotide alignments between promoters in this region revealed
315 generally high conservation, except for two nucleotides (AG) that are present in all JV180-like
316 P_{ftdB} 's but are missing from IFO13350-like P_{ftdB} 's (Fig. 4A, S8). The effects of this indel on PTM
317 regulation were tested by deleting this AG dinucleotide from JV180, and by introducing the
318 dinucleotide at the corresponding position in $P_{ftdB_IFO13350}$ ($P_{ftdB_IFO13350}$ +AG). $P_{ftdB_IFO13350}$ +AG was
319 tested heterologously in strain JV180. Strikingly, the dinucleotide deletion led to strongly
320 reduced PTM production and transcription, while the amended $P_{ftdB_IFO13350}$ +AG insertion
321 variant led to a substantial increase in JV180 PTM production and transcription compared to
322 the wild type $P_{ftdB_IFO13350}$ sequence (Fig. 4B, C). To test if the indel's effect was sequence

323 specific, a JV180 transversion (Δ AG:CT) mutant was created, which exhibited reduced PTM
324 production and transcription compared to wild-type, but was much less deleterious than Δ AG
325 (Fig. 4B,C). This region is seemingly prone to sequence plasticity within the *S. griseus* clade; the
326 recently isolated strain SP18CM02 contains an additional guanosine in this region compared to
327 other JV180-like P_{ftdA} 's (Fig. 4A). Despite having otherwise high overall identity to all other
328 JV180-like P_{ftdA} 's, $P_{ftdA_SP18CM02}$ drove slightly less transcription and resultant PTM production
329 when heterologously introduced into JV180 (Fig. 1D, E). Together, these data suggest that of
330 the natural sequence variants in this region, having the AG dinucleotide is important for PTM
331 production. These data clearly reveal this indel region as a key factor in modulating natural *S.*
332 *griseus* clade P_{ftdA} strength. Further work is necessary to discern how this indel region
333 modulates promoter strength, possibly via mechanisms such as perturbed AdpA-RNA
334 polymerase interactions or recruitment of another yet-unknown regulatory component.

335 **Discovery of an unexpected griseorhodin biosynthetic interaction that strengthens PTM
336 production in strain JV180**

337 Our data thus far illustrated how leveraging within-clade comparative
338 metabogenomics can assist regulatory region mapping, and how small easily overlooked
339 nucleotide changes in these regions can tune antibiotic production. The use of comparative
340 genomics to understand *Streptomyces* antibiotic production, particularly at the species level, is
341 a relatively recent development in natural products functional genomics. Studies in this area
342 tend to focus on BGC conservation and differentiation (e.g. comparison of the *S. albus* clade,
343 see (39)). From these comparisons, we anticipated that our *S. griseus* clade strains would share
344 several BGCs (beyond PTMs), and that some antibiotic BGCs in these strains would not be
345 conserved clade-wide. We found that our *S. griseus* clade strains share a core set of 13
346 conserved BGCs. Some BGCs were found in only a few strains, and several BGCs were unique by
347 strain (Fig. S21). Strikingly, strain IFO13350 is one of the oldest known producers of
348 streptomycin (40), but all members of the JV180 group were found to lack this BGC. Likewise,
349 we noted that JV180 group strains produce red pigments that are absent from the other
350 studied *S. griseus* clade strains (Fig. S22). Through comparative BGC analysis and subsequent

351 cluster deletion in strain JV180, we attributed this pigment to the production of griseorhodin
352 polyketide congeners (41) (Fig. 5A; $\Delta grhR2-V$, S23A-C). Unexpectedly, this griseorhodin BGC
353 deletion mutant exhibited several additional phenotypes, including abrogated PTM production,
354 downregulated PTM BGC transcription, and reduced sporulation (Fig. 5B-C, S24).

355

356 The loss of PTM production in the JV180 $\Delta grhR2-V$ mutant was wholly unexpected, and
357 the mutant's pleiotropic phenotypes suggested griseorhodin might act as a signaling molecule.
358 To test this, four adjacent genes encoding griseorhodin polyketide synthase (PKS) assembly-line
359 enzymes were deleted ($\Delta grhQSAB$) (Fig. 5A). This was done to specifically eliminate
360 griseorhodin production, while leaving all other *grh* BGC genes intact. Interestingly, this mutant
361 was PTM-proficient, arguing against the signaling idea. To further probe how the griseorhodin
362 BGC exerts its influence, we tested a griseorhodin-enriched JV180 growth extract (see methods,
363 Fig. S25A) and authentic γ -rubromycin (42) (a griseorhodin analog) for their ability to chemically
364 complement the $\Delta grhR2-V$ strain. Neither sample could restore PTM production in the $\Delta grhR2-V$
365 mutant in flask cultures (Fig. S25B), and disk diffusion tests on agar plates failed to restore
366 sporulation in the diffusion zone (Fig. 25C). These experiments together ruled out the
367 griseorhodin signaling hypothesis.

368 To continue probing the *grh* locus for key PTM-influencing genes outside of *grhQSAB*,
369 multiple groups of genes were deleted from the BGC (*grhR1-E*, *grhFGH*, and *grhI-P*; Fig. 5A). All
370 three mutations caused complete loss of red griseorhodin pigmentation and showed reductions
371 in PTM production and transcription (Fig. 5B, C, S23D, S26B). Homology-based annotations of
372 the genes in these regions (41) led us to focus on a subset which might affect PTM biosynthesis
373 through transcriptional or metabolic mechanisms. Genes *grhR2* and *grhR3* encode
374 transcriptional regulators, which could influence regulatory crosstalk, *grhF* encodes a
375 phosphopantetheinyl transferase (essential for posttranslational modification of NRPS and PKS
376 enzymes), and *grhGH* encode β and ϵ subunits of acetyl-CoA carboxylase (ACC). ACC enzyme
377 complexes are essential for malonyl-CoA production, a common precursor for fatty acid,

378 griseorhodin, and PTM biosynthesis. PTM production in JV180 $\Delta grhR2-V$ was not
379 complemented by *grhR2*, *grhR3*, or *grhF*, but *grhGH* was able to restore some PTM production
380 and transcription (Fig. 5B, C, S26A). Interestingly, expressing either *grhG* or *grhH* alone were
381 sufficient to restore PTM production, similar to *grhGH* when expressed together (Fig S26A). A
382 $\Delta grhGH$ mutant was thus created, leading to partial griseorhodin pigmentation and reduced
383 PTM production comparable to the initial $\Delta grhFGH$ mutant (Fig. S23D, S26B). How the $\Delta grhR1-E$
384 and $\Delta grhl-P$ mutations caused decreased PTM production remains unclear. Because these
385 lesions led to loss of putative regulatory genes (*grhR2* & *grhR3*, see (41), their phenotypes could
386 be entangled with concomitant *grhGH* downregulation.

387 In addition to the griseorhodin BGC's *grhGH*, several other *Streptomyces* PKS clusters
388 are known to harbor additional non-housekeeping copies of ACC genes. These include *cpkKL* in
389 the coelimycin BGC of *S. coelicolor* (43) and *jadN* in the jadomycin BGC of *S. venezuelae* (44),
390 and it can be reasoned that these ACC copies likely assist polyketide biosynthesis through
391 increased malonyl-CoA. Because JV180 PTM production decreased in the $\Delta grhR2-V$ and $\Delta grhGH$
392 mutants, but not the $\Delta grhQSAB$ mutant (Fig. 5C), we likewise hypothesized that PTM
393 downshifts in these mutants might be caused, at least partially, by reduced intracellular
394 malonyl-CoA concentration. We thus tested several additional *S. griseus* clade ACC subunit
395 genes for their ability to rescue PTM production in the JV180 $\Delta grhR2-V$ strain to discern if these
396 effects were specific to *grhGH* or are more broadly attributable across ACC subunit homologs.
397 The tested ACC genes included housekeeping *accBE* alleles cloned from JV180 and IFO13350
398 (function assigned by sequence homology and gene neighborhood synteny to the *accBE* genes
399 in *S. coelicolor* (45)) plus the previously-uncharacterized PKS-associated ACC genes SGR3280-
400 3281 of strain IFO13350, all of which encode ACC β and ϵ subunits like *grhGH*. All of these ACC
401 homologs partially restored PTM production in the $\Delta grhR2-V$ strain (Fig S26A), further
402 supporting a role for malonyl-CoA in the PTM production defects of the $\Delta grhR2-V$ and $\Delta grhGH$
403 mutants.

404 To test if JV180 could still produce PTMs independent of the griseorhodin BGC, we
405 constitutively expressed the strain's PTM BGC by replacing P_{ftdA} with P_{ermE^*} . This $\Delta P_{ftdA}::P_{ermE^*}$

406 promoter replacement in both of the $\Delta grhR2-V$ or $\Delta grhGH$ backgrounds led to increased PTM
407 production and PTM BGC transcription, similar to a JV180 $\Delta P_{ftdA}::P_{ermE^*}$ control (Fig 5B, C). Our
408 data show that PTM transcription and its production is affected by the lack of $grhR2-V$ and
409 $grhGH$. It is possible that the griseorhodin BGC may affect the PTM BGC through biosynthetic
410 malonyl-CoA availability. It is also likely that an as yet-undefined transcriptional regulatory
411 interaction also connects the two BGCs. Malonyl-CoA responsive regulators are well-
412 characterized in other model organisms such *B. subtilis* (46), but no such regulators are known
413 in *Streptomyces*. Further inquiry is underway to characterize this unusual cross-cluster
414 interaction more fully.

415 Intrigued by the finding that ectopic expression of just $grhG$ or $grhH$ could rescue PTM
416 production in the JV180 $\Delta grhR2-V$ mutant, we tested if the PTM BGCs of weak-PTM producing
417 *S. griseus* clade strains might be similarly stimulated for production. This was done by
418 heterologously expressing $grhG$ in strains IFO13350, JV254, and JV258 (the $grhGH$ construct had
419 low conjugation efficiency). This resulted in increased PTM production from these natively low-
420 producing strains on agar media and also increased PTM BGC expression when tested in strain
421 IFO13350, showing that ACC subunit overexpression can stimulate PTM production in natively
422 poor producers (Fig. S27A, B). Combined with the above data, these observations support a
423 model where *S. griseus* clade PTM production differences have complex origins. In the case of
424 poor PTM producers, promoter indels and insufficient positive BGC interactions likely dampen
425 potential production via low transcription. In contrast, better PTM producers appear to benefit
426 from cross-BGC interactions that increase transcription from a more active P_{ftdA} variant (+AG),
427 resulting in PTM production. Strain JV180, and possibly other members of its subclade, do not
428 seem to be bottlenecked for PTM production at the transcriptional level based on several
429 findings throughout this study. This includes failure of $grhG$ merodiploids to boost WT JV180
430 PTM production (Fig. S27A) and evidence from several recombinant strains where PTM BGC
431 transcription was significantly upregulated by 2 to 9 fold, but PTM production increased by only
432 up to 1.4 fold ($\Delta grhQSAB$, $adpA$ complementation, and $\Delta P_{ftdA}::P_{ermE^*}$ strains; Fig. 3A, 3B, 5B, 5C).
433 The above findings also highlight ACC enzyme overexpression as a way to potentially upregulate

434 certain silent BGCs, adding a new dimension of utility for these genes in synthetic biology,
435 where they are currently used for increasing fatty acid and polyketide titers via malonyl-CoA
436 overproduction (47, 48).

437

438 **Conclusions:**

439 *Streptomyces* genomes contain many BGCs encoding for drug-like compounds, and to
440 harness their full biosynthetic capacity for discovery, it is crucial to understand what underpins
441 the differences between active and silent BGCs (10). Cryptic metabolism is a well-recognized
442 problem in the field, and poor BGC transcription is often implicated as the predominant
443 mechanism behind biosynthetic silence. However, this supposition is increasingly challenged by
444 a growing body of research that suggests all cryptic clusters aren't necessarily transcriptionally
445 silent (49). Further, it only addresses how biosynthetic silence could originate in a given
446 organism, but does little towards explaining why affected BGCs show little activity to begin
447 with. A common but difficult-to-prove hypothesis is that axenic laboratory growth deprives
448 microorganisms of signals needed to upregulate quiescent BGCs (21). This idea is based on the
449 complex lifestyles of *Streptomyces* bacteria, which are known to be heavily influenced by
450 molecular and environmental cues (50). Indeed, chemical elicitor screening, co-culturing, and
451 other regulatory manipulation strategies continue to yield new molecules from apparently
452 silent BGCs, bolstering this idea (7, 50, 51). However, the number and types of molecular signals
453 these organisms can sense and respond to must have a finite limit, constrained by the
454 characteristics and capacities of their genetically encoded signal transduction pathways (10). If
455 true, then extracellular signals can only explain one part of antibiotic crypticity, highlighting the
456 need to understand how basic strain-to-strain genetic differences also contribute to the
457 phenomenon.

458 Towards this, we leveraged the unusual commonality of PTM BGCs in *Streptomyces* to
459 compare several highly related *S. griseus* clade strains to discover genomic features that
460 differentiate strong and weak producers. These efforts led to the first sequence-defined PTM

461 promoter in the genus, confirmation that the global regulator AdpA acts directly on *S. griseus*
462 clade PTM production by binding P_{ftdA} promoter regions in an atypical way, and that 2-3 bp
463 lesions between -10 promoter regions and AdpA operator sites can cause substantial
464 differences in transcription strength and biosynthetic output. To our knowledge, this type of
465 inquiry is largely absent from the biosynthetic-regulatory literature, but similar promoter
466 heterogeneity, with resultant tuned transcription, has been documented to control phase
467 variation in bacterial pathogenicity (52). Further, because the AG indel discovered here resides
468 in a poly-guanosine rich region, poly-N strand slippage (52) or a similar mechanism might
469 plausibly explain how these promoter variants arise in *S. griseus* clade-member populations. As
470 more *Streptomyces* are sequenced and characterized, it is likely that additional promoter region
471 sequence variations will emerge as drivers of silent metabolism in other biosynthetic pathways.
472 In proof, scientists working at WarpDrive Bio, Inc patented a method for activating silent BGCs
473 encoding rapamycin-like antibiotics by “reversing” naturally-occurring short indels within LAL-
474 family regulator binding sites (53, 54). Those regulatory indels were discovered through large-
475 scale actinomycete genome sequence and molecule production comparisons at that company.
476 Such knowledge is thus highly desirable to streamline targeted discovery efforts and direct new
477 rational engineering approaches to activate select silent BGCs.

478 Finally, we also found that in strain JV180, a BGC encoding griseorhodin production was
479 required for both PTM production and transcription. Part of this relationship seems to implicate
480 malonyl-CoA, whose biosynthesis is encoded for by *grhGH*, but further research is clearly
481 needed to reveal a definitive mechanism. The deletion of unwanted BGCs is commonly used to
482 engineer “clean” chassis strains (55) or to uncover the metabolites of BGCs (43, 56). In light of
483 this, our discovery of PTM dependence on griseorhodin was surprising and provides a rare
484 cautionary example of how genome-minimization can have unintended consequences on
485 broader strain-wide BGC function. Together, our results show that the seemingly simple
486 monocistronic PTM BGC of strain JV180 appears to be under highly complex control, adding to
487 a growing body of similarly complex BGC regulatory circuits and mechanisms in other
488 *Streptomyces* (57, 58). Much remains to be learned about these types of regulatory networks in

489 *Streptomyces*, and continued inquiry is required for a more comprehensive understanding to
490 support rational drug discovery and production.

491

492

493 **Materials and Methods**

494 **Strains, Plasmids, Primers, Enzymes, Chemicals and General Methods**

495 Strains, plasmids, and primers are described in Tables S1-3. Strains IFO13350 and JV251-258
496 were obtained from the Agricultural Research Service Culture Collection (NRRL). All primers
497 were purchased from Integrated DNA Technologies. All restriction enzymes, Taq polymerase,
498 and T4 ligase were purchased from New England BioLabs. PCR was generally carried out using
499 KOD Hot Start DNA Polymerase (EMD Millipore) in FailSafe PCR 2X PreMix G (Epicentre). Taq
500 polymerase was used for colony PCR to verify cloning and genome editing. *Streptomyces*
501 genomic DNA was prepared for PCR by grinding a colony in DMSO as described by Van Dessel *et*
502 *al* (59). Most media components and chemicals were purchased from Sigma Aldrich or Fisher
503 Scientific unless specified. γ -rubromycin was purchased from Abcam. $^{13}\text{C}_5$ -L-ornithine was
504 purchased from Cambridge Isotope Laboratories. Standard protocols for manipulating *E. coli*
505 were based on those of Sambrook *et al* (60). *Streptomyces* cultures were routinely propagated
506 on ISP2 agar and Trypticase Soy Broth (Difco) at 28°C. Glass beads were added to liquid cultures
507 to disrupt mycelial clumps.

508

509 ***Streptomyces* conjugations**

510 Conjugations were performed using JV36 as the general *E. coli* donor as previously described
511 (61). *Streptomyces* sp. strain JV180 spores were collected from lawns plated on 8340 agar (1%
512 Proflo cottonseed meal (ADM); 2% D-mannitol; 0.1% yeast extract; 0.01% KH_2PO_4 ; 0.01%
513 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$; 0.002% $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$; 0.2% (v/v) R2 trace elements solution (62); 2.067% MES
514 hemi-sodium salt; 2% agar; pH 6.5) using sterile cotton swabs into TX Buffer (63). Strain JV254

515 and JV258 spores were collected from lawns plated on SFM (62) and ISP-S (61), respectively.
516 Exconjugants were selected with 50 µg/mL colistin and 50 µg/mL apramycin. Successful
517 integrations by Φ C31 integrase-based vectors were verified by colony PCR as previously
518 described (20).

519

520 **Marker-less gene deletion/promoter replacement**

521 All gene deletions and P_{ftdA} mutants were constructed using double homologous recombination
522 as previously described (20). To avoid undesired recombination between the wild-type and the
523 mutant P_{ftdA} sequences, an intermediate $\Delta P_{ftdA}::tsr$ mutant was constructed, with specifics
524 provided the Supplementary methods. This $\Delta P_{ftdA}::tsr$ mutant was used as the parent strain for
525 the construction of most P_{ftdA} mutants. Some plasmids for genome editing were cloned using
526 overlap-extension PCR instead of Gibson assembly as described previously (64) (see Table S2).

527

528 **PTM production and analysis**

529 Strains were streaked from -80°C glycerol stocks onto ISP2 plates and incubated at 28°C for 2-3
530 days. A plug was cut from the plate and used to inoculate 3 mL of Trypticase Soy Broth in 24-
531 well deep well plates, which were shaken at 300 rpm at 28°C. One 4 mm glass bead was added
532 per well to disrupt mycelial clumps. After 2 days of growth, 200 µL of cultures were either
533 inoculated into 20 mL ATCC-MOPS (adapted from ATCC172: 1% dextrose; 2% soluble starch,
534 0.5% yeast extract; 0.5% N-Z amine; 0.63% MOPS; pH 7.2) in a 125 mL flask with 6 mm glass
535 beads for disrupting clumps or plated on 8340 agar overlaid with cellophane and incubated at
536 28°C. Flask cultures were shaken at 250 rpm. After 4 days of growth, 1 mL was collected in
537 RNALater for protein and RNA analyses (see RT-qPCR section below) and the rest of the cultures
538 were extracted twice with equal volumes of ethyl acetate. Solid media (plate) cultures were
539 incubated for 6 days and the mycelia and spores were collected from the cellophane for protein
540 extraction by trichloroacetic acid as described by Bose and Newman (65) and quantification by

541 Bradford assay. The remaining agar was diced and extracted with ethyl acetate by soaking
542 overnight.

543 The ethyl acetate extracts were dried at low pressure and re-suspended in 500 μ L of LC-
544 MS grade methanol and syringe filtered before LC-MS analysis. PTM analysis was performed
545 using a Phenomenex Luna C18 column (75 x 3 mm, 3 μ m pore size) installed on an Agilent 1260
546 Infinity HPLC connected to an Agilent 6420 Triple-Quad mass spectrometer. For each run, 10 μ L
547 sample was injected and the chromatography conditions were as follows: $T = 0$, 5% B; $T = 4$,
548 45% B; $T = 12$, 53% B; $T = 16$, 100% B, $T = 20$, 100% B; A: water + 0.1% formic acid, B:
549 acetonitrile + 0.1% formic acid; 0.8 mL/min. The diode array detector was set to measure
550 absorbance at 320 nm. The mass spectrometer was set to precursor ion scan mode with the
551 precursor ions m/z : 450 – 550, collision energy = 30 V, fragmentor = 70 V, and daughter ions
552 m/z : 139.2 or 154.2. The resulting data was analyzed offline with Agilent MassHunter
553 Qualitative Analysis software. Chromatograms were extracted for each parent-daughter ion
554 mass transition, and the integrated areas for the major PTM congeners (see Fig. S28) were used
555 to compare PTM production. One PTM peak had identical retention times and fragmentation
556 spectra as an authentic standard of maltophilin (sourced from EMC Microcollections, GmbH; Fig
557 S29), a stereoisomer of 10-*epi*-maltophilin produced by *Streptomyces* sp. strain SCSIO 40010,
558 which has a similar PTM BGC to strain JV180 (66). The sums of PTM peak areas were normalized
559 by total protein, and the relative PTM production was calculated relative to the appropriate
560 control strain, typically JV180 *rpsL*. PTM production experiments were generally carried out in
561 triplicates, unless specified. The statistical significance in the differences observed was
562 calculated by two-tailed Student's T-test, typically relative to JV180 or its *rpsL* mutant, JV307 or
563 otherwise indicated. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Error bars represent standard
564 deviation.

565 Generally, the PTM production data reported were based on liquid media cultures that
566 were used to collect the corresponding RT-qPCR data. Relative PTM production trends were
567 consistent between solid and liquid media. Some figures in the SI show relative PTM production
568 on solid media, where flask culture/RT-qPCR data was not collected.

569

570 **RT-qPCR**

571 Strains were cultivated in flasks as described above. After 4 days, 1 mL of culture added to 2 mL
572 of RNAlater and vortexed to stabilize RNA. The mixture was centrifuged at 3,214 X g for 10
573 minutes and the supernatant was discarded. The RNA-stabilized pellet was resuspended in 250
574 μ L of 10 mg/mL lysozyme (Sigma) and incubated at 37°C for 30 minutes. To the lysate, 750 μ L of
575 Trizol reagent (Fisher) was added and protein and RNA were extracted following the
576 manufacturer's protocol from this point. Protein concentration was measured by Bradford
577 assay. The RNA was resuspended in 84 μ L of nuclease-free water. DNase treatment was carried
578 out by adding 10 μ L 10X Turbo DNase buffer, 4 μ L Turbo DNase with 2 μ L of RNAsin (Promega)
579 for approximately 6 hours at 37°C. Removal of leftover DNA was confirmed by PCR and gel
580 electrophoresis before the DNase inactivation reagent from the Turbo DNase kit (Fisher) was
581 added. RNA concentration was measured with a NanoDrop and 5 μ g of RNA was used for
582 reverse transcription with Superscript II (Thermo) following the manufacturer's protocol.

583 Primers for qPCR were designed using the IDT primerquest tool. Real-Time PCR was
584 performed on a CFX Connect Real-Time PCR Detection System (BioRad) with the following
585 program: 1 cycle at 95°C for 3 min, 40 cycles of 95°C for 10 s and 55°C for 30 s. Each reaction
586 contained 5 μ L of iTaq Universal SYBR Green Supermix (BioRad), 2 μ L of nuclease free water, 1
587 μ L of 10 μ M forward primer, 1 μ L of 10 μ M reverse primer, and 1 μ L of template cDNA. The
588 relative transcript abundance was calculated using the $\Delta\Delta C_T$ method and *hrdB* was used as the
589 housekeeping gene (67). The primer efficiency was determined as described by the qPCR
590 instrument manufacturer for several pairs of PTM BGC probes, and the *ftdB* primers YQ376-
591 180ftdB1153 and YQ377-180ftdB1278 were chosen for subsequent experiments as they had
592 the highest efficiency and produced the most consistent results. Data shown represent at three
593 technical replicates each for at two biological replicates. The statistical significance in the
594 differences observed was calculated by two-tailed Student's T-test, typically relative to JV180 or

595 its *rpsL* mutant, JV307 or otherwise indicated. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars
596 represent standard deviation.

597

598 **Expression and purification of His-tagged AdpA**

599 The full-length *adpA* gene of *Streptomyces* sp. strain JV180 was amplified by PCR using primers
600 pET11a-AdpA-F and pET11a-AdpA-R. The PCR product was cloned into the expression plasmid
601 pET11a. The expression recombinant plasmid, pKN052, contained the sequence *adpA*-CTC-
602 GAG-(CAC)₆-TGA under the control of the T7 promoter, similar to the construct reported by
603 Yamazaki *et al* (30). *E. coli* BL21 (DE3) Rosetta harboring pKN052 was cultured in LB medium
604 with 100 µg/mL ampicillin at 37°C overnight. 1 mL of seed culture was transferred to 150 mL of
605 LB medium with 100 µg/mL ampicillin and incubated by shaking at 37°C at 250 rpm. When
606 OD₆₀₀ reached 0.6-0.8, the cells were chilled on ice for 1 h. After adding IPTG to 1 mM, the
607 culture was continued for shaking at 250 rpm for 22 h at 18°C. The cells were harvested by
608 centrifugation at 5000 rpm for 30 min, resuspended in Tris-HCl buffer (20 mM Tris-HCl, 200 mM
609 NaCl and 10% glycerol: pH:8.0) and stored at -80°C. To purify the protein, cells were disrupted
610 by sonication (3 min: 10 sec on/10 sec off at 20% amplitude) and His-tagged AdpA was purified
611 with nickel-nitrilotriacetic acid (Ni-NTA, Qiagen) resin by eluting with 250 mM imidazole.
612 Protein expression was verified with SDS-PAGE before downstream experiments.

613

614 **Electrophoretic mobility shift assay**

615 Double-stranded DNA probes containing the 20 bp putative P_{ftdA} AdpA binding site plus 15 bp
616 additional flanking sequences were synthesized by IDT. The DNA was resuspended in TEN buffer
617 (10 mM Tris, 1 mM EDTA, 0.1 M NaCl, pH 8.0). For each probe, 50 nM probes were prepared
618 using the Dig Gel Shift Kit, 2nd generation (version 10, Roche) with the following conditions: 20
619 µl DNA (from 100 nM stock), 8 µl 5X labeling buffer (1 M potassium cacodylate; 125 mM Tris-
620 HCl; 1.25 mg/ml bovine serum albumin; pH 6.6), 8 µl CoCl₂ (25 mM), 1.5 µl Digoxigenin-11-

621 DDUTP (1 mM), 1.5 μ l terminal transferase, and water up to 40 μ l. After brief mixing and
622 centrifugation, reactions were incubated at 37°C for 30 min and then chilled on ice. The
623 reaction was quenched by adding 2 μ l of 200 mM EDTA (pH 8.0).

624 The protein-DNA interaction assay protocol was based on that described by Ming *et al*(34).
625 Purified AdpA-His was serially diluted in protein buffer (10 mM Tris-HCl, pH7.5; 100 mM NaCl;
626 2.5% (w/v) glycerol; and 0.25 mM DTT). The reaction mixtures contained 2 μ l of binding buffer
627 (200 mM Tris-HCl, pH 7.5; 1 M KCl; 2.5 mg/mL bovine serum albumin (BSA); and 1% nonidet P-
628 40), 1.2 μ l of 1 ng/ μ l poly[d(I-C)], 1.8 μ l DNA probe (4.5 nM), the desired volume of purified
629 protein, and water up to 20 μ l. Samples were incubated for 1 h on ice. Gel electrophoresis was
630 performed with a 5% native acrylamide gel (Bio-RAD, mini protein TBE precast gel) in 0.5X Tris-
631 borate-EDTA buffer (TBE, 10X concentration: 890 mM Tris; 80 mM boric acid; and 20 mM EDTA,
632 pH 8.3) at 85 V for 145 min. Electro-blotting was performed using a BioRad Turbo Transfer
633 System (Trans-Blot TurboTM System) on positively charged nylon membrane (Sigma-Aldrich).
634 Crosslinking was performed by baking the nylon membrane at 120°C for 30 min. Subsequently,
635 the chemiluminescent detection was done as mentioned in the DIG-KIT protocol with very slight
636 modification (overnight blocking, 2 hrs anti-digoxigenin-AP treatment, and washing for 30 min
637 each time) and the imaging was done with a LICOR (ODYSSEY Fc) imaging system (model #
638 2800).

639

640 **Acknowledgements**

641 We thank Jahdiel Berrios, Mayra Banuelos, and Adam Robinson for their bioinformatics
642 assistance, Brandon Chia and John D'Alessandro for cloning assistance, and Prof. Doug Chalker
643 for technical advice. We also thank Prof. Arpita Bose & members of the Bose Lab for useful
644 discussions and proofreading assistance. This work was supported by WUSTL new faculty start-
645 up funds and the National Science Foundation under NSF-CAREER 1846005 to J. A. V. Blodgett.

646 **Contributions**

647 J. A. V. B. conceived the project. Y. Q. and K. K. N. performed experiments. J. A. V. B., Y. Q., and
648 K. K. N. analyzed the data. J. A. V. B., Y. Q., and K. K. N. wrote the manuscript.

649 **Competing Interest Statement**

650 J. A. V. B. was a former employee, consultant and advisory member of WarpDrive Bio, Corp.
651 WarpDrive Bio is now a wholly- owned subsidiary of Revolution Medicines where J.A.V. B. is a
652 minority shareholder.

653

654

655 **References:**

656 1. J. Bérdy, Bioactive Microbial Metabolites. *J. Antibiot.* **58**, 1–26 (2005).

657 2. S. Miyadoh, Research on Antibiotic Screening in Japan over the Last Decade: A Producing
658 Microorganism Approach. *Actinomycetologica* **7**, 100–106 (1993).

659 3. R. Laxminarayan, *et al.*, Antibiotic resistance—the need for global solutions. *Lancet Infect. Dis.* **13**,
660 1057–1098 (2013).

661 4. M. Nett, H. Ikeda, B. S. Moore, Genomic basis for natural product biosynthetic diversity in the
662 actinomycetes. *Nat. Prod. Rep.* **26**, 1362–1384 (2009).

663 5. K. Scherlach, C. Hertweck, Triggering cryptic natural product biosynthesis in microorganisms. *Org.*
664 *Biomol. Chem.* **7**, 1753–1760 (2009).

665 6. P. A. Hoskisson, R. F. Seipke, Cryptic or Silent? The Known Unknowns, Unknown Knowns, and
666 Unknown Unknowns of Secondary Metabolism. *mBio* **11**, 1–5 (2020).

667 7. P. J. Rutledge, G. L. Challis, Discovery of microbial natural products by activation of silent
668 biosynthetic gene clusters. *Nat. Rev. Microbiol.* **13**, 509–523 (2015).

669 8. H. C. Gramajo, E. Takano, M. J. Bibb, Stationary-phase production of the antibiotic actinorhodin in
670 *Streptomyces coelicolor* A3(2) is transcriptionally regulated. *Mol. Microbiol.* **7**, 837–845 (1993).

671 9. M. Bibb, The regulation of antibiotic production in *Streptomyces coelicolor* A3(2). *Microbiology*
672 **142**, 1335–1344 (1996).

673 10. S. Rigali, S. Anderssen, A. Naômé, G. P. van Wezel, Cracking the regulatory code of biosynthetic
674 gene clusters as a strategy for natural product discovery. *Biochem. Pharmacol.* **153**, 24–34 (2018).

675 11. J. Antosch, F. Schaefers, T. A. M. Gulder, Heterologous Reconstitution of Ikarugamycin Biosynthesis
676 in *E. coli*. *Angew. Chem. Int. Ed.* **53**, 3011–3014 (2014).

677 12. J. A. V. Blodgett, *et al.*, Common biosynthetic origins for polycyclic tetramate macrolactams from
678 phylogenetically diverse bacteria. *Proc. Natl. Acad. Sci.* **107**, 11692–11697 (2010).

679 13. G. Zhang, W. Zhang, S. Saha, C. Zhang, Recent Advances in Discovery, Biosynthesis and Genome
680 Mining of Medicinally Relevant Polycyclic Tetramate Macrolactams. *Curr. Top. Med. Chem.* **16**,
681 1727–1739 (2016).

682 14. Y. Guo, W. Zheng, X. Rong, Y. Huang, A multilocus phylogeny of the *Streptomyces griseus* 16S rRNA
683 gene clade: use of multilocus sequence analysis for streptomycete systematics. *Int. J. Syst. Evol.*
684 *Microbiol.* **58**, 149–159 (2008).

685 15. Y. Luo, *et al.*, Activation and characterization of a cryptic polycyclic tetramate macrolactam
686 biosynthetic gene cluster. *Nat. Commun.* **4**, 1–8 (2013).

687 16. Y. Ohnishi, H. Yamazaki, J. Kato, A. Tomono, S. Horinouchi, AdpA, a Central Transcriptional
688 Regulator in the A-Factor Regulatory Cascade That Leads to Morphological Development and
689 Secondary Metabolism in *Streptomyces griseus*. *Biosci. Biotechnol. Biochem.* **69**, 431–439 (2005).

690 17. Y. Qi, *et al.*, Draft Genome Sequences of Two Polycyclic Tetramate Macrolactam Producers,
691 *Streptomyces* sp. Strains JV180 and SP18CM02. *Microbiol. Resour. Announc.* **9**, 1–3 (2020).

692 18. Y. Luo, L. Zhang, K. W. Barton, H. Zhao, Systematic Identification of a Panel of Strong Constitutive
693 Promoters from *Streptomyces albus*. *ACS Synth. Biol.* **4**, 1001–1010 (2015).

694 19. K.-S. Ju, *et al.*, Discovery of phosphonic acid natural products by mining the genomes of 10,000
695 actinomycetes. *Proc. Natl. Acad. Sci.* **112**, 12175–12180 (2015).

696 20. Y. Qi, E. Ding, J. A. V. Blodgett, Native and Engineered Clifednamide Biosynthesis in Multiple
697 *Streptomyces* spp. *ACS Synth. Biol.* **7**, 357–362 (2018).

698 21. Y.-M. Chiang, S.-L. Chang, B. R. Oakley, C. C. Wang, Recent advances in awakening silent
699 biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. *Curr.*
700 *Opin. Chem. Biol.* **15**, 137–143 (2011).

701 22. C. Ingram, M. Brawner, P. Youngman, J. Westpheling, *xylE* functions as an efficient reporter gene in
702 *Streptomyces* spp.: use for the study of *galP1*, a catabolite-controlled promoter. *J. Bacteriol.* **171**,
703 6617–6624 (1989).

704 23. L. Li, L. W. MacIntyre, S. F. Brady, Refactoring biosynthetic gene clusters for heterologous
705 production of microbial natural products. *Curr. Opin. Biotechnol.* **69**, 145–152 (2021).

706 24. Y. Ahmed, Y. Rebets, B. Tokovenko, E. Brötz, A. Luzhetskyy, Identification of butenolide regulatory
707 system controlling secondary metabolism in *Streptomyces albus* J1074. *Sci. Rep.* **7**, 1–11 (2017).

708 25. X.-L. Bu, J.-Y. Weng, He-Lin Yu, M.-J. Xu, J. Xu, Three transcriptional regulators positively regulate
709 the biosynthesis of polycyclic tetramate macrolactams in *Streptomyces xiamensis* 318. *Appl.*
710 *Microbiol. Biotechnol.* **104**, 701–711 (2020).

711 26. Y. Jeong, *et al.*, The dynamic transcriptional and translational landscape of the model antibiotic
712 producer *Streptomyces coelicolor* A3(2). *Nat. Commun.* **7**, 1–11 (2016).

713 27. Y. Lee, *et al.*, The Transcription Unit Architecture of *Streptomyces lividans* TK24. *Front. Microbiol.*
714 **10**, 1–13 (2019).

715 28. M. J. Bibb, J. White, J. M. Ward, G. R. Janssen, The mRNA for the 23S rRNA methylase encoded by
716 the *ermE* gene of *Saccharopolyspora erythraea* is translated in the absence of a conventional
717 ribosome-binding site. *Mol. Microbiol.* **14**, 533–545 (1994).

718 29. T. Siegl, B. Tokovenko, M. Myronovskyi, A. Luzhetskyy, Design, construction and characterisation of
719 a synthetic promoter library for fine-tuned gene expression in actinomycetes. *Metab. Eng.* **19**, 98–
720 106 (2013).

721 30. H. Yamazaki, Y. Ohnishi, S. Horinouchi, An A-Factor-Dependent Extracytoplasmic Function Sigma
722 Factor (ζ AdS α) That Is Essential for Morphological Development in *Streptomyces griseus*. *J.*
723 *Bacteriol.* **182**, 4596–4605 (2000).

724 31. I. Borovok, B. Gorovitz, R. Schreiber, Y. Aharonowitz, G. Cohen, Coenzyme B12 Controls
725 Transcription of the *Streptomyces* Class Ia Ribonucleotide Reductase *nrdABS* Operon via a
726 Riboswitch Mechanism. *J BACTERIOL* **188**, 2512–2520 (2006).

727 32. S. A. Emory, P. Bouvet, J. G. Belasco, A 5'-terminal stem-loop structure can stabilize mRNA in
728 *Escherichia coli*. *Genes Dev.* **6**, 135–148 (1992).

729 33. M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.*
730 **31**, 3406–3415 (2003).

731 34. M. D. Yao, *et al.*, Complex Structure of the DNA-binding Domain of AdpA, the Global Transcription
732 Factor in *Streptomyces griseus*, and A Target Duplex DNA Reveals the Structural Basis of its
733 Tolerant DNA Sequence Specificity. *J. Biol. Chem.*, 31019–31029 (2013).

734 35. A. Higo, H. Hara, S. Horinouchi, Y. Ohnishi, Genome-wide Distribution of AdpA, a Global Regulator
735 for Secondary Metabolism and Morphological Differentiation in *Streptomyces*, Revealed the Extent
736 and Complexity of the AdpA Regulatory Network. *DNA Res.* **19**, 259–274 (2012).

737 36. J. Kato, I. Miyahisa, M. Mashiko, Y. Ohnishi, S. Horinouchi, A Single Target Is Sufficient To Account
738 for the Biological Effects of the A-Factor Receptor Protein of *Streptomyces griseus*. *J. Bacteriol.*
739 **186**, 2206–2211 (2004).

740 37. B. Müller-Hill, Some repressors of bacterial transcription. *Curr. Opin. Microbiol.* **1**, 145–151 (1998).

741 38. D. F. Browning, S. J. W. Busby, The regulation of bacterial transcription initiation. *Nat. Rev.*
742 *Microbiol.* **2**, 57–65 (2004).

743 39. R. F. Seipke, Strain-Level Diversity of Secondary Metabolism in *Streptomyces albus*. *PLOS ONE* **10**,
744 1–14 (2015).

745 40. Y. Ohnishi, *et al.*, Genome Sequence of the Streptomycin-Producing Microorganism *Streptomyces*
746 *griseus* IFO 13350. *J. Bacteriol.* **190**, 4050–4060 (2008).

747 41. A. Li, J. Piel, A Gene Cluster from a Marine *Streptomyces* Encoding the Biosynthesis of the Aromatic
748 Spiroketal Polyketide Griseorhodin A. *Chem. Biol.* **9**, 1017–1026 (2002).

749 42. D. J. Atkinson, M. A. Brimble, Isolation, biological activity, biosynthesis and synthetic studies
750 towards the rubromycin family of natural products. *Nat. Prod. Rep.* **32**, 811–840 (2015).

751 43. J. Pablo Gomez-Escribano, *et al.*, Structure and biosynthesis of the unusual polyketide alkaloid
752 coelimycin P1, a metabolic product of the cpk gene cluster of *Streptomyces coelicolor* M145.
753 *Chem. Sci.* **3**, 2716–2720 (2012).

754 44. L. Wang, J. McVey, L. C. Vining, Cloning and functional analysis of a phosphopantetheinyl
755 transferase superfamily gene associated with jadomycin biosynthesis in *Streptomyces venezuelae*
756 ISP5230. *Microbiology*, **147**, 1535–1545 (2001).

757 45. L. Diacovich, *et al.*, Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found
758 in *Streptomyces coelicolor* A3(2). *J. Biol. Chem.* **277**, 31228–31236 (2002).

759 46. G. E. Schujman, L. Paoletti, A. D. Grossman, D. de Mendoza, FapR, a Bacterial Transcription Factor
760 Involved in Global Regulation of Membrane Lipid Biosynthesis. *Dev. Cell* **4**, 663–672 (2003).

761 47. W. Wang, *et al.*, Harnessing the intracellular triacylglycerols for titer improvement of polyketides in
762 *Streptomyces*. *Nat. Biotechnol.* **38**, 76–83 (2020).

763 48. S. Li, Z. Li, S. Pang, W. Xiang, W. Wang, Coordinating precursor supply for pharmaceutical
764 polyketide production in *Streptomyces*. *Curr. Opin. Biotechnol.* **69**, 26–34 (2021).

765 49. G. C. A. Amos, *et al.*, Comparative transcriptomics as a guide to natural product discovery and
766 biosynthetic gene cluster functionality. *Proc. Natl. Acad. Sci.* **114**, E11121–E11130 (2017).

767 50. G. P. van Wezel, K. J. McDowall, The regulation of the secondary metabolism of *Streptomyces*: new
768 links and experimental advances. *Nat. Prod. Rep.* **28**, 1311–1333 (2011).

769 51. B. K. Okada, M. R. Seyedsayamdst, Antibiotic dialogues: induction of silent biosynthetic gene
770 clusters by exogenous small molecules. *FEMS Microbiol. Rev.* **41**, 19–33 (2017).

771 52. I. R. Henderson, P. Owen, J. P. Nataro, Molecular switches — the ON and OFF of bacterial phase
772 variation. *Mol. Microbiol.* **33**, 919–932 (1999).

773 53. B. R. Bowman, *et al.*, Compositions and methods for the production of compounds *US Patent*
774 US10907188B2 (2019).

775 54. U. K. Shigdel, *et al.*, Genomic discovery of an evolutionarily programmed modality for small-
776 molecule targeting of an intractable protein surface. *Proc. Natl. Acad. Sci.* **117**, 17195–17203
777 (2020).

778 55. M. Myronovskiy, A. Luzhetskyy, Heterologous production of small molecules in the optimized
779 *Streptomyces* hosts. *Nat. Prod. Rep.* **36**, 1281–1294 (2019).

780 56. E. J. Culp, *et al.*, Hidden antibiotics in actinomycetes can be identified by inactivation of gene
781 clusters for common antibiotics. *Nat. Biotechnol.* **37**, 1149–1154 (2019).

782 57. G. Liu, K. F. Chater, G. Chandra, G. Niu, H. Tan, Molecular Regulation of Antibiotic Biosynthesis in
783 *Streptomyces*. *Microbiol. Mol. Biol. Rev.* **77**, 112–143 (2013).

784 58. B. Bednarz, M. Kotowska, K. J. Pawlik, Multi-level regulation of coelimycin synthesis in
785 *Streptomyces coelicolor* A3(2). *Appl. Microbiol. Biotechnol.* **103**, 6423–6434 (2019).

786 59. W. Van Dessel, L. Van Mellaert, N. Geukens, J. Anné, Improved PCR-based method for the direct
787 screening of *Streptomyces* transformants. *J. Microbiol. Methods* **53**, 401–403 (2003).

788 60. J. Sambrook, E. F. Fritsch, T. Maniatis, *Molecular cloning: a laboratory manual*. (Cold Spring Harbor
789 Laboratory Press, 1989).

790 61. B. Ko, *et al.*, Construction of a new integrating vector from actinophage φOZJ and its use in
791 multiplex *Streptomyces* transformation. *J. Ind. Microbiol. Biotechnol.* **47**, 73–81 (2020).

792 62. T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater, D. A. Hopwood, *Practical Streptomyces Genetics*
793 (John Innes Foundation, 2000).

794 63. C. F. Hirsch, J. C. Ensign, Nutritionally defined conditions for germination of *Streptomyces*
795 viridochromogenes spores. *J. Bacteriol.* **126**, 13–23 (1976).

796 64. J. A. V. Blodgett, *et al.*, Unusual transformations in the biosynthesis of the antibiotic
797 phosphinothricin tripeptide. *Nat. Chem. Biol.* **3**, 480–485 (2007).

798 65. A. Bose, D. K. Newman, Regulation of the phototrophic iron oxidation (pio) genes in
799 *Rhodopseudomonas palustris* TIE-1 is mediated by the global regulator, FixK. *Mol. Microbiol.* **79**,
800 63–75 (2011).

801 66. W. Liu, *et al.*, Genome Mining of Marine-Derived *Streptomyces* sp. SCSIO 40010 Leads to Cytotoxic
802 New Polycyclic Tetramate Macrolactams. *Mar. Drugs* **17**, 663 (2019).

803 67. J. Claesen, M. J. Bibb, Biosynthesis and Regulation of Grisemycin, a New Member of the Linaridin
804 Family of Ribosomally Synthesized Peptides Produced by *Streptomyces griseus* IFO 13350. *J.*
805 *Bacteriol.* **193**, 2510–2516 (2011).

806

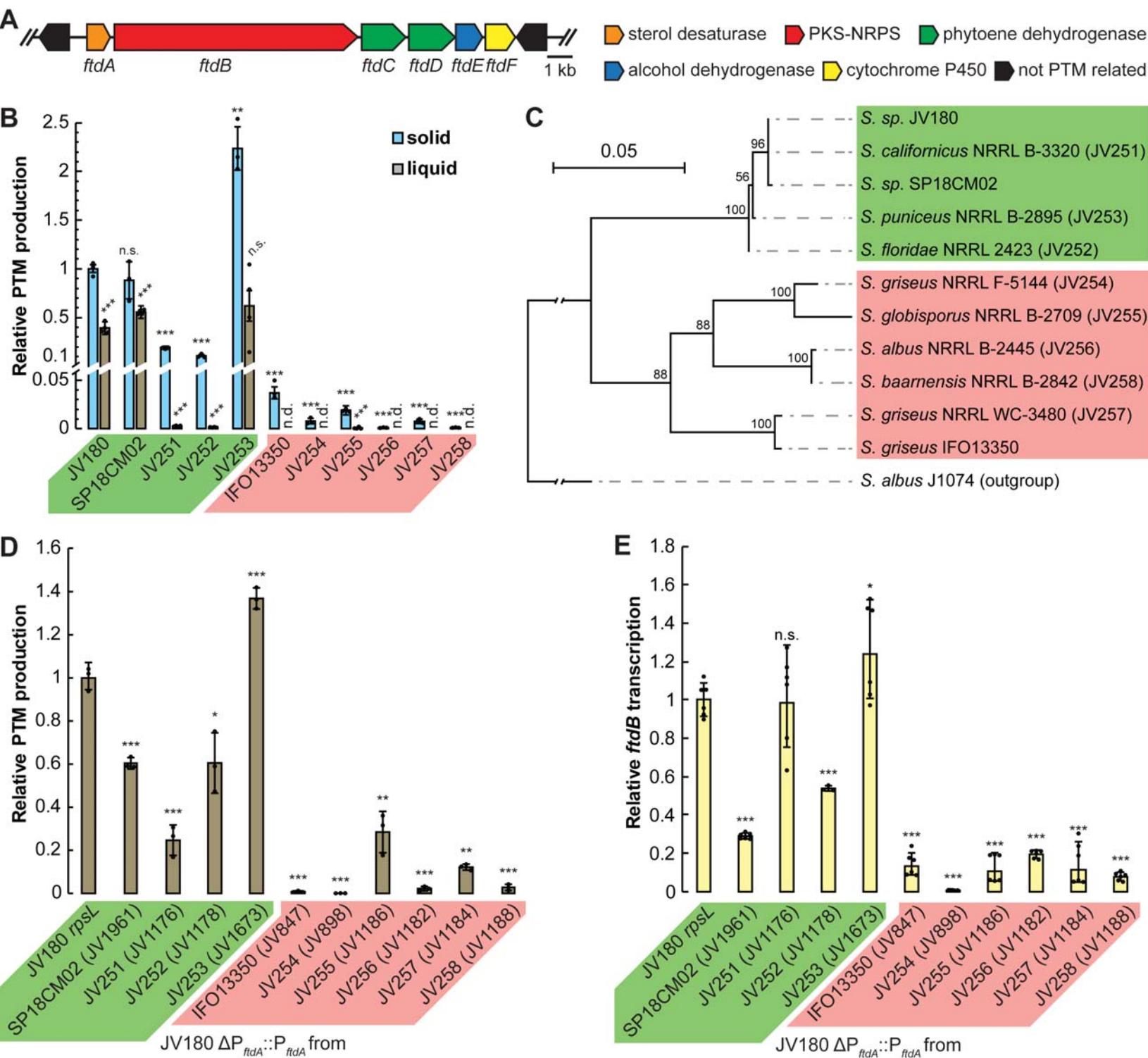
807 **Figure Legends**

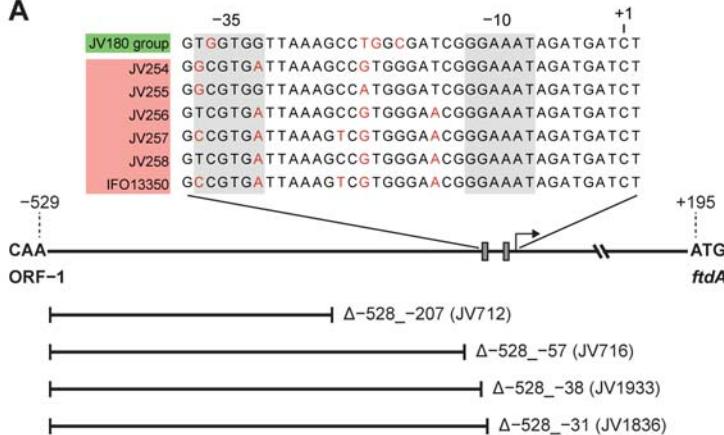
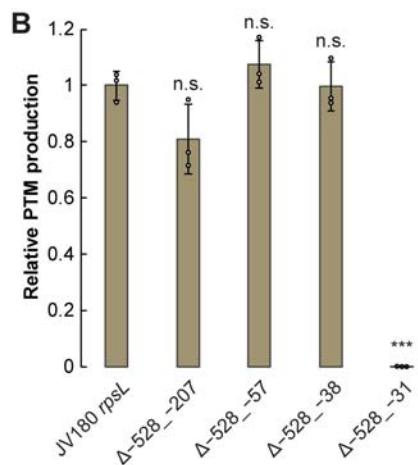
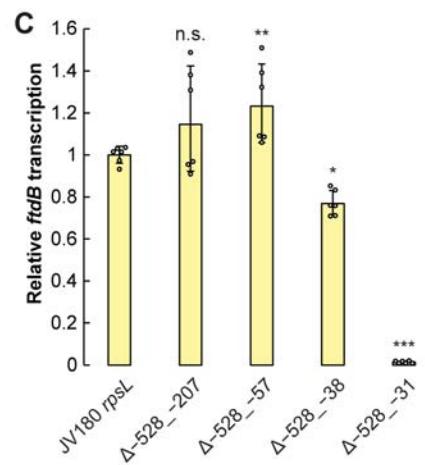
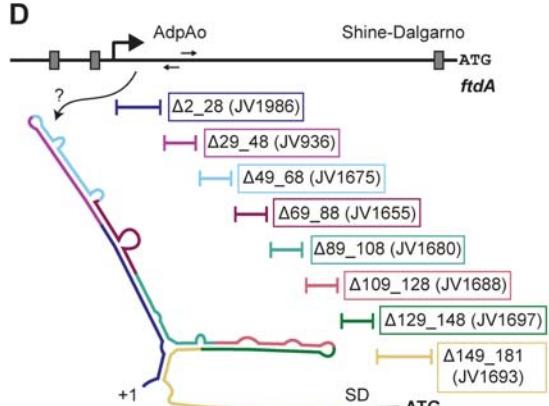
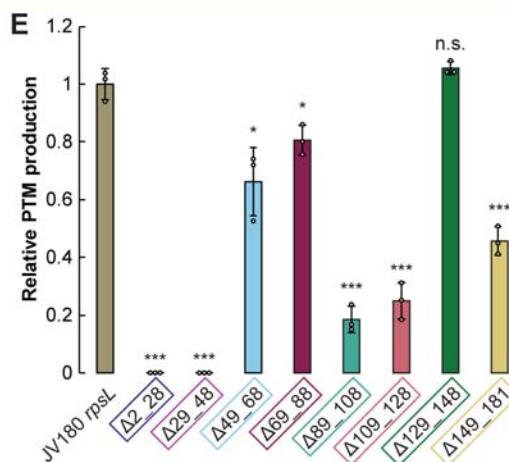
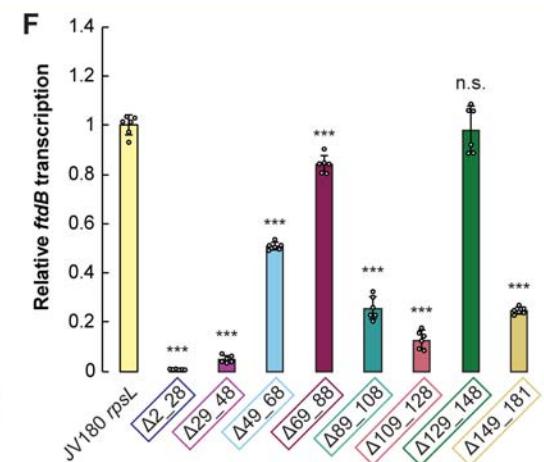
808 **Figure 1. Differences in *S. griseus* clade PTM production correlate with putative PTM
809 promoter region sequence variation.** (A) In all tested *S. griseus* clade strains, the PTM locus is
810 comprised of a conserved set of genes *ftdA-F*. The non-PTM upstream and downstream genes
811 in all tested strains respectively encode a cysteine desulfurase (ORF -1) and mandelate
812 racemase (ORF +1). (B) PTM production is most robust on solid media (blue bars, n = 3) versus
813 when strains are grown liquid (brown bars, n = 4) media. n.d. = not detected. (C) Neighbor-
814 joining tree of the 500 bp upstream of each strain's *ftdA* gene. This tree indicates that P_{ftdA}
815 sequences of JV180-like strains form a separate group from the other (IFO13350-like) P_{ftdA} 's.
816 The analogous P_{ftdA} region of *Streptomyces albus* strain J1074 was used as an outgroup.

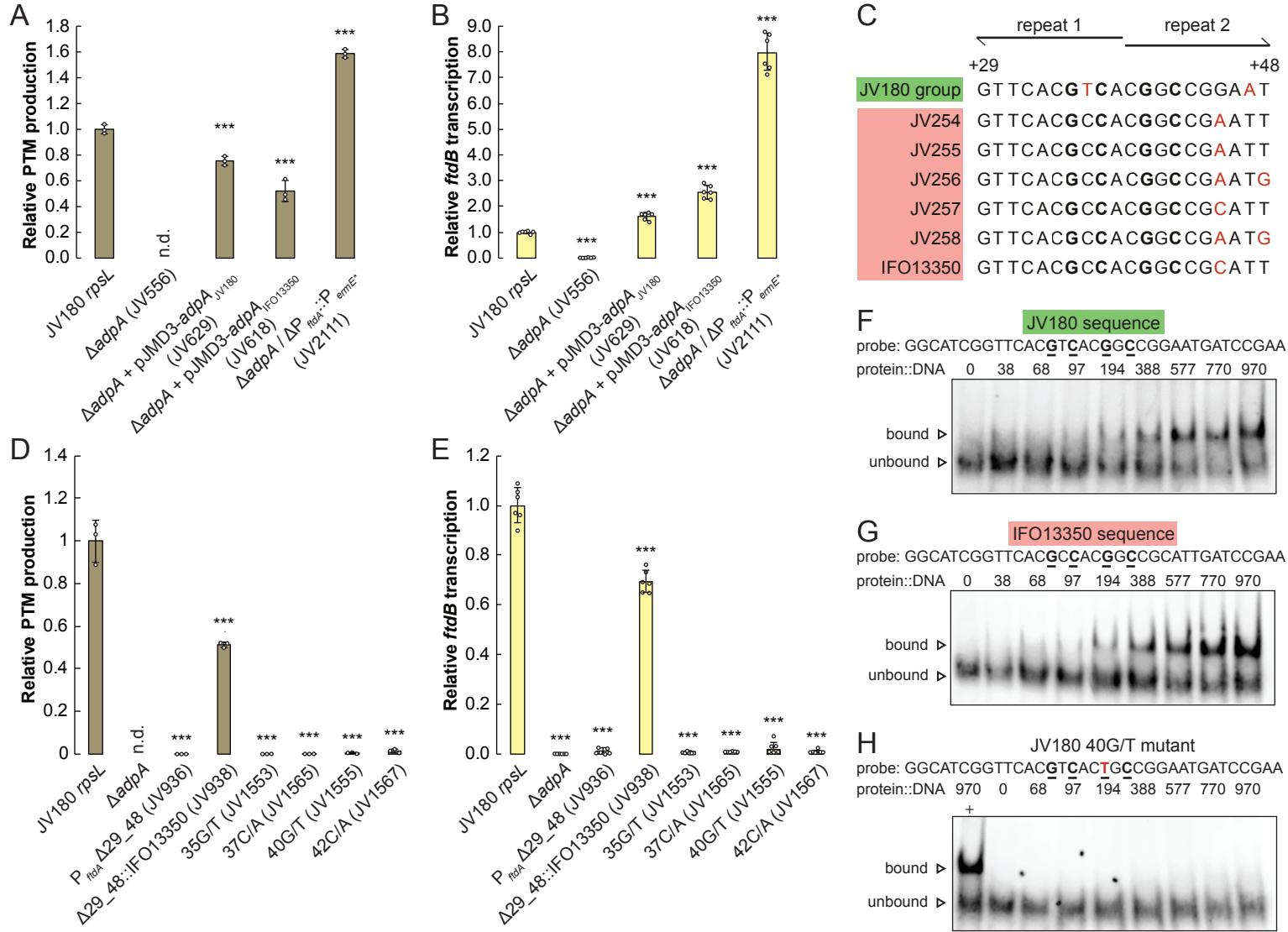
817 Sequences were aligned with MUSCLE and the tree was built using the Kimura substitution
818 model in CLC Main Workbench. Branches supported by less than 50% of 500 bootstrap
819 simulations were collapsed. **(D)** PTM production resulting from non-JV180 P_{ftdA} regions after
820 introduction into JV180. The X-axis labels indicate which strains were used to source each
821 heterologously-tested promoter. The strain numbers in parentheses specify which strains in
822 Table S1 were used in each experiment (n = 3). **(E)** Relative $ftdB$ transcript abundance from
823 JV180 promoter-swapped strains in panel D (n = 6, except JV1178 where n = 3). From these
824 data, a clear trend emerges where strains and their P_{ftdA} -region promoters sourced from the
825 subclade that includes JV180 (green highlights, panels A-D) yield higher PTM production and
826 transcription compared to the rest of the tested *S. griseus* clade strains (red highlights, panels
827 A-D). The statistical significance in the differences in PTM production or transcription were
828 calculated by two-tailed Student's T-test, relative to JV180 or its *rpsL* mutant, JV307. *p < 0.05,
829 **p < 0.01, ***p < 0.001. Error bars represent standard deviation.

830 **Figure 2. Mapping of P_{ftdA} and identification of cis-regulatory elements by deletion analysis.**
831 **(A)** Diagram of the JV180 P_{ftdA} region, with the zones deleted upstream of P_{ftdA} diagrammed
832 below. Inset: alignment of the core promoter sequence (note: the sequences are identical in
833 JV180-like P_{ftdA} 's). **(B)** Relative PTM production from JV180 mutants with deletions in the
834 upstream region of P_{ftdA} (n = 3). **(C)** Relative $ftdB$ transcript abundance from JV180 mutants with
835 deletions in the upstream region of P_{ftdA} (n = 6). **(D)** Diagram of the P_{ftdA} untranslated region
836 (UTR) downstream of the transcript start site. Regions deleted downstream of P_{ftdA} are
837 diagrammed below. Inset: cartoonized representation of the JV180 P_{ftdA} UTR secondary
838 structure predicted by mFold. **(E)** Relative PTM production from P_{ftdA} UTR truncation mutants (n
839 = 3). **(F)** Relative $ftdB$ transcript abundance from P_{ftdA} UTR truncation mutants (n = 6). The
840 statistical significance in the differences in PTM production or transcription were calculated by
841 two-tailed Student's T-test, relative to the JV180 *rpsL* mutant, JV307. *p < 0.05, **p < 0.01,
842 ***p < 0.001. Error bars represent standard deviation.

843 **Figure 3. AdpA is required for PTM expression and directly binds P_{ftdA} in vivo and in vitro. (A)**
844 Relative PTM production from JV180, its $\Delta adpA$ mutant, and complementation of PTM


845 production by *adpA* or replacement of P_{ftdA} with the constitutive P_{ermE^*} (n = 3). (B) Relative *ftdB*
846 transcript abundance from JV180, its $\Delta adpA$ mutant, and complementation of PTM
847 transcription by *adpA* or replacement of P_{ftdA} with the constitutive P_{ermE^*} (n = 6). n.d. = not
848 detected. (C) Alignment of the P_{ftdA} AdpA binding sites, with non-conserved nucleotides
849 highlighted in red (note: the sequences are identical in the JV180-like P_{ftdA} 's). (D) Relative PTM
850 production from JV180 P_{ftdA} AdpA binding site mutants (n = 3). (E) Relative *ftdB* transcript
851 abundance from JV180 P_{ftdA} AdpA binding site mutants (n = 6). EMSA assays for His-tagged
852 JV180 AdpA interaction with the (F) JV180 P_{ftdA} binding site, (G) IFO13350 P_{ftdA} binding site, or
853 (H) a JV180 P_{ftdA} binding site containing a transversion mutation in one of the nucleotides (red,
854 underlined) directly interacting with AdpA, which was necessary for protein-DNA interaction.
855 The lane marked (+) is a positive control using a wild-type JV180 probe sequence. The statistical
856 significance in the differences in PTM production or transcription were calculated by two-tailed
857 Student's T-test, relative to the JV180 *rpsL* mutant, JV307. *p < 0.05, **p < 0.01, ***p < 0.001.
858 Error bars represent standard deviation.

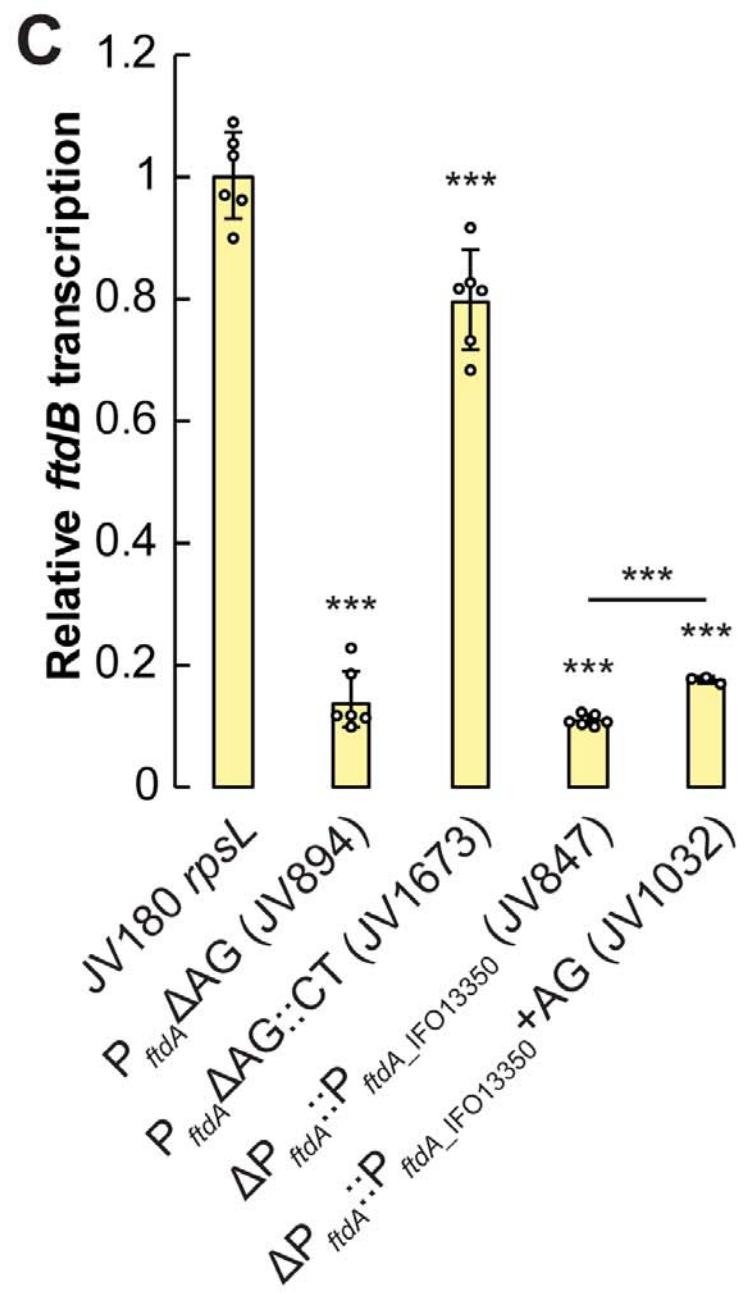
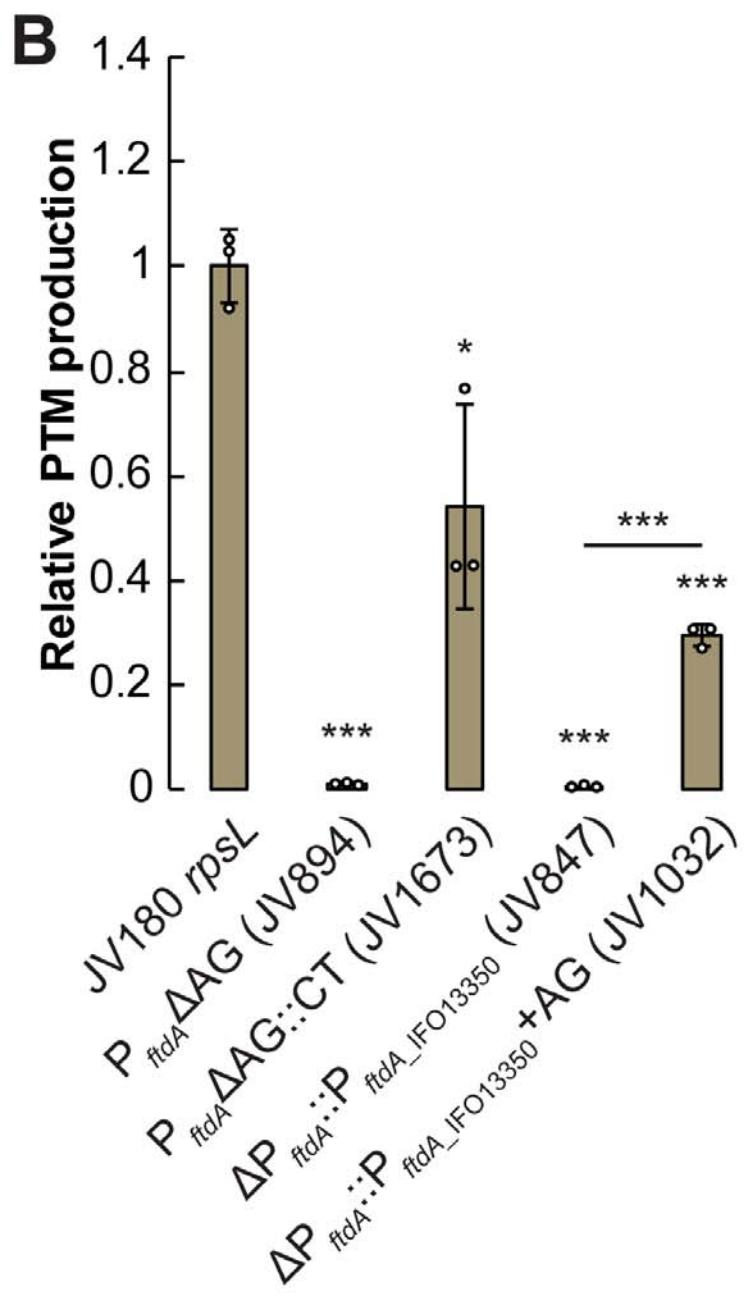






859 **Figure 4. A conserved AG(G) indel tunes strong and weak P_{ftdA} 's.** (A) Alignment of the P_{ftdA} UTR
860 section containing the conserved AG(G) indel between the TSS and the AdpA binding site. Non-
861 conserved nucleotides are indicated in red. (B) Relative PTM production from JV180 $P_{ftdA}\Delta AG$
862 mutants and JV180 $\Delta P_{ftdA}::P_{ftdA_IFO13350}\pm AG$ mutants (n = 3). (C) Relative *ftdB* transcript
863 abundance from JV180 $P_{ftdA}\Delta AG$ mutants and JV180 $\Delta P_{ftdA}::P_{ftdA_IFO13350}\pm AG$ mutants (n = 6,
864 except for JV1032 where n = 3). The statistical significance in the differences in PTM production
865 or transcription were calculated by two-tailed Student's T-test, relative to the JV180 *rpsL*
866 mutant, JV307, or otherwise indicated. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent
867 standard deviation.

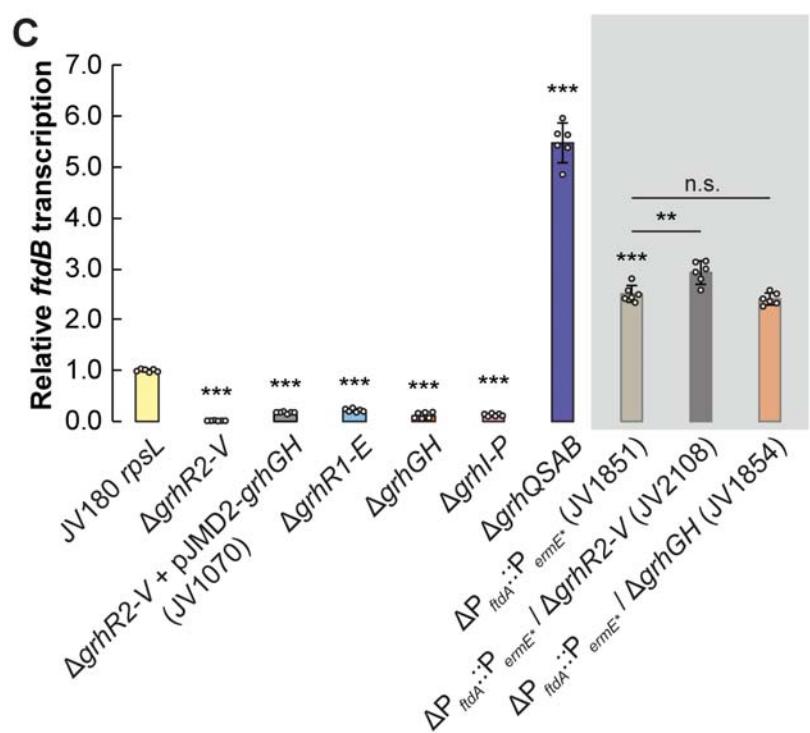
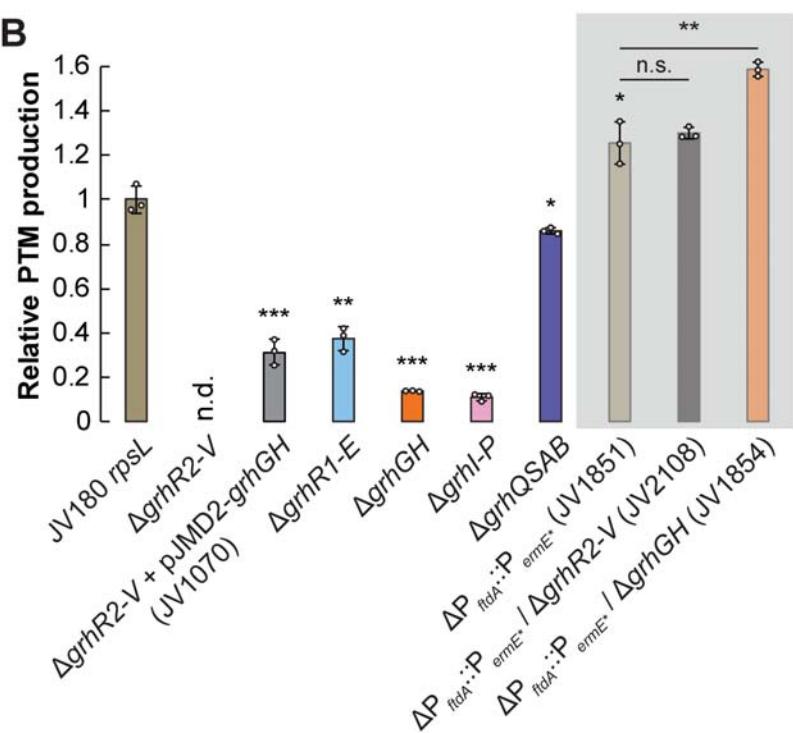
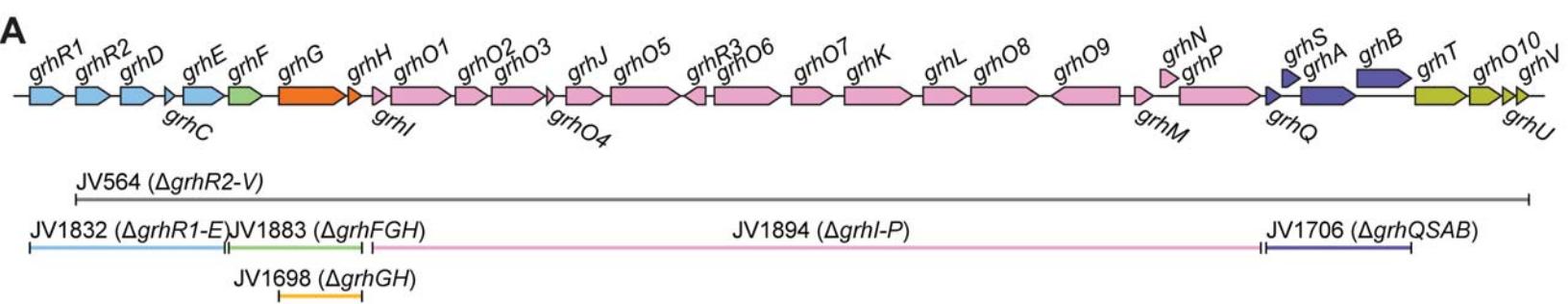

868 **Figure 5. Deletions in the JV180 griseorhodin (*grh*) BGC often negatively impact PTM
869 production and transcription by P_{ftdA} .** (A) Diagram of the JV180 griseorhodin BGC with gene
870 ranges deleted in various mutants mapped below as corresponding colored bars. (B) Relative
871 PTM production from various *grh* mutants in JV180 *rpsL* (white background) and JV180
872 $\Delta P_{ftdA}::P_{ermE^*}$ background strains (grey background, n = 3). n.d. = not detected. (C) Relative *ftdB*

873 transcript abundance from various *grh* mutants in JV180 *rpsL* and JV180 $\Delta P_{ftdA}::P_{ermE^*}$
874 background strains as noted in panel B, (n = 6). The statistical significance in the differences in
875 PTM production or transcription were calculated by two-tailed Student's T-test, relative to the
876 JV180 *rpsL* mutant, JV307, or otherwise indicated. *p < 0.05, **p < 0.01, ***p < 0.001. Error
877 bars represent standard deviation.

878

A**B****C****D****E****F**




A

+1

AdpA binding site

JV180	TCTGGGCC C GATGGGGTCAG - GGGGGCATCGGTTCACG T CAC
SP18CM02	TCTGGGCC C GATGGGGTCAG G GGGGGCATCGGTTCACG T CAC
JV251	TCTGGGCC C GATGGGGTCAG - GGGGGCATCGGTTCACG T CAC
JV252	TCTGGGCC C GATGGGGTCAG - GGGGGCATCGGTTCACG T CAC
JV253	TCTGGGCC C GATGGGGTCAG - GGGGGCATCGGTTCACG T CAC
JV254	TCTGGGCTGATGGGGTC - - - GGGGGCATCGGTTCACGCCAC
JV255	TCTGGGCTGATGGGGTC - - - GGGGGCATC A GTTCACGCCAC
JV256	TCTGGGCTGATGGGGTC - - - GGGGGCATC A GTTCACGCCAC
JV257	TCTGGGCTGAT G AGGTC - - - GGGGGCATCGGTTCACGCCAC
JV258	TCTGGGCTGATGGGGTC - - - GGGGGCATC A GTTCACGCCAC
IFO13350	TCTGGGCTGAT G AGGTC - - - GGGGGCATCGGTTCACGCCAC

