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a b s t r a c t 

Grain boundaries (GBs) play a critical role in the formation of microstructure during materials processing 

and its subsequent evolution under service conditions. While GB misorientation is commonly used to 

describe the boundary’s properties, a more complete description should also account for the GB plane 

normal, in which the GB stiffness is the relevant property controlling many GB dynamical processes. 

Herein, we leverage published atomistic simulation data to construct the full GB energy–plane normal 

diagrams for �5, 7, 9, and 11 GBs in Ni. The functional fits are used to obtain a complete mapping 

of the GB stiffness as a function of the plane normal, construct the equilibrium shapes, and determine 

the driving force for GB migration. It is shown that the GB stiffness can be larger in magnitude and 

more anisotropic than the energy itself. Further, many boundary inclinations are found to exhibit negative 

stiffness, indicating propensity for faceting. Results from our GB stiffness analysis are shown to be in 

qualitative agreement with experimental GB plane normal distributions in polycrystalline Ni. In broad 

terms, our results provide future avenues to account for the plane normal dependency of GB properties 

in mesoscale treatments of GB migration and microstructural evolution. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Many problems in materials synthesis and processing can be 

ast as moving boundary problems [1] . An essential feature these 

roblems have in common is the presence of materials interfaces, 

hose evolution over time greatly influences the formation and 

ubsequent evolution of microstructure. Some prominent exam- 

les include crystal growth [2,3] , sintering kinetics [4,5] , precip- 

tate coarsening [6] , and electrodeposition [7] . In such problems, 

overning equations, typically in the form of differential equations, 

re derived to describe the dynamics of the materials system, and 

dditional boundary conditions are prescribed on the moving in- 

erface in terms of the boundary’s properties [8,9] . 

Of particular interest to many annealing treatments of polycrys- 

alline metals is the migration of grain boundaries (GBs), as it con- 

rols the evolution of texture and grain size distribution and, as a 

esult, the observable properties of these materials systems [10–

2] . An accurate and predictive mesoscopic description of such 
∗ Corresponding author at: Department of Mechanical Engineering, Clemson Uni- 

ersity, Clemson, South Carolina 29634, USA. 
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359-6454/© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
rocesses requires as input several GB properties (e.g., energy and 

obility) and their associated anisotropies. The GB geometry is 

haracterized by eight degrees of freedom (DOF); five are termed 

acroscopic, and the other three are microscopic [13] . The micro- 

copic DOF describe mutual translations of the two abutting grains 

aking up the GB parallel and perpendicular to the GB plane. The 

ve macroscopic DOF are divided into three describing the GB mis- 

rientation and two defining the GB plane normal n , or inclina- 

ion [14,15] . 

Numerous studies have demonstrated the dependence of 

B properties, such as energy [16] , mobility [17] and self- 

iffusion [18] , and other GB-related phenomena, including defect 

ucleation from [19,20] and defect interactions with GBs [21,22] , 

n the GB geometric DOF. Theoretical [8,23–25] and computa- 

ional [26–28] studies have shown that when considering the GB 

lane normal n , the interface stiffness, which not only depends 

n the GB free energy but also on its gradients with respect to 

 , is the thermodynamic property relevant to many GB dynamical 

rocesses [29–31] . One such example that demonstrates the role 

f GB plane normal is the classic work of Hsieh and Balluffi [30] , 

n which GBs with prescribed misorientation DOF were shown to 

https://doi.org/10.1016/j.actamat.2021.117220
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.117220&domain=pdf
mailto:fabdelj@clemson.edu
https://doi.org/10.1016/j.actamat.2021.117220
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Fig. 1. (a) A configuration of a GB plane at a reference inclination (left) and one that is inclined by an angle θ (right). (b) The spherical coordinate system used in this work, 

where θ and φ denote the polar and azimuthal angles, respectively. 
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ransform from a structure with a single plane normal to one made 

f two facets, each with a well defined plane normal, analogous to 

 single phase transforming to two phases. Because of this anal- 

gy, these distinct GB states are referred to as GB phases. Cahn 

rovided a detailed thermodynamic analysis of GB phases and pos- 

ible types of phase transitions, including ones driven by the GB 

lane normal DOF [32] . 

While GB properties and associated anisotropies have been the 

ubject of active research, detailed calculations and analysis of the 

B stiffness have been limited. From a computational point of 

iew, determination of the GB stiffness requires a knowledge of 

ot only the energy at the inclination of interest, but also higher 

rder energy gradients with respect to n . As a result, a complete 

apping of GB energy is needed, which requires free energy cal- 

ulations at a prescribed temperature for many inclinations. This 

tep has limited the determination of the GB stiffness, as it re- 

uires a substantial computational effort. To the best of our knowl- 

dge, only two studies, one employing the capillary fluctuation 

ethod [33] and the other using curvature-driven flow of well- 

ontrolled geometries [34] , have been used to calculate the stiff- 

ess of specific GB inclinations. Schratt et al. [35] employed quasi- 

quilibrium grain shapes from atomistic simulations to calculate 

he inclination dependency of the interface energy for several GBs. 

ery recently, Abdeljawad et al. [36] provided a complete mapping, 

r a tensorial description, of the GB stiffness as a function of the 

lane normal DOF for �3 GBs. 

The goal of this study is to provide theoretical analysis and ana- 

ytical calculations of the GB stiffness and its role in GB migration. 

o this end, we leverage recent high throughput atomistic calcula- 

ions of GB energy in Ni to construct and obtain analytical fits of 

he GB energy-plane normal diagram. The fits are then used to cal- 

ulate the GB stiffness as a function of the complete plane normal 

OF and the resultant GB equilibrium shapes. As a demonstration, 

he interface stiffness is calculated for the �5 , 7 , 9 , and 11 GBs in

i. The rest of the manuscript is organized as follows: Theory and 

nalysis are presented in Section 2 , where Section 2.1 presents the 

heoretical aspects of the GB stiffness and Section 2.2 presents the 

pplication to several GBs in Ni. The results and discussion are pre- 

ented in Section 3 . Finally, Section 4 provides concluding remarks 

nd summary of the work. 

. Theory and analysis 

.1. The interface stiffness tensor 

We first begin with a two-dimensional (2D) demonstration in 

rder to highlight the role of GB stiffness. Figure 1 (a) depicts two 
t

2 
onfigurations of a GB, where the first is a system with a flat GB 

rofile at its local equilibrium and the second is one with an in- 

lined GB that makes an angle θ with respect to the initial GB 

rofile. With this geometry, the misorientation DOF are fixed and 

he GB free energy can be parametrized as γ ( n ) = γ (θ ) . Follow- 

ng the treatment of Cabrera [37] and Privman [38] , it is shown 

n Appendix A that the energy change �γ as the GB changes its 

rofile from the one in configuration 1 to that in configuration 2 is 

iven by 

γ = 

1 

2 

( γ + γθθ ) θ2 + · · · , (1) 

here γθθ = ∂ 2 γ /∂θ2 and γ is measured in the reference state, 

.e., configuration 1. It can be seen from Eq. 1 that the magnitude 

f the GB stiffness, γ + γθθ , controls the energy change and its 

ign provides a measure of interface stability. If γ + γθθ > 0 , then 

ny distortion in the GB profile increases the energy. On the other 

and, γ + γθθ < 0 leads to an unstable equilibrium case, where 

istortions in the GB profile lead to a decrease in the energy. 

We now shift our attention to three-dimensional geome- 

ries, where the GB is in general a curved surface. In their 

on-equilibrium thermo-mechanics treatment of problems in- 

olving moving boundaries with anisotropic properties, Gurtin 

t al. [8,24,25,39] arrived at sharp interface equations involving the 

nterface stiffness tensor �(n ) given by 

(n ) = γ I + ∇ n ∇ n γ , (2) 

here again γ is the interface free energy, I is the identity tensor 

nd ∇ n is the surface gradient with respect to n on the surface 

f a unit sphere in R 

3 . Using the spherical coordinate system [re- 

er to Fig. 1 (b)], the GB plane normal n can be parametrized us- 

ng the polar θ and azimuthal φ angles such that �( n ) = �(θ, φ) . 

ith this parametrization, diagonalization of � leads to the fol- 

owing for the principal values, or eigenvalues, (λ1 , λ2 ) of the GB 

tiffness tensor for gently varying GB energy profiles [36] 

1 = γ + γθθ , (3a) 

2 = γ + γφφ, (3b) 

here again γθθ = ∂ 2 γ /∂θ2 and γφφ = ∂ 2 γ /∂φ2 . As noted above, 

he stiffness reduces to γ + γθθ in 2D systems. It can be seen from 

qs. (2) and (3) that for the interface stiffness to be defined, the 

nterface energy has to be twice differentiable with respect to the 

pherical angles. Cusps in the interface energy-inclination profile 

epresented by an analytical function will therefore require regu- 

arization. For example, in problems involving faceted solidification 

ebierre et al. [40] introduced smooth functions around cusps in 

he solid-liquid interface energy-inclination diagram. 
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Several geometrical means to characterizing the plane normal 

ependency of the interfacial energy and resultant equilibrium 

hapes have been proposed and used, including the classic Wullf 

onstruction [41] , Herring tangent spheres [42,43] , inverse- γ dia- 

rams [42] , and Cahn and Hoffman’s ξ -capillarity vector [44,45] . 

ith the tangent sphere approach, the equilibrium shape is con- 

tructed from the locus of sphere centers passing through the ori- 

in, touching the γ surface and lying within it. The inverse- γ di- 

gram is a polar diagram of the reciprocal of the interface free 

nergy, i.e., the { n γ −1 } plot. The ξ -capillarity vector is defined 

y [44,45] 

≡ ∇ [ rγ ( θ, φ) ] = γ ˆ e r + γθ ˆ e θ + 

1 

sin θ
γφ ˆ e φ, (4) 

here ˆ e r , ˆ e θ , and 

ˆ e φ are the unit vectors along the radial, po- 

ar, and azimuthal directions, respectively and the ∇ operator 

s expressed in spherical coordinates. Boundary inclinations with 

egative interface stiffness values, or so-called forbidden orienta- 

ions [46,47] , correspond to non-convex regions of { n γ −1 } [42] or 

ars (i.e., multivaluedness) in the ξ -vector [28,4 8,4 9] . 

Several interfacial instabilities arise due to negative inter- 

ace stiffness [43,50,51] . A flat interface will spontaneously break 

p into facets, or hill-and-valley structures, with facet junc- 

ions/corners connecting them if its initial inclination is not 

art of the Wulff equilibrium shape. Cabrera [37] examined in- 

erface energy-inclination diagrams and showed that faceting is 

n interface structural transition, similar to phase separation 

n immiscible bulk systems. Angenent and Gurtin [24] investi- 

ated the structural stability of moving boundaries and classi- 

ed them as strictly stable, stable, or unstable according to γ + 

θθ > 0 , γ + γθθ ≥ 0 , and γ + γθθ < 0 . Several studies examined

he evolution of interfaces with highly anisotropic properties and 

ven ones exhibiting negative stiffness values for some range 

f inclinations [26,28,29,40,47,49,52–55] . Fig. 2 , and Video 2 shows 

n animation illustrating the above-mentioned vector thermody- 

amic techniques assuming an interface energy of the form γ = 

 + ε cos (4 θ ) , where ε = 0 . 2 (notice ε > 1 / 15 leads to negative

tiffness). In the video, the GB energy is colored by the stiffness, 

here red (blue) denotes positive (negative) stiffness. 

Supplementary video related to this article can be found at 

ttps://doi.org/10.1016/j.actamat.2021.117220 . 
ig. 2. An animation depicting the various vector thermodynamic treatments of the 

lane normal dependency of the interface free energy. For this 2D demonstration, 

(θ ) = 1 + 0 . 2 cos (4 θ ) . The GB energy is colored by the stiffness, where red (blue) 

enotes positive (negative) stiffness. For interpretation of the references to color in 

his figure legend, the reader is referred to the web version of this article. 
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We now shift our attention to GB dynamics. Assuming isother- 

al conditions with no bulk driving forces, Gurtin’s treat- 

ent [8,39] yields the following for the GB normal velocity 

 n = M gb �(n ) : K = M gb [ γK + ( ∇ n ∇ n γ ) : K ] , (5) 

here M gb is the GB mobility, K = −∇ s n is the curvature tensor of

he interface s [8] , A : B is the usual tensor double dot product, and

 = tr (K ) is the trace of the curvature tensor (i.e., twice the mean

urvature) [8] . In 2D systems, this treatment reduces to a kinetic 

aw of GB migration described by V n = M gb ( γ + γθθ ) K [23,50,56] . 

urther, under the isotropy assumption, Eq. (5) reduces to V n = 

 gb γK corresponding to the widely used kinetic law for GB mi- 

ration [57] . In cases where the eigenvectors of the stiffness and 

urvature tensors align, � : K = λ1 κ1 + λ2 κ2 , where (κ1 , κ2 ) cor- 

esponds to the principal curvatures and, as a result, Eq. 5 above 

educes to 

 n = M gb 

[
(γ + γθθ ) κ1 + (γ + γφφ ) κ2 

]
. (6) 

n the other hand, when the eigenvectors of the stiffness and cur- 

ature tensors do not align, then the stiffness tensor should be 

ransformed in accordance with tensor transformation laws [27] . 

owever, for the remainder of this study, the principal stiffness 

alues λ1 = γ + γθθ and λ2 = γ + γφφ will be used to examine 

B stability and driving force for migration, as these represent 

he largest and smallest possible values of the interface stiffness. 

 close examination of Eq. (6) above shows that the GB stiff- 

ess affects GB migration in two main ways. First, the GB stiffness 

eviates in magnitude and degree of anisotropy from the inter- 

ace energy. For example, in solidification problems several studies 

n solid-liquid interfaces have shown that the interface stiffness 

s much more anisotropic than the interface energy itself [3,58] . 

he second role deals with the sign of GB stiffness, where in 2D 

+ γθθ < 0 indicates a structural instability of the interface with 

espect to faceting [24] . In general, non-faceted GBs are rough and 

re thought to move without a barrier to reduce curvature [59] . 

f a faceted interface includes a singular orientation, it moves to 

educe the weighted mean curvature and there might be a nucle- 

tion energy barrier to migration [59,60] . 

.2. Application to GBs in Ni 

In this section, the principal stiffness values λ1 and λ2 of sev- 

ral GBs in Ni will be used to elucidate deviations of the GB stiff- 

ess from the GB energy in terms of both magnitude and degree 

f anisotropy, and how such deviations impact the driving force for 

B migration. 

Our approach in calculating the principal stiffness values 

s as follows: First, we leverage recent high throughput pub- 

ished atomistic data of GB energy in Ni to map out the GB 

nergy-plane normal surface, where again the boundary normal 

s parametrized by the polar θ and azimuthal φ spherical an- 

les. Olmsted et al. [16,17] performed atomistic simulations of bi- 

rystals to calculate the 0 K GB energy in Ni, and their calculations 

howed excellent agreement with experimentally obtained GB en- 

rgies [61] . In this work, the published GB energy data of Olm- 

ted [16] for the �5 , 7 , 9 , and 11 GBs, where 1 / � represents the

atio of lattice points that are in coincidence (i.e., the coincidence 

ite lattice description [13] ), will be used. Second, with the aid of 

he fundamental zone concept in systems exhibiting multiplicity 

f rotations [62] , the atomistic data will be used to map the full 

nergy-plane normal space. Based on the treatment of Patala and 

chuh [63] , Homer et al. [64] constructed a set of regions in plane

ormal space in which indistinguishable rotations are represented 

nly once. Finally, twice-differentiable basis functions of the spher- 

cal angles θ and φ will be used to fit the atomistic GB energy data, 

hich will then be used in the stiffness calculations. It is worth 

doi:10.1016/j.actamat.2021.117220
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Fig. 3. The GB energy as a function of the plane normal n for (a) �5 , (b) �7 , (c) 

�9 , and (d) �11 GBs. Here, n = n (θ, φ) , refer to Fig. 1 (b) for the spherical angle 

convention used in this work. The polar and azimuthal angles are respectively mea- 

sured from: [100] and [0 ̄1 3] for �5 ; [111] and [4 ̄5 1] for �7 ; [110] and [1 ̄1 4] for �9 ; 

and [110] and [1 ̄1 3] for �11 GBs. For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article. 
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oting that while several options for basis function sets are avail- 

ble to expand the energy surface γ (n ) , computational efficiency 

s considered here, as such functional fits serve as key input pa- 

ameters in several mesoscale models of microstructural evolution, 

uch as phase field [65,66] , front tracking [67] , and Potts [66,68] . In

ddition to the goodness of the energy fits, the number of function 

valuations and their computational tractability are considered. In 

his work, least square fitting using real-valued 2D Fourier series 

refer to Appendix B ] is employed to fit the atomistic data. 

.3. Published experimental observations 

Our theoretical analysis and analytical calculations will be 

ompared with experimentally determined GB plane distributions 

GBPDs), which quantify the relative areas of GB planes as func- 

ion of the GB five macroscopic DOF. We will use the GBPDs of Ni

easured by Randle et al. [69] and focus specifically on the dis- 

ribution of GB planes at the �5, 7, 9 and 11 misorientations. This 

ata is available from the GB Data Archive [70] . The data used here

as derived from Ni in a reference state, before GB engineering, 

s described by Randle et al. [69] . Electron backscatter diffraction 

EBSD) with a step size of ∼ 2 μm was used to map the shapes

nd orientations of more than 20,0 0 0 grains. Individual areas of 

-4 mm 

2 were recorded for a total mapped area of ∼ 120 mm 

2 . 

rom the orientation maps, more than 8 . 3 × 10 5 GB traces were 

easured. Here, it is worth noting that due to the spatial res- 

lution of EBSD, nanoscale faceted GBs and their plane normals 

ere not resolved and only the average plane normal across any 

anoscale facets was reported. The GBPD was then calculated from 

hese data using an established stereological procedure [71] . The 

BPD at each misorientation includes boundaries within ±5 ◦ of the 

deal orientation. The relative areas of GB planes are given in units 

f multiples of a random distribution (MRD); 1 MRD is equivalent 

o the area expected in a random, isotropic distribution and val- 

es greater (less) than unity correspond to orientations with more 

less) area than expected in a random distribution. 

. Results and discussion 

We begin by obtaining functional fits for the GB energy γ (θ, φ) 

or �5 , 7 , 9 , and 11 GBs in Ni using the atomistic data by Olm-

ted et al. [16] . Using the convention in Fig. 1 (b), the polar and

zimuthal angles are respectively measured from: [100] and [0 ̄1 3] 

or �5 ; [111] and [4 ̄5 1] for �7 ; [110] and [1 ̄1 4] for �9 ; and [110]

nd [1 ̄1 3] for �11 GBs. Our functional fits [refer to Appendix B ] for

he energy surface of these GBs are given by 

�5 
(θ, φ) = α0 + α1 sin (θ ) + α2 sin (3 θ ) + α3 cos (4 φ) 

+ α4 cos (8 φ) + α5 sin (θ ) cos (4 φ) + α6 sin (θ ) cos (8 φ) 

+ α7 sin (3 θ ) cos (4 φ) + α8 sin (3 θ ) cos (8 φ) , (7a) 

�7 
(θ, φ) = α0 + α1 sin (θ ) + α2 cos (3 φ) + α3 cos (6 φ) 

+ α4 sin (θ ) cos (3 φ) + α5 sin (θ ) cos (6 φ) , (7b) 

R  

Table 1 

Values of the fitting parameters { αi : i = 0 , . . . , 8 } in E
data for �5 , 7 , 9 , and 11 GBs in Ni. 

GB Energy Fitting Parameters [ 10 −3 Jm 

−2 ] 

� α0 α1 α2 α3 α4 

5 956.5 244.4 -93.34 3.376 -3.2

7 490.8 715.9 -0.3512 3.104 0.41

9 1639 -671.9 -212.8 -97.31 175

11 1346 -399.4 -104.2 38.43 16.1

4 
�9 
(θ, φ) = α0 + α1 sin (θ ) + α2 cos (2 θ ) + α3 cos (4 θ ) 

+ α4 cos (2 φ) + α5 sin (θ ) cos (2 φ) 

+ α6 cos (2 θ ) cos (2 φ) + α7 cos (4 θ ) cos (2 φ) , (7c) 

�11 
(θ, φ) = α0 + α1 sin (θ ) + α2 cos (4 θ ) + α3 cos (2 φ) 

+ α4 cos (4 φ) + α5 sin (θ ) cos (2 φ) 

+ α6 sin (θ ) cos (4 φ) + α7 cos (4 θ ) cos (2 φ) 

+ α8 cos (4 θ ) cos (4 φ) , (7d) 

here γ
�5 

, γ
�7 

, γ
�9 

, and γ
�11 

denote the energy functions for 

5 , 7 , 9 , and 11 GBs, respectively. Here, { αi : i = 0 , · · · , 8 } are the

tting coefficients, whose values are listed in Table 1 . The func- 

ion fits in Eq. (7) result in R 2 values of 0.9809, 0.9949, 0.9147, and

.9775 for �5, 7, 9, and 11 GBs, respectively. Here, we note that 

q. (7) incorporates the symmetries of these GBs [63] and, as a re- 

ult, the structure of the fits holds for all FCC metals. However, the 

agnitude of the fitting coefficients will depend on the material 

ype and temperature. Holm et al. [72] showed that the energy of 

any GB types in several FCC metals is scaled by the metal’s shear 

odulus. 

Plots of the GB energy surface using the fits in Eq. (7) are 

hown in Fig. 3 for �5 [ Fig. 3 (a)], �7 [ Fig. 3 (b)], �9 [ Fig. 3 (c)],

nd �11 [ Fig. 3 (d)] GBs. As discussed above, the symmetries used 

o construct γ (θ, φ) for each GB followed the approach by Patala 

nd Schuh [63] and Appendix B provides a description of the pro- 

ess of expanding γ using Fourier series of θ and γ . The reader 

s referred to the Supplementary Material Section for the Matlab 

2019a [73] scripts used to generate the plots in Fig. 3 . Again, the
q. (7) that are used to fit the atomistic energy 

α5 α6 α7 α8 

54 -45.89 11.98 -13.45 9.354 

01 2.936 — — —

.1 -415.4 -148.6 -25.67 —

3 -308.0 -91.75 -38.37 -16.05 
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Fig. 4. Representative slices from the GB energy surfaces shown in Fig. 3 for (a) �5 , 

(b) �7 , (c) �9 , and (d) �11 GBs in Ni. The plots show the atomistic simulation data 

(markers) from the study by Olmsted et al. [16] and the fits (solid lines) using Eq. 

(7). For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article. 
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eference polar and azimuthal axes for each GB are respectively: 

100] , [0 ̄1 3] for �5 ; [111] , [4 ̄5 1] for �7 ; [110] , [1 ̄1 4] for �9 ; and

110] , [1 ̄1 3] for �11 GBs. For each GB energy plot, the polar z-axis

s chosen to align with the misorientation axis, which makes the 

eference axis for the azimuthal angle a symmetric tilt GB orien- 

ation. Further, at the polar angle θ = π/ 2 , the azimuthal angle φ
races out the zone of tilt GBs. Variations in the GB energy by up 

o ≈ 50%, 200%, 50%, 300% for �5 , 7 , 9 , and 11 GBs, respectively,

an be observed as a function of GB plane normal. For the �5 and

 GBs, the energy is a weakly varying function of the azimuthal 

ngle [cf. Fig. 3 (a) and (b)]; however, a more pronounced depen- 

ency on the azimuthal angle can be seen for �9 and 11 GBs. Fur- 

her, low-energy GBs with plane normals of 〈 100 〉 , 〈 111 〉 , 〈 114 〉 , and

 113 〉 , corresponding to �5 , 7 , 9 , and 11 GBs, respectively, can be

een. 

To demonstrate the goodness of our GB energy fits, representa- 

ive slices of the GB energy surface γ (θ, φ) are shown in Fig. 4 for
ig. 5. For the �5 GB in Ni, principal stiffness values (a) γ + γθθ and (b) γ + γφφ . (c) A 

rincipal stiffness values. For interpretation of the references to color in this figure legend

5 
5 [ Fig. 4 (a)], �7 [ Fig. 4 (b)], �9 [ Fig. 4 (c)], and �11 [ Fig. 4 (d)]

Bs. The markers correspond to the atomistic data points from the 

tudy by Olmsted et al. [16] and the solid lines are the energy fits 

sing Eq. (7). In all panels of Fig. 4 , the solid red lines correspond

o the slice θ = π/ 2 , describing energy variations along the az- 

muthal direction. For the �5 GB, the azimuthal slices φ = 0 , π/ 4 

re shown in Fig. 4 (a) as these exhibit the largest energy vari- 

tions along the polar directions. For the �7 GB, the azimuthal 

lices φ = π/ 6 , π/ 2 are shown in Fig. 4 (b), while the azimuthal

lices φ = 0 , π/ 2 , describing the largest variations along the polar 

irections are shown in Fig. 4 (c) and (d) for the �9 and 11 GBs,

espectively. The low-energy �11 { 113 } GB can be seen in Fig. 4 (d).

t can be clearly seen that the functional forms in Eq. (7) provide 

n excellent fit to the atomistic data. 

Next, the functional fits in Eq. (7) are used to calculate the prin- 

ipal GB stiffness values λ1 = γ + γθθ and λ2 = γ + γφφ describing 

he driving force for GB migration, and the results are shown in 

igs. 5 , 7 , 9 , 11 for �5 , 7 , 9 , and 11 GBs, respectively. Based on the

nergy fits in Eq. (7), the spatial gradients of the GB energy are 

unctions of θ and φ and, as a result, the principal stiffness values 

1 and λ2 are also functions of both θ and φ. 

We first start with the �5 GB, where Fig. 5 shows the GB stiff- 

ess results. Fig. 5 (a) depicts a surface plot of λ1 = γ + γθθ , where

t can be seen that a wide range of GB plane normals that are 

oplanar with the 〈 013 〉 and 〈 021 〉 directions are characterized by 

mall and some are negative γ + γθθ stiffness values. Similarly, 

ig. 5 (b) is a surface plot of γ + γφφ , where it can also be seen

hat several GB inclinations have negative γ + γφφ stiffness val- 

es. As discussed above, inclinations with negative stiffness val- 

es are forbidden ones and will be missing from the equilibrium 

hape. Further, it can be seen that the stiffness values are more 

nisotropic functions than the GB energy itself [refer to Fig. 3 (a)]. 

o demonstrate this effect, Fig. 5 (c) shows a line scan along φ = 0 

i.e., plane spanned by [0 ̄1 3] and [100] ), depicting the polar angle 

ependency of the energy, γ + γθθ , and γ + γφφ . Along this line 

can, the GB energy changes by ∼ 25% , whereas the stiffness val- 

es vary by more than ∼ 100% . 

We now use Cahn-Hoffman ξ -capillarity vector to examine the 

quilibrium shape of the �5 GB. The reader is referred to the Sup- 

lementary Material Section for the Mathematica v11 [74] note- 

ooks used to generate the ξ -vector plots in Figs. 6 (a), 8 (a), 10 (a),

nd 12 (a). Fig. 6 (a) shows a plot of the ξ -vector, where ears can be

bserved over some range of GB plane normals, indicating struc- 

ural instability and the propensity of these GB inclinations to 

reak up into facets. As a demonstration, Fig. 6 (b) shows a slice 

long θ = π/ 4 [black line in Fig. 6 (a)] depicting both the ξ -vector

n green and the GB energy colored by the γ + γφφ stiffness, where 

ed (blue) denote positive (negative) stiffness values. The shaded 

egion in gray corresponds to the equilibrium shape. Along this 
line scan along φ = 0 depicting the polar angle dependency of the GB energy and 

, the reader is referred to the web version of this article. 
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Fig. 6. For the �5 GB in Ni, (a) a plot of the Cahn-Hoffman ξ -vector using the functional form of γ (θ, φ) given by Eq. (7). (b) A slice along θ = π/ 4 depicting the ξ -vector 

(green) and GB energy colored by the γ + γφφ stiffness, where red (blue) denote positive (negative) values. (c) Experimentally-determined relative areas of GB planes, shown 

in stereographic projection along the [001] direction. The orientation of the [100] misorientation axis is shown by the arrow. The white square (triangle) denotes the [001] 

([111]) directions. The white diamonds mark the orientations of the (031) || (0 ̄3 1) and (0 ̄1 3) || (0 ̄1 ̄3 ) symmetric tilt GBs, and the white circles mark the orientations of the 

(012) || (0 ̄2 ̄1 ) and (0 ̄2 1) || (01 ̄2 ) symmetric tilt GBs (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 7. For the �7 GB in Ni, principal stiffness values (a) γ + γθθ and (b) γ + γφφ . (c) A line scan along φ = 0 depicting the polar angle dependency of the GB energy and 

principal stiffness values. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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lice, there exists a range of GB normals (e.g., φ in the range of 

/ 6 and π/ 3 ) with negative γ + γφφ stiffness, and such inclina- 

ions are missing from the equilibrium shape given by the shaded 

egion in gray. Next, we compare our analytical interface stiffness 

esults with the experimentally-obtained GBPD. Fig. 6 (c) depicts 

he GBPD distribution obtained by Randle et al. [69] for �5 GBs 

n Ni shown in stereographic projection along the [001] direction. 

he white diamonds mark the orientations of the (031) || (0 ̄3 1) 

nd (0 ̄1 3) || (0 ̄1 ̄3 ) symmetric tilt GBs, and the white circles mark 

he orientations of the (012) || (0 ̄2 ̄1 ) and (0 ̄2 1) || (01 ̄2 ) symmet-

ic tilt GBs. Fig. 5 (a) shows that GBs with normals in the vicin-

ty of 〈 013 〉 and 〈 021 〉 have slightly negative stiffness values and,

hus, are structurally unstable [24] , which in turn explains the low 

bserved relative area for these inclinations. Indeed, all GB incli- 

ations that are coplanar with 〈 013 〉 and 〈 021 〉 have the small-

st relative area, which is consistent with our stiffness results in 

ig. 5 (a). 

Next, we examine �7 GBs, where the stiffness results are 

hown in Fig. 7 . The γ + γθθ stiffness map is depicted in Fig. 7 (a),

here it can be seen that variations in the γ + γθθ stiffness are 

mall and are in the range of 0.47–0.5 Jm 

−2 . Fig. 7 (b) shows the

+ γφφ stiffness, where large variations, in the range of 0.4–

.4 Jm 

−2 , can be seen. Fig. 7 (c) shows a representative line scan

long the polar angle for φ = 0 (i.e., plane spanned by the 〈 111 〉
nd 〈 4 ̄5 1 〉 ), depicting constant γ + γθθ stiffness values. Further, 

+ γφφ values are larger in magnitude than γ + γθθ leading to 

 larger driving force for GB migration [cf. Eq. (6) ] along the 
6 
zimuthal direction. For this �7 GB, the principal stiffness val- 

es are found to be positive for all values of θ and φ, indicat- 

ng that all inclinations of the �7 may appear in the equilibrium 

hape. 

We now turn our attention to the equilibrium shape of the �7 

B. Fig. 8 (a) depicts the ξ -vector for the �7 GB, where no ears in

he shape appear due to the positive stiffness values for all θ and 

. As an example, Fig. 8 (b) shows a line scan along the θ = π/ 2

black line in Fig. 8 (a)] depicting both the ξ -vector in green and 

he GB energy colored by the γ + γφφ stiffness, where red denotes 

ositive GB stiffness values. Along this line, all plane normals of 

his GB appear in the equilibrium shape, which is given by the 

haded region in gray. The �7 GB exhibits a low-energy inclination 

long 〈 111 〉 [cf. Fig. 3 (b)] and this is also evident in the ξ -vector

lot. The experimentally-obtained GBPD by Randle et al. [69] is 

hown in Fig. 8 (c), which depicts the GBPD distribution shown 

n stereographic projection along the [001] direction. The direc- 

ion of the misorientation axis, [111], is denoted by the white 

riangle, and the [001] direction is at the position of the white 

quare. The three white circles mark the orientations (left to right) 

f the ( ̄3 21) || (2 ̄3 1) , ( ̄2 ̄1 3) || (3 ̄1 ̄2 ) , and (1 ̄2 3) || (12 ̄3 ) symmetric tilt

Bs, and the three white diamonds mark the orientations (left to 

ight) of the ( ̄5 14) || (5 ̄4 ̄1 ) , ( ̄1 ̄4 5) || (41 ̄5 ) , and (4 ̄5 1) || ( ̄1 5 ̄4 ) tilt GBs.

he experimental GBPD shows similar, yet low observed relative 

reas for the (451) and (213) , which is consistent with the re- 

ults in Fig. 8 (b) depicting a near circular equilibrium shape along 

he θ = π/ 2 slice containing these inclinations. The experimental 
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Fig. 8. For the �7 GB in Ni, (a) a plot of the Cahn-Hoffman ξ−vector. (b) A line scan along θ = π/ 2 depicting the ξ−vector (green) and GB energy, which is colored by the 

stiffness γ + γφφ , where red (blue) denote positive (negative) stiffness values. (c) Experimentally-determined relative areas of GB planes, shown in stereographic projection 

along the [001] direction. The direction of the misorientation axis, [111], is denoted by the white triangle, and the [001] direction is at the position of the white square. 

The three white circles mark the orientations (left to right) of the ( ̄3 21) || (2 ̄3 1) , ( ̄2 ̄1 3) || (3 ̄1 ̄2 ) , and (1 ̄2 3) || (12 ̄3 ) symmetric tilt GB, and the three white diamonds mark 

the orientations (left to right) of the ( ̄5 14) || (5 ̄4 ̄1 ) , ( ̄1 ̄4 5) || (41 ̄5 ) , and (4 ̄5 1) || ( ̄1 5 ̄4 ) tilt GBs (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.). 

Fig. 9. For the �9 GB in Ni, principal stiffness values (a) γ + γθθ and (b) γ + γφφ . (c) A line scan along φ = 0 depicting the polar angle dependency of the GB energy and 

principal stiffness values. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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BPD shows a maximum in the relative area for the �7(111) twist 

B, which is also consistent with the ξ -plot in Fig. 8 (a). 

The next GB we consider is the �9 GB, where Fig. 9 depicts 

he stiffness results. Fig. 9 (a) is a surface plot of γ + γθθ , which

hows large variations in the stiffness values. Further, γ + γθθ at- 

ains negative values over some range of inclinations (e.g., in the 

eighborhood of (θ, φ) ∼ (π/ 4 , 0) ). The surface plot of γ + γφφ

s shown in Fig. 9 (b), where it can be seen that the stiffness

alues exhibit larger variations than the energy itself [refer to 

ig. 3 (c)]. Also, γ + γφφ is positive for all values of θ and φ. 

ig. 9 (c) shows a representative line scan along φ = 0 , depicting 

he energy, γ + γθθ , γ + γφφ values. Along this line, γ + γθθ ex- 

ibits larger variations than the energy itself. The results depicted 

n Fig. 9 demonstrate the complexity of the driving force for GB 

igration when the complete plane normal DOF are accounted for. 

or example, for this �9 GB the driving force for GB migration 

cf. Eq. (6) ] along the polar direction exhibits a larger magnitude 

nd higher degree of anisotropy than the one along the azimuthal 

irection. 

Next, Fig. 10 (a) shows a plot of the ξ -vector for the �9 GB, 

here ears (i.e., self intersecting segments) appear in the ξ - 

lot corresponding to regions with negative γ + γθθ stiffness in 

ig. 9 (a). This in turn results in a faceted ξ -plot, as inclinations 

ith negative stiffness will be missing from the equilibrium shape. 

long the azimuthal direction, however, stiffness values are all pos- 
7 
tive. For example, Fig. 10 (b) shows a slice along θ = π/ 2 , which

epresents the plane spanned by the 〈 114 〉 and 〈 221 〉 , depicting

he ξ -vector in green and GB energy, which is colored by the stiff- 

ess γ + γφφ , where red (blue) denote positive (negative) stiffness 

alues. It can be seen that along this slice the stiffness is positive 

nd all inclinations are part of the equilibrium shape. Fig. 10 (a) and 

b) shows that the equilibrium shape of the �9 GB in Ni is an el-

ipsoidal cylinder with faceted caps. The experimentally-obtained 

BPD by Randle et al. [69] is shown in Fig. 10 (c), which depicts

he GBPD distribution shown in stereographic projection along the 

001] direction. The orientation of the [110] misorientation axis is 

hown by the arrow, and the [001] direction is at the position 

f the white square at the center of the plot. The [111] direction 

s denoted by the white triangle. A diffuse region of large rela- 

ive areas can be seen around the white diamond, which marks 

he (1 ̄1 4) || (1 ̄1 ̄4 ) symmetric tilt GB. This is consistent with the 

-vector plot in Fig. 10 (a), where 〈 114 〉 and plane normals in its

icinity form the sides of the ellipsoidal cylinder that makes up the 

quilibrium shape of this GB. Further, the white circle marks the 

rientation of the ( ̄2 21) || (2 ̄2 1) symmetric tilt GB, which is charac-

erized by small relative areas. The �9(221) GB corresponds to the 

ertices of the ellipsoidal cuts of the equilibrium shape depicted in 

ig. 10 (b), which cover less area than its sides, i.e., (114) orienta- 

ions. It is also worth noting that the relatively high population of 

9 GBs is a consequence of the large concentration of �3 bound- 
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Fig. 10. For the �9 GB in Ni, (a) a plot of the Cahn-Hoffman ξ−vector. (b) A line scan along θ = π/ 2 depicting the ξ−vector (green) and GB energy, which is colored by the 

stiffness γ + γφφ , where red (blue) denote positive (negative) stiffness values. (c) Experimentally-determined relative areas of GB planes, shown in stereographic projection 

along the [001] direction. The orientation of the [110] misorientation axis is shown by the arrow, and the [001] direction is at the position of the white square. The [111] 

direction is denoted by the white triangle. The white diamond and circle mark, respectively, the orientation of the (1 ̄1 4) || (1 ̄1 ̄4 ) and ( ̄2 21) || (2 ̄2 1) symmetric tilt GBs (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

Fig. 11. For the �11 GB in Ni, principal stiffness values (a) γ + γθθ and (b) γ + γφφ . (c) A line scan along φ = 0 depicting the polar angle dependency of the GB energy and 

principal stiffness values. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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ries. Whenever two �3 GBs meet at a triple line, the third bound- 

ry must be a �9 [75] . 

The final boundary of interest is the �11 GB. Fig. 11 (a) and (b)

hows the γ + γθθ and γ + γφφ stiffness plots, respectively, where 

t can be seen that both attain negative values over some range 

f inclinations. Further, variations in both γ + γθθ and γ + γφφ are 

ound to be greater than the energy itself, which is in the range of 

.4–1.3 Jm 

−2 [refer to Fig. 3 (d)]. As an example, Fig. 11 (c) shows a

ine scan along φ = 0 (i.e., plane spanned by the 〈 110 〉 and 〈 113 〉 )
epicting the energy, γ + γθθ , and γ + γφφ values. Again, negative 

+ γθθ values in the polar angle range of θ ∈ [ π/ 8 , 3 π/ 8] can be

een indicating that these will be missing from the equilibrium 

hape. Also, the �11(113) is a very low-energy GB compared to 

ther �11 inclinations, which explains the large positive stiffness 

alue of this inclination, i.e., any perturbation in the boundary pro- 

le about this inclination causes a large increase in the energy of 

he system. 

Next, a plot of the ξ -vector for the �11 GB is shown Fig. 12 (a),

here ears, i.e., self-intersecting regions, can be seen over some 

ange of inclinations. For example, Fig. 12 (b) depicts a slice along 

= π/ 2 (i.e., plane spanned by the 〈 113 〉 and 〈 332 〉 ), showing the

-vector in green and GB energy colored by the stiffness γ + γφφ , 

here red (blue) denote positive (negative) stiffness. The missing 

nclinations within this slice are ones exhibiting negative stiffness 

i.e., segments of the energy curve that are colored in blue). It can 

e seen from Fig. 12 (a) and (b) that the equilibrium shape of the

11 GB is a rectangular prism with curved faces and sharp edges 
8 
nd is mainly composed of planes with normals that are cen- 

ered around the 〈 113 〉 and 〈 332 〉 directions, with the 〈 113 〉 being

he dominant one, refer for Fig. 12 (a). The experimentally-obtained 

BPD for the �11 GB is shown in Fig. 12 (c), which depicts rel-

tive areas of GB planes, shown in stereographic projection along 

he [001] direction. The orientation of the [110] misorientation axis 

s shown by the arrow, and the [001] direction is at the position 

f the white square. The [111] direction is denoted by the white 

riangle. The white diamond and circle mark, respectively, the ori- 

ntation of the (1 ̄1 3) || (1 ̄1 ̄3 ) and ( ̄3 32) || (3 ̄3 2) symmetric tilt GBs.

 diffuse peak in the relative areas can be seen around the 〈 113 〉
irection (i.e., white diamond in Fig. 12 (c)), indicating that this is a 

requently observed inclination for the �11 GB. Further, small rela- 

ive areas are observed for (332) GBs, which is consistent with the 

-vector plot showing an equilibrium shape that is composed of 

arge (small) areas of (113) ((332)) orientations. 

Our results demonstrate that when considering the GB plane 

ormal DOF, the GB stiffness is the relevant property describing 

he driving force for curvature-driven GB migration. Further, it is 

hown that the GB principal stiffness values exhibit drastically dif- 

erent magnitudes and degree of anisotropy than the GB energy it- 

elf. This has several important implications for GB migration. First, 

 negative stiffness indicates a forbidden, or missing, orientation 

rom the equilibrium shape, and it will not be observed experi- 

entally. The stiffness results shown in this work are consistent 

ith the experimentally-observed GBPDs for Ni. Second, if one of 

he missing GB inclinations forms through highly non-equilibrium 
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Fig. 12. For the �11 GB in Ni, (a) a plot of the Cahn-Hoffman ξ−vector. (b) A line scan along θ = π/ 2 depicting the ξ−vector (green) and GB energy, which is colored by the 

stiffness γ + γφφ , where red (blue) denote positive (negative) stiffness values. (c) Experimentally-determined relative areas of GB planes, shown in stereographic projection 

along the [001] direction. The orientation of the [110] misorientation axis is shown by the arrow, and the [001] direction is at the position of the white square. The [111] 

direction is denoted by the white triangle. The white diamond and circle mark, respectively, the orientation of the (1 ̄1 3) || (1 ̄1 ̄3 ) and ( ̄3 32) || (3 ̄3 2) symmetric tilt GBs (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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rocessing techniques or during grain growth, then this inclination 

as to re-orient to one on the Wulff shape, or break up into facets, 

hose length scales might be beyond the resolution of EBSD mea- 

urements. This indicates that the GB network plays a role, as it 

ay impart geometric constraints that force certain GBs to curve, 

r bow, thus changing their plane normal. This in turn changes the 

oundary’s stiffness and, as a result, the driving force for GB mi- 

ration. 

It is also worth mentioning that our stiffness results repre- 

ent the athermal limit; it employs atomistic GB energies at 0 

. However, the anisotropy in GB energy and consequently the 

B stiffness were found to decrease with increasing tempera- 

ure [34,76] . Therefore, one may regard our athermal limit for the 

B stiffness as the extreme case for anisotropies based on plane 

ormal DOF. Also, our results indicate that the GB stiffness for 

ach GB misorientation, described in this work by the � value, 

as a different functional form in terms of the spherical angles 

and φ. This in turn highlights the need to account for such 

nisotropies in mesoscale models, which typically use the same 

unctional form for the plane normal dependency across all GB 

isorientations [77,78] . Finally, while our results are focused on Ni 

ainly due to the availability of complete GB energy–plane nor- 

al data and experimental GBPDs, the approach highlighted in 

his work is materials agnostic—it is applicable to a wide range 

f metallic systems if their GB energy-plane normal diagrams are 

vailable. 

. Summary and Conclusion 

Grain boundaries and associated anisotropy in their properties 

lay a critical role in microstructure formation and evolution dur- 

ng materials processing or under service conditions. When con- 

idering the GB plane normal DOF, the GB stiffness is the relevant 

hermodynamic property that influences the driving force for GB 

igration. However, GB stiffness data are very limited in the liter- 

ture due to the substantial computational effort associated with 

alculating the GB free energy as a function of plane normal. In 

his work, we used atomistic data for the energy of �5, 7, 9, and 11

Bs in Ni at 0 K to map out the GB energy-plane normal diagrams

nd obtain analytical fits in terms of the spherical angles, i.e., n = 

 ( θ, φ). The energy functions for these GBs were then used to ob-

ain a complete mapping of the GB principal stiffness values, and 
9 
he results were compared with experimentally-obtained GB plane 

ormal distributions in Ni. 

It was found that for a wide range of inclinations the GB stiff- 

ess is larger in magnitude and more anisotropic than the GB en- 

rgy itself. The stiffness for the �7 GB was found to exhibit the 

eakest anisotropy, whereas the stiffness for the �9 and 11 GBs 

howed largest variations and strongest anisotropy compared to 

heir respective energies. Further, negative stiffness values were 

ound for a range of inclinations indicating structural instabilities 

ith respect to faceting with some �9 and 11 GB inclinations ex- 

ibiting the most negative stiffness values. All stiffness values for 

he �7 were found to be positive indicating that all inclinations of 

his GB appear in the equilibrium shape. Our analysis of the �5, 

, 9, and 11 GBs in Ni demonstrates that the GB stiffness greatly 

nfluences the driving force for GB migration. In broad terms, our 

ork provides an avenue to account for the plane normal DOF in 

esoscopic treatments of texture and microstructural evolution of 

olycrystalline systems. 
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ppendix A. The interface stiffness: 2D case 

For a 2D system, Fig. 1 (a) depicts two configurations of a GB, 

here the first is a system with a flat GB profile at its local equi-

ibrium and the second is an inclined GB that makes an angle θ
ith respect to the initial GB profile. In both configurations, the 

isorientation DOF are held fixed. The free energy in both config- 

rations is given by: 

 1 = G b + γ (θo ) A o , (A.1) 

 2 = G b + γ (θ ) A, (A.2) 

here G b is the bulk free energy, which we assume it does not 

hange. θo and A o are defined in configuration 1, whereas γ (θ ) 

nd A are defined in configuration 2. We require �G = G 2 − G 1 ≤ 0

eading to 

G = γ (θ ) A − γ (θo ) A o ≤ 0 . (A.3) 

ext, we divide throughout by A o and define �γ as 

γ = 

�G 

A o 
= 

γ (θ ) A 

A o 
− γ (θo ) ≤ 0 , (A.4) 

here the term γ (θ ) A/A o is coined the projected interfacial en- 

rgy [37,38] . According to Fig. 1 , A = A o / cos (θ ) , which leads to 

γ (θ ) A 

A o 
= 

γ (θ ) 

cos (θ ) 
= 

(
γo + γθθ + 

1 

2 
γθθ θ

2 + · · ·
)(

1 + 

1 

2 
θ2 + · · ·

)
, 

(A.5) 

here with no loss of generality Taylor expansion of γ (θ ) and 

 / cos (θ ) about θ = 0 is used. γo = γ (0) , γθ = (∂ γ /∂ θ ) θ=0 , and

θθ = (∂ 2 γ /∂θ2 ) θ=0 . Upon expanding the terms on the right hand 

ide of Eq. (A.5) and inserting the result in Eq. (A.4) , one arrives at

he following for �γ

γ = 

1 

2 

( γo + γθθ ) θ2 + · · · (A.6) 

ere, we note that the term multiplied by γθ drops out since the 

nterface is assumed to be at local equilibrium. Fig. A.1 depicts 

 schematic illustration of Eq. (A.6) , where the stiffness γo + γθθ

orresponds to the local curvature of the �γ –θ diagram. Positive 

negative) stiffness values correspond to stable (unstable) configu- 
ations. 

ig. A.1. A schematic illustration of Eq. (A.6) . The stiffness corresponds to the local 

urvature of the �γ –θ diagram. 
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ppendix B. Expansions using Fourier series 

For a function of two variables f (x, y ) defined over {−l ≤ x ≤
, −h ≤ y ≤ h } , the complex form of the Fourier series expansion 

s [79] 

f (x, y ) = 

+ ∞ ∑ 

m,n = −∞ 

βmn e 
iπ( m l 

x + n 
h 

y ) , (B.1) 

here i = 

√ −1 and βmn represent the Fourier coefficient for the 

m, n ) mode. The Trigonometric form of this Fourier expansion is 

iven by [79,80] 

f (x, y ) = 

∞ ∑ 

m,n =0 

[ 
+ A mn cos 

(
mπx 

l 

)
cos 

(
nπy 

h 

)

+ B mn sin 

(
mπx 

l 

)
cos 

(
nπy 

h 

)

+ C mn cos 

(
mπx 

l 

)
sin 

(
nπy 

h 

)

+ D mn sin 

(
mπx 

l 

)
sin 

(
nπy 

h 

)] 
, (B.2) 

here again (m, n ) are integers representing the mode. Here, we 

ote that 
 + l 

−l 

cos 

(
mπx 

l 

)
cos 

(
nπx 

l 

)
dx = lδmn (B.3a) 

 + l 

−l 

sin 

(
mπx 

l 

)
sin 

(
nπx 

l 

)
dx = lδmn (B.3b) 

 + l 

−l 

sin 

(
mπx 

l 

)
cos 

(
nπx 

l 

)
dx = 0 (B.3c) 

here δmn is the Kronecker delta. Therefore, the coeffiicients 

 mn , B mn , C mn and D mn represent an orthogonal projection of f (x, y )

nto the basis associated with (m, n ) . The formal approach of fit- 

ing the GB energy functions using the spherical angles θ and φ is 

o enumerate through the (m, n ) modes starting with the smallest 

alues. However, one can identify the dominant modes by examin- 

ng the symmetry in the GB energy data shown in Fig. 3 . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.actamat.2021.117220 
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