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Abstract

We review the discontinuous games literature, with a sharp focus on condi-
tions that ensure the existence of pure and mixed strategy Nash equilibria in
strategic form games and of Bayes-Nash equilibria in Bayesian games.
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1. INTRODUCTION

The purpose of this article is to provide a review of some of the main results in the literature on
the existence of Nash equilibria in discontinuous games. Our objective is to give practitioners and
nonexperts in the field a useful compilation of results that can be consulted for use in their work,
and to give some sense of why the results are true. A few results here are new. These new results
either unify different assumptions into a single, more permissive assumption or illuminate how
known assumptions can be adapted to provide new existence results in familiar contexts.1 We do
not provide here a comprehensive survey of the literature, nor do we always give the most general
versions of results that are available. One example of an important topic that could not be covered
here is the work by Simon & Zame (1990) and of Jackson et al. (2002) on sharing-rule equilibria.
Section 6 contains some brief remarks on this topic and also includes suggested readings for other
topics not covered here.2

Discontinuous games are commonplace in economics.A Bertrand price competitor experiences
a discontinuous reduction in profits when their price rises above the lowest price among their
competitors. With fixed costs of production, a Cournot oligopolist’s losses are close to their fixed
costs when production is close to zero but discontinuously jump to zero when production is exactly
zero. A bidder in an auction experiences a discontinuous jump in their utility when their bid on
some unit increases to the point where it is no longer a losing bid. A politician’s utility jumps when
their policy position shifts just enough to bring their total vote count from just below a winning
threshold to just above it. In all of these cases, the discontinuities in payoffs preclude the use of
Nash’s (1950) theorem or even of Glicksberg’s (1952) theorem to guarantee the existence of a
pure or mixed strategy Nash equilibrium. Nevertheless, by making use of theorems developed
over the last 35 years, the existence of a Nash equilibrium can be guaranteed under quite general
conditions.

The basic method of proof underlying the existence theorems in this literature (whether for
pure or for mixed strategy Nash equilibria) is simple. Suppose that N is a finite set of players and
that for each i ∈N,Xi is player i’s strategy space. Let X := ×i ∈ NXi be the space of strategy profiles.
Call b :X�X a better-reply correspondence iff, for every x ∈X, we have ∅ �= b(x) = (bi (x−i))i ∈ N ⊆
X and there is a player i for whom every zi ∈ bi (x−i) ∈ Xi is a strictly better reply than xi against
x−i = (xj)j �= i. The proofs of virtually all of the existence theorems in the recent discontinuous
games literature proceed as follows. They begin by assuming, by way of contradiction, that the
game does not possess a Nash equilibrium. Consequently, for every x ∈ X, some player i has a
strictly better reply than xi against x−i. From all of these better replies, a better-reply correspon-
dence, b, is constructed. Finally, it is shown that the constructed better-reply correspondence has
a fixed point x∗ ∈ b(x∗). The existence of such a fixed point provides the desired contradiction
because, by the definition of a better-reply correspondence, there is a player i for whom every
zi ∈ bi(x∗

−i ) is a strictly better reply than x∗
i against x

∗
−i. However, by the fixed point property we

have x∗
i ∈ bi(x∗

−i ), and so x∗
i is a strictly better reply than itself against x∗

−i! Thus, the assumption
that the game has no Nash equilibrium leads to a contradiction, and so we can conclude that the
game has a Nash equilibrium after all.

As simple as this method of proof may seem, producing a good and useful existence result can
be tricky. Ideally, the hypotheses that are given should be easy to verify and widely applicable.
Ultimately however, there is a trade-off between these two desiderata, and so we will give here a
variety of results that lie along the easy-to-verify/widely applicable frontier.

1Examples of the former are Theorems 3( j, k), 6, 7, and 12.Examples of the latter are Theorems 13, 14, and 15.
2Carmona (2013) provides an excellent treatment of the overall theory of discontinuous games.
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The remainder of this review is organized as follows. Section 2 lays out the basic notation that
is used throughout the article. Section 3 covers results on the existence of pure strategy equilib-
ria when payoff functions are own-strategy quasiconcave, including results for quasi-symmetric
games. Theorem 3 puts all of the various existence results together in one place for easy reference,
andFigure 1 in that section indicates how those results are related to one another. Section 4 covers
games in which payoffs need not be own-strategy quasiconcave. Because mixed strategy equilibria
can be thought of as pure strategy equilibria of a game’s mixed extension, all of the results on pure
strategy equilibria can be applied to a game’s mixed extension to yield results on the existence of a
mixed strategy Nash equilibrium. This is pointed out in Section 5. However, the multilinearity of
the players’ payoffs in all of their mixed strategies yields additional structure that permits powerful
mixed strategy equilibrium existence results that go beyond the application of the pure strategy
results. The main contribution of Section 5 is to present some of these mixed strategy results,
including several that apply specifically to Bayesian games. Section 6 provides a few remarks on
some related literature that is not covered here.

2. PRELIMINARIES

There is a nonempty finite set of players, N = {1, 2, . . . , |N|}, with typical element i. Each player
i ∈ N has a nonempty set of (pure) strategies Xi that is a subset of a Hausdorff linear topological
space. Each Xi is endowed with its relative topology, and the product of any number of topological
spaces is endowed with the product topology.3 The set of strategy profiles is X := ×i ∈ NXi. Each
player i has a payoff function ui : X → R. Altogether, these items define a strategic form game
G := (Xi, ui)i ∈ N. The symbol −i indicates all players but i. In particular, we have X−i := ×j �= iXj,
and x−i denotes a typical element ofX−i.Unless stated otherwise, the gameG refers to the strategic
form game (Xi, ui)i ∈ N.

Say that G is (a) compact iff each Xi is compact, (b) convex iff each Xi is convex and locally
convex, (c) bounded iff each ui : X → R is bounded, and (d) quasiconcave iff each ui (xi, x−i) is
quasiconcave in xi ∈ Xi for each x−i ∈ X−i. Define u : X → R

|N |, the vector payoff function of
the game G by u(x) := (ui (x))i ∈ N for every x ∈ X. The graph of the vector payoff function u is
Gru := {(x,α) ∈ X × R

|N | : u(x) = α}. The closure of Gru is denoted by Gru. A neighborhood of
any point in any topological space is any open set that contains that point.

Let A be any subset of X, and let b : A � X be any correspondence mapping A into subsets
(including the empty set) of X. The graph of b is Grb := {(x, y) ∈ A × X : y ∈ b(x)}, and we say that
b : A� X is closed iff its graph is closed in A× X, i.e., iff for every closed C ⊆ A, (Grb) � (C× X )
is a closed subset of X × X. For any subset A of any convex set, coA denotes the convex hull of A.

3. PURE STRATEGY EQUILIBRIA IN QUASICONCAVE GAMES

A strategy profile x∗ ∈ X is a pure strategy Nash equilibrium of G iff ui(xi, x∗
−i ) ≤ ui(x∗ ) for every

player i ∈ N and every xi ∈ Xi.
In an important early paper, Sion (1958) showed that, for two-person zero-sum compact

and convex games, if player 1’s payoff function is quasiconcave and upper semicontinuous
in the player’s own strategy (for any fixed strategy of player 2) and quasiconvex and lower

3Therefore, a subset U of Xi is open iff U = Xi � V for some open subset V of the linear topological space
that contains Xi. For example, if the set of real numbers is given its usual topology and Xi = [0, 1] is given its
relative topology, then [0, 1/2) is an open subset of Xi, since it is the intersection of Xi with the open set of all
real numbers less than 1/2.
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semicontinuous in player 2’s strategy (for any fixed strategy of player 1), then the game has a
pure strategy Nash equilibrium.4

Sion (1958) gives a simple example that shows that these semicontinuity conditions are needed.
The example is a two-person zero-sum game on the unit square in which player 1 gets a payoff of
1 if either they choose x1 = 0 and player 2 chooses x2 ≤ 1/2, or they choose x1 = 1 and player 2
chooses x2 > 1/2. Otherwise, player 1 gets a payoff of 0. This game is compact, convex, bounded,
and quasiconcave, but it has no pure strategy Nash equilibrium.

There is no equilibrium because, for any strategy of player 2, player 1 can get a payoff of 1,
and for any strategy of player 1, player 2 can get a payoff of 0 (so we have that minmax u1 =
1 > 0 = maxmin u1). The only assumption that is violated is that player 1’s payoff is not lower
semicontinuous in player 2’s strategy. Even then, this failure of lower semicontinuity occurs at
just one point, namely at the point (x1, x2) = (0, 1/2) where player 1 gets a payoff of 1. Lower
semicontinuity fails at this point because when x1 = 0 and when player 2’s strategy converges to
1/2 from above, player 1’s payoff jumps up from 0 to 1 at the limit x2 = 1/2.

In their seminal work on the existence of pure and mixed strategy Nash equilibria in discon-
tinuous games, Dasgupta & Maskin (1986a) provide a pure strategy equilibrium existence result
for multi-person games that, like Sion’s result, makes use of various semicontinuity properties.

For any player i ∈ N, define i’s value function vi : X−i → R by vi(x−i ) := supxi∈Xi ui(xi, x−i ) for
every x−i ∈ X−i. We have the following result [see Tian & Zhou (1992, 1995) for related results
for abstract games/economies].

Theorem 1 (Dasgupta & Maskin 1986a). Suppose that G is compact, convex, and qua-
siconcave, where each Xi is a subset of Euclidean space with its usual topology. If each ui
is upper semicontinuous on X, and if each vi is lower semicontinuous on X−i, then G has a
pure strategy Nash equilibrium.

To proveTheorem 1,Dasgupta&Maskin (1986a) argue that, under the stated hypotheses, each
player has a best-reply correspondence that is closed and that has nonempty and convex values.
Hence, Kakutani’s (1949) theorem can be applied.

Remark 1. If ui is upper semicontinuous, then i’s best-reply correspondence b̂i is
nonempty-valued and, by quasiconcavity, convex-valued. Because the upper semicontinuity
of ui implies that of vi, the hypotheses of Theorem 1 actually imply that vi is continu-
ous. Consequently, if x is not a Nash equilibrium, then there is a player i, an ε > 0, and
a neighborhood U of x such that vi(x′

−i ) > ui(x) + ε ≥ ui(y) holds for all x′, y ∈ U, where
the weak inequality follows because ui is upper semicontinuous, in particular, at x. Hence,
ui(zi, x′

−i ) = vi(x′
−i ) > ui(x) + ε ≥ ui(y) holds for all x′, y, and zi with x′, y ∈U and zi ∈ b̂i(x′

−i ).
This last fact will be helpful when comparing Theorem 1 with some of the results below.

Returning to Sion’s (1958) result, notice that by virtue of the zero-sum property, we can state
the quasiconcave-convex and upper-lower-semicontinuity hypotheses of Sion’s theorem another
way.We could instead just say that the game is convex and quasiconcave, and that for each player,
if we fix any of their strategies, then their payoff function is lower semicontinuous in the other
player’s strategy. As we shall see, lower semicontinuity of payoffs in the others’ strategies, and
conditions with a similar flavor, play an important role in the theory of discontinuous games.

In their work on the existence of mixed strategy Nash equilibria, Dasgupta & Maskin (1986a)
introduce the condition that the sum of the players’ payoff functions is upper semicontinuous, a

4Kneser (1952), Fan (1953), and Berge (1954) previously made the same semicontinuity assumptions but re-
quired player 1’s payoff to be concave(-like) in his own strategy and convex(-like) in player 2’s strategy.
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condition that has proven to be extremely useful in economic contexts. By combining Dasgupta &
Maskin’s (1986a) upper-semicontinuous-sum condition with the individual-payoff semicontinuity
conditions of Sion (1958), we can extend Sion’s result from two-person zero-sum games to multi-
person games.

Theorem 2 (Reny 1999). Suppose thatG is compact, convex, bounded, and quasiconcave,
and that the sum of the players’ payoff functions

∑
i ∈ N ui (x) is upper semicontinuous in x ∈

X. If for each player i and for any xi ∈ Xi we obtain that ui (xi, x−i) is lower semicontinuous
in x−i ∈ X−i, then G has a pure strategy Nash equilibrium.

While the hypotheses of Theorems 1 and 2 are certainly easy to state and to understand, these
theorems tend not to be very useful in economic environments. While payoff sums are often up-
per semicontinuous in economic games (because discontinuities tend to result when one player
captures resources from another player, so that one player’s payoff jumps up and the other’s jumps
down, in many games by the same amount), individual payoffs are not generally upper semicon-
tinuous on X and are not generally lower semicontinuous in others’ strategies.

For example, in a Bertrand pricing game, if a competitor’s price converges from below to a
firm’s price that is above their common marginal cost, then the firm’s profits will jump up. Hence,
the firm’s payoff is not lower semicontinuous in the competitor’s price.5 On the other hand, if the
competitor’s price converges instead from above the firm’s price, then the firm’s profits will jump
down, and payoffs are not upper semicontinuous either. So, in a Bertrand duopoly game, neither
of the two theorems above applies. Since many economic games feature discontinuities like these
that arise in Bertrand duopoly, we need to develop more useful conditions than those stated in
Theorems 1 and 2.

Simon (1987) observed that Dasgupta & Maskin’s (1986a) upper semicontinuous payoff-sum
hypothesis is needed only to ensure that whenever some player’s payoff jumps down, some other
player’s payoff jumps up. Therefore, in an economic context, if discontinuities arise only when
resources (e.g., customers or voters) suddenly shift from one player to another, it is only necessary
that if the player who loses resources experiences a payoff loss, then the player who gains resources
experiences a payoff gain. There is no need for the gain to weakly exceed the loss, as is needed for
the payoff sum to be upper semicontinuous.

Simon called this property “complementary discontinuities.” Simon’s important idea is now
called “reciprocal upper semicontinuity,” because, when specialized to a single-player game, it
reduces to the assumption that the player’s payoff function is upper semicontinuous. Thus, it is
a generalization of upper semicontinuity to vector-valued functions. The formal definition is as
follows.

Following Simon (1987), say that the vector payoff function u : X → R
|N | is reciprocally upper

semicontinuous iff for any (x,α) ∈ X × R
|N | that is in the closure of the graph of u, if ui (x) > αi

for some i ∈ N, then there exists j ∈ N such that uj(x) < αj.
If X were a metric space, then this definition would be equivalent to saying that for any x ∈ X

and for any sequence xn in X that converges to x, if u(xn) converges to some point in R
|N | and limn

ui (xn) > ui (x) for some player i, then there is a player j such that limn uj(xn) < uj(x) (i.e., if some
i’s payoff jumps down, then some j’s payoff jumps up).

Clearly, if
∑

iui is upper semicontinuous, then the vector payoff function u is reciprocally upper
semicontinuous. But the reciprocal upper semicontinuity of u does not imply that

∑
iui is upper

5Notice, however, that the payoff sum does not jump because the competitor’s revenues will jump down by
precisely the amount that the firm’s revenues jump up, since any customers who switch from the competitor
to the firm do so at the common limit price.
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semicontinuous (and so reciprocally upper semicontinuity is a strictly more permissive condi-
tion). For example, consider the two-player game on the unit square in which both players get
payoffs of 0 unless they both choose 1, in which case player 1 gets u1(1, 1) = −2 and player 2 gets
u2(1, 1) = 1.

In addition to introducing the idea of reciprocal upper semicontinuity, Simon (1987), like Sion
(1958) and others, recognized the importance of discontinuities in a player’s payoff that result from
changes in the others’ strategies. Relatedly, while studying variational inequalities and binary re-
lations, Tian (1992a) introduced a generalized concept of lower semicontinuity (called γ -transfer
lower semicontinuity) of a function in one of its two variables. These important semicontinuity
ideas are all closely related to the notion of a payoff-secure game.

Following Reny (1999), say that player i can secure the payoff αi ∈ R at x ∈ X iff for every
ε > 0, there is x̂i ∈ Xi such that ui(x̂i, x′

−i ) ≥ αi for all x′
−i in some neighborhood of x−i. Therefore,

for any strategy profile and for any payoff number, a player can secure that payoff number at that
profile if they have a strategy that gives them at least that payoff even if the other players deviate
slightly from their strategies.

Following Reny (1999), say that the game G is payoff secure iff for every x ∈ X and for every
ε > 0, each player i can secure the payoff ui (x) − ε at x.6 Notice that if ui (xi, x−i) is lower semi-
continuous in x−i ∈ X−i for each xi ∈ Xi, then, for any ε > 0, player i can secure the payoff ui (x) −
ε at x simply because, for x̂i = xi, lower semicontinuity in x−i implies that ui(x̂i, x′

−i ) ≥ ui(x) − ε

for all x′
−i in some neighborhood of x−i. Hence, requiring G to be payoff secure is a relaxation of

the requirement that each player’s payoff function should be lower semicontinuous in the others’
strategies.

As we have already seen, a Bertrand duopolist’s profits are not lower semicontinuous in the
price chosen by the other firm. However, for any price pair (p1, p2) and for any ε > 0, firm
i can secure the payoff ui(p1, p2) − ε either by pricing at marginal cost if ui(p1, p2) ≤ 0, or, if
ui(p1, p2) > 0, by reducing its price slightly. Indeed, if ui(p1, p2) > 0, then there is δ > 0 small
enough [this δ will depend on the price-pair (p1, p2) and ε] that ui(pi − δ, p′j ) > ui(pi, p j ) − ε for
all p′j > pi − δ. So the Bertrand duopoly game is payoff secure.

Payoff security and reciprocal upper semicontinuity are relatively easy conditions to check in
practice, and in compact, convex, and quasiconcave games, they suffice for the existence of a pure
strategy Nash equilibrium [see Theorem 3(c) below].7

While many discontinuous games are payoff secure and reciprocally upper semicontinuous,
there are important exceptions. Consider, for example, a first-price single-unit auction between
two risk-neutral bidders with private values that are drawn independently and uniformly from
[1, 3]. Each bidder can submit any number in [0, 4] as a sealed bid. The higher bid wins, with ties
broken by tossing a fair coin. This game is compact, convex, bounded, and quasiconcave when we
define the pure strategy sets Xi to be the sets of (mixed) behavioral strategies that map a bidder’s
value into a probability distribution over bids.8 However, this very standard auction game is not
reciprocally upper semicontinuous, as the following example shows.

For any positive integer n, consider the pure strategy profile in which each bidder bids 1 − 1/n
when their value is in [1, 2] and bids 1 when their value is in (2,3]. Under this strategy profile, each

6Prokopovych (2011) observed that Reny’s (1999) concept of a payoff-secure game can be equivalently stated
by saying that each player’s payoff function is γ -transfer lower semicontinuous in the others’ strategies for
every γ ∈ R.
7This result remains true with a weaker concept of reciprocal upper semicontinuity (see Bagh & Jofre 2006).
8We can use the weak∗ on the space of distributional strategies (as done by Milgrom &Weber 1985).We will
have more to say about Bayesian games in Section 5.1.
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bidder’s ex-ante expected payoff is given by

1
2

[
1
2

(
1
2

(
3
2

−
(
1 − 1

n

)))
+ 1

2
0
]

+ 1
2

[
1
2

(
5
2

− 1
)

+ 1
2

(
1
2

(
5
2

− 1
))]

.

To see why this formula is correct, note that the first term in the sum arises because a bidder’s
value is in [1, 2] with probability 1/2; in this case, they bid 1 − 1/n and so they can win only when
the other bidder’s value is also in [1, 2], which occurs with probability 1/2. But even then, the bids
will be the same, and so the first bidder wins with probability 1/2, and in this event their expected
surplus is 3/2 − (1 − 1/n). The second term in the sum arises because a bidder’s value is in (2, 3]
with probability 1/2, and in this case they bid 1. So they win the auction and receive an expected
surplus of 5/2 − 1 with probability 1 when the other bidder’s value is in [1, 2], which occurs with
probability 1/2; they win and receive that same expected surplus, but now only with probability
1/2, when the other bidder ties their bid of 1 because the other bidder’s value is in (2,3], which
occurs with probability 1/2. So, for each n, each bidder’s expected payoff under this strategy profile
is given by

5
8

+ 1
8n

.

The limit strategy profile (after sending n → ∞) has both bidders bidding 1 no matter what
their value is. At this limit strategy profile, each bidder’s expected payoff is again the sum of two
terms and is

1
2

(
1
2

(
3
2

− 1
))

+ 1
2

(
1
2

(
5
2

− 1
))

= 1
2

<
5
8

= lim
n

(
5
8

+ 1
8n

)
.

Consequently, both bidders’ payoffs jump down at the limit, and so reciprocal upper semiconti-
nuity fails.

Therefore, in order to encompass important games like first-price auctions in the independent
private-values framework, we need to generalize our conditions further.We will do so in the next
three sections.We will then put all of these conditions together in a single existence theorem that
covers a large set of results in the literature. All of the conditions that we will consider amount
to placing restrictions on a player’s set of better replies, i.e., strategies that increase the player’s
payoff starting from some initial strategy profile.We begin by presenting a number of conditions
that build on the payoff-security idea.

3.1. Payoff-Securing Better Replies

The basic idea behind the following concepts of payoff-securing better replies is that whenever
some strategy profile is not a Nash equilibrium, there should be some player who not only has
a better reply than their current strategy against the strategies of the others, but also has a bet-
ter reply that improves upon their original payoff even if the others deviate slightly from their
strategies.

That said, the various security conditions below differ in how many strategies the players are
permitted to use in order to secure their better replies as the non-Nash-equilibrium strategy pro-
file in question varies in any small open set. Better-reply security (Reny 1999) allows the players
only a single strategy,multiple security (McLennan et al. 2011) allows finitely many strategies, and
continuous security (Barelli & Meneghel 2013) allows the players any number of strategies.
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3.1.1. Better-reply security. Following Reny (1999), say that the gameG is better-reply secure
iff for any (x,α) ∈ Gru, if x is not a Nash equilibrium, then some player i can secure a payoff at x
that is strictly greater than αi.

To get a sense of what this condition is saying, suppose that x is any strategy profile that is not
a Nash equilibrium. For simplicity, suppose that X is a metric space, and let xn be any sequence of
strategy profiles converging to x such that u(xn) converges to, for example, α ∈ R

|N |. Notice that
α need not be equal to u(x) because u need not be continuous.

Better-reply security requires that there is ε > 0 such that some player i has a strategy x̂i that
secures the payoff αi + ε. Combined with ui (xn) → αi, we can conclude that there is n0 large
enough so that for every n ≥ n0, we obtain

ui(x̂i, x′
−i ) ≥ αi + ε > ui(xn ) for every x′

−i in some neighborhoodU−i of x−i. 1.

In particular, since for n large enough xn−i is in U−i, we must have ui(x̂i, xn−i ) > ui(xn )—and so xn is
not a Nash equilibrium—for all n that are sufficiently large.9 Since the sequence xn was arbitrary,
we see that better-reply security implies that for any strategy profile that is not aNash equilibrium,
there is a neighborhood of profiles that are also not Nash equilibria. Furthermore, for each profile
in the neighborhood, some player can profitably deviate and can even secure a payoff that is above
their payoff before deviating.

Notice that for different vectors α ∈ R
|N | satisfying (x,α) ∈ Gru, there can be a different player

i who secures a payoff above αi. This flexibility is useful because in many economic games, it will
not always be the case that any one player has a single strategy that is a better reply to every strategy
profile in a neighborhood of a nonequilibrium strategy. For example, in a Bertrand duopoly game
with zero costs, if both firms price at 1 and earn positive profits, then we can specify for each
firm a small price reduction of ε > 0. For any price vector sufficiently nearby the original price
vector (1, 1), at least one firm’s deviation to the price 1 − ε will be profitable. However, the other
firm’s deviation to 1 − ε need not be profitable. For example, consider any price vector (1 − δ, 1)
where δ ∈ (0, ε/2). Against any such price vector, deviating to the price 1 − ε is profitable only for
firm 2.

Returning to the first-price auction example from the previous section, let us note that despite
the fact that both bidders’ payoffs jump down at the limit strategy in which they both always bid
1, if player 1 were to always bid 9/8 no matter what their value is, then for any strategy of player 2
that is close enough to that player’s limit strategy of always bidding 1 (i.e., the ex-ante probability
that bidder 2 bids less than 9/8 is at least 6/7), bidder 1’s payoff from always bidding 9/8 will
give player 1 an expected surplus of at least 6/7(2 − 9/8) = 3/4, which is strictly greater than the
player’s limit payoff of 5/8 under the sequence of strategy profiles that was used in that example.
So Equation 1 holds for that particular sequence of strategy profiles, even though reciprocal upper
semicontinuity fails for that sequence. This is no coincidence. Reny (1999) shows that a large class
of first-price auction games are better-reply secure, which allows for a general theorem on the
existence of mixed strategy equilibria in first-price auctions.

3.1.2. Multiply secure games. A significant advance in the theory was made by McLennan
et al. (2011). They realized that Reny’s (1999) better-reply security condition could be made sig-
nificantlymore permissive by allowing players to usemore than one strategy to secure the requisite
payoff. They give the following definitions.

For any αi ∈ R and for any x ∈X, say that player i can multiply secure the payoff αi at x iff there
are finitely many strategies x1i , . . . , x

K
i ∈ Xi and there are finitely many closed subsets F1

−i, . . . ,F
K
−i

9This last inequality defines the concept of point security (see Reny 2016b).
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of X−i whose union contains a neighborhood of x−i such that, for every k ∈ {1, . . . , K}, we obtain

ui(xki , x
′
−i ) ≥ αi for every x′

−i ∈ Fk
−i.

Notice that if player i can secure the payoff αi at x, then it is possible to multiply secure that
payoff by taking k = 1 in the above definition. Hence, the requirement that player i can secure a
payoff at x is more restrictive than the requirement that player i can multiply secure that payoff
at x.

Say that the game G is multiply secure iff, for any x ∈ X that is not a Nash equilibrium, there
is a vector α ∈ R

|N | such that each player i can multiply secure αi at x, and, for every y in some
neighborhood of x, there is a player i such that αi > ui(y).10 Notice that the condition that for
every y in some neighborhood of x there is a player i such that αi > ui(y), when combined with
ui(xki , x

′
−i ) ≥ αi for every x′

−i ∈ Fk
−i, implies that ui(xki , x

′
−i ) ≥ αi > ui(y) for every x′

−i ∈ Fk
−i. But this

last string of inequalities is implied by Equation 1. Hence, if G is better-reply secure, then G is
multiply secure.

3.1.3. Continuously secure games. The next significant advance was made by Barelli &
Meneghel (2013). They took the insight of McLennan et al. (2011) to its logical limit and al-
lowed players to use infinitely many strategies to secure their payoffs. They give the following
definitions.

For any αi ∈ R and for any x ∈ X, say that player i can continuously secure the payoff αi at x
iff there is a nonempty-valued, convex-valued,11 closed correspondence bi : U−i � Xi defined on
a neighborhood U−i of x−i such that we have

ui(zi, x′
−i ) ≥ αi for every x′

−i ∈U−i and for every zi ∈ bi(x′
−i ). 2.

Notice that if player i can secure the payoff αi at x, it is possible to continuously secure that
payoff by defining bi(x′

−i ) to be a singleton on a neighborhood of x−i. And if player i can mul-
tiply secure αi at x with the finitely many strategies x1i , . . . , x

K
i and the finitely many closed sets

F1
i , . . . ,F

K
i , then for any x′

−i in the neighborhood of x−i that is covered by the union of the Fk
i

sets, one can define bi(x′
−i ) to be the convex hull of the xki for those k such that x′

−i ∈ Fk
i . Then

the multiply secure condition and the fact that ui is quasiconcave in i’s strategy ensure that the
continuous security condition is satisfied. So continuous security is more permissive than both
multiple security and payoff security.

Say that the game G is continuously secure iff for any x ∈ X that is not a Nash equilibrium,
there is a vector α ∈ R

|N | such that each player i can continuously secure αi at x, and, for every y
in some neighborhood of x, there is a player i such that αi > ui(y).12 Notice that if each ui is upper
semicontinuous and each player’s value function vi is continuous, as is assumed in Theorem 1,
then by Remark 1, the game G is continuously secure.

10The definition given here specializes the definition by McLennan et al. (2011) in two ways: by restricting
attention to quasiconcave games and by focusing on what the authors call the universal restriction operator
(see Section 4 below for nonquasiconcave games).
11Barelli &Meneghel (2013) do not assume convex values. However, their proof does not go through without
some additional hypotheses.The difficulty arises when they state that the correspondence� is compact-valued
(Barelli & Meneghel 2013, p. 823). This statement is not generally true, but it is true with the additional
convex-values assumption made here.
12We have given here the definition that applies to quasiconcave games. Barelli &Meneghel’s (2013) definition
applies also to nonquasiconcave games and is presented in Section 4 below.
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One might wonder whether the security aspect of the better replies that is required in these
conditions is necessary. The answer is yes, at least to some extent. For example, to ensure the
existence of a pure strategy Nash equilibrium, it is not sufficient for a compact, convex, bounded,
and quasiconcave game to satisfy the following single better-reply property: For every x ∈X that is
not a Nash equilibrium there is a strategy profile x̂ ∈ X such that for every x′ in a neighborhood of
x, there is a player i such that ui(x̂i, x′

−i ) > ui(x′ ). Reny (2009, 2016b) and Prokopovych (2013) offer
a counterexample; Prokopovych (2013) also offers a proof that this single better-reply property
does suffice when there are just two players and X1 = X2 = [0, 1]; Kukushkin (2018) extends such
results to games with strategic complements and potential games.13 We will explore in Section 5
a related property (the finite better-reply property) in the context of mixed strategy equilibria,
where we will find that it can be very fruitful.

Next, we describe two conditions that do not incorporate the idea of payoff security. Rather,
these conditions require that for any strategy profile x that is not a Nash equilibrium, there is
a single player who can profitably deviate from every strategy profile in some neighborhood of
x. The two conditions differ in whether the deviating player must use only one strategy or can
use many strategies to profitably deviate throughout the neighborhood. The first of these con-
ditions was introduced by Nessah & Tian (2008) and is connected with the diagonal transfer
continuity condition introduced by Baye et al. (1993) in a paper that will play a significant role in
Sections 3.5 and 5 below (see Remark 9). The second of these conditions is due to Prokopovych
(2016).

3.1.4. Secure better replies. As the reader can readily verify, the conditions defined so far in
this section are not ordinal. That is, they might hold in one game, but they fail to hold after apply-
ing increasing transformations to the players’ utility functions.This is not ideal. After all, the set of
pure strategy equilibria depends only on the ordinal properties of utility, so properties guarantee-
ing the existence of an equilibrium should depend only on ordinal properties as well. Furthermore,
when the binary relations defining the players’ preferences over X are not continuous, which is
of course the whole domain of study here, there is no guarantee that a utility representation even
exists. With this in mind, Reny (2016b) introduced the following ordinal generalization of the
better-reply security condition.

Say that any x̂ ∈ X is a secure better-reply profile at x ∈X iff, for every y in some neighborhood
U of x, there is a player i ∈ N such that

ui(x̂i, x′
−i ) > ui(y) for every x′ ∈U .

The game G has the secure better-reply property iff, for any x ∈ X that is not a Nash equilib-
rium, there is a secure better-reply profile at x.14

It is easy to see that this secure better-reply property is ordinal. Less obvious, but nonetheless
true, is that it strictly generalizes Reny’s (1999) better-reply security condition (see the discussion
above leading up to Equation 1; for even more general conditions along these lines, see Reny
2016b). We now move on to provide two more ordinal conditions, local better replies and robust
better replies, the latter of which unifies all of the conditions introduced in this section on pure
strategy equilibria.

13For related concepts and results, the reader is referred to Nessah & Tian (2016) and Scalzo (2019a, 2020).
14This is equivalent to Reny’s (2016b, definition 3.1) notion of point secure game.
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3.2. Local Better Replies

We next define the concept of a local better reply. This idea is due to Nessah & Tian (2008), who
instead use Tian’s (1992a) terminology of transfer continuity. The local better-reply terminology
used here emphasizes the connection to the unifying concept of better replies.

For any player i ∈ N, and for any x̂i ∈ Xi, say that x̂i is a local better reply for i at x ∈ X iff

ui(x̂i, x′
−i ) > ui(x′ ) for every x′ in a neighborhood of x.

The gameG has the local better-reply property iff, for any x ∈X that is not a Nash equilibrium,
some player has a local better reply at x.

We have already seen that Bertrand duopoly games do not have the local better-reply property
because both firms may be needed to upset every strategy profile in an open set of non-Nash
equilibria when the players are each constrained to use only one strategy for their deviation. Like
Barelli & Meneghel’s (2013) generalization of McLennan et al. (2011) and of Reny (1999), we
can relax this local better-reply condition by allowing more flexibility in how the better reply is
chosen. The next definition (but with different terminology) is due to Prokopovych (2016).15

For any player i∈N, say that a correspondence bi :U�Xi is a local better-reply correspondence
for i at x ∈ X iff U is a neighborhood of x such that

ui(zi, x′
−i ) > ui(x′ ) for every x′ ∈U and for every zi ∈ bi(x′ ).

Notice that this definition reduces to a local better reply when bi is a constant singleton.
The game G has the local better-reply-correspondence property iff, for any x ∈ X that is not

a Nash equilibrium, some player has a local better-reply correspondence at x, and this correspon-
dence is nonempty-valued, convex-valued, and closed.

Notice that if each ui is upper semicontinuous and each player’s value function vi is contin-
uous, as is assumed in Theorem 1, then by Remark 1, the game G has the local better-reply-
correspondence property.

3.3. Robust Better Replies

The conditions in this section are new and are an attempt to unify the payoff-securing better-reply
conditions in Section 3.1 with the local better-reply conditions in Section 3.2.

Say that any x̂ ∈ X is a robust better reply at x ∈ X iff, for every y in some neighborhood U of
x, there is a player i ∈ N such that

ui(x̂i, x′
−i ) > min(ui(x′ ), ui(y)) for every x′ ∈U . 3.

The game G has the robust better-reply property iff, for any x ∈ X that is not a Nash equilib-
rium, there is a robust better reply at x.

Notice that if x̂i ∈ Xi is a local better reply for some player i at x, then we have ui(x̂i, x′
−i ) > ui(x′ )

for every x′ ∈ U, and so Equation 3 will be satisfied. Also, if x̂ ∈ X is a secure better-reply profile
at x, then for every y ∈ U, there is a player i such that ui(x̂i, x′

−i ) > ui(y) for every x′ ∈ U, and so
again Equation 3 will be satisfied. Consequently, if G has either the local better-reply property or
the secure better-reply property, then G has the robust better-reply property.

15Nessah (2011) provides a very similar condition that is just slightly more restrictive.
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We have already seen that Bertrand duopoly games do not have the local better-reply property
because both firms may be needed to upset every strategy profile in an open set of non-Nash equi-
libria when the players are each constrained to use only one strategy for their deviation. However,
since zero-cost Bertrand games are better-reply secure, and hence have the secure better-reply
property, they necessarily have the robust better-reply property.

We can relax the robust better-reply property in the now familiar way by allowing more flexi-
bility in how the better reply is chosen.

Say that a correspondence b : U � X, where b(w) = ×i ∈ Nbi(w) ⊆ × i ∈ N Xi for every w ∈ U,
is a robust better-reply correspondence at x ∈ X iff U ⊆ X is a neighborhood of x, and for every
y ∈ U there is a player i such that

ui(zi, x′
−i ) > min(ui(x′ ), ui(y)) for every x′ ∈U and for every zi ∈ bi(x′ ). 4.

Notice that this definition reduces to a robust better reply when b is a constant singleton on U.
The game G has the robust better-reply-correspondence property iff, for any x ∈ X that is not

a Nash equilibrium, there is a robust better-reply correspondence at x, and this correspondence
is nonempty-valued, convex-valued, and closed.

Notice that if G is continuously secure, then for any x that is not a Nash equilibrium, there is
a vector α ∈ R

|N | and there is a single neighborhood U of x such that Equation 2 holds and such
that for every y ∈ U there is a player i such that αi > ui(y).16 Then, combining αi > ui(y) with
Equation 2 implies that ui(zi, x′

−i ) ≥ αi > ui(y) for every x′ ∈ U and for every zi ∈ bi(x′
−i ), which

is strictly more restrictive than Equation 4. Consequently, if G is continuously secure, then G has
the robust better-reply property.

Remark 2. If, for x ∈ X, we let vi(x−i ) := supzi∈Xi ui(zi, x−i ) denote i’s value function, then
observe that the inequality in Equation 4 implies that

vi(x′
−i ) > min(ui(x′ ), ui(y)). 5.

Consequently, an even more permissive condition on G would be to ask merely that when-
ever x is not a Nash equilibrium, there should be a neighborhoodU of x such that for every
y ∈U there is a player i such that Equation 5 holds for every x′ ∈U. However, this condition
is not strong enough to give an existence result, because it is satisfied in the game without
an equilibrium described by Sion (1958) that was discussed at the beginning of Section 3.

3.4. A Collection of Sufficient Conditions

To prepare for the theorem below, say that G is upper semicontinuous iff each ui is upper semi-
continuous on X, and G is opponent lower semicontinuous iff for each player i and for each xi ∈
Xi, ui (xi, ·) is lower semicontinuous on X−i.

We can now collect all of the various conditions that we have considered and put them into a
single existence theorem.Because results ( j) and (k) below are new, a proof is provided in Section 7.
It should be noted that condition (k) is the most permissive of all of the sufficient conditions given
here (see Remark 3 and Figure 1).

Theorem 3. Suppose thatG is a compact, convex, bounded, and quasiconcave game; then,
G has a pure strategy Nash equilibrium if any one of the following conditions holds.

16For example, for each player j, let U j be the neighborhood of x on which j can secure α j, and let V be the
neighborhood of x such that for any y in V there is a player i such that ui(y) < αi. Then we may take U = V �
(�j ∈ N U j).
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Figure 1

The arrows in the figure indicate the logical relationships among conditions (a)–(k) in Theorem 3.

(a) G is upper semicontinuous and each player’s value function is continuous (Dasgupta
& Maskin 1986a).

(b) G is opponent lower semicontinuous and reciprocally upper semicontinuous
(Reny 1999).

(c) G is payoff secure and reciprocally upper semicontinuous (Reny 1999).
(d) G is better-reply secure (Reny 1999).
(e) G is multiply secure (McLennan et al. 2011).
( f ) G is continuously secure (Barelli & Meneghel 2013).
(g) G has the local better-reply property (Nessah & Tian 2008).
(h) G has the local better-reply-correspondence property (Prokopovych 2016).
(i) G has the secure better-reply property (Reny 2016b).
( j ) G has the robust better-reply property.
(k) G has the robust better-reply-correspondence property.

Remark 3. Conditions (a)–(k) in Theorem 3 are related as shown in Figure 1. (For
(b) ⇒ (c) ⇒ (d), see Reny 1999; for (d) ⇒ (e), see McLennan et al. 2011; for (e) ⇒ ( f ),
see Barelli & Meneghel 2013.) The implications (g) ⇒ (h) and ( j) ⇒ (k) follow trivially
from the definitions. The remaining implications, (a) ⇒ ( f ), (a) ⇒ (h), (d) ⇒ (i) ⇒ ( j),
(g) ⇒ ( j), ( f ) ⇒ (k), and (h) ⇒ (k), have all been discussed in the text above.

Remark 4. The boundedness condition in Theorem 3, which in any event is only needed
for results (b)–( f ), can be dropped if, by the closure of the graph of u, we mean the closure
within the topological space X × [−∞,+∞]|N|, where each [−∞,+∞] has the topology of
the extended reals (and so is compact) and, as we always assume, product spaces are endowed
with their product topologies. Equivalently, if any ui is unbounded on X, replace ui with the
bounded payoff function eui (x)/(1 + eui (x) ) and apply Theorem 3 as stated.

Remark 5. The proof in Section 7 shows that the assumption that each Xi is locally convex
can be dropped for results (b)–(e), (g), (i), and ( j).

Remark 6. The following result on the existence of ε-Nash equilibria is proposed by
Reny (1996) and (in independent work) by Prokopovych (2011). If G is compact, convex,
bounded, quasiconcave, and payoff secure, then G has an ε-Nash equilibrium for every
ε > 0 if, in addition, each player i’s value function, vi(x−i ) = supxi∈Xi ui(xi, x−i ), is continuous
in x−i. Carmona (2005) offers an example showing that the condition on the value function
cannot be removed, and Bich & Laraki (2017) provide additional results on ε-Nash
equilibria.
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Remark 7. Let φi : X → R be any bounded function such that φi (xi, x−i) is quasicon-
cave in xi on Xi for each x−i ∈ X−i. Then Theorem 3 would remain true if in any of
the conditions (d)–(k), any player i’s payoff function ui was replaced with φi (but Nash
equilibria were still defined by the players’ payoff functions ui). So, for example, since
ui(xi, x−i ) := lim infx′−i→x−i ui(xi, x

′
−i ) inherits quasiconcavity in xi and boundedness from ui,

we can replace any of the ui in any of the conditions (d)–(k) with ui and the result remains
true (see Nessah & Tian 2016 for results along these lines).

Remark 8. The convex-valuedness restriction on the correspondences in the various defi-
nitions above (i.e., continuous security, the local better-reply-correspondence property, and
the robust better-reply-correspondence property) can be replaced with the weaker restric-
tion of contractible valuedness when the Xi’s are metric spaces. In the proof of Theorem 3,
one then uses the fixed point theorem due to Eilenberg & Montgomery (1946) instead of
Glicksberg’s (1952) theorem.

Remark 9. The pure strategy equilibrium existence result by Baye et al. (1993, theorem 1)
is absent from the present section on pure strategies because their diagonal transfer quasi-
concavity (DTQ) hypothesis is often difficult to check in practice. For example, even if each
player’s payoff function is own-strategy quasiconcave, DTQmay fail. In contrast, DTQ can
be naturally satisfied in symmetric games and is trivially satisfied in the mixed extension of
a game. Consequently, theorem 1 by Baye et al. (1993) is a powerful result for symmetric
games and for mixed strategy equilibria, and it is discussed in Sections 3.5 and 5.17

3.5. Symmetric Games

Let us briefly touch on symmetric games,where it is possible to improve upon the conditions above
by taking advantage of the symmetry. Among the very best results for pure strategy equilibria in
symmetric games are a result due to Baye et al. (1993) and its generalization by Bich & Laraki
(2012).

Say that the game G = (Xi, ui)i ∈ N is quasi-symmetric iff X1 = · · · = X|N|, and u1(w, z, . . . , z) =
u2(z, w, z, . . . , z) = · · · = u|N|(z, . . . , z, w) for all w, z ∈ X1. When |N| = 3, note that we do not
require u1(v, w, z) = u2(z, v, w) = u3(w, z, v) for all v, w, z ∈ X1 as would typically be required in
a symmetric game.

Let G be quasi-symmetric. We need several definitions. First, say that x∗ ∈ X is a symmetric
Nash equilibrium of G iff x∗ = (z∗, . . . , z∗) ∈ X and u1(z, z∗, . . . , z∗) ≤ u1(z∗, . . . , z∗) hold for
every z ∈ X1. Next, say that G is diagonally quasiconcave iff, for any finite subset F of X1 and
for any z̄ ∈ coF , we have u1(z̄, . . . , z̄) ≥ minz∈F u1(z, z̄, . . . , z̄).18 In particular, if u1(w, z, . . . , z) is
quasiconcave in w ∈ X1 for each z ∈ X1, then G is diagonally quasiconcave. Finally, say that G has
the local better-reply property on the diagonal iff, for every x = (z, . . . , z) that is not a symmetric
Nash equilibrium of G, there is ẑ ∈ X1 such that u1(ẑ, z′, . . . , z′ ) > u(z′, . . . , z′ ) holds for every z′

in some neighborhood of z in X1.
The next result is obtained by following the proof of theorem 1 by Baye et al. (1993), but with

their function U (·, ·) defined instead by U (w, z) := u1(w, z, . . . , z) for every w, z ∈ X1.19,20

17Nessah & Tian (2008, 2016) and Scalzo (2019b) offer other strengthenings of own-strategy quasiconcavity.
18Therefore,G is diagonally quasiconcave iff φ(z, w) := u1(z, w, . . . , w) is diagonally quasiconcave in z in the
sense of Zhou & Chen (1988).
19Theorem 1 in Baye et al. (1993) assumes Euclidean strategy spaces, but their proof goes through without
change under our more general assumptions here.
20Remark 7 applies here as well (see Nessah & Tian 2016 for related results).

452 Reny

A
nn

u.
 R

ev
. E

co
n.

 2
02

0.
12

:4
39

-4
70

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 U
ni

ve
rs

ity
 o

f C
hi

ca
go

 L
ib

ra
rie

s o
n 

08
/0

5/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Theorem 4 (Baye et al. 1993). Suppose that G is compact, convex, quasi-symmetric, and
diagonally quasiconcave. If G has the local better-reply property on the diagonal, then G
has a symmetric pure strategy Nash equilibrium.

Bich & Laraki (2012, theorems 46, 47) generalized Theorem 4 by introducing correspon-
dences.

Say that a quasi-symmetric game G has the local better-reply-correspondence property on
the diagonal iff, for every x = (z, . . . , z) that is not a symmetric Nash equilibrium of G, there
is a nonempty-valued, convex-valued closed correspondence b : U � X1 such that U ⊆ X1 is a
neighborhood of z and u1(w′, z′, . . . , z′) > u(z′, . . . , z′) holds for every w′ and z′, with z′ ∈ U and
w′ ∈ b(z′).

We can state the following generalization of Theorem 4.

Theorem 5 (Bich & Laraki 2012). Suppose that G is compact, convex, quasi-symmetric,
and diagonally quasiconcave. IfG has the diagonal local better-reply-correspondence prop-
erty, then G has a symmetric pure strategy Nash equilibrium.

We give Bich & Laraki’s (2012) elegant proof here because it nicely illustrates the proof tech-
nique described in Section 1, namely that, under the given assumptions, if an equilibrium were
to fail to exist, there would be a better-reply correspondence with a fixed point, which is absurd.
The simplicity of this particular proof stems from the fact that, in quasi-symmetric games, there
is effectively just one utility function, and so tying together the better-reply correspondences of
different players is much simpler than it is when the players are not quasi-symmetric.

Proof. Suppose, by way of contradiction, that there is no symmetric Nash equilibrium.
Then, for every z ∈ X1, there is a neighborhood U z of z and there is a nonempty-valued,
convex-valued closed correspondence bz : U z � X1 such that u1(w′, z′, . . . , z′) > u(z′, . . . ,
z′) holds for every w′ and z′, with z′ ∈ U z and w′ ∈ bz(z′). Since {Uz}z∈X1 is an open
cover of X1, and since X1 is compact, there is a finite subcover, {U z}z ∈ F, where F is a
finite subset of X1. Let {βz}z ∈ F be a partition of unity subordinated to the finite cover
{U z}z ∈ F (see, e.g., Munkres 1975). Hence, each βz : X1 → [0, 1] is continuous, βz(w) >

0 implies w ∈ U z, and
∑

z ∈ Fβz(w) = 1 for every w ∈ X1. For any w ∈ X1, define b(w) :=∑
z∈F :βz (w)>0 βz(w)bz(w).21 Then, b : X1 � X1 is a nonempty-valued, convex-valued, closed

correspondence. By Glicksberg’s (1952) theorem, there is a fixed point w∗ ∈ b(w∗). Hence,
we obtainw∗ = ∑

z∈F :βz (w∗ )>0 βz(w∗ )wz, where eachwz ∈ bz(w∗).Consequently,we have that
u1(wz, w∗, . . . , w∗) > u1(w∗, w∗, . . . , w∗) for every z with βz(w∗) > 0 [since βz(w∗) > 0 im-
plies that w∗ ∈ U z]. But then diagonal quasiconcavity implies that u1(w∗, w∗, . . . , w∗) >

u1(w∗, w∗, . . . , w∗), which is a contradiction. �

Remark 10. If we strengthen the diagonal quasiconcavity hypothesis by assuming that
u1(w, z, . . . , z) is quasiconcave in w for each z, then by the same logic as in the last three
sentences of the proof of Theorem 5 given above, the correspondence b(·) defined there is
seen to be a better-reply correspondence along the diagonal; that is, for every z ∈ X1 and
for every w ∈ b(z), we have u1(w, z, . . . , z) > u1(z, . . . , z).

4. PURE STRATEGY EQUILIBRIA IN NONQUASICONCAVE GAMES

Nishimura & Friedman (1981) provide a pure strategy equilibrium existence result for compact
games whose strategy sets are convex subsets of Euclidean space and whose payoff functions are

21Each bz(w) in this sum is well defined, because βz(w) > 0 implies that w ∈ Uz.
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continuous but not necessarily quasiconcave. As they show, their results cover Cournot com-
petition as well as price competition models with differentiated products. A key assumption in
Nishimura & Friedman’s (1981) paper is that for any x ∈ X that is not a Nash equilibrium, there
should be a player i and a coordinate k such that (x̂1ik − xik )(x̂2ik − xik ) > 0 for any two best replies
x̂1i and x̂

2
i for i against x−i. We will see below that this condition is a special case of a more general

condition that suffices for the existence of a pure strategy Nash equilibrium in nonquasiconcave
games.

McLennan et al. (2011) were the first to bring nonquasiconcave games into the scope of anal-
ysis of discontinuous games. Their insight is to make use of the convex hull of an appropriate
utility upper-contour set, an idea that can be traced back to Sonnenschein (1971) and Shafer &
Sonnenschein (1975). Barelli & Meneghel (2013) followed suit in their analysis of quasiconcave
and nonquasiconcave games.

For the sake of brevity, rather than extending each of the various properties in the above section
on quasiconcave games to nonquasiconcave games, we will extend only the most permissive prop-
erty there, namely the robust better-reply-correspondence property. The basic idea, once again,
is due to Sonnenschein (1971), Shafer & Sonnenschein (1975), and McLennan et al. (2011).

Following Reny (2016b), say that a correspondence b :U�X is coclosed iff the correspondence
whose value is cob(x) for each x ∈ U is closed.22 Requiring b to be coclosed does not require it to
be either convex-valued or closed.23

A correspondence b : U� X, where b(w) = ×i ∈ Nbi(w) ⊆ × i ∈ N Xi for every w ∈ U, is a robust
better-reply correspondence at x ∈ X iff U ⊆ X is a neighborhood of x, and for every y ∈ U there
is a player i such that, for each (zi, x′) with x′ ∈ U and zi ∈ bi(x′ ), we obtain either

yi /∈ co{wi : ui(wi, y−i ) ≥ ui(zi, x′
−i )} 6.

or

x′
i /∈ co{wi : ui(wi, x′

−i ) ≥ ui(zi, x′
−i )}.24 7.

Notice that when ui(wi, x′
−i ) is quasiconcave in wi, Equation 6 reduces to the inequality

ui(zi, x′
−i ) > ui(y), and Equation 7 reduces to the inequality ui(zi, x′

−i ) > ui(x′ ). Therefore, since
for each (zi, x′

−i ) only one of these two inequalities needs to be satisfied, the whole condition re-
duces to ui(zi, x′

−i ) > min(ui(x′ ), ui(y)), which is exactly the condition given in Equation 4 in the
quasiconcave case. Consequently, this broader definition of a robust better-reply correspondence
coincides with our previous definition for quasiconcave games.We can now extend the definition
of the robust better-reply property to nonquasiconcave games.

A (quasiconcave or nonquasiconcave) game G has the robust better-reply-correspondence
property iff whenever x ∈ X is not a Nash equilibrium, there is a robust better-reply correspon-
dence at x, and this correspondence is nonempty-valued and coclosed.

Remark 11. When utility functions are not quasiconcave, it is important not to require
the robust better-reply correspondence b to be convex-valued, since the utility value at a
convex combination of two points might be much lower than the value at each of the two
points. On the other hand, the existence proof requires the convex hull of b to be closed.
Therefore, coclosed correspondences are the right objects here.

22For example, a closed correspondence b : U � X is coclosed if the values of b are all contained in a fixed
finite dimensional subspace of the ambient topological vector space, and so in particular when X itself is finite
dimensional.
23Consider, for example, the correspondence mapping each point in [0, 1] into the set of all rational numbers
with the usual topology.
24Therefore, for some (zi, x′) Equation 6 may hold, while for other (zi, x′) Equation 7 may hold.
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Remark 12. When the players’ utility functions are quasiconcave, the conditions in
Equations 6 and 7 reduce to ui(zi, x′

−i ) > min(ui(x′ ), ui(y)), which, if satisfied for all
zi ∈ bi(x′

−i ), is also satisfied for all zi ∈ cobi(x′
−i ). So when the game is quasiconcave, there is

no loss of generality in requiring b to be convex-valued and closed.

We can now state the following result, which generalizes Theorem 3. A proof is in Section 7.

Theorem 6. Suppose that the game G is compact and convex but is not necessarily qua-
siconcave. If G has the robust better-reply-correspondence property, then G has a pure
strategy Nash equilibrium.

Theorem 6 generalizes theorem 2.2 by Barelli & Meneghel (2013),25 and, because closed cor-
respondences mapping into subsets of a fixed finite subset of a convex space are coclosed, it also
generalizes theorem 3.4 by McLennan et al. (2011) with their universal restriction operator.

Finally, following an analogous argument by McLennan et al. (2011), let us show that the as-
sumptions by Nishimura & Friedman (1981) imply that the game has the robust better-reply-
correspondence property. So suppose that x ∈ X is not a Nash equilibrium. The Nishimura-
Friedman condition implies that there is a player i and a coordinate k such that (x̂1ik − xik )(x̂2ik −
xik ) > 0 for any two of the player’s best replies, x̂1i and x̂

2
i , against x−i. So either we have x̂ik > xik

for every x̂i that is a best reply against x−i, or we have x̂ik < xik for every x̂i that is a best reply
against x−i. Either way, we may conclude that xi is not in the convex hull of i’s set of best replies
against x−i.

Let x̂i be any best reply against x−i. Then, for a small-enough open ball U around x, we claim
that there can be no x′ ∈ U such that x′

i is in the convex hull of the set {wi ∈ Xi : ui(wi, x′
−i ) ≥

ui(x̂i, x′
−i )}. Otherwise there would be a sequence of such x′ converging to x and, by continuity

and compactness (assumed by Nishimura and Friedman), xi would be in the convex hull of the set
{wi ∈ Xi : ui(wi, x−i ) ≥ ui(x̂i, x−i )}. But since this latter set is just the set of best replies against x−i
(recall that x̂i is a best reply), this would yield a contradiction. Hence, for every x′ ∈ U, we have
x′
i /∈ co{wi : ui(wi, x′

−i ) ≥ ui(x̂i, x′
−i )}, i.e., Equation 7 holds when we define the correspondence b

so that for all x′ ∈U, bi(x′
−i ) = {x̂i} and for all other players, j �= i, b j (x′

− j ) is any constant singleton.
Consequently, this game has the robust better-reply-correspondence property.

5. MIXED STRATEGY EQUILIBRIA

The gameG is measurable iff each ui : X → R is measurable,where we use the Borel sigma algebra
on each Xi and the product sigma algebra on X. In order to calculate expected payoffs, we shall
assume throughout this section that G is bounded and measurable.

Because the Xi’s are compact subsets of a Hausdorff linear topological space, if Mi denotes
the set of (regular, countably additive) probability measures on the Borel subsets of Xi, then Mi

is compact and convex and is locally convex in the weak∗ topology, which is the topology that is
to be understood throughout this section.26 Extend each ui to M = ×N

i=1Mi by defining ui(m) =
�X ui (x)dm for all m ∈ M. The mixed extension of G is the game Ḡ = (Mi, ui )i∈N .

A strategy profilem ∈M is a mixed strategy Nash equilibrium ofG iffm is a pure strategy Nash
equilibrium of the mixed extension Ḡ of G.

25See footnote 11. Note, however, that instead of adding the assumption that the φx correspondences are
convex-valued, it would suffice according to Barelli &Meneghel (2013, theorem 2.2) to replace the assumption
that the φx correspondences are closed with the assumption that they are coclosed.
26Compactness follows from the Riesz representation theorem and Alaoglu’s theorem (see, for example,
Dunford & Schwartz 1988).
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Dasgupta & Maskin (1986a) provide a pathbreaking result on the existence of mixed strategy
Nash equilibria in discontinuous games. Because their result applies to such a large class of im-
portant economic games, the field immediately became important to economists, and research in
the area blossomed. Their result is based on the idea of approximating the infinite game with a
sequence of finite games. For any finite discretization of the players’ pure strategy sets, the result-
ing finite game has a mixed strategy Nash equilibrium. Dasgupta and Maskin provide conditions
on G that ensure that any weak∗ limit of any sequence of mixed strategy equilibria of any finite
strategy approximations of G, as the discretizations become finer and finer, is a mixed strategy
Nash equilibrium of G.

Dasgupta &Maskin (1986a) limit their attention to pure strategy sets that are nonempty, com-
pact, convex subsets of Euclidean space, and, apart from boundedness andmeasurability, theymake
three assumptions about payoffs, which we describe only informally here.

First, they assume that each player’s payoff function is weakly lower semicontinuous in the
player’s own pure strategy. This assumption has the effect that for any x ∈ X and for any
ε > 0, if λi is a uniform distribution over a small-enough open ball around xi, then ui(λi, x−i) ≥
ui (x) − ε holds for every x−i ∈ X−i. It is here that the unusual assumption that pure strategy sets
are convex plays a role (convexity of pure strategy sets is not usually required when searching for
mixed strategy Nash equilibria, and convexity of Xi is not required for any of the results below).

Second, they assume that any payoff discontinuities occur along finitely many diagonal sets, as
for example occurs in Bertrand duopoly, where all of the discontinuities lie along the main diag-
onal on which the players choose the same price. The main effect of this diagonal discontinuities
assumption is to ensure that if any player employs an atomless mixed strategy, then the player’s
payoff is continuous in the others’ strategies.

Notice that, together, these first two assumptions, weak lower semicontinuity and diagonal
discontinuities, imply that the game’s mixed extension is payoff secure. Indeed, for any mixed
strategy m and for any ε > 0, player i can adjust their strategy mi as follows. First, the player
employsmi to choose a provisional pure strategy x′

i, and then they choose their actual pure strategy
xi using a uniform distribution on a small ball around x′

i. For a small-enough ball, and by weak
lower semicontinuity, the player loses less than ε/2 in utility from this uniform randomization, no
matter what pure strategies the other players would choose. So if we let m̂i denote this adjusted
strategy for player i, we have ui(m̂i,m−i ) ≥ ui(m) − ε/2. Next, notice that the constructed m̂i is
atomless. Consequently, by the diagonal discontinuities assumption, ui(m̂i, x−i ) is continuous in
x−i ∈ X−i; but then ui(m̂i, ·) is continuous onM−i in the weak∗ topology. Hence, there is a weak∗

neighborhoodU−i ofm−i such that ui(m̂i,m′
−i ) ≥ ui(m) − ε holds for everym′

−i ∈U−i. This means
that player i can secure the payoff ui(m) − ε. Since m, ε, and i were arbitrary, this shows that the
game’s mixed extension is payoff secure.

Dasgupta & Maskin’s (1986a) third assumption is that the sum of the players’ payoffs
∑
ui (x)

is upper semicontinuous in x ∈ X, which implies that
∑

iui(m) is upper semicontinuous in m ∈ M
(see, e.g., Reny 1999, proposition 5.1).

Taken together, these three assumptions on payoffs imply that the mixed extension of G is
payoff secure and its payoff sum is upper semicontinuous on M. Since the mixed extension is
compact, convex, bounded, and quasiconcave, Theorem 3(c) can be applied to conclude that the
mixed extension has a pure strategy equilibrium, which is a mixed strategy equilibrium of G.

Dasgupta &Maskin’s (1986a) proof establishes more than just the existence of a mixed strategy
Nash equilibrium. Their proof shows that, under their hypotheses, the original infinite discontin-
uous game can be well approximated by finite discretizations of the players’ pure strategy sets in
the following sense: Any limit of mixed strategy Nash equilibria of games restricted to finite sub-
sets of the players’ pure strategies, as the discretizations become finer and finer, is a mixed strategy
Nash equilibrium of the original infinite game.
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The existence result by Dasgupta &Maskin (1986a) inspired, and did much to prepare the way
for, a large body of work on the existence of mixed strategy equilibria in discontinuous games.We
will now present the fruits of some of that work.

Obviously, one obtains theorems on the existence of mixed strategy equilibria forG by applying
any of the results in the previous sections to the game’s mixed extension, where each m ∈ M is
considered a pure strategy in the mixed extension Ḡ.27,28

Theorem 7. Suppose that G is compact, bounded, and measurable. Then G has a mixed
strategy Nash equilibrium if its mixed extension Ḡ satisfies any one of the conditions in
Theorem 3(a–k), where all mixed strategy sets are endowed with the weak∗ topology.

Another very general result is due to Baye et al. (1993). Their theorem 1, together with their
proposition 1a, yields the following result.

Theorem 8 (Baye et al. 1993). Suppose that G is compact, bounded, and measurable.
ThenG has a mixed strategy Nash equilibrium if, for anym ∈M that is not a mixed strategy
Nash equilibrium of G, there exists m̂ ∈ M such that

∑
i∈N ui(m̂i,m′

−i ) >
∑

i∈N ui(m
′ ) holds

for every m′ in some weak∗ neighborhood of m.

Remark 13. Theorem 8 can be obtained from Theorem 4 by considering the two-person
game in which, when player 1 chooses m ∈ M and player 2 chooses m′ ∈ M, player 1’s
payoff is

∑
i∈N ui(mi,m′

−i ) and player 2’s payoff is
∑

i∈N ui(m
′
i,m−i ). Under the hypotheses

of Theorem 8, this two-person game is compact, quasi-symmetric, diagonally quasiconcave,
and has the local better-reply property along the diagonal. Hence, it has a symmetric Nash
equilibrium (m∗, m∗). But then m∗ is a pure strategy Nash equilibrium of Ḡ, and so it is a
mixed strategy Nash equilibrium of G.

Let us take a closer look at the inequality condition in Theorem 8.This condition requires that,
for any m ∈ M that is not a mixed strategy Nash equilibrium of G, there is a weak∗ neighborhood
U of m and there is m̂ ∈ M such that

∑
i∈N

ui(m̂i,m′
−i ) >

∑
i∈N

ui(m′ ) for every m′ ∈U . 8.

Clearly, if
∑

i∈N ui(m̂i,m′
−i ) >

∑
i∈N ui(m

′ ), then there must be some player i such that
ui(m̂i,m′

−i ) > ui(m′ ).
Consequently, Equation 8 implies that, for any m ∈ M that is not a Nash equilibrium, there

exists m̂ ∈ M and a weak∗ neighborhood U of m such that, for every m′ ∈ U, there is a player i
such that ui(m̂i,m′

−i ) > ui(m′ ).29 We now weaken this latter condition even further.
Following Reny (2009, 2016b), say that a product subset of mixed strategy profiles ×i ∈ NFi is a

finite better-reply set at m ∈ M iff each Fi is a finite subset ofMi and, for every m′ in some weak∗

neighborhood of m, there is a player i and there is m̂i ∈ Fi such that

ui(m̂i,m′
−i ) > ui(m′ ).

27For a proof, simply note that, if G is compact, bounded, and measurable, then with the weak∗ topology, Ḡ is
compact, convex, bounded, and quasiconcave. Now apply Theorem 3.
28To apply the symmetric pure strategy equilibrium results above, one must ensure that the game’s mixed
extension is quasi-symmetric, which need not be the case if G is quasi-symmetric. But if the payoff functions
in G are symmetric, then Ḡ is also symmetric and hence quasi-symmetric.
29Nessah&Tian (2008) call this the weak transfer quasi-continuity property, and (independently) Reny (2009)
calls this the single deviation property.

www.annualreviews.org • Nash Equilibrium in Discontinuous Games 457

A
nn

u.
 R

ev
. E

co
n.

 2
02

0.
12

:4
39

-4
70

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 U
ni

ve
rs

ity
 o

f C
hi

ca
go

 L
ib

ra
rie

s o
n 

08
/0

5/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



The game G has the finite better-reply property on M iff, whenever m ∈ M is not a mixed
strategy Nash equilibrium of G, there is a subset of mixed strategy profiles that is a finite better-
reply set at m.30

As we have just argued, the finite better-reply property is more permissive than Equation 8.
Indeed, requiring G to have the finite better-reply property on M is more permissive than re-
quiring Ḡ to be either multiply secure or to have the robust better-reply property. So the finite
better-reply property onM is a rather permissive condition. We can state the following result.

Theorem 9 (Reny 2009, 2016b). If G is compact, bounded, and measurable, and G has
the finite better-reply property onM, then G has a mixed strategy Nash equilibrium.

Despite its generality, the proof of this result is refreshingly short and simple, and so we will
present it here.

Proof. Suppose, by way of contradiction, that no Nash equilibrium exists. Then, for every
m ∈ M, each player has finitely many mixed strategies such that, for every m′ in a weak∗

neighborhood of m, one of these mixed strategies is a profitable deviation from m for some
player. These neighborhoods form an open cover ofM that has a finite subcover, by com-
pactness. So in fact each player has finitely many mixed strategies—call them better-reply
strategies—such that for every m ∈ M, some better-reply strategy is a profitable deviation
from m for some player. However, by Nash’s theorem, the finite game whose set of pure
strategy profiles is the product of the players’ finite sets of better-reply strategies has a mixed
strategy Nash equilibrium, whose mixture yields an element ofM that no player can prof-
itably deviate from using any of their better-reply strategies. This contradiction completes
the proof. �

Remark 14. Given the discussion preceding Theorem 9, and based on Remark 3, we see
that if the mixed extension of G satisfies any one of the conditions (b)–(e), (g), (i), or ( j)
of Theorem 3, or if the hypotheses of Theorem 8 hold, then G has the finite better-reply
property. Hence, Theorem 9 is more permissive than each of these others.

Theorems 7, 8, and 9 all provide quite general mixed strategy equilibrium existence results
whose hypotheses are satisfied in many economic games. However, it can sometimes be difficult
to check these conditions because they all require the consideration of a neighborhood of mixed
strategies, which means that one must deal with the topology of weak convergence of measures.
While this is not always difficult, there is no doubt that it would be simpler if there were sufficient
conditions that depended only on the players’ payoffs on the set of pure strategy profiles.

For example, as we have already mentioned, if
∑

iui (x) is upper semicontinuous in x on the
space of pure strategy profiles X, then

∑
iui(m) will be upper semicontinuous in m on the space

of mixed strategy profiles M. So the simple condition that
∑

iui (x) is upper semicontinuous in x
on X suffices for the mixed extension Ḡ to be reciprocally upper semicontinuous. Unfortunately,
things are not as simple with payoff security. Even if G is payoff secure, it need not be the case
that its mixed extension Ḡ is payoff secure (see, e.g., Carmona 2005). This is because, in Ḡ, payoff
security requires the players to secure their payoffs not only at all pure strategy profiles, but also
at all of the nondegenerate mixed strategy profiles.31 So the literature has sought to find security
conditions that, while less general, are easier to verify. Monteiro & Page (2007) led the way here
with the following definition (see also Allison & Lepore 2014).

30Reny (2009, 2016b) calls this the finite deviation property (see also Prokopovych 2013).
31The reverse implication also fails. That is, Ḡ can be payoff secure even when G is not. This is because, in Ḡ,
players have more than just their pure strategies available for the purposes of securing payoffs.
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The game G is uniformly payoff secure iff, for every ε > 0, for every player i, and for every
x ∈ X, there is x̂i ∈ Xi such that, for every y−i ∈ X−i, ui (x̂i, x′

−i ) > ui(xi, y−i ) − ε holds for every x′
−i

in some neighborhood of y−i in X−i.
Monteiro & Page (2007) show that if G is uniformly payoff secure, then Ḡ is payoff secure.

Consequently,we have the following result,whose conditions on payoffs depend only on the values
of payoffs on the set of pure strategy profiles X.32

Theorem 10 (Monteiro & Page 2007). Suppose that G is compact and bounded, and
that

∑
i ∈ n ui (x) is upper semicontinuous in x on X. If G is uniformly payoff secure, then G

has a mixed strategy Nash equilibrium.

Another useful result whose conditions on payoffs depend only on the values that payoffs take
on X is the following, due to Prokopovych & Yannelis (2014).

The game G is uniformly diagonally secure iff, for every ε > 0 and for every x ∈ X, there is
x̂ ∈ X such that for every y ∈ X,

∑
i∈N ui(x̂i, x

′
−i ) −

∑
i∈N ui(x

′ ) >
∑

i∈N ui(xi, y−i ) −
∑

i∈N ui(y) − ε

holds for every x′ in some neighborhood of y.
Prokopovych & Yannelis (2014) show that if G is uniformly diagonally secure, then Ḡ satisfies

the hypotheses of Theorem 8. Hence, we have the following result.

Theorem 11 (Prokopovych & Yannelis 2014). Suppose that G is compact, bounded,
and measurable. If G is uniformly diagonally secure, then G has a mixed strategy Nash
equilibrium.

5.1. Bayesian Games

For each i ∈ N, let Ai be player i’s nonempty metric space of actions and let Ti be player i’s
nonempty, separable metric space of types.33 All of these spaces are endowed with their Borel
sigma algebras, and all product spaces are endowed with their product topologies and product
sigma algebras. Let A = ×i ∈ NAi, and let T = ×i ∈ NTi. Let vi : A× T → R denote i’s (ex-post)
bounded and measurable payoff function, and let v = (vi)i ∈ N be the profile of (ex-post) payoff
functions.

For any measurable space Z, let 
(Z) denote the set of countably additive probability measures
on the measurable subsets of Z. Let f : T→ [0,∞) be a nonnegative measurable function, and, for
each i ∈ N, let pi ∈ 
(Ti) be a probability measure on the Borel subsets of Ti. The prior on the set
of types T is p ∈ 
(T ), where, for any measurable subset C of T, we have

p(C) :=
∫
C
f (t1, . . . , t|N | )p1(dt1) . . . p|N |(dt|N | ). 9.

Altogether,BG := (A,T, v, f, p1, . . . , p|N|) constitutes an absolutely continuous Bayesian game.34

BG is compact iff each Ai is compact. A behavioral strategy for player i is any transition probability
si : Ti → 
(Ai).35 Let Si denote player i’s set of behavioral strategies, and let S = ×i ∈ NSi. For any

32For a proof, note that Ḡ is compact, convex, quasiconcave, payoff secure (sinceG is uniformly payoff secure),
and reciprocally upper semicontinuous [since the upper semicontinuity of

∑
ui (x) on X implies the upper

semicontinuity of
∑
ui(m) onM]. Now apply Theorem 3(a).

33He & Yannelis (2015) provide interesting results for the special case of countable type spaces.
34The formulation of an absolutely continuous Bayesian game here automatically builds in the important
assumption, due to Milgrom & Weber (1985), that the prior on the type space is absolutely continuous with
respect to the product of its marginals. Without this absolute continuity condition, Simon (2003) has shown
that there need be no equilibrium even if the players’ action sets Ai are all finite.
35To say that si : Ti → 
(Ai) is a transition probability means that si(· |ti) ∈ 
(Ai) for every ti ∈ Ti, and, for
every Borel subset C of Ai, si(C|ti) is a measurable function of ti on Ti.
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s = (si)i ∈ N ∈ S and for any t = (ti)i ∈ N ∈ T, define s(· |t) to be the product measure ×i ∈ Nsi (· |ti),
and define Vi(s) := �T (�Avi (a, t) s (da|t)) p (dt). Say that s∗ ∈ S is a Bayes-Nash equilibrium of BG
(in behavioral strategies) iff Vi(si, s∗−i ) ≤ Vi(s∗) for every si ∈ Si and for every i ∈ N.

We next construct a surrogate game that will be helpful in determining whether BG has a
Bayes-Nash equilibrium.

For any i ∈ N, let Xi = {xi ∈ 
(Ai × Ti) : xi(Ai × C ) = pi(C ) for every Borel subset C of Ti}.
Therefore, each xi ∈ Xi is a probability measure on Ai × Ti whose marginal on Ti is pi. Such
strategies are called distributional strategies by Milgrom & Weber (1985).

Let X = ×i ∈ NXi and, for each i ∈ N, define ui : X → R as follows. For each x = (xi)i ∈ N ∈ X,
define

ui(x) :=
∫

vi(a, t ) f (t )[x1 × · · · × x|N |](d(a, t )),

where x1 × · · · × x|N| is the product measure on ×i ∈ N(Ai × Ti) whose marginal on Ai × Ti is xi.
Call the strategic form game DG := (Xi, ui)i ∈ N the distributional strategic form of BG.
The significance of the strategic form game DG is that any pure strategy Nash equilibrium of

DG induces a Bayes-Nash equilibrium of BG. To see this, let us first define, for any player i ∈ N
and for any si ∈ Si, the probability measure si ∗ pi ∈ 
(Ai × Ti) so that for any Borel subsets C of
Ai and D of Ti, we have

[si ∗ pi](C ×D) :=
∫
D
si(C|ti )pi(dti ). 10.

Notice that the marginal of si ∗ pi on Ti is pi (because [si ∗ pi](Ai ×D) = �Dsi(Ai|ti)pi(dti) = pi(D)
for any Borel subset D of Ti). Consequently, si ∗ pi ∈ Xi for every si ∈ Si. So, if s ∈ S and we let
xi = si ∗ pi for every i ∈ N, then we have x = (xi)i ∈ N ∈ X and

ui(x)=
∫

vi(a, t )s1(da1|ti ) . . . s|N |(da|N ||t|N | ) f (t )p1(da1) . . . p|N |(da|N | )

=
∫

vi(a, t )s(da|t )p(dt )

=Vi(s). 11.

Now suppose that x∗ is a pure strategy Nash equilibrium ofDG. For each player i ∈N, because
the marginal of x∗

i on Ti is pi, there exists a transition probability (i.e., a behavioral strategy) s∗i :
Ti → 
(Ai ) such that x∗

i = s∗i ∗ pi (see, e.g., Bertsekas & Shreve 1978, proposition 7.27; Milgrom
&Weber 1985). Let s∗ = (s∗i )i∈N . Then, for any player i ∈ N and for any si ∈ Si, letting xi = si ∗ pi,
we have

Vi(si, s∗−i ) = ui(xi, x∗
−i ) ≤ ui(x∗ ) = Vi(s∗ ),

where the two equalities follow from Equation 11 and the inequality follows because xi ∈ Xi and
x∗ is a Nash equilibrium of DG. Hence, s∗ is a Bayes-Nash equilibrium of BG.

Therefore, to ensure that BG has a Bayes-Nash equilibrium, it suffices to find conditions on
BG that ensure that its distributional strategic form DG has a pure strategy Nash equilibrium.
Some observations are helpful in this direction. First, if for each player i ∈ N the action space
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Ai is compact, then the strategy space Xi is compact and locally convex in the weak∗ topology.36

Second, each ui (xi, x−i) is concave (linear), and therefore quasiconcave, in xi on Xi for each x−i ∈
X−i. Hence, DG is a (weak∗) compact, convex, bounded, and quasiconcave game. Consequently,
if DG satisfies any of the conditions (a)–( j) of Theorem 3, then DG has a pure strategy Nash
equilibrium and so BG has a Bayes-Nash equilibrium. This immediately gives us the following
result.

Theorem 12. Suppose that the absolutely continuous Bayesian game BG is compact. IfDG
satisfies any one of the conditions (a)–(k) of Theorem 3 when each Xi is given the weak∗

topology, then BG has a Bayes-Nash equilibrium in behavioral strategies.

Since the behavioral strategy spaces Si are convex and the payoff functions Vi(s1, . . . , s|N|) are
not only linear in si for each s−i, but are also linear in sj for each s−j for any j ∈ N, an appropriate
extension of the finite better-reply property to Bayesian games can yield an existence result.

The Bayesian game BG has the finite better-reply property iff, whenever s ∈ S is not a Bayes-
Nash equilibrium, there is a weak∗ neighborhood U ⊆ X of (si ∗ pi)i ∈ N ∈ X and there are finite
sets of behavioral strategies F1 ⊆ S1, . . . , F|N| ⊆ S|N| such that, for every s′ ∈ S with (s′i ∗ pi )i∈N ∈U ,
there is a player i and ŝi ∈ Fi such that Vi(ŝi, s′−i ) > Vi(s′ ).

With this definition, we can state the following result, which is a corollary of Theorem 15
below.

Theorem 13. Suppose that the absolutely continuous Bayesian game BG is compact. If BG
has the finite better-reply property, then BG has a Bayes-Nash equilibrium in behavioral
strategies.

Remark 15. Analogous to Remark 14, Theorem 13 generalizes the existence results stated
in Theorem 12 when DG there satisfies conditions (b)–(e), (g), (i), and ( j) of Theorem 3.

A condition that uses actions or even distributions over actions instead of distributional strate-
gies when looking for better replies can be simpler to employ.We next give a definition that goes
in this direction.

Say that BG has the finite action-distribution better-reply property iff, whenever s ∈ S is not
a Bayes-Nash equilibrium, there are finite sets of (possibly degenerate) distributions over actions
F1 ⊆ 
(A1), . . . , F|N| ⊆ 
(A|N|), and there is a weak∗ neighborhood U ⊆ X of (si ∗ pi)i ∈ N ∈ X such
that, for every s′ ∈ S with (s′i ∗ pi )i∈N ∈U , there is a player i and there is ŝi ∈ Si such that ŝi(·|ti ) ∈ Fi
for every ti ∈ Ti, and Vi(ŝi, s′−i ) > Vi(s′ ).

Under the finite action-distribution better-reply property, the set of available deviations for
player i is the potentially infinite set of all behavioral strategies that can be constructed piecewise
from the finite set of action-distributions in Fi.

The finite action-distribution better-reply property for BG is unrelated to the finite better-
reply property forBG. Indeed, on the one hand, the finite action-distribution better-reply property
is more restrictive because the deviating players are restricted to behavioral strategies that map
into a finite set of action-distributions. On the other hand, the set of deviation strategies that are
available in the finite action-distribution case is the set of all behavioral strategies that have support
contained in Fi for every ti, which is typically an infinite set, while the collection of deviation
strategies under the finite better-reply condition is finite.

36Because Ti is a separable metric space, when the metric space Ai is compact (and hence separable), Xi is
metrizable following Bertsekas & Shreve (1978, theorem 7.20). Then, weak∗ compactness of Xi follows from
the sequential compactness result of Balder [1994, theorems 3.15 and 3.19(a ⇔ c)], and by noting that the
inequality in Balder’s theorem 3.19c holds for both g and −g (and so is an equality) when g is bounded and
continuous.
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The following result is a corollary of Theorem 15 below.

Theorem 14. Suppose that the absolutely continuous Bayesian game BG is compact. If BG
has the finite action-distribution better-reply property, then BG has a Bayes-Nash equilib-
rium in behavioral strategies.

We can generalize both of these last two results by replacing the actions in the previous theorem
with what we may call strategic actions.37

Say that BG has the finite strategic-action better-reply property iff, whenever s ∈ S is not a
Bayes-Nash equilibrium of BG, there are finite sets of behavioral strategies F1 ⊆ S1, . . . , F|N| ⊆
S|N|, and there is a weak∗ neighborhood U ⊆ X of (si ∗ pi)i ∈ N such that, for every s′ ∈ S with
(s′i ∗ pi )i∈N ∈U , there is a player i and there is ŝi ∈ Si such that ŝi(·|ti ) ∈ {s̄i(·|ti ) : s̄i ∈ Fi} for every
ti ∈ Ti, and Vi(ŝi, s′−i ) > Vi(s′ ).

Under this most permissive of the three finite better-reply properties for BG, the set of avail-
able deviations for player i is the potentially infinite set of all behavioral strategies that can be
constructed piecewise from the behavioral strategies in Fi.

The following result generalizes Theorems 13 and 14. A proof is in Section 7.

Theorem 15. Suppose that the absolutely continuous Bayesian game BG is compact. If BG
has the finite strategic-action better-reply property, then BG has a Bayes-Nash equilibrium
in behavioral strategies.

Theorems 12–15 can be powerful and useful tools. However, working with open sets in the
space of distributional strategies X can sometimes be challenging, and so it is beneficial to have
sufficient conditions that are easier to check.

We give two such conditions here, both due to Carbonell-Nicolau &McLean (2018). The first
of their conditions extends the uniform payoff-security condition of Monteiro & Page (2007) to
Bayesian games as follows.

For any i ∈ N, say that si ∈ Si is pure iff, for every ti ∈ Ti, there is ai(ti) ∈ Ai such that
si({ai(ti)}|ti) = 1. Say that s = (s1, . . . , s|N|) ∈ S is pure iff each si is pure.

Say that BG is uniformly payoff secure iff, for every ε > 0, for every i ∈ N, and for every
pure si ∈ Si, there exists a pure ŝi ∈ Si such that for every (t, a−i) ∈ T × A−i, ui(ŝi(ti ), a′

−i, t ) >

ui(si(ti ), a−i, t ) − ε holds for every a′
−i in some neighborhood in A−i of a−i.

Carbonell-Nicolau & McLean (2018) show that if BG is uniformly payoff secure, then the
strategic form gameDG is uniformly payoff secure in the sense ofMonteiro&Page (2007).Hence,
Monteiro & Page’s (2007) result would apply if the sum of the players’ payoffs was upper semi-
continuous. So we have the following result.

Theorem 16 (Carbonell-Nicolau&McLean 2018). Suppose that the absolutely contin-
uous Bayesian game BG is compact. If for each t ∈ T,

∑
i ∈ Nvi(a, t) is upper semicontinuous

in a ∈ A, and if BG is uniformly payoff secure, then BG has a Bayes-Nash equilibrium in
behavioral strategies.

The second result of Carbonell-Nicolau &McLean (2018) extends Prokopovych & Yannelis’s
(2018) uniform diagonal security condition to Bayesian games as follows.

Say that BG is uniformly diagonally secure iff, for every ε > 0, and for every pure s ∈ S,
there exists a pure ŝ ∈ S such that for every (t, a) ∈ T × A,

∑
i∈N ui(ŝi(ti ), a

′
−i, t ) −

∑
i∈N ui(a

′, t ) >∑
i∈N ui(si(ti ), a−i, t ) −

∑
i∈N ui(a, t ) − ε holds for every a′ in some neighborhood in A of a.

37The term “strategic action” stems from discussions with Roger Myerson in our joint work on sequential
equilibria in infinite games, though we ultimately did not use the idea.
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Carbonell-Nicolau &McLean (2018) show that if BG is uniformly diagonally secure, thenDG
satisfies the hypotheses of Baye et al. (1993, theorem 1). So we can state the following result.

Theorem 17 (Carbonell-Nicolau & McLean 2018). Suppose that the absolutely con-
tinuous Bayesian game BG is compact. If BG is uniformly diagonally secure, then BG has a
Bayes-Nash equilibrium in behavioral strategies.

6. FURTHER REMARKS

6.1. Sharing-Rule Equilibria

An important topic not covered here is the sharing-rule approach pioneered by Simon & Zame
(1990). This approach is motivated by the fact that in many strategic settings, discontinuities in
payoffs arise because those payoffs are a reduced form of a dynamic game in which the bang-bang
optimal choices of later players reacting to small changes in the choices of earlier players lead to
large changes in the earlier players’ payoffs.

A good example is Bertrand duopoly.Discontinuities there arise only when the two firms’ prices
are the same. In that case, consumers are indifferent between the two firms.While it is customary
to assume that half of the consumers purchase from one firm and the other half purchase from
the other firm, there is no game-theoretic reason to compel this equal-split sharing rule. So it is
entirely reasonable to allow the actual split to be endogenous.

Considerations such as these led Simon & Zame (1990) to consider games in which payoffs are
not fully determined. Instead, payoffs are partially specified by a correspondence Q : X � R

|N |

where, following our usual notation, X = ×i ∈ NXi. They call (X, Q) a game with an endogenous
sharing rule and establish the following result. If each Xi is a nonempty, compact metric space,
and the correspondence Q : X � R

|N | has a compact graph and has nonempty and convex values,
then there is a measurable function u : X → R

|N | satisfying u(x) = (ui (x))i ∈ N ∈ Q(x) for every
x ∈ X and there is m∗ ∈ M such that m∗ is a mixed strategy Nash equilibrium of the game
G = (Xi, ui)i ∈ N.

There are many economic games in which discontinuities arise as the result of a particular
sharing rule, such as Bertrand competition, auctions, or voting. In each of these cases, Simon &
Zame’s (1990) endogenous sharing-rule approach can be a useful technique to employ.

A major advance in the sharing-rule approach was made by Jackson et al. (2002), who extended
Simon & Zame’s (1990) existence result to Bayesian games. One might think that this should be a
trivial exercise, consisting in simply applying Simon & Zame’s (1990) result to the distributional
strategic form of the given Bayesian game. However, this would not work, because the natural
payoff indeterminacies are indeterminacies in the underlying ex-post payoffs, while the strategic
form approach only gives payoffs as a function of behavioral strategy profiles, with no guarantee
that those payoffs can actually be obtained as expected utilities from a feasible selection of ex-post
utilities.

A second major issue in the Bayesian context is the players’ private information. Typically, the
endogenous sharing rule will be type dependent. For example, deciding which bidder in an auction
wins when bids are tied will typically depend on the tied bidders’ values. A good rule of thumb is
to break ties in favor of the bidder with the highest value (because this makes payoff sums upper
semicontinuous!). But because values are private information, we cannot necessarily rely on the
bidders to truthfully report their values when winning or losing is at stake. So it is not at all obvious
that there are implementable sharing rules that admit equilibria. Jackson et al. (2002) beautifully
solve this problem by showing that there always exists a sharing rule that, if type dependent, is
incentive compatible.
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There are interesting and subtle connections between the discontinuous games literature and
the sharing-rule approach (see, e.g., Balder 2011; de Castro 2011; Bich & Laraki 2017; Carmona
& Podczeck 2018a,b). Carbonell-Nicolau & Ok (2007) propose an interesting application.

6.2. More Discontinuous Game Topics

Some additional topics not touched upon here are listed below, with a short list of references.

1. Abstract economies, ordinal games. The following authors’ results apply to settings in
which the players’ preferences are given by binary relations instead of utility functions: Tian
(1992b,c), Tian & Zhou (1992, 1995), Carmona & Podczeck (2016), He & Yannelis (2016),
Prokopovych (2016), Reny (2016a,b).

2. Applications. The following authors show how the various results can be applied in prac-
tice: Dasgupta & Maskin (1986b), Jackson & Swinkels (2005), Carbonell-Nicolau & Ok
(2007), Duggan (2007), Monteiro & Page (2008), Jackson (2009), Barelli et al. (2013),
Olszewski & Siegel (2016, 2019, 2020), Scalzo (2019b).

3. Approximating games and equilibria. The following authors include results in which
equilibrium existence can be obtained by approximating the discontinuous game with a
sequence of finite games: Dasgupta & Maskin (1986a), de Castro (2010), Balder (2011),
Carmona (2011, 2013), Prokopovych (2011), Reny (2011), Bich & Laraki (2017).

4. Refinements. Carbonell-Nicolau (2011), Scalzo (2013), and Bich (2019) consider various
refinements of Nash equilibrium in discontinuous games.

5. Strategic complements, potential games.Kukushkin (2018) provides various Nash equi-
librium existence results for games with strategic complements and for potential games.

7. PROOFS

For any player i ∈ N, and for any subset S of X × X, let Di(S) := {y ∈ X : ui(z) > min (ui (x), ui(y))
for every (x, z) ∈ S}.

Lemma 1. For any player i ∈ N, and for any subsets S0 and S1 of X × X, either Di(S0) ⊆
Di(S1) or Di(S1) ⊆ Di(S0).

Proof. If the assertion is false, then there exist y0, y1 ∈ X such that (a) y0 ∈ Di(S0)\Di(S1)
and (b) y1 ∈ Di(S1)\Di(S0). By (a), we have: (a1) ui(z) > min (ui (x), ui(y0)) for every (x, z) ∈
S0, and (a2) ui(z1) ≤ min (ui (x1), ui(y0)) for some (x1, z1) ∈ S1. By (b), we have: (b1) ui(z) >

min (ui (x), ui(y1)) for every (x, z) ∈ S1, and (b2) ui(z0) ≤ min (ui (x0), ui(y1)) for some (x0, z0)
∈ S0.
Putting (x, z) = (x0, z0) in (a1) and combining the result with (b2) gives

min(ui(x0), ui(y0)) < ui(z0) ≤ min(ui(x0), ui(y1)),

and so min (ui (x0), ui(y0)) < min (ui (x0), ui(y1)), from which we conclude that ui(y0) < ui(y1).
Putting (x, z) = (x1, z1) in (b1) and combining the result with (b2) gives

min(ui(x1), ui(y1)) < ui(z1) ≤ min(ui(x1), ui(y0)),

and so min (ui (x1), ui(y1)) < min (ui (x1), ui(y0)), from which we conclude that ui(y1) < ui(y0).
This contradiction establishes the result. �
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Proof of Theorem 3. Since, by Remark 3, each of the conditions (a)–( j) implies condition
(k), it suffices to prove that a Nash equilibrium exists when condition (k) holds. So suppose
that (k) holds, i.e., suppose that G has the robust better-reply-correspondence property.
Also, suppose by way of contradiction that there is noNash equilibrium.Then, by the robust
better-reply-correspondence property, for every x ∈ X there is a neighborhood U x of x
and a nonempty-valued, convex-valued, closed correspondence bx : U � X [with bx(x′ ) =
×i∈Nbxi (x

′ ) for all x′ ∈ U x] such that, for every y ∈ U x, there is a player i ∈ N for whom

ui(zi, x′
−i ) > min(ui(x′ ), ui(y)) for every x′ ∈Ux and for every zi ∈ bxi (x

′ ). 12.

Since X is a compact Hausdorff space, for each x ∈ X there is an open set that contains x and
whose closure, C x, is contained in U x. So for every x ∈ X, C x is a closed subset of U x and
the interior of C x, denoted intC x, contains x. So {intC x}x ∈ X is an open cover of X. Since X
is compact, there is a finite subcover, {intC k}k ∈ K, where K is some finite subset of X.

For any player i ∈ N, and for any k ∈ K, we need several definitions. First, define Di,k :=
{y ∈ X : ui(zi, x′

−i ) > min(ui(x′ ), ui(y)) for every x′ ∈ U k and for every zi ∈ bki (x
′ )}. So Di, k

is the set of y ∈ X such that Equation 12 holds for x = k there. Next, define Qi, k := C k

� (�j(X\intC j)), where the intersection in parentheses is over those j ∈ K such that Di, k

does not contain Di, j. Then Qi, k is a closed subset of X, being the finite intersection of
closed sets. Finally, define Fk

i (y) := bki (y) if y ∈ Qi, k, and define Fk
i (y) := ∅ otherwise. Then

the correspondence Fk
i : X � Xi has a closed graph because Qi, k is closed and because bki

has a closed graph. Also, Fk
i is convex-valued because each bki is convex-valued and because

the empty set is trivially convex.38

For any player i ∈ N and for any y ∈ X, define Fi(y) := {xi ∈ Xi. There exists some
nonnegative vector (λk)k ∈ K with

∑
κ ∈ Kλk = 1 such that λk > 0 implies Fk

i (y) �= ∅ and such
that xi ∈ ∑

k∈K λkFk
i (y)}.Then,Fi :X�Xi has a closed graph becauseK is finite and because

each Fk
i has a closed graph with values that are subsets of the compact set Xi. Also, Fi is

convex-valued because each Fk
i is convex-valued.We next show that Fi is nonempty-valued.

Consider any i ∈ N and any y ∈ X. We must show that Fi(y) is nonempty. By Lemma 1,
for every k, j ∈ {1, . . . , K}, we have either Di, k ⊆ Di, j or Di, j ⊆ Di, k.39 Consequently, the sets
Di, k for k ∈ K are totally ordered by set inclusion. Therefore, because there is at least one j
with y ∈ intC j ({intC k}k ∈ K covers X ), there is k∗ ∈ K such that Di,k∗ is the largest set among
all of the sets Di, j such that y ∈ intC j. Hence, we have y ∈ Qi,k∗ , since by the definition of
k∗, y ∈ intCk∗ ⊆ Ck∗ and Di,k∗ ⊇ Di, j for every j ∈ K such that y ∈ intC j. Consequently, we
obtain Fk∗

i (y) = bk∗i (y), and therefore, because Fi(y) ⊇ Fk∗
i (y) = bk∗i (y) and because bk∗i (y) is

nonempty, we may conclude that Fi(y) is nonempty.
So for every player i ∈ N, Fi is nonempty-valued, convex-valued, and has a closed graph.

Therefore, by Glicksberg’s (1952) theorem, the correspondence ×i ∈ NFi : X� X has a fixed
point, y∗ ∈ ×i ∈ NFi(y∗).40 Since {intC k}k ∈ K covers X, there is k0 ∈ K such that y∗ ∈ intCk0 ⊆
Uk0 . Hence, there is a player i0 ∈ N such that Equation 12 holds for player i0 when the x
there is set equal to k0 and the y there is set equal to y∗. Consequently, we have y∗ ∈ Di0,k0 .

38As an aside, let us remark here that, under any one of the conditions (a)–(d), ( f ), or (h), there is a finite
subset Xk

i of Xi such that Fki (y) ⊆ coXk
i for every y ∈ X, a condition that we can describe by saying that Fki is

polyhedral.
39To apply Lemma 1, for each k ∈ K, let Si, k := {(x′, z) ∈ Uk × X : x′ ∈ Uk, z−i = x′

−i and zi ∈ bki (x
′ )}. Then

observe that the set Di(Si, k) defined just before Lemma 1 is equal to Di, k here.
40Continuing with the aside in footnote 38, when each Fki is polyhedral we do not actually need to assume that
theXi are locally convex, since in that case we can use Kakutani’s (1941) theorem instead of Glicksberg’s (1952)
theorem. The proofs of the main results found by Reny (1999) and McLennan et al. (2011) are instances of
this technique.

www.annualreviews.org • Nash Equilibrium in Discontinuous Games 465

A
nn

u.
 R

ev
. E

co
n.

 2
02

0.
12

:4
39

-4
70

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 U
ni

ve
rs

ity
 o

f C
hi

ca
go

 L
ib

ra
rie

s o
n 

08
/0

5/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Since y∗i0 ∈ Fi0 (y
∗ ), the definition of Fi0 (y

∗ ) implies that y∗i0 can be written as a convex
combination,

∑
λkxki0 , such that for every k with λk > 0, xki0 ∈ Fk

i0 (y
∗ ) = bki0 (y

∗ ) and therefore
y∗ ∈ Qi, k, which implies that y∗ ∈ C k and Di0,k ⊇ Di0,k0 (the latter since y∗ ∈ intCk0 ). In
particular, since y∗ ∈ Di0,k0 , we have y∗ ∈ Di0,k for every k such that λk > 0. Hence, if λk > 0,
then we have y∗ ∈ C k and, because y∗ ∈ Di0,k,

ui0 (zi0 , x
′
−i0 ) > min(ui0 (x

′ ), ui0 (y
∗ )) for every x′ ∈Uk and every zi0 ∈ bki0 (x

′ ). 13.

In particular Equation 13 is satisfied when x′ = y∗ and zi0 = xki0 , since y
∗ ∈ C k ⊆ U k and

since xki0 ∈ Fk
i0 (y

∗ ) = bki0 (y
∗ ). But this means that ui0 (x

k
i0
, y∗−i0 ) > ui0 (y

∗ ) for every k such that
λk > 0. The quasiconcavity of ui0 (·, y∗−i0 ), together with y∗i0 = ∑

λkxki0 , yields the contradic-
tion ui0 (y

∗ ) > ui0 (y
∗ ). �

Proof of Theorem 6. It suffices to follow the proof of Theorem 3, but with the follow-
ing adjustments. First, notice that Lemma 1 holds when Di(S) is redefined as Di(S) := {y ∈
X. For each (x, z) ∈ S, we then have either xi /∈ co{wi : ui(wi, x−i) ≥ ui(z)} or yi /∈ co{wi :
ui(wi, y−i) ≥ ui(z)}}.41 Second, replace the occurrence of any inequality of the form ui(a) >

min (ui(b), ui(c))—as occurs in Equations 12 and 13 and in the definition of Di, k—with
bi /∈ co{wi : ui(wi, b−i) ≥ ui(a)} or ci /∈ co{wi : ui(wi, c−i) ≥ ui(a)}. Third, replace the definition
Fk
i (y) := bki (y) with F

k
i (y) := cobki (y), and notice that because the bki correspondences can be

chosen to be coclosed, each correspondence Fk
i is closed and has convex values. Finally, re-

place the last two sentences of the proof with the following two sentences: “But this means
that y∗i0 /∈ co{wi0 : ui0 (wi0 , y

∗
−i0 ) ≥ ui0 (x

k
i0
, y∗−i0 )} for every k such that λk > 0. In particular,

choosing k̄ to solve mink:λk>0 ui0 (x
k
i0
, y∗−i0 ), we have xki0 ∈ {wi0 : ui0 (wi0 , y

∗
−i0 ) ≥ ui0 (x

k̄
i0
, y∗−i0 )}

for every k with λk > 0, and we have y∗i0 /∈ co{wi0 : ui0 (wi0 , y
∗
−i0 ) ≥ ui0 (x

k̄
i0
, y∗−i0 )}, which, taken

together, contradict the fact that y∗i0 = ∑
λkxki0 .” �

Proof of Theorem 15. Suppose, by way of contradiction, thatBG has no Bayes-Nash equi-
librium. Then, for every s ∈ S, because s is not a Bayes-Nash equilibrium and because G has
the finite strategic-action better-reply property, there are finite sets of behavioral strate-
gies Fs

1 ⊆ S1, . . . ,Fs
|N | ⊆ S|N |, and there is a weak∗ neighborhood U s ⊆ X of (si ∗ pi)i ∈ N ∈

X such that for every s′ ∈ S with (s′i ∗ pi )i∈N ∈Us, there is a player i and there is ŝi ∈ Si such
that ŝi(·|ti ) ∈ {s̄i(·|ti ) : s̄i ∈ Fi} for every ti ∈ Ti, and Vi(ŝi, s′−i ) > Vi(s′ ).

Since every x ∈ X is of the form x = (si ∗ pi)i ∈ N for some s ∈ S, the collection of weak∗

open sets {U s}s ∈ S covers X. Since X is weak∗ compact there is a finite subcover. Thus, there
is a finite subset K of S such that {U k}k ∈ K covers X.

For each player i, define Fi := ∪k∈KFk
i . Hence, each Fi is a finite subset of Si. Consider a

surrogate Bayesian gameBG∗ that is identical toBG, except that each player i’s action set is Fi
instead ofAi, and each player i’s payoff function is v∗

i : (×i∈NFi ) × T → R instead of vi : A×
T → R, where v∗

i (s, t ) := vi(s(t ), t ) for each s ∈ ×i ∈ NFi and for each t ∈ T. Consequently,
BG∗ is an absolutely continuous Bayesian game in which each player’s action set is finite.
Following Balder (1988, theorem 3.1), BG∗ has a Bayes-Nash equilibrium, σ ∗, where σ ∗ =
(σ ∗

i )i∈N , and each σ ∗
i : Ti → 
(Fi ) is a transition probability.

41The proof of Lemma 1 proceeds as before. Then, the analogues of (a1) and (b2) imply that y0i /∈ co{wi :
ui (wi, y0−i ) ≥ ui (z0)} and y1i ∈ co{wi : ui(wi, y1−i ) ≥ ui (z0)}, and the analogues of (a2) and (b1) imply that y0i ∈
co{wi : ui (wi, y0−i ) ≥ ui(z1)} and y1i /∈ co{wi : ui (wi, y1−i ) ≥ ui (z1)}. The first and third of these imply that
ui(z0) > ui(z1), and the second and fourth imply that ui(z1) > ui(z0). This contradiction proves the lemma.
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For each player i ∈ N, define s′i ∈ Si so that for every ti ∈ Ti and for every Borel subset C
of Ai, we have

s′i (C|ti ) :=
∑
si∈Fi

σ ∗
i ({si}|ti )si(C|ti ).

Since s′ ∈ S, we have (s′i ∗ pi )i∈N ∈ X . Therefore, since {U k}k ∈ K covers X, there is k ∈ K such
that (s′i ∗ pi )i∈N ∈Uk. Then, by the properties of the sets Fk

1 , . . . ,F
k
|N |, there is a player i and

there is ŝi ∈ Si such that, for every ti ∈ Ti, we obtain

ŝi(·|ti ) ∈ {s̄i(·|ti ) : s̄i ∈ Fk
i } 14.

and

Vi(ŝi, s′−i ) > Vi(s′ ). 15.

By Equation 14, we may let [ŝi] denote the feasible behavioral strategy for player i in BG∗

that, for each ti ∈ Ti, gives probability 1 to the element s̄i ∈ Fk
i that satisfies ŝi(·|ti ) = s̄i(·|ti ).42

Then, we have

V ∗
i ([ŝi], σ

∗
−i ) = Vi(ŝi, s′−i ) > Vi(s′ ) = V ∗

i (σ
∗ ),

where the two equalities follow from the definitions of [ŝi] and s′, and the inequality follows
from Equation 15. But then V ∗

i ([ŝi], σ
∗
−i ) > V ∗

i (σ
∗ ) contradicts the fact that σ ∗ is a Bayes-

Nash equilibrium of BG∗. �
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