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A B S T R A C T   

Additive manufacturing (AM) methods such as Aerosol Jet (AJ) printing allow the fabrication of structures via 
sintering of micro and/or nanoparticles, leading to microstructures that consist of various combinations of pore 
and grain sizes. It has been reported that AJ printed and sintered silver micropillars show an unusual behavior of 
high stiffness and high strain-to-failure for structures with high porosity and vice versa (Saleh et al. 2018 [1]). 
This behavior, however, is accompanied by the stiffer structures having smaller grain sizes and softer structures 
having larger grain sizes. To explain the physics of this behavior where a trade-off between hardening caused by 
size effects (grain refinement and gradients) and softening caused by porosity is expected to play a critical role, a 
multi-scale modeling approach is proposed in this paper. The model formulation consists of a continuum 
dislocation dynamics (CDD) framework, coupled with continuum plasticity and finite element analysis. The 
dislocation dynamics formulation is introduced into a user material subroutine and coupled with a finite element 
commercial solver, in this case, LS-DYNA, to solve the model in three-dimensional scale with the same size as the 
AM micropillars. The results from the model capture the general trends observed in compression tests of AM 
micropillars. In particular, it is shown that the grain size and dislocation density have a disproportionately higher 
influence over the mechanical deformation of metallic structures when compared to the porosity. These results 
show that the behavior of AM structures in the plastic regime is dominated by grain size effects rather than 
porosity. Some limitations of the model and possible future refinements are discussed. The paper provides an 
important analytical framework to model the mechanical behavior of AM structures with internal porosity in the 
plastic regime.   

1. Introduction 

Additive manufacturing (AM) has allowed the fabrication of metallic 
parts having complex architectures, unique material combinations, and 
controlled microstructures [2]. The AM of metal part involves sintering 
and/or melting-solidification of micro or nanoparticles, which often 
leads to an internal part porosity [3]. In fact, the porosity and other 
defects are common to parts fabricated by AM [4]. Further, the AM 
methods allow the control of the grain size via changes to the starting 
powders and the process parameters. In addition, the microstructures of 
parts made by AM are complex [5], which can give rise to local stress 
and strain gradients that can affect their mechanical performance. The 
mechanical behavior of AM parts is thus expected to be an interplay 
between the defects such as internal porosity, the grain 

size/distribution, and their evolution during deformation. 
Aerosol Jet (AJ) nanoparticle printing is an AM method that can be 

used to fabricate three-dimensional microscale structures. Such struc
tures can be used as electrodes for high-capacity Li-ion batteries [6] 
where typical forces on the structures during lithiation and delithiation 
cycles can be of the order of tens of MPa [7]. In our previous work [1], 
AJ nanoparticle printing was used to create 3D micropillars of pure 
polycrystalline silver having a diameter of 80–90 µm and a height of 
about 900 µm. Different average grain sizes - between 250 nm and 5 µm - 
were obtained by sintering of the micropillars at four different temper
atures of 250 ◦C, 350 ◦C, 450 ◦C, and 550 ◦C. The sintering conditions 
also produced porosities in the range of 20–0%, respectively [1]. The 
complexity of AJ printed, and sintered microstructures is demonstrated 
in Fig. 1a–c. The micropillars in Fig. 1a are fabricated using 
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nanoparticles with 50–150 nm size, which after sintering, resulted in the 
microstructures shown in Fig. 1b and c. It is clear from Fig. 1 that the AM 
microstructures tend to be complex in nature, consisting of internal 
porosity with pores having irregular sizes and shapes, and a character
istic grain size distribution that arises from sintering and growth of the 
printed nanoparticles (also see Ref. [8]). In addition, these microstruc
tures are expected to give rise to local stress and strain gradients that can 
affect their global deformation. The AM micropillars (e.g. similar to that 
shown in Fig. 1) were subjected to compressive loads by Saleh et al. [1], 
which showed an unusual behavior consisting of an increase in effective 
modulus and decrease in strain-to-failure with increasing porosity. This 
was, however, accompanied by a decrease in grain size. In other words, 
the mechanical behavior of the AM micropillars could be attributed to 
two competing mechanisms, namely, strengthening arising from strain 
gradients [9] and grain size effect [10], and softening arising from 
degradation of strength caused by porosity. Although a semi-empirical 
two-phase model [11] was used to qualitatively explain these trends, a 
multi-scale modeling approach is needed to explain the physics of 
deformation of AM structures that takes into account the physical pro
cesses occurring at microscale (dislocations density effects) and at 
macroscale (global strain and stress, size effects, porosity). 

There have been a few modeling efforts that take into account the 
multiscale features observed in AM structures [12]. A 2D crystal 
plasticity-based model was developed for structures of 316 stainless 
steel fabricated by Selective Laser Melting (SLM) to capture the role of 
texture, process defects, mechanical loading direction, and laser hatch 
space [13]. In this work [13], a Voronoi tessellation method was applied 
to create different microstructures to analyze the effect of spatial grain 
distribution on the mechanical properties of SLM printed samples. A 
crystal plasticity model was developed for single crystal metallic sam
ples with voids and was interfaced with a finite element solver to 
analyze the effect of stress triaxiality, initial porosity, crystal orienta
tion, void growth, and coalescence [14]. None of the prior models take 
into account the interplay between porosity and grain sizes created by 
particle coalescence in AM structures in a three-dimensional stress-state. 

The CDD theory consists of a novel constitutive law, based on 

dislocation density evolution mechanisms coupled with continuum 
plasticity, and is able to predict phenomenological representation of 
dislocation evolution, production, and annihilation within the samples 
under stress. The benefit of this method over conventional continuum 
mechanics is that it allows the implementation of small-scale parameters 
associated with Burger’s vector, grain size, and grain boundary that are 
physical properties of the materials. These parameters cannot be 
incorporated in a conventional continuum mechanics formulation. 
Incorporation of these parameters improves the accuracy of prediction 
of deformation of a part in the plastic regime [15–18]. 

The impetus for the present work is thus twofold. First, we aimed to 
create a realistic modeling framework to capture the deformation of AM 
parts that takes into account the multi-scale microstructural features 
arising from the additive processes. These features include a combina
tion of grain sizes, porosities, dislocations densities, and shape imper
fections resulting from different processing conditions. Continuum 
dislocation dynamics (CDD) model developed earlier by the authors 
(Aksari et al. [19] and Li et al. [15]) is coupled with continuum plasticity 
and finite element method to capture the interaction of grain sizes, 
porosity, stress-strain gradients, and sample length scales observed in 
experiments [1] during deformation. The porosity is incorporated via a 
viscoplasticity model, which is coupled with the CDD framework. Sec
ond, we aimed to use this modeling framework to capture the physics of 
the mechanical behavior of AJ printed metallic micropillars [1] under 
compressive stress. The focus of this part was to employ a stress-strain 
gradient theory which combined a stress-gradient theory [20–22], 
with a strain-gradient theory [17,23–25] into the CDD framework in 
order to analyze the grain size and porosity effects for the microstruc
tures and length scales observed in the AM micropillar to explain the 
results from Saleh et al. [1]. 

We note that one of the novelties of this work lies in coupling of the 
continuum mechanics-based FEA solver (LS-DYNA) with a CDD-based 
viscoplastic formulation. For example, in continuum mechanics, 
length scale parameters like grain size and porosity do not exist. By 
applying the CDD viscoplastic formulation, grain size, porosity, initial 
dislocation density, and its evolution are implemented in the study. It 

Fig. 1. Complex microstructures created by Aerosol Jet nanoparticle printing process. (a, b) Scanning electron microscope (SEM) images of additively manufactured 
3 × 3 silver micropillar array showing a microstructure consisting of grains that are 2–4 µm in size. (c) Cross-section of a micropillar made by focused ion beam (FIB) 
showing internal porosity due to particle sintering. 
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should be noted that all these parameters can be experimentally 
measured, so the coupled model has the advantage of taking physical 
inputs based on material properties and the work hardening history, 
which is not the case for any other commercial continuum mechanics- 
based FEA solvers such as Ansys and Abaqus. This capability is of sig
nificant importance for AM samples, since they typically undergo some 
level of post-processing and heat treatment prior to usage in the field. 

We first introduce the continuum mechanics formulation which in
corporates the effect of porosity. The dislocation dynamics formulation 
and its coupling with the continuum model are then discussed. The 
coupled model is introduced into a finite element framework for a 
simple tensile model and test verification. The modeling predictions of 
tensile stress vs strain curve for various initial dislocation densities are 
compared with the experimental data from literature [21] to determine 
the optimum value for initial dislocation density. Finally, the FEM 
simulation results for micropillars are presented, discussed, and 
compared to experimental results. 

2. Viscoplasticity-porosity model coupled with continuum 
dislocation dynamics 

In order to model the AM fabricated metallic structures, a 
viscoplasticity-porosity model is developed and coupled with the CDD 
model, which is implemented into a finite element framework. The finite 
element method is used to investigate the deformation of the micro
pillars for various grain sizes and porosities. The geometry of the 
micropillars is designed in LS-PrePost [26] using dimensions of the 3D 
printed structures [21]. A set of plasticity equations are implemented 
into a user material subroutine based on dislocation density interaction 
mechanisms and stress/strain gradient theories. The simulations are 
performed with LS-DYNA and a user material subroutine (UMAT) is 
written in Fortran environment. Also, in order to compute spatial gra
dients, a Matlab-based code is developed which identifies the sur
rounding neighbors for each solid element. The output of the Matlab 
code is read by UMAT which is used for finding neighboring elements in 
the stress and strain gradient calculations. The plasticity model is 
compared to tensile test results with available experimental data for 
99.9% pure silver from literature. Next, a 3D model with solid elements 
is designed with the same geometry of additively manufactured micro
pillars, and a parametric study is carried out to investigate the influence 
of microstructural and material parameters. 

2.1. Viscoplasticity-porosity model 

To develop the viscoplasticity-porosity model, we first note that in 
continuum mechanics framework, the velocity gradient tensor, L, is 
decomposed into a symmetric part, D, and an antisymmetric part, W, as 
[27], 

L = D + W (1)  

with D being the strain rate tensor, and W being the spin tensor given by, 

D =
1
2
[L + LT ] (2)  

W =
1
2

[L − LT ] (3) 

The strain rate tensor, D, is further decomposed as the sum of elastic 
(De) and plastic (Dp) terms such that, 

D = De + Dp (4) 

Assuming linear elastic isotropic material with isotropic damage due 
to porosity, Hooke’s law is given by the following relation [28], 

σ̂ = (1 − ∅)[Ce]De (5)  

where [Ce] is the fourth order elasticity tensor, σ̂ is co-rotational rate of 
the Cauchy stress tensor, σ, and ∅ is the porosity. Note that the growth of 
microvoids (and hence porosity ∅) plays a significant role during the 
process of plastic deformation in crystal plasticity of metals during 
nonlinear deformation. In our calculations, we are assuming that the 
voids are uniformly distributed and will update the Cauchy stress. 
Furthermore, for isotropic plastic deformation with isotropic porosity, 
we assume a plastic potential of the form f = J2 +ϕI2

1 [29,30], where 
J2 = 1

2 S:S is the second invariant of the deviatoric stress S = σ −

(trσ/3)I, with I being the unit tensor, and I1 = trσ being the first stress 
invariant. Then, with the associated rule of plastic flow being normal to 
the plastic potential, we obtain the following for the plastic strain rate 
tensor DP, 

Dp =
γ̇p

2τ [S + (2ϕI1)I] (6)  

γ̇p
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Dp:Dp

√
(7)  

τ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

J2 + 6(ϕI1)
2

√

8)  

with τ being the effective shear stress for the material with porosity, and 
γ̇p being the effective plastic shear strain rate. As can be inferred from 
Eq. (6), the very existence of porosity implies a finite volumetric plastic 
deformation rate. In this paper, we consider relatively small strains, and 
assume a constant porosity throughout the deformation process. How
ever, for later stages of deformation, an evolution law for the porosity 
can be introduced [30]. 

Analogous to the dislocation-based crystal plasticity framework 
[15], the effective plastic shear strain rate γ̇pis determined through the 
Orowan relation [31] as, 

γ̇p
= ρMbvg, (9)  

where ρM is the density of mobile dislocations, b is the magnitude of the 
Burgers vector, and vg is the average dislocation glide velocity. In turn, 
we assume a power law for the dislocation velocity and introduce the 
effect of porosity as a softening mechanism in the expression for the 
critical shear stress [15]: 

vg = v0

(
τ

τ∗
cr

)1/m

, τ∗
cr = τcr(1 − ϕn), (10)  

where τcr is the critical shear stress, m is strain rate sensitivity, and v0 is 
reference velocity [19]. The effective yield shear stress, τ∗

cr, defined 
above, accounts for softening resulting from the porosity. The value for 
the power n depends upon the assumed shape of the void (e.g. n = 1/2 
for cylindrical voids [30]). In this work, for consistency with the 
assumption of isotropic damage model, we assume n = 1. The matrix 
material (surrounding the spherical voids, n = 1) is also assumed to be 
isotropic that obeys the von Mises flow rule according to the J2 theory of 
plasticity. The yield function for the voided material is then obtained by 
modifying the J2 yield function by adding a hydrostatic term [32]. Also, 
ductile damage is usually approached by using isotropic damage models 
in which voids are assumed to be spherical while the matrix material is 
assumed to be isotropic [33]. In the above formulation, porosity de
creases the overall elastic stiffness, load carrying capacity of the mate
rial, and the local critical shear stress for plastic shearing; and can be 
deduced from Eqs. (5), (8) and (10). 

2.2. Coupling of viscoplasticity-porosity model with continuum 
dislocation dynamics 

In the viscoplasticity-porosity formulation, there are two internal 
state variables, in addition to porosity, that depend on the microstruc
ture, namely, the dislocation density and the critical shear stress. 

M. Hamid et al.                                                                                                                                                                                                                                 
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Assuming one internal variable to describe the dislocation density, the 
rate equation of the dislocation density was derived by Kocks [34] and 
consists of two terms - production and annihilation. Here, we assume 
that the total statistically stored dislocation density can be written as the 
sum of mobile dislocation density ρM and immobile dislocation density 

ρI, 

ρT = ρM + ρI (11) 

This way, only the mobile dislocation density contributes to plastic 
shearing via Eq. (9), while the sum of the mobile and immobile dislo
cations contributes to strain hardening by the Bailey-Hirsch relation. 
The evolution equations for the mobile and immobile dislocation den
sities, derived in [15], are as follows: 

ρ̇M = (β1 − β3)ρM − β2ρ2
M + β4ρI − β5ρIρM (12)  

ρ̇I = β3ρM − β4ρI − β5ρIρM (13)  

where β1 = α1
vg

lg
, β2 = 2α2Rcvg, β3 = α3

vg

lg
, β4 = α4

vg

lg

⃒
⃒
⃒
⃒

τ
τcr

⃒
⃒
⃒
⃒

r
, β5 = α5Rcvg, 

Fig. 2. (a) Dog-bone shaped tensile test specimen for modeling, (b) contour of effective stress (units in MPa), and (c) numerical stress-strain curves and comparison 
with experiments [21] (Exp: experiment, GS: Grain size, ρ0: Initial dislocation density). 

Table 1 
Description of mechanisms and parameters.  

Parameters Mechanisms 

α1  Multiplication of dislocations from sources 
α2  Mobile-mobile dislocation annihilation 
α3  Locking of mobile dislocations 
α4  Unlocking of immobile dislocations 
α5  Mobile-immobile annihilation  
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with lg being the dislocation mean-free path which has an inverse square 
root relationship with the sum of the geometrical and total dislocation 
densities as given in Eq. (17) of the next section. Also, Rc is the capture 
radius for the interaction between two dislocations, and r is a numerical 
constant, which are set at 15b and 0.5, respectively, based on curve fit in 
Fig. 2 (discussed in the next section). In the equations above, there are 5 
terms which represent specific dislocation interaction mechanisms. For 
single crystals, the parameters α1 to α5 may be calculated from smaller 
scale modeling of discrete dislocation dynamics and then adjusted to 
polycrystals by experimental curve fitting [15,19]. Table 1 explains the 
mechanism corresponding to each of these parameters. For the sake of 
brevity, the details of these 5 parameters are not explained here and the 
readers are referred to previous publications on this topic [15–17,19]. 
For example, α1 to α5 have been selected based on reference [17]. The 
evolution Eqs. (12) and (13) are nonlinear and coupled with strong in
teractions between the mobile and immobile dislocations. 

The critical shear stress τcr appearing in Eq. (10) is the sum of 
reference shear stress τ0, forest dislocation hardening τH, and stress- 
gradient dependent term τs [15,19], i.e., 

τcr = τ0 + τH + τs (14) 

The forest dislocation hardening term τH is determined by the clas
sical Bailey-Hirsch relation [35], 

τH = α∗bμ ̅̅̅̅̅ρT
√ (15)  

where the parameters α∗ and μ are Bailey-Hirsch parameter and elastic 
shear modulus, respectively, and shown in Table 2. 

2.3. Size effect and gradient-dependent hardening 

In the continuum dislocation dynamics framework, size effects arise 

from two mechanisms: geometrically necessary dislocations (GNDs), 
ρGND, and dislocation pile-ups under heterogeneous state of stress. In a 
rigorous treatment, the geometrically necessary dislocations can be 
directly related to the dislocation density Nye’s tensor [36,37]. Here we 
adopt the following scalar form developed in [23,38], 

ρGND =
1
b

|∇γp| (16)  

with γp being the effective plastic shear strain. The effect of the GNDs is 
incorporated into the model through the expression for the dislocation 
mean free path appearing in Eqs. (12) and (13), i.e., 

lg =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρT + ρGND
√ (17) 

By introducing the GNDs in the mean-free path, they act as barriers 
to mobile dislocations. Their trapping effect will accelerate the pro
duction of statistically stored dislocations where strain gradients are 
present, which then leads to an increase in dislocation density. 

As discussed in [20,21], the mechanism of dislocation pile-ups under 
a heterogenous state of stress results in a stress- gradient dependent term 

Table 2 
Material properties for silver applied in the CDD framework.  

Young’s modulus (E) [40,41] 78 GPa 
Poisson’s ratio (ϑ) [42]  0.37 
Shear modulus (µ) 28.5 GPa 
Friction stress (τ0) [43]  11 MPa 
Burgers vector magnitude (B) [44] 0.288 nm 
Reference velocity (v0) [45]  10− 5 ms− 1 

Bailey-Hirsch parameter (α∗) [17]  0.1 
Hall-Petch coefficient (K) [43] 4.2 MPa mm1/2 

α1, α2, α3, α4, α5 0.08, 0.65, 0.002, 0.002, 1.0  

Fig. 3. (a) As-manufactured micropillars, and (b) model of micropillar with loading plates, and different mesh designs (Mesh1-Mesh3).  

Fig. 4. Effect of mesh density on force-displacement curve.  
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τs, given by the following expression, 

τs =
K
̅̅̅
L

√ (1 +
L′

4τ |∇τ|) (18)  

Here L and L′’ are length scales representing the average grain size and 
the obstacle (dislocation pile-ups) spacing respectively. The gradient of 
effective shear stress is represented by |∇τ|. Also, K is the Hall-Petch 
numerical coefficient. The theory is implemented into the CDD frame
work and was shown to predict size effects in various microstructures 
[16]. 

The above equations are implemented into a user material subrou
tine in LS-DYNA to model the mechanical behavior of the polycrystalline 
silver micropillars. The LS-DYNA material card *MAT_USER_DEFI
NED_MATERIAL_MODELS [39] is used for this modeling purpose. Nu
merical calculation of the stress and strain gradient terms required a 
special treatment, which also turned out to be computationally inten
sive. We developed a Matlab-based code, external to LSDYNA, which 
identifies the surrounding neighbors for each solid mesh element. Each 
element is defined by an ID number and the Matlab code uses the node 
numbers of solid elements as an input to find neighboring elements. If 
any two elements share a node then the elements are counted as 
neighboring elements. The output of the Matlab code is then read by 
UMAT which is used for stress and strain gradient calculation using the 
central difference method. By implementing the above system of equa
tions into a UMAT subroutine, physical parameters, like porosity, mobile 
and immobile dislocation densities, dislocation glide velocity, and other 
microstructural parameters can be directly related to plastic deforma
tion of micropillars. 

We note that in Table 2, the shear modulus was calculated based on 

Fig. 5. Force-displacement curves for various porosities and grain sizes (GS).  

Fig. 6. Deformed configurations with contour plots: (a) effective plastic strain 
(mm/mm), and (b) effective stress in units of MPa, for 3 µm grain size with 
1% porosity. 
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the Young’s modulus and Poisson ratio. The values for the parameters 
α3, α4,α5 are the same used in [17], while the values for α1 = 0.08 and α2 
= 0.65 are determined by fitting to the experimental data discussed in 
the next section. The strain rate sensitivity, m, depends on the micro
structure, grain size, temperature, and strain rate [46]. For pure silver, 
the reported values for m fall in the range of 0.007–0.05, depending on 
the strain rate and porosity percentage [47]. 

3. Preliminary numerical results and discussion 

3.1. Model validation 

We validated the model implemented in UMAT by comparing the 
numerical results from the model with available experimental tension 
test data for pure silver from the literature [48] for grain sizes of 20 µm 
and 2 µm. The specimen with dimensions is shown in Fig. 2a. The 
thickness of the specimen was 2 mm. Shell elements were used for the 
simulations. One end of the specimen was fixed, and the other end was 
subjected to a constant cross head speed of 0.05 mm/s. Fig. 2b shows a 

contour plot of the effective stress, which illustrates the uniformity of 
the stress field in the gauge (middle) section. In this simulation, we 
examined the effect of the initial mobile and immobile dislocation 
density and grain size on the stress-strain curve. 

The stress-strain behavior predicted by the model is shown in Fig. 2. 
Also plotted in the figure is experimental data from Al-Fadhalah et al. 
[48] for samples with grain sizes of 20 µm and 2 µm. The results for 
initial dislocation density of 1011 m− 2 and 1013 m− 2 with strain rate 
sensitivity of 0.05 are shown. With these conditions, the predicted 
stress-strain behavior fits the experimental data for the case of 20 µm 
grain size with dislocation density of 1013 m− 2 very well. When the grain 
size is decreased to 2 µm, while keeping all the parameters fixed, the 
predicted stress-strain curve is also in good agreement with the experi
mental data, showing strong size effect, except for the initial part of the 
curve. This can be attributed to the different initial dislocation content 
in the fine-grained specimen [48]. By increasing the initial dislocation 
density to 1013 m− 2, the initial yield stress increases due to the 
Bailey-Hirsch effect, and the curves saturate towards the same stress 
levels as the plastic strain is increased. These simulations show the 

Fig. 7. (a) Mobile and immobile dislocation densities and (b) GND density as a function of strain at the center of the pillar, for 3 µm with 1% porosity.  

Fig. 8. Force at the onset of buckling versus grain size for micropillars with 
different porosities. 

Fig. 9. Force at the onset of buckling versus porosity for micropillars with 
different grain sizes (GS). 
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interaction between dislocation content and size effects as captured by 
the CDD model. 

3.2. Micropillars under compression 

In this section, results are presented for micropillars that are modeled 
to mimic the manufactured micropillars shown in Fig. 3a (also see 
Fig. 1a). The geometry of the modeled micropillar is shown in Fig. 3b. 

The model consists of a micropillar that is tied to a bottom rigid plate 
and a rigid top plate that is in sliding contact with the top surface of the 
micropillar. This way, while the bottom surface of the micropillar is 
fixed in all its degrees of freedom, the upper surface of the pillar is free to 
move as it is pushed down by the top rigid box. Note that in experiments 
in Saleh et al. [1], the pillars are firmly anchored to the substrate by 
printing of a larger thin circular disk near the bottom of each pillar as 
seen in the inset in Fig. 1a. The deformation of a single micropillar is 
illustrated in Supporting Information, Fig. S1, where the boundary 
conditions (fixed bottom surface and an upper surface that is free to 
move as it is pushed down) are apparent. The top rigid box is constrained 
to move down in the vertical direction with velocity of 2.5 × 10− 2 mm/s 
and is modeled as rigid body in the LS-DYNA model. The contacts be
tween moving and fixed rigid boxes and micropillar are “automatic 
surface-to-surface” and “tied node-to-surface”, respectively. 

The micropillar is a hollow cylinder with a length of 1000 µm, inside 
diameter of 20 µm, and outside diameter of 90 µm. These slender cyl
inders are designed with eight-node brick elements. The computations 
turned out to be computationally intensive due to the calculations of the 
stress and strain gradient terms that appear in Eqs. (16) and (18). For 
various mesh densities, mesh1-mesh3, shown in Fig. 3b, the results in 
Fig. 4 shows an insignificant mesh dependency. The applied grain size 
for this mesh sensitivity study was 3 µm and with 0% porosity. The 

Fig. 10. Micropillars with imperfections. (a) A micropillar with reduced 
diameter at the bottom (case-II), and (b) A micropillar with reduced diameter at 
the bottom and a tilt with respect to the vertical axis (case-III). 

Fig. 11. Force vs. displacement for various porosity (P) and grain size (GS) values for case-II.  
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simulations were then performed using mesh2. In all these cases the 
initial dislocation density was set at 1013/m2, which was selected based 
on the curve fitting discussed in the previous section. 

The primary objective of these simulations was to investigate the 
interaction and trade-off between hardening resulting from size effects 
(grain refinement and gradients) and softening caused by porosity. We 
run a set of cases for porosities ranging from 0% to 20%, and grain sizes 
ranging from 250 nm to 5 µm. The results are summarized in Fig. 5. The 
figure shows force versus displacement of the upper surface of the 
micropillar. It can be deduced from the figure that the linear part of the 
curves is dependent upon the porosity as expected from Eq. (5); while 
the onset of yielding followed by buckling, depicted in Fig. 5, is 
dependent upon the grain size which is a result of the size dependent 
Eqs. (16) and (18). It is clear from Fig. 5 that the effect of grain size on 
the stress-strain relation is more dominant than the percentage porosity. 

Typical deformed configurations and distribution of effective stress 
and effective plastic strain along the micropillar are shown in Fig. 6. As 
can be inferred from Fig. 6, in the buckled pillar, the plastic deformation 
and stress fields are non-uniform. The spatial gradients of these fields are 
continuously computed during the simulations to compute the GND and 
stress gradients appearing in Eqs. (16) and (17). Fig. 7a and b show the 
change of dislocation densities and GNDs with increased strain in an 
element at the center of the pillar. While the mobile and immobile dis
locations begin to grow from the outset of plastic deformation, the GNDs 
begin to grow at the onset of buckling. 

The initiation of buckling coincides with the first drop in the force as 
can be observed from Fig. 5. The maximum force where buckling initi
ates is extracted from these figures and the results are depicted in Figs. 8 
and 9. Fig. 8 shows a family of curves corresponding to the various 

porosity densities, while Fig. 9 depicts a family of curves of force versus 
porosity for the various grain sizes. These results show that strength
ening from grain refinement can be much stronger than softening caused 
by porosity. The result in Fig. 8 shows a power-law dependence of the 
buckling force p on grain size L, while the result in Fig. 9 shows linear 
dependence on porosity ϕ, suggesting a relationship of the form: 

p ∝ L− n(1 − ϕ) (19) 

The dotted curves in Figs. 8 and 9 are fitted to the numerical results 
in the figure with n = 0.227. This value indicates a strong deviation from 
the classical Hall-Petch effect where typically n = 0.5. This deviation is 
attributed to gradient effects that enter in Eqs. (16) and (18). The de
viation from the classic Hall-Petch is attributed to the presence of stress 
gradients and the specimen size of a few micrometers [17,20,21]. 

3.3. Micropillars with geometrical imperfections 

As it is known, the AM processes give rise to a complex microstruc
ture as well as manufacturing imperfections (e.g. Fig. 1) that need to be 
considered while modeling the mechanical behavior of the part. In this 
section, we analyze two additional micropillar geometries that account 
for imperfections. The micropillar geometry analyzed in Section 3.2 is 
referred to as case-I and the following cases in this part are referred to as 
case-II and case-III. Micropillars for case II, III are shown in Fig. 10 
where the micropillar for case II has a reduced diameter at the bottom of 
the cylinder. For case-III, the micropillar has a reduced diameter at the 
bottom and is tilted about 5 degrees with respect to the vertical axis. 

The same user material subroutine and formulation as case-I was 
applied for micropillars in case-II and case-III. The force vs displacement 

Fig. 12. Force vs. displacement for various porosity (P) and grain size (GS) values for case-III.  
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for these new categories are shown in Fig. 11 and Fig. 12. 
By comparing Figs. 11, 12, and Fig. 5, it is obvious that introducing 

geometrical imperfections to micropillars (case-II and case-III) leads to 
lowering the maximum force value while the deflection of pillars is 
increased by an order of magnitude. Further, comparing the slope of the 
curves after onset of buckling in the aforementioned figures shows the 
effect of localized hardening due to geometrical imperfections, which 
was absent in Fig. 5. The geometrical irregularities in these sets of 
micropillars cause a non-uniform distribution of stress intensity along 
the micropillars which leads to stress gradients which, in turn, and ac
cording to Eq. (18), causes additional hardening. 

The variation of buckling forces for micropillars in case-II and case- 
III for different porosity and grain sizes are shown in Fig. 13 a–d. 

The stress at which the onset of buckling occurs is the highest for 
micropillars with the smallest grain sizes and lowest porosity, while this 
value drops down for higher grain sizes and higher porosity. The onset of 
buckling forces for micropillars in all three categories show a stronger 

Fig. 13. Buckling force for micropillars with imperfections. (a) Force vs grain size (GS), and (b) force vs porosity for micropillars in case-II. (c) Force vs grain size, 
and (d) force vs porosity for micropillars in case-III. 

Fig. 14. A comparison between experimental and simulation results for force 
vs displacement graph at different grain size (GS) and porosity values. 

Table 3 
Force at the onset of buckling.  

Grain 
size 

P Buckling 

(experiment) (N) 
P Buckling (case 
I) (model) (N) 

P Buckling (case 
II) (model) 
(N) 

P Buckling (case 
III) (model) 
(N) 

250 nm  0.54  0.48  0.533  0.456 
3.31 µm  0.14  0.37  0.293  0.25  
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dependency on grain size changes rather than the porosity variation, 
especially for grain sizes below 1 micrometer. Further, a comparison of 
Fig. 13 with Figs. 8 and 9 shows that the presence of geometrical im
perfections lowers the maximum buckling force for a given grain size 
and porosity. 

4. Comparison with experiments and discussion 

Fig. 14 shows a comparison of the modeling results with experiments 
in Saleh et al. [1]. Two sets of micropillars tested in compression are 
included in Fig. 14: One set of results for micropillars sintered at 250 ◦C 
and having 17–20% porosity with the void sizes of 250–300 nm, while 
another set of micropillars sintered at 550 ◦C and having less than 1% 
porosity with a pore size of 170 nm. According to the parametric find
ings discussed in the previous section, and summarized in Figs. 8, 9, and 
13, it is expected that the micropillars sintered at 250 ◦C should be 
stronger than that sintered at 550 ◦C even though the latter have much 
less porosity than the former. These experimental trends are qualita
tively comparable to the numerical findings as shown in Fig. 14. The 
experimental and numerical results for the maximum force are compa
rable for the case of micropillars with an average grain size of 250 nm 
where there is less than 5% difference between the predicted maximum 
force and experimental result (Table 3). 

Although the model is able to capture the experimental trends 
qualitatively, it is clear that there is a quantitative difference between 
the two for the force-displacement curves. This is especially true for 
micropillars with an average grain size of 3.31 µm. We speculate that 
this difference comes from the fact that our model does not include 
damage and therefore the ultimate elongation cannot be matched with 
experimental data. Further, the pores and their facets can act as sources 
or sinks of dislocations, which has not been taken into account. It is clear 
from Fig. 2 that the dislocation density can significantly affect the pre
dicted stress-strain response from this model. Further, higher sintering 
temperature in the case with an average grain size of 3.31 µm can in
crease the percentage of low-angle grain boundaries and dislocation 
density transfer amongst neighboring grains, which can lead to higher 
ductility and lower yield point [18,45,49]; where none of these phe
nomena are considered in our model. We would like to emphasize that 
the microstructures demonstrated in Fig. 1 are highly complex and the 
trends in the mechanical behavior captured by our model are reason
able. The disparities mentioned above, however, point to the fact that 
further refinements to the model can be incorporated. 

Another noticeable difference between the modeling and the 
experimental results is that the experimental load for the micropillars 
with 250 nm grain size drops sharply after 0.025 mm deflection which 
represents catastrophic failure. Although in the modeling result, the load 
drop is visible for these micropillars, since no failure criterion is 
implemented into the model, the drop is not as catastrophic as that 
observed in the experiments. This difference can also be attributed to 
void sizes and distribution. The void sizes and distribution for the two 
experimental micropillars are shown in Fig. 15. Voids can act as stress 

concentrators where shear bands and cracks can initiate, which in
dicates that in addition to porosity percentage, the void size and dis
tribution will also influence the pillar behavior. These results indicate 
that additively manufactured micropillars can possess high strength 
despite their high porosity content as long as their microstructure is 
composed of submicron-grains. 

5. Conclusions 

In this paper, a modeling framework that describes the mechanical 
behavior of AM parts is developed and used to explain prior experi
mental results by the authors in the context of a competition between 
softening caused by porosity and hardening caused by grain refinement. 
The following conclusions can be drawn from the study:  

• A stress-strain gradient model where deformation is described via 
equations of dislocation density evolution is implemented into a 
UMAT subroutine and coupled with LS-DYNA solver to analyze the 
mechanical behavior of additively manufactured structures. This 
formulation incorporates the grain size and porosity of the structure 
via a viscoplasticity model, which is coupled with the continuum 
dislocation dynamics framework.  

• The model reveals that the mechanical behavior of AM structures is 
governed by a competition between strengthening caused by grain 
refinement and softening caused by the porosity within the 
structures. 

• The model was used to analyze experimentally observed compres
sion behavior of AM micropillars previously studied by the authors, 
where three sets of geometries (with and without shape imperfec
tions) were analyzed for grain sizes ranging from a few hundred 
nanometers to a few micrometers and porosities ranging from 0 to 
20%.  

• The model showed that the hardening caused by grain refinement 
was a stronger effect compared to softening caused by porosity. This 
led to structures with larger micron-sized grains with low porosity 
having a highly ductile behavior with lower effective modulus 
compared to those with sub-micron grains and high porosity. This 
unusual prediction was consistent with the experimental results on 
AM micropillars.  

• The localized stress and strain originated due to shape imperfection 
were captured by the model. The existing shape imperfection caused 
early buckling and lowered the maximum buckling force for the AM 
micropillar structures considered in this work. 
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