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ABSTRACT
Computer-aided Design for Manufacturing (DFM) systems

play an essential role in reducing the time taken for product de-
velopment by providing manufacturability feedback to the de-
signer before the manufacturing phase. Traditionally, DFM rules
are hand-crafted and used to accelerate the engineering product
design process by integrating manufacturability analysis during
design. Recently, the feasibility of using a machine learning-
based DFM tool in intelligently applying the DFM rules have
been studied. These tools use a voxelized representation of the
design and then use a 3D-Convolutional Neural Network (3D-
CNN), to provide manufacturability feedback. Although these
frameworks work effectively, there are some limitations to the
voxelized representation of the design. In this paper, we intro-
duce a new representation of the computer-aided design (CAD)
model using orthogonal distance fields (ODF). We provide a
GPU-accelerated algorithm to convert standard boundary rep-
resentation (B-rep) CAD models into ODF representation. Us-
ing the ODF representation, we build a machine learning frame-
work, similar to earlier approaches, to create a machine learning-
based DFM system to provide manufacturability feedback. As
proof of concept, we apply this framework to assess the man-
ufacturability of drilled holes. The framework has an accuracy
of more than 84% correctly classifying the manufacturable and
non-manufacturable models using the new representation.

1 INTRODUCTION
The philosophy of Design for Manufacturing (DFM) is to

provide manufacturability feedback to the designer before the

∗Corresponding author: adarsh@iastate.edu.

manufacturing phase [1, 2, 3, 4]. Traditionally, designers have
to go through several iterations of design and manufacturing re-
views before final production. This decentralized approach in-
creases product development time. DFM reduces the design life-
cycle time by performing manufacturing checks during the de-
sign process. DFM rules are usually hand-crafted based on the
manufacturing process, material, tool geometry, coolant use, and
several other manufacturing process considerations [5, 6]. Al-
though DFM rules accelerate the engineering product design pro-
cess, such a practice relies on designer experience and training
to discern and identify the rules while creating a complex com-
ponent that involves several features [7]. Computer-aided DFM
systems are useful in making this process easier for designers.

Computer-aided DFM analysis [3] can help in integrating
the manufacturing experience into CAD systems. However,
the main limitation of using hand-crafted rules for manufac-
turability analysis still exists. The proposition of making the
next-generation CAD systems more robust and less dependent
on hand-crafted rules has motivated several studies on creat-
ing automated design tools with cognitive capabilities for bet-
ter human-machine interaction [4, 8]. They have built-in “intel-
ligence” for analyzing the manufacturability in a practical and
structured manner. Recently, machine learning-based DFM tools
have shown great promise to provide such cognitive capabili-
ties [9, 10].

Deep learning (DL) based prediction models are particu-
larly suitable for building a cognitive CAD system due to their
hierarchical feature learning capability without explicit hand-
crafting. The hierarchical architecture of deep learning can be
used to learn progressively complex features by capturing fea-
tures of features [11]. Therefore, DL can be used to learn
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FIGURE 1. FRAMEWORK FOR DEEP-LEARNING BASED DESIGN FOR MANUFACTURABILITY. THE CAD MODEL IS CONVERTED
INTO ORTHOGONAL DISTANCE FIELD REPRESENTATION AND IS INPUT TO THE 3D CONVOLUTIONAL NEURAL NETWORK (3D-
CNN) FOR MANUFACTURABILITY CLASSIFICATION.

DFM rules from several examples of manufacturable and non-
manufacturable components without explicit hand-crafting of the
rules/features (Figure 1). Recently, deep learning has been gain-
ing popularity within the engineering community, such as in
prognostics [12, 13], engineering design and analysis [14, 15, 16,
17, 18], and robotic path planning [19]. In the context of man-
ufacturing, several recent works explore the capability to learn
features that are manufacturable [10]. A more detailed review of
machine learning approaches in manufacturing can be found in
[20, 21, 22, 23]. In particular, the DFM framework explored by
[9] is very relevant to this work. To the best knowledge of the au-
thors, [9] is the only work on DFM using 3D-convolutional neu-
ral networks (3D-CNNs). The proposed DFM prediction model
can be integrated with CAD systems, providing interactive feed-
back about the manufacturability of the design. Finally, their
framework can also identify the source of non-manufacturability
in the design, which can then be suitably modified by the de-
signer to make the overall design manufacturable. However, for
the DL algorithms to identify non-manufacturable features, the
CAD model of the component needs to be suitably represented.

The CAD representation needs to be compatible with the hi-
erarchical learning capability of DL algorithms to interpret the
results suitably. Traditional mechanical CAD systems represent
the geometry using boundary representation (B-rep). In a B-
rep, the geometry of a solid model is represented using only its
boundary entities (for example, faces in 3D). However, there is
no information that corresponds directly to the volume of ma-
terial contained within a solid model. Hence, it is challenging
to build a DL framework that can learn spatial attributes from
a B-rep. Volume representations, on the other hand, are much
more suitable for DL algorithms, especially 3D-CNNs. Previous
studies used a voxelized representation of the CAD model. In
a voxelized representation, the entire model can be represented
using a long string of binary digits that can be used as input for
training the machine learning network.

However, the voxelized data is still limited in its capabil-
ity to represent the solid model. The voxelized representation
of the CAD model contains only digital information (in-outs) of
whether the corresponding voxel is inside or outside the model.
It does not have information about the proximity of a voxel to
the boundary. In addition, as shown in Figure 2, the voxelized
representation does not contain any information about the dis-
tance between features. However, the proximity of other features
or the boundary might be important in determining the manufac-
turability of a part. Therefore, we introduce a new orthogonal
distance field (ODF) representation for CAD models for use in
machine learning applications in the context of manufacturability
analysis.

In this paper, we introduce a new representation called or-
thogonal distance fields to represent the volumetric features of a
CAD model. We then use it as input to a deep learning design
for manufacturing (DLDFM) framework. We compare the ac-

Original Voxelized Representation

FIGURE 2. LIMITATIONS OF BINARY VOXELIZED AP-
PROACH. THE CAD MODEL ON THE LEFT HAS 2 HOLES AND
ITS VOXELIZED REPRESENTATION IS SHOWN ON THE RIGHT.
THERE IS NO INFORMATION OF PROXIMITY OF THE HOLES
TO THE BOUNDARY.
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curacy of the ODF representation in identifying manufacturable
and non-manufacturable drilled holes with previous voxelized
approaches. The main contributions of this paper include:

1. A GPU-accelerated method to convert B-rep solid models to
orthogonal distance field representation.

2. A deep-learning(3D-CNN) based DFM framework to ana-
lyze the manufacturability of drilled hole in a CAD geome-
try using the ODF representation.

3. Performance comparisons of the DFM framework in us-
ing the ODF representation with voxelized representation of
CAD geometries.

2 ORTHOGONAL DISTANCE FIELDS
We represent the CAD model using a modified version of

distance fields to overcome the limitation of voxelized represen-
tations. A survey on usage of numerous applications of distance
fields in computer vision, path planning, and scientific visual-
ization applications is presented in [24]. In the context of deep
learning, distance fields provide additional information about the
proximity of a voxel to the closest boundary, and information
about the curvature and thickness of the geometry is also present
in the distance fields [24].

Given a point q ∈ S , a solid model that is bounded by dS in
R3, the distance field D can be mathematically represented using
the equation:

D = min(dist(q, p)) |q ∈ S , p ∈ dS . (1)

Even though there are efficient methods to convert the B-
rep to distance fields [24], computing the accurate minimum dis-
tance values for all q ∈ S is computationally expensive. This
problem is exacerbated in a machine learning framework, where
thousands of models need to be converted to the distance field
representation for training the DL network. Fortunately, the ma-
chine learning framework can still learn from approximate but
consistent distance information. Hence, to accelerate the con-
version from B-reps to distance representations for training, we
develop a new approximate distance field representation called
orthogonal distance fields. We compute the distance from each
point in the solid model to the closest boundary in the six orthog-
onal directions (+x, -x, +y, -y, +z, -z), namely ODF. The ODF can
be mathematically represented using the equation:

DODF = min(dist(q, p)) |q ∈ S , p ∈ dSq
ODF , (2)

where dSq
ODF is a subset of dS . dSq

ODF is the union of sets dSq
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FIGURE 3. ORTHOGONAL DISTANCE FIELD FOR A SQUARE
WITH A HOLLOW CIRCLE. THE FOUR RECTANGLES IN PINK
COLOR REPRESENTS THE REGION WITH SIGNIFICANT AP-
PROXIMATION.

dSq
y , and dSq

z , given as:

dSq
x = {p | ∀p ∈ dS , py = qy , pz = qz}, (3)

dSq
y = {p | ∀p ∈ dS , px = qx , pz = qy}, (4)

dSq
z = {p | ∀p ∈ dS , px = qx , py = qy}. (5)

This computation is significantly less expensive and can be easily
accelerated using the GPU.

The orthogonal distance fields are the same as the exact dis-
tance fields for simple geometries, such as a cuboid. However,
the distances deviate significantly when the object includes any
non-convex edges. For example, consider a square with a hol-
low circle inside, as shown in Figure 3. In this case, there are
a few regions (marked in red) where the closest boundary to the
point is the circle, but the orthogonal distance fields compute the
minimum distance from the edge of the square. The area of this
region is

AI =
(a−d)2

4
. (6)

In addition, there are regions (marked in green) where the closest
boundary is correctly identified, but the distance computed using
orthogonal distance fields is different than the correct shortest
distance. The maximum deviation between the orthogonal dis-
tance and the shortest distance occurs at the corners of the red
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FIGURE 4. PERFORMING ORTHOGONAL DISTANCE FIELD COMPUTATION IN 2D USING GPU RENDERING. A CLIPPED CAD MODEL
IS RENDERED SLICE-BY-SLICE AND THE DEPTH OF THE CLOSEST PIXEL FRAGMENT IS STORED. FINALLY, THE MINIMUM DEPTH
VALUE FROM ALL THE FOUR ORTHOGONAL DIRECTIONS IN 2D (ONLY 2 SHOWN HERE) AT EACH PIXEL IS COMPUTED AS THE
ORTHOGONAL DISTANCE FIELD.

rectangles (marked with a red dot). The area of this green region
is

AII = ad−
(

π

4
+1

)
d2 (7)

There is a C0 discontinuity in the orthogonal distance fields
at the intersection of the two (green and red) regions. This dis-
continuity can be smoothened in a discrete voxel mesh using
Gaussian filters. In addition, they can be convolved with linear
filters to obtain the correct distance fields [25]. A layer of the 3D-
CNN has the capability to learn the weights and filters to perform
this operation. Hence, an appropriately tuned 3D-CNN using or-
thogonal distance fields should have a similar performance to a
different 3D-CNN that uses the correct distance fields.

2.1 GPU-Accelerated Algorithm to Compute ODF
We have developed methods for accelerated computation of

volume representation of CAD models using graphics process-
ing units (GPUs). These GPU-based methods are more than 10x
faster than existing state-of-the-art CPU-based methods and can
create a volumetric representation of a CAD model with more
than 250,000,000 voxels. This high-resolution representation
would have sufficient resolution to capture small features in CAD

models. We construct a fine grid in the region occupied by the
object using its axis-aligned bounding box. The B-rep model is
then decomposed into its component surfaces, which is tessel-
lated into triangles with a very fine resolution that is less than
one-tenth of the resolution of the volumetric grid.

We use an approach similar to the voxelization approach as
mentioned in Ghadai et al. [9]. The CAD model is rendered us-
ing orthographic projection to an off-screen framebuffer slice-
by-slice by clipping it while rendering. The depth values for
each pixel of this clipped model, stored in the depth buffer, is
then used to get the orthogonal distance value for each pixel in
the slice. After the clipped model has been rendered, the normal-
ized depth values are read from the depth buffer (Figure 4).

The normalized depth values read from the depth buffer cor-
responds to the closest boundary along the specified orthogonal
direction in which the model is rendered. However, this depth
value is measured from the near plane of the projection. Hence,
the depth values need to be adjusted with the distance of the
model clipping plane from the near plane to get the distance to
the closest orthogonal boundary. After rendering all the slices,
the depth to the closest orthogonal boundary is stored in each
voxel for this particular direction. Similarly, depth information
for all the six directions are obtained. The orthogonal distance
field is then obtained by taking the minimum of the six distance
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FIGURE 5. VOLUME RENDERING OF THE ORTHOGONAL
DISTANCE FIELD OF A 3D CAD MODEL. THE COLOR REP-
RESENTS THE DISTANCE TO THE BOUNDARY. MOVING FUR-
THER INSIDE THE OBJECT REPRESENTS A LARGER DISTANCE
TO THE BOUNDARY, AND THE COLOR CHANGES FROM BLUE
TO RED.

values. The orthogonal distance fields for a simple cube with a
hole rendered using volume rendering is shown in Figure 5.

The time taken to compute the distance fields is the sum
of the time taken to evaluate each of the 6 directional distance
fields. As an example, the total time taken to compute the or-
thogonal distance fields for a cubical block with hole is 0.177
seconds. These timings are obtained by running our orthogo-
nal distance fields computation algorithm on an Intel Xeon CPU
with 2.4 GHz processor, 64 GB RAM, and an NVIDIA Quadro
K2200 GPU.

3 DESIGN FOR MANUFACTURING RULES
DFM guidelines were developed by design and manufactur-

ing researchers to make design process compliant manufactur-
ing [5]. In addition, researchers used these DFM guidelines to
develop manufacturability analysis systems (MAS), which take
into account the rules provided by DFM guidelines to analyze
the manufacturability of a part [26]. Many MAS frameworks
require the parameters of the part as additional user input, to an-
alyze its manufacturability. These MAS frameworks then use
the knowledge base of different DFM rules to provide manufac-
turability feedback. There are very few interactive parametric
3D solid modeling tools that provide manufacturability feedback
to the designer and enable changes to the design for improving
manufacturability [27]. A few studies on machine learning-based
manufacturability feedback have also been performed [9, 10]. In
this paper, we extend the work in [9] to demonstrate the perfor-
mance of ODF representation. DFM rules for drilling have been
developed based on the parameters of cylindrical geometry, as
well as the geometry of the stock. Important geometric parame-

FIGURE 6. A SAMPLE BLOCK WITH A DRILLED HOLE WITH
ITS DIMENSIONS IN THE ORTHOGRAPHIC VIEW.

ters are the diameter of the hole, the depth of hole, and the po-
sition of hole. Additional details of the implementation of DFM
rules can be found in [9]. These rules are used to generate the
ground truth manufacturability data for the training set, which is
then used to learn manufacturable and non-manufacturable fea-
tures by the DFM framework. However, it should be noted that
for a DFM framework, one need not explicitly mention the rules.
Instead, for industrial applications, one can train the DL model
using industry-relevant historical data available in the organiza-
tion, which need not be strictly rule-based. Historical data can
also be based on experience during previous attempts to manu-
facture a part. Based on the DFM rules for drilling mentioned
in [9], we generated 9531 CAD models in total for the training
and validation set. Out of these, 75% of models were used for
training the 3D-CNN, and remaining 25% of the models were
used for validation or fine-tuning the hyper-parameters of the 3D-
CNN. The dataset consists of CAD models of a primitive shape
(cube) with a cylindrical hole of different depths and diameters
present at various locations along one of the 6 faces of the cube
as shown in Figure 6. The holes are perpendicular to the face of
the cube, and both blind and through holes are considered. A de-
tailed description of the training process is provided in Section 4.
The trained DLDFM network is then tested using test-set CAD
models generated separately consisting of 674 geometries.

4 3D-CNNs FOR DFM
Convolutional neural networks (CNNs) [28] are natural can-

didates to learn salient features in a hierarchical manner from
volumetric representations of CAD models. Recently, 3D-
Convolutional Neural Networks (3D-CNN) have been exten-
sively used for several 3D object recognition [29, 30], human
action recognition [31], imaging studies [32, 33, 34] and sev-
eral other problems. Traditionally, the 2D-Convolutional Neu-
ral Networks have been used for object classification and image
segmentation. The key distinction between 3D-CNN and its 2D
counterpart is that the convolutional filters used are 3D.
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FIGURE 7. FEATURE MAP VISUALIZATION WITH RESPECT TO THE SECOND (a, b, v) AND THE THIRD (d, e, f) LAYERS OF THE
3D-CNN TRAINED USING IN-OUTS INFORMATION (TOP ROW) AND ORTHOGONAL DISTANCE FIELDS (BOTTOM ROW).

3D-CNNs consist of three different kinds of layers: convolu-
tional, pooling, and fully-connected layers (Figure 1). Each con-
volutional layer in a 3D-CNN consists of different filters, which
convolve with the input to generate a set of activation maps. The
next convolutional layer takes the output activation map of the
previous layer and performs convolutions with a new set of fil-
ters to get a new activation map. Thus, given an input volumetric
representation, the filters are convolved in a hierarchical manner,
which enables the 3D-CNN to recognize complex features. The
first convolutional layer usually contains primitive information
about the edges, corners etc of the model. The next layer can
combine this primitive information to obtain more complex in-
formation about the features of the model. The pooling layer of
the 3D-CNN performs a sub-sampling operation. Sub-sampling
the volumetric representation can allow the 3D-CNN to focus on
larger features, while ignoring smaller features that might not af-
fect the manufacturability of the part. The fully-connected layer
combines activations of all feature-of-features from the last con-
volutional or pooling layer to generate final decision.

Following Ghadai et al. [9], the manufacturability of a part
is framed as a binary classification problem. The input to the
3D-CNN is a CAD model represented in a volumetric grid of
size 64×64×64. The data in this volumetric grid can either be
the Binary Inside-outside or the Orthogonal Distance Field rep-
resentation. The input volumetric data is first padded with zeros
before convolution is performed. Zero padding is necessary in
this case to ensure that the information about the boundary of the
CAD model is not lost while performing convolution operation.

There are several hyper-parameters of the 3D-CNN to tune
in order to ensure optimal learning. These include: number of
layers, number of filters and filter size in each convolutional
layer, and stride of the pooling layer. Specific approaches used
to optimize the 3D-CNN are similar to those mentioned in [9].

5 RESULTS AND DISCUSSION
The generated B-rep CAD geometries are converted to vol-

umetric representation using voxelization (as explained in [9])
and orthogonal distance field representation as explained in the
Section 2. The grid size of 64× 64× 64 is used for the volu-
metric representation. We train the 3D-CNN network using the
voxelized representation and the orthogonal distance field repre-
sentation of the CAD geometry.

5.1 Tuning of the Hyper-parameters
The hyper-parameters for the 3D-CNN are fine-tuned to

have the least validation loss. The architecture of the 3D-
CNN used is shown in Table 1. A batch size of 60 is selected
while training the network. The training was performed using
Keras [35] in a Python environment. The DLDFM network was
trained in a workstation with a CPU RAM of 128GB, and a
NVIDIA Titan X GPU with 12GB GPU RAM.

5.2 Visualization of the Features
The ability of the 3D-CNN to learn the features and hence,

predict the manufacturability of a part can be understood by vi-
sualizing the feature maps. Figure 7 shows the output obtained
from the second layer and third layer of the 3D-CNN. It can be
seen that the 3D-CNN is able to recognize a few primitive infor-
mation about the geometry; for example, the edges, the face, the
hole in the cube, etc. Further, it can be observed that the next
layer contains geometries of higher complexity.

5.3 Test Results
We first trained the 3D-CNN using the voxelized CAD ge-

ometries (in-outs information only). After successful training,
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TABLE 1. HYPER-PARAMETER SELECTION FOR DIFFERENT 3D-CNNs.

DLDFM Network Network Architecture

DLDFM with in-outs information

8 Convolution filters of size 8

Max. Pooling with subsampling size 2

8 Convolution filters of size 4

Max. Pooling with subsampling size 2

8 Convolution filters of size 2

DLDFM with Orthogonal Distance Fields information

8 Convolution filters of size 8

Max. Pooling with subsampling size 2

8 Convolution filters of size 6

Max. Pooling with subsampling size 2

8 Convolution filters of size 4

8 Convolution filters of size 2

Max. Pooling with subsampling size 2

TABLE 2. QUANTITATIVE PERFORMANCE ASSESSMENT OF THE 3D-CNN ON TEST DATASET.

Test Dataset Model Description True Positive True Negative False Positive False Negative Accuracy

674 models

408 Manufacturable

266 Non-Manufacturable

In-outs 391 90 17 176 0.7136

In-outs + Surface
Normals

334 201 74 65 0.7938

Distance Fields 370 200 38 66 0.8456

the 3D-CNN was tested on the test dataset to understand its per-
formance. The in-outs based 3D-CNN network performs well
with an accuracy of 71% on 674 models of the representative
test set (Table 2). Among the different examples, the scenario
where the hole is close to the boundary seems to be very tricky,
and the in-outs based 3D-CNN failed to predict them correctly.
Note that this is one of the drawbacks of the in-outs representa-
tion of the CAD geometry. The information about the proximity
of the voxels to the boundary is not available.

Hence, to overcome the drawback of in-outs based 3D-CNN,
we had previously proposed [9] the use of surface normals to
identify the boundary and provide better performance. This rep-
resentation improves the performance of the 3D-CNN to an ac-
curacy of 79%. Now, we use the proposed ODF representation
of the geometries to train the 3D-CNN. The ODF representation
increases the performance of the network to 84%, which is a sig-
nificant improvement in results compared to in-outs and in-outs
along with surface normals as proposed previously in [9]. Fur-
ther, we also analyze the scenarios where the hole is close to the
boundary. Using the ODF representation, the number of false-
negative predictions are drastically reduced.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an orthogonal distance
field (ODF) representation in the context of deep-learning-based
DFM framework. The 3D convolutional neural network (3D-
CNN) used for this purpose has the capability to learn features
directly from a volumetric representation of computer-aided de-
sign (CAD) geometries. Traditionally, voxelized models, with-
out any additional shape information, are used. The 3D-CNN
network developed using ODF achieves better accuracy in cor-
rectly classifying manufacturability than using only voxelized
CAD geometry.

Future work could involve using the DFM framework for
generative design and design modeling frameworks, and scal-
ing the ML framework for other manufacturing processes using
scale-variant features. Using the feedback provided by the 3D-
CNN, an interactive decision-support system for DFM can be in-
tegrated with current CAD systems, which can provide real-time
manufacturability analysis while a component is being designed.
Such an AI-assisted manufacturability decision support frame-
work would ultimately reduce design time, leading to significant
cost-savings.
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