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Abstract. For fixed positive integers n and k, the Kneser graph KGn,k

has vertices labeled by k-element subsets of {1, 2, . . . , n} and edges between
disjoint sets. Keeping k fixed and allowing n to grow, one obtains a family

of nested graphs, each of which is acted on by a symmetric group in a way

which is compatible with these inclusions and the inclusions of each symmetric
group into the next. In this paper, we provide a framework for studying fam-

ilies of this kind using the FI-module theory of Church, Ellenberg, and Farb

[10], and show that this theory has a variety of asymptotic consequences for
such families of graphs. These consequences span a range of topics including

enumeration, concerning counting occurrences of subgraphs, topology, con-

cerning Hom-complexes and configuration spaces of the graphs, and algebra,
concerning the changing behaviors in the graph spectra.

1. Introduction

1.1. Motivation. Let FI denote the category whose objects are the finite sets
[n] := {1, . . . , n}, and whose morphisms are injections. In their seminal work,
Church, Ellenberg, and Farb introduced the notion of an FI-module to formal-
ize the connection between a large number of seemingly unrelated phenomena in
topology and representation theory [10]. Formally, an FI-module is a functor from
FI to the category of real vector spaces. Noting that the endomorphisms in FI are
permutations, one may imagine an FI-module as a series of representations of the
symmetric groups Sn, with n increasing, which are compatible in some sense.

Recently there has been a push in the literature to use the same philosophy under-
lying FI-modules to study combinatorial objects. For instance, in his recent work
[21] Gadish studies what he calls FI-posets and FI-arrangements. In this work, we
will be mostly focused on FI-graphs, functors from FI to the category of graphs.
For us, a graph is a finite 1-dimensional simplicial complex. Given a graph G, we
write V (G) for the set of vertices of G and E(G) for the set of edges. Note that
V (G) and E(G) are, by how we have defined graph, both necessary finite. Just as
with the work of Gadish, we will discover that a relatively simple combinatorial
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condition on FI-graphs will allow us to conclude a plethora of interesting struc-
tural properties of the graphs which comprise it.

Throughout this paper we will often denote FI-graphs by G•, and use Gn as a
short-hand for its evaluation on [n]. The transition maps of G• are the graph mor-
phisms induced by the morphisms of FI which are not permutations. We say that
an FI-graph G• is vertex-stable of stable degree ≤ d if for all n ≥ d, every vertex
of Gn appears in the image of some transition map. Some common examples of
vertex-stable FI-graphs include:

• The complete graphs Kn;
• The Kneser graphs KGn,r, for each fixed r. These are the graphs whose

vertices are r-element subsets of [n], and whose edges indicate disjointness;
• The Johnson graphs Jn,r, for each fixed r. These are the graphs whose

vertices are r-element subsets of [n], and whose edges indicate that the in-
tersection of the two subsets has size r − 1.

Other examples of vertex-stable FI-graphs are given at the end of Section 3.1.
While it is straightforward to verify that the above examples are vertex-stable, one
might also observe that they have a variety of other symmetries. The main struc-
ture theorem of vertex-stable FI-graphs is that the condition of vertex-stability
automatically yields several other symmetries.
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Theorem A. Let G• be a vertex-stable FI-graph. Then for all n� 0:

1. The transition maps originating from Gn are injective;
2. The transition maps originating from Gn have induced images (see Defini-

tion 2.1);
3. Every edge of Gn+1 is the image of some edge of Gn under some transition

map;
4. For any fixed r ≥ 1 and any collection of vertices {v1, . . . , vr} of Gn+1,

there exists a collection of r vertices of Gn, {w1, . . . , wr} which map to
{v1, . . . , vr} under some transition map.

One should note two recurring themes in the above theorem. Firstly, many of the
results in this work (indeed, many of the results in the theory of FI-modules) are
only true asymptotically. Secondly, while one can prove the existence of certain
behaviors in general, it is usually quite difficult to make such existential state-
ments effective (see Theorem 3.31 for an instance where this is not the case). This
is a consequence of the methods used to prove such statements. In this work, the
main proof techniques which will be employed fall under what one might call a
Noetherian method. Namely, we rephrase what needs to be proven in terms of
finite generation of some associated module. We then prove that this module is
a submodule of something which is easily seen to be finitely generated, and ap-
ply standard Noetherianity arguments to conclude that the original module was
finitely generated. It is an interesting question to ask which, if any, of our results
can be made effective through more combinatorial means.

Following the proof of Theorem A, we spend the majority of the body of the paper
illustrating various applications. These applications come in three flavors: enumer-
ative, topological, and algebraic.

1.2. Enumerative applications. We begin by asking the following question:
Given a vertex-stable FI-graph G•, is it possible to count the occurrences of some
fixed substructure in Gn, as a function of n?

If G is a graph, then an induced subgraph of G is a graph obtained from G by
deleting some subset of the vertices and any edges involving those vertices, and a
subgraph of G is a graph obtained from G by deleting some subset of the vertices,
any edges involving those vertices, and some subset of the remaining edges. For a
graph H, there could be multiple ways to realise it as a subgraph of G, by deleting
different vertices and/or edges. This gives an instance of the above question. Can
we count the number of times a given graph H occurs in Gn as a function of n?
We answer this question in the affirmative.
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Theorem B. Let G• be a vertex-stable FI-graph of stable degree ≤ d, and let H
be a graph. Then there exists a polynomial pH(x) ∈ Q[x] of degree ≤ |V (H)| · d
such that for all n� 0 the function

n 7→ the number of subgraphs of Gn isomorphic to H

agrees with pH(n).

Remark 1.1. For a fixed pair of graphs G and H, the number of subgraphs of G
isomorphic to H is not the number of graph injections from H to G. Indeed, usually
one is concerned with counting the number of such injections up to composition
with automorphisms of H. Because H is independent of n, the above theorem re-
mains true regardless of how the counting problem is interpreted.

To convince themselves of this theorem, one should consider the case of the com-
plete graphs Kn. In this case, one can count the number of occurrences of H
by first choosing |V (H)| vertices, and then counting the number of copies of H
in the induced K|V (H)| subgraph. We will see in Section 3.1 that FI-graphs are
fairly diverse, and therefore one should not expect the general case to be quite
this straightforward. However, the idea that one should begin by choosing |V (H)|
vertices of Gn remains relevant. From this point one proceeds by applying the
fourth part of Theorem A.

Another interesting enumerative consequence of vertex-stability involves counting
degrees of vertices. Recall that in a given graph G, the degree of a vertex v is the
number of edges adjacent to v. We usually write ∆(G) for the maximum degree
of a vertex in G, and δ(G) for the minimum degree.
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Theorem C. Let G• be a vertex-stable FI-graph of stable degree ≤ d. Then the
functions

n 7→ ∆(Gn) and n 7→ δ(Gn)

each agree with a polynomial of degree at most d for all n� 0.

While Theorem C appears very similar to Theorem B, there is one subtle difference.
In the case of Theorem B, one reduces to the case of FI-modules by considering
the family of symmetric group representations induced by the symmetric group
action on copies of H inside Gn. It is unclear, however, whether such an approach
can work to prove Theorem C, as the maximum and minimum degrees of Gn can-
not in any obvious way be realized as the dimension of some symmetric group
representation. The proof of Theorem C is therefore a bit more subtle, and can be
considered more traditionally combinatorial than that of Theorem B.

To conclude our enumerative applications, we consider the question of counting
walks in Gn. Recall that for a fixed integer r ≥ 0 and a graph G, a walk of length r
in G is an (r+1)-tuple of vertices of G, (v0, . . . , vr), such that for all 0 ≤ i ≤ r−1,
{vi, vi+1} ∈ E(G). We say that a walk (v0, . . . , vr) is closed if vr = v0.

Theorem D. Let G• be a vertex-stable FI-graph of stable degree ≤ d. Then the
functions

n 7→ |{walks in Gn of length r}| and n 7→ |{closed walks in Gn of length r}|

each agree with a polynomial of degree at most (r + 1)d whenever n� 0.

1.3. Topological applications. In this paper we will be primarily concerned
with two topological applications of the theory of vertex-stable FI-graphs. Our ma-
jor results will prove that certain natural topological spaces associated to vertex-
stable FI-graphs will be representation stable in the sense of Church and Farb [12]
(see Definition 2.19).

Remark 1.2. In the language of [12], representation stability is a property of se-
quences of symmetric group representations. In this paper, we expand this defini-
tion to sequences of topological spaces with symmetric group actions, by asserting
that the homology groups of spaces are representation stable in the original sense.
This use of the terminology is not standard in the literature.

The first of our applications is related to the so-called Hom-complexes. Let H and
G be two graphs. A multi-homomorphism from H to G is a map of sets,

α : V (H)→ P(V (G))− ∅
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such that for all edges {x, y} ∈ E(H), and all choices of v ∈ α(x) and w ∈ α(y),
one has {v, w} ∈ E(G). The Hom-complex of H and G, denoted Hom(H,G), the
polyhedral complex whose cells are indexed by multi-homomorphisms between H
and G, such that the closure of any cell given by subset inclusion (See Definition
2.4 for details). These complexes first rose to popularity through the work of
Babson and Koslov [4, 5], which expanded upon famous work of Lovász [28]. For
instance, it is shown in those works that the topological connectivity of the space
Hom(K2, G) can be used to bound the chromatic number of G.

Theorem E. Let G• be a vertex-stable FI-graph. Then for any graph H, the
functor

n 7→ Hom(H,Gn)

is representation stable (see Definition 2.19). In particular, if i ≥ 0 is fixed, then
the function

n 7→ dimR(Hi(|Hom(H,Gn)|;R))

eventually agrees with a polynomial of degree at most |V (H)| · d(i+ 1).

While this result might seem somewhat technical, it has one particularly notable
consequence about counting graph homomorphisms into FI-graphs.

Corollary F. Let G• denote a vertex-stable FI-graph of stable degree at most d.
Then for any graph H the function

n 7→ |Hom(H,Gn)|

agrees with a polynomial of degree at most |V (H)| · d for all n� 0.

Remark 1.3. The algebraic theory of graph homomorphisms implies that there
are very concrete connections between counting homomorphisms into a graph,
counting injective homomorphisms into a graph, and counting induced homomor-
phisms into a graph (see, for instance, [29, Chapter 5]). In particular, Corollary
F, Theorem D, and Theorem B are not independent of each other, and can be in
certain cases deduced from one another. Our presentation of the material was cho-
sen to stress the interpretation that the polynomial behavior of homomorphisms
can be thought of as a consequence of the fact that a certain family of topological
spaces exhibits representation stability.

It is a well known fact that n-colorings of vertices of a graph H are in bijection
with Hom(H,Kn), where Kn is the complete graph on n vertices. The above the-
orem can therefore be thought of as an extension of the theorem which posits the
existence of the chromatic polynomial.
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Remark 1.4. The idea of treating the chromatic polynomial as an “FI phe-
nomenon” was conveyed to the first author by John Wiltshire-Gordon and Jordan
Ellenberg. This observation was a large part of the motivation for the present work.

Following our treatment of the Hom-complex, we next turn our attention to config-
uration spaces of graphs. Given a topological space X, the n-stranded configuration
space of X is the topological space of n distinct points on X,

Confn(X) := {(x1, . . . , xn) ∈ Xn | xi 6= xj , i 6= j}.

Configuration spaces are in many ways the prototypical topological application of
FI-module theory. In fact, one of the results which eventually inspired the study
of FI-modules was Church’s proof that configuration spaces of manifolds are often
representation stable [7]. It is unfortunately true, however, that if G is any graph
then the family of topological spaces {Confn(G)}n cannot be representation sta-
ble. In fact, they are extremely unstable in this sense, exhibiting factorial growth
in their Betti numbers (see the discussion following Theorem 2.10). In this paper
we therefore adapt a different approach, recently used by Lütgehetmann [27]. We
consider the spaces Confm(G•), where m is fixed and G• is a vertex-stable FI-
graph.

Theorem G. Let G• be a vertex-stable FI-graph with stable degree at most d
whose transition maps are all injective and whose constituent graphs Gn are all
connected. Then for any m ≥ 1 the functor

n 7→ Confm(Gn)

is representation stable (see Definition 2.19). In particular, if i ≥ 0 is fixed, then
the function

n 7→ dimR(Hi(Confm(Gn);R))

eventually agrees with a polynomial of degree at most 2dm.

Remark 1.5. Theorem A implies that the transition maps of any vertex-stable
FI-graph are eventually injective. Because the content of the previous theorem
is asymptotic, we may always replace our FI-graph with a new FI-graph whose
transition maps are injective and agrees with our original graph for all n � 0.
In particular, the assumption that the transition maps of our FI-graph must be
injective is not particularly restrictive.

The condition that Gn be connected is also not necessary, although the eventual
conclusion is a bit less clean if it is not assumed. The most general version of
Theorem G is proven as Theorem 4.12 below.

7



This theorem was proven for a particular FI-graph (see Example 3.9) by Lütgehetmann
[27], although he did not use this language. His approach in that work is very topo-
logical, and sharpens certain bounds that we discover in this work, although it is
limited to that example. Our approach is much more combinatorial in nature, and
has the benefit of proving the above theorem for all vertex-stable FI-graphs.

1.4. Algebraic applications. Our final kind of application involves studying the
spectrum of vertex-stable FI-graphs. For any graph G, let RV (G) denote the real
vector space with basis indexed by the vertices of G. Then there are many natural
endomorphisms of RV (G) which are of interest in algebraic graph theory. Perhaps
the most significant is the adjacency matrix of G. This is the matrix AG defined
on vertices v ∈ V (G) by

AGv =
∑

{w,v}∈E(G)

w

The adjacency matrix of any graph is a real symmetric matrix, and therefore its
eigenvalues must be real. This justifies the hypotheses of the following theorem.

Theorem H. Let G• be a vertex-stable FI-graph, and let An denote the adjacency
matrix of Gn. We may write the distinct eigenvalues of An as,

λ1(n) > λ2(n) > . . . > λr(n)(n),

for some function r(n). Then for all n� 0

1. The function r(n) is constant. In particular, the number of distinct eigen-
values of An is eventually constant;

2. For any i the function
n 7→ λi(n)

agrees with an function which is algebraic over the field Q(n);
3. For any i the function

n 7→ the multiplicity of λi(n)

agrees with a polynomial.

Remark 1.6. The proof of the above theorem will appear in upcoming work of
the authors and David Speyer [36]. It is included in this paper for completeness’s
sake. Hints toward the proof are given in Section 4.3.

Further note that the most general version of Theorem H allows one to work with
matrices other than the adjacency matrix. For instance, one reaches the same
conclusion working with the Laplacian matrix (see Definition 2.6).

Perhaps the simplest example one can call upon to illustrate this theorem is the
complete graph. In this instance the eigenvalues of the adjacency matrix An are
−1 and n − 1, with multiplicities n − 1 and 1 respectively. Hence the number of
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Quantity Max degree Reference
Number of subgraphs isomorphic to H |V (H)| · d Theorem B

Min and max vertex degrees d Theorem C
Number of walks and closed walks (r + 1)d Theorem D

dimR(Hi(|Hom(H,Gn)|;R)) |V (H)| · d(i+ 1) Theorem E
Number of homomorphisms from H to Gn |V (H)| · d Corollary F

dimR(Hi(Confm(Gn);R)) 2dm Theorem G
Table 1. A summary of the quantities shown in this paper to
be eventually polynomial, and bounds on the degree of that poly-
nomial in terms of the stable degree d of the FI-graph. See the
referenced results for definitions and notation.

distinct eigenvalues of An becomes constantly 2 beginning at n = 2, and the mul-
tiplicities of these eigenvalues are given by polynomials.

Table 1 summarizes these results.

1.5. Outline. The overall structure of the present work is as follows. We begin
by recalling necessary background. This ranges from graph theory (Section 2.1) to
the configuration spaces of graphs (Section 2.2) to the theory of FI-modules and
representation stability (Section 2.3). Our hope is that this background will be
sufficient so that readers from a large variety of fields can better follow the work
in the body of the paper.

Following this, we turn our attention to the basic definitions and examples from
the theory of FI-graphs (Section 3.1). We then describe the phenomenon of vertex-
stability and its major structural consequences (Section 3.2). This third section
is then capped off by a more technical chapter which solves the question of when
the transition maps of a vertex-stable FI-graph must begin to have induced image
(Section 3.3). The fourth section is dedicated to proving the applications detailed
above, as well as various smaller consequences that one might find interesting.

To conclude the work, we consider generalization of the theory of FI-graphs in
two distinct directions. Firstly, we consider what would happen if instead of FI,
one considered functors from certain other categories into the category of graphs
(Section 5.1). In particular, we argue that virtually everything described in the
paper will have some analog for FIm-graphs and VI(q)-graphs (see Definition 5.1).
Secondly, we consider higher dimensional analogs of FI-graphs. Namely, we con-
sider general FI-simplicial-complexes and show that certain structural facts will
continue to work in this context (Section 5.2).

1.6. Future directions. In an upcoming paper of the authors and David Speyer
[36], we classify finitely generated FI-sets and investigate the behavior of relations
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between FI-sets, proving for instance the present Theorem H.

Other forthcoming work concerns the behavior of random walks on FI-graphs. We
show that expected hitting times of simple random walks on FI-graphs eventually
agree with algebraic functions, and give bounds for the mixing times of these walks
in terms of the relative sizes of vertex and edge orbits.

It would be interesting to investigate which graph theoretic properties stabilize
as one moves along an FI-graph, particularly global properties which do not fol-
low from our observations on local structure. Example 3.16 provides an example
of an FI-graph for which the existence of a Hamiltonian cycle need not stabilize.
Another particularly interesting question concerns the chromatic number. The ex-
amples considered in this paper whose chromatic number have been computed
each have chromatic number eventually agreeing with a polynomial, though it is
unknown whether this is something one should expect for all FI-graphs. A result
in this direction would be particularly relevant to the Johnson graphs, whose chro-
matic number is still not known.

Recent work of Bahran has applied the theory of FI-graphs to questions in finite
group theory [2].
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2. Background

2.1. Graph Theory. For the purposes of this paper, we will only consider finite
graphs with no multi-edges or self-loops. Graphs will be permitted to be discon-
nected.

Definition 2.1. A graph is a finite 1-dimensional simplicial complex. Given a
graph G, we will write V (G) to denote its vertex set, and E(G) to denote its edge
set. Both V (G) and E(G) are necessarily finite. If v ∈ V (G), then µ(v) will be
used to denote its degree, which is the number of edges having v as one of their
endpoints. The minimum degree of a vertex of G will be denoted δ(G), while
the maximum degree will be written ∆(G).

A homomorphism of graphs φ : G → G′ is a map of sets φ : V (G) → V (G′)
such that if {x, y} ∈ E(G), then {φ(x), φ(y)} ∈ E(G′). The category of graphs
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and graph homomorphisms will be denoted Graph.

A subgraph of a graph G is a graph G′ with inclusions V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We say that a subgraph G′ is induced if for all x, y ∈ V (G′),
{x, y} ∈ E(G′) whenever {x, y} ∈ E(G).

In this work, we will be applying the theory of FI-modules to the study of certain
natural families of graphs. Our applications will be grouped into three categories:
enumerative, topological, and algebraic.

To begin, we review some elementary facts and notations from enumerative graph
theory. Much of what follows can be found in any standard text in graph theory
(see, for instance, [3]).

Definition 2.2. Let G and H be graphs. We write ηH(G) to denote the total
number of distinct subgraphs of G which are isomorphic to H. We will also write
ηindH (G) to denote the total number of distinct induced subgraphs of G which are
isomorphic to H

Remark 2.3. When one speaks of computing the number of copies of H inside
G, one is usually talking about counting the number of graph injections from H
to G up to composition of automorphisms of H. This is the perspective we take
in this work.

The question of determining whether ηH(G) > 0 is known as the subgraph iso-
morphism problem. It is known, for general choices of H and G, that the subgraph
isomorphism problem is NP-complete [8][26]. The analogous induced subgraph iso-
morphism problem is also known to be NP-complete, although it is also known to
be solvable in polynomial time in many instances [38]. In this paper, we will be
concerned with computing these two counting invariants across the members of
certain families of graphs (see Theorem 4.1).

After enumerative considerations, we next turn our attention to topological ap-
plications of the FI-graph structure. Our first application is related to so called
Hom-complex construction. Interest in these complexes originates from work of
Lovász [28], wherein similar spaces were used to resolve the Kneser conjecture.
Babson and Koslov later showed that the the spaces used in Lovász’s work were
specific examples of Hom-complexes [4, 5]. Following this, there has been some
amount of interest in various topological aspects of these spaces (see [16, 17] for
some examples). For instance, it is known that every simplicial complex can be
realized as a subdivision of the Hom-complex of some pair of graphs [17]. In this
paper, we will approach the Hom-complex from the perspective of representation
stability.
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Definition 2.4. Let H,G be graphs. A multi-homomorphism from H to G is
a map of sets

α : V (H)→ P(V (G))− ∅
between the vertices of H and the power set of the vertices of G, such that
if {x, y} ∈ E(H) then for all x′ ∈ α(x) and all y′ ∈ α(y), {x′, y′} ∈ E(G).
The Hom-complex of H and G, Hom(H,G), is the polyhedral complex whose
cells are in bijection with multi-homomorphisms from H to G. Given two multi-
homomorphisms α and τ , we have that the cell corresponding to α is contained
in the closure of the cell corresponding to τ if and only if α(x) ⊆ τ(x) for all x ∈ H.

Remark 2.5. In the literature, the Hom-complex is sometimes defined to be the
order complex of the poset of multi-homomorphisms and inclusions [16, 17]. This
simplicial definition of the Hom-complex can be realized as a subdivision of our
chosen polyhedral complex construction (See the discussion following [4, Definition
1.2]). We use the definition of the Hom-complex as a polyhedral complex provided
by [4], as it makes the arguments which follow a bit easier.

We will later construct large families of graphs Gn, indexed by the natural num-
bers, such that for any graph H, the complexes Hom(H,Gn) are representation
stable in the sense of Church and Farb (see Theorem 4.9 and Definition 2.19).

Following this, we will spend some time proving facts about configuration spaces
of graphs. The background for this material is detailed in the next section.

The final type of application we will concern ourselves with relates to spectral
properties of graphs. More specifically, we will concern ourselves with eigenspaces
and eigenvalues of adjacency and Laplacian matrices.

Definition 2.6. Let G be a graph. The adjacency matrix of G, AG, is the
matrix whose columns and rows are labeled by vertices of G and whose entries are
defined by

(AG)(v,w) :=

{
1 if {v, w} ∈ E(G)

0 otherwise.

The Laplacian matrix of G, LG, is the difference DG − AG, where DG is the
diagonal matrix whose entries display the degrees of the vertices of G.

The collection of eigenvalues of AG will be referred to as the spectrum of G.

There are many things that one may immediately observe from the fact that AG
and LG are real and symmetric. For instance:

1. The matrices AG and LG are diagonalizable.
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2. The eigenvalues of AG and LG are real. Therefore, they can be ordered as
λ1 ≥ λ2 ≥ . . . ≥ λ|V (G)|.

In our work we will be largely concerned with the following two questions: Given
certain natural families of graphs Gn, indexed by the natural numbers, how many
distinct eigenvalues can AGn

and LGn
have (as a function of n), and how do the

multiplicities of these eigenvalues change with n? For instance, the adjacency ma-
trix of the complete graph Kn, with n ≥ 2, has distinct eigenvalues n− 1 and −1
with multiplicities 1 and n − 1, respectively. In other words, so long as n is suffi-
ciently large, the complete graph Kn has a fixed number of distinct eigenvalues,
and the corresponding eigenspaces have dimensions which are polynomial in n.
One of the main motivations for this paper is proving a framework which explains
such behavior.

For references on graph spectra, see [3, 9, 14, 15].

2.2. Configuration spaces of graphs.

Definition 2.7. Let G be a graph. Then the m-stranded configuration space
of G is the topological space

Confm(G) := {(x1, . . . , xm) ∈ Gm | xj 6= xi, i 6= j.}

Configuration spaces of various topological spaces have a long history including
work of McDuff [33], and Church, Ellenberg, and Farb [10], among many others.
Much of the literature is focused on the configuration spaces of manifolds. Recently,
some attention has been given to the configuration spaces of graphs, due to their
connections with robotics [23]. Much of the newly emerging literature seems to in-
dicate that these configuration spaces are heavily influenced by the combinatorics
of the graph (see [1, 23, 22, 19, 35, 27, 13], for a small sampling). For instance, the
following theorem of Abrams puts a very natural cellular structure on Confm(G),
which depends highly on the vertices of G of degree at least 3. Cellular models
have also been proposed by Światkowski [37], Ghrist [23], Lütgehetmann [27], and
Wiltshire-Gordon [42].

Definition 2.8. Let G be a graph. The mth subdivision of G is the graph G(m)

obtained from G by adding m− 1 vertices of degree 2 to every edge of G.

Theorem 2.9 (Abrams, [1]). Let G be a graph, and let DConfm(G) denote the
sub-complex of the cubical complex Gm comprised of cells of the form

σ1 × . . .× σm
where σi is either an edge or vertex of G, and for each i 6= j,

∂(σi) ∩ ∂(σj) = ∅.
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Figure 1. The cell (v0, e4,7).

Then DConfm(G(m)) is homotopy equivalent to Confm(G(m)).

The original work of Abrams is more precise than the above, but this is suffi-
cient for what follows. We note that for any graph G, Confm(G(m)) is identical to
Confm(G). We observe that DConfm(G) is the largest subcomplex of Gm which
avoids the diagonals xi = xj . Abrams’ theorem therefore states that this complex
will contain the same topological information as Confm(G) so long as there are
enough vertices in G such that every coordinate in a given configuration can fit
on a single edge using only vertices.

It is often convenient to visualize the cells of DConfm(G(m)) as living on the graph
G(m). In such a visualization, we bolden the vertices and edges appearing in the
cell on the graph G(m), and label the position in which they appear in the cell.
For instance, Figure 1 shows a cell of DConf2(G(2)) for a particular choice of G.

Among the many incredible theoretical properties of configuration spaces of graphs
is the precise computation of their Euler characteristic. The following result is due
to Gal, and provides a large part of the motivation for this work.

Theorem 2.10 (Gal, [22]). Let G be a graph, and let e(t) denote the exponential
generating function

e(t) =
∑
m≥0

χ(Confm(G))

m!
tm.

Then

e(t) =

∏
v∈V (G)(1− (1− µ(v))t)

(1− t)|E(G)| .

A theorem of Ghrist [23] and Światkowski [37] implies that Hi(Confm(G)) = 0 for
all graphs G and all i larger than the number of vertices of G of degree at least
3. In particular, this is independent of m. It follows from this fact, as well as the
theorem of Gal, that the Betti numbers of Confm(G) should be expected to grow
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in m like m!. Such growth precludes Confm(G) from being representation stable
(see Definition 2.19 for the definition of representation stable, and Theorem 2.18 to
see why the above precludes Confm(G) from having this property). Looking again
at the theorem of Gal, we see that the Euler characteristic of Confm(G), as a
function of m, looks like m! multiplied by a polynomial in invariants of G. In other
words, the extreme growth in the Euler characteristic seems to be primarily influ-
enced by the number of points being configured, rather than the the graph G itself.

One guiding philosophy of the present work is that if we fix the number of points
begin configured, and instead allow the graph itself to vary, then the collection of
spaces Confm(Gn) will be representation stable in the sense of Definition 2.19.

This philosophy has also appeared in recent work of Lütgehetmann [27]. Theorem
G extends the main theorem of that work.

2.3. FI-modules and representation stability. The main tool we introduce in
this paper are objects we refer to as FI-graphs. Before working through the tech-
nical details of that construction, we must first discuss a key auxiliary concept:
FI-modules.

Definition 2.11. Let FI denote the category whose objects are the finite sets
[n] := {1, . . . , n} and whose maps are injections. An FI-module is a (covariant)
functor from FI to the category of R-vector spaces.

Remark 2.12. FI-modules can be put into more concrete terms. Observe that for
any set [n], the endomorphisms in FI are precisely the permutations on n letters,
Sn. Therefore, if V is an FI-module, each of the vector spaces V ([n]) is actually a
representation of the symmetric group Sn. An FI-module may be thought of as a
sequence of vector spaces

V0 → V1 → . . .

such that each Vn is a representation of Sn, and each of the forward maps Vn →
Vn+1 is a linear map which is equivariant with respect to the action of Sn, where
Sn ≤ Sn+1 as the subgroup of permutations which fix the element n+ 1.
More precisely, Remark 3.3.1 of [10] says that such a sequence of spaces and maps
forms an FI-module if and only if for any n and k, any element of Sn+k which
fixes all of [n] acts trivially on the image of Vn in Vn+k.

Remark 2.13. Note that most works in the literature allow FI-modules to be
valued in any module category over a commutative ring. For our purposes, we will
mostly consider FI-modules which are valued in vector spaces over R. In certain
areas of the paper, such as Lemma 4.6, we consider FI-modules over Z, i.e.
functors from FI to the category of abelian groups. Most of the definitions and
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theorems in this section work equally well in this case.

For an FI-module V , we will often write Vn := V ([n]) and f* := V (f). One
should note that for any n, the endomorphisms of [n] in FI are precisely the
permutations on n letters, Sn. Functoriality therefore implies that, for each n, Vn
is a representation of Sn.
Just as with the study of vector spaces, it is often reasonable to restrict one’s
attention to those objects which are finitely generated in the appropriate sense.
Before describing how such a condition can be applied to FI-modules, we note
that the category of FI-modules and natural transformations is abelian. Indeed,
one may define the usual abelian operations point-wise. In fact, one may very
naturally define constructions such as direct sums and products, tensor products,
symmetric products, etc. for FI-modules.

Definition 2.14. An FI-module V is said to be finitely generated in degree
≤ d if there is a finite set

{vi} ⊆ tdn=0Vn

which no proper submodule of V contains. Equivalently, the set {vi} generates
V if, for all n, the vector space Vn is spanned by the images of the vi under the
various maps f* induced by V from injections of sets.

Perhaps the most remarkable thing about finitely generated FI-modules is that
they exhibit a Noetherian property. The following was first proven by Snowden in
[39], and later repoven by Church, Ellenberg, and Farb in [10].

Theorem 2.15 (Snowden, [39]; Church, Ellenberg, and Farb, [10]). Let V be a
finitely generated FI-module. Then every submodule of V is also finitely generated.

We will use the above Noetherian property to deduce various somewhat surprising
combinatorial facts about FI-graphs.

As one might expect, if V is an FI-module generated in degree ≤ d, then it is
not necessarily the case that submodules of V are also generated in degree ≤ d.
Despite this, one may still conclude certain things about submodules of V based
on properties of V . For this reason, we introduce the following.

Definition 2.16. We say that a finitely generated FI-module V is d-small if V
is a subquotient of an FI-module which is finitely generated in degree ≤ d.

Proposition 2.17 (Church, Ellenberg, and Farb, [10]). If V is finitely generated
in degree ≤ d and W is finitely generated in degree ≤ e, then
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1. The FI-module V⊕W is generated in degree ≤ max{d, e}, where (V⊕W )n =
Vn ⊕Wn;

2. The FI-module V ⊗W is generated in degree ≤ d + e, where (V ⊗W )n =
Vn ⊗Wn.

The following list of properties are proven throughout [10].

Theorem 2.18 (Church, Ellenberg, and Farb, [10]). Let V be an FI-module. If V
is finitely generated then for all n� 0 and all injections f : [n]→ [n+ 1],

1. The function f* is injective;
2. The vector space Vn+1 is spanned as an Sn+1-representation by f*(Vn);
3. The Sn-representation Vn admits a decomposition of the form

Vn =
⊕

λ,|λ|≤d

mλV (λ)n

where the coefficient mλ is independent of n and d is some constant inde-
pendent of n (see [10] for details on the representations V (λ)). In particular,
the multiplicity of the trivial representation in Vn is eventually independent
of n.

4. If V is d-small, then there exists a polynomial pV (X) ∈ Q[X] of degree ≤ d
such that for all n� 0, pV (n) = dimQ Vn.

The above will be used extensively in what follows.

The notion of representation stability was first introduced by Church and Farb in
their seminal work [12]. From these beginnings the field has seen a boom in the
literature and has been proven to be applicable to a large collection of subjects.
For the purposes of this paper, we state the following definition, which is a mod-
ernized version of the original definition of Church and Farb.

Definition 2.19. Let X• denote a functor from FI to the category of topological
spaces. Then we say that X• is representation stable if for all i ≥ 0 the FI-
module over Z

Hi(X•;Z)

is finitely generated.

Note that this definition describes what is meant by an FI-space being represen-
tation stable, not an FI-module.

Remark 2.20. Again we note that this definition is not standard in the liter-
ature. Observe that being representation stable in the above sense implies that
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the FI-module Hi(X•;R) is finitely generated in at most the same degree. This is
much more similar, in spirit, to the original work of Church and Farb [12].

It was famously proven by Church [7], and later reexamined by Church, Ellen-
berg, and Farb [10], that if M is a compact orientable manifold with boundary of
dimension at least two then

n 7→ Confn(M)

is representation stable. We have already seen, however, that an analogous state-
ment cannot be true if we replace M with a graph (see the discussion following
Theorem 2.10). We therefore change our approach and instead consider the func-
tors

n 7→ Confm(Gn)(2.1)

where m is fixed, and G• is a particularly nice FI-graph (see the statement of
Theorem G). The main theorem of this paper can be restated to say that in this
case the functor (2.1) is representation stable. Our approach will be largely com-
binatorial, and we will use structural facts about FI-graphs as well as the cellular
model of Theorem 2.9. This is in contrast to the work of Lütgehetmann, which
proves that n 7→ Confm(Gn) is representation stable for a particular choice of G•
(see Example 3.9) using very topological methods. We will find that our method
provides a stronger bound on the degree of the polynomial encoding the Betti
numbers in this case, while Lütgehetmann’s method provides bounds on the de-
gree of generation of the FI-modules Hi(Confm(G•)).

Remark 2.21. For future use, we now explicitly point out the properties of FI-
modules over Z which will be used in the sequel. These are:

1. FI-modules over Z satisfy the Noetherian property. That is, submodules of
finitely generated modules are once again finitely generated [11, Theorem
A];

2. If V is a finitely generated FI-module over Z, then the function n 7→
rank(Vn) agree with a polynomial for n� 0 [11, Theorem B];

3. If V is a finitely generated FI-module over Z, then transition maps of V are
eventually injective [11, Lemma 2.15].

4. If V and W are finitely generated FI-modules over Z, then both V ⊗W and
V ⊕W are also finitely generated [10, Proposition 2.61].

Note that the primary differences between FI-modules and FI-modules over Z
involve the behaviors of the Sn-representations Vn. This can be thought of as a
consequence of the fact that representation theory, and the representation theory
of the symmetric groups specifically, is generally much less well behaved over Z.

3. FI-graphs

3.1. Definitions and examples. The primary objective of this section is to pro-
vide a framework through which one can study families of graphs in the spirit of
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Kneser graphs and their generalizations. Recall that, for any fixed integers n ≥ k,
one defines the Kneser graph KGn,k as the graph whose vertices are labeled by
k-element subsets of [n], and whose edges connect disjoint sets.

It is clear that for each n, elements of Sn act on KGn,k by graph automorphisms.
What is perhaps more subtle, is that if f : [n] ↪→ [m] is any injection, then there
is an induced map of graphs

KG(f) : KGn,k → KGm,k

Looking back at the definition of FI-modules, one is therefore motivated to make
the following definition.

Definition 3.1. An FI-graph is a functor from the category FI to the category
Graph of (simple) graphs. We will usually denote an FI-graph by G• : FI →
Graph. We will use G(f) to denote the induced maps of G•.

Remark 3.2. We may consider FI-graphs in a more concrete fashion, similar to
how FI-modules were treated in Remark 2.12. An FI-graph may be thought of as
a sequence of graphs

G0 → G1 → . . .

such that each Gn carries a vertex action by Sn, and each of the forward maps
Gn → Gn+1 is a graph theoretic homomorphism which is equivariant with respect
to the action of Sn, where Sn ≤ Sn+1 as the subgroup of permutations which fix
n+ 1.
As in Remark 2.12, such a sequence of graphs and maps may not be an FI-graph,
but following Remark 3.3.1 of [10], the sequence of graphs and maps forms an
FI-graph if and only if for any n and k, any element of Sn+k which fixes all of [n]
acts trivially on the image of Gn in Gn+k. Example 3.15 shows the behavior that
may occur without this assumption.

While the above definition captures the core of the above discussion, it is still a
bit too general for our purposes. For instance, if

G0 ⊆ G1 ⊆ G2 ⊆ . . .
is any chain of graphs, then we may define an FI-graph by setting the Sn-action
to be trivial for each n, and having the transition maps be the given inclusions.
An arbitrary chain of graphs like the above can become rather complicated, and
there won’t necessarily be any way to gather meaningful information above the
invariants of any Gn from those that came before it. What is needed is some notion
of finite generation for FI-graphs. For this purpose, we define the following.

Definition 3.3. Let G• be an FI-graph. We say that G• is vertex-stable with
stable degree ≤ d if for all n ≥ d, and every vertex v ∈ V (Gn+1) there exists
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some vertex w ∈ V (Gn) and some injection f : [n] ↪→ [n+1] such thatG(f)(w) = v.

That is, an FI-graph is vertex-stable with stable degree ≤ d if for each n > d,
every vertex in Gn is in the image of one of the transition maps. Informally, no
‘new’ vertices appear after the graph Gd, up to symmetric group actions.

We will find that this fairly simple combinatorial condition is sufficient to prove
a plethora of facts about the graphs Gn. Before we delve into these details, we
first introduce the various examples which motivated this paper. In most of these
examples, vertices are labeled by elements of [n] = {1, 2, . . . , n} or by sets or tuples
(unordered or ordered, respectively) of such elements. The symmetric group Sn

acts on such vertices by acting on each element individually. It is a result of the
upcoming work [36] that all vertex-stable FI-graphs arise from such constructions,
slightly generalized.

Example 3.4. For any fixed k ≥ 0, the Kneser graphs KG•,k form a vertex-stable
FI-graph with stable degree k (or stable degree 1 if k = 0). The same can therefore
be said about the complete graphs K• = KG•,1.

More generally, if n, k, and r are fixed integers, then we define the generalized
Kneser graph KGn,k,≤r to have vertices labeled by subsets of [n] of size k and
edges connecting subsets whose intersection has size at most r. In particular,
KGn,k = KGn,k,0. The generalized Kneser graphs KG•,k,≤r form a vertex-stable
FI-graph for each fixed k and r, again with stable degree k.

Rather than putting edges between subsets whose intersection is of at most a
certain size, we could instead require that the intersection have exactly that size
— for instance, let KGn,k,r be the graph whose vertices are subsets of size k and
with an edge between two vertices if their subsets have an intersection of exactly
size r. The graphs KG•,k,r also form a vertex-stable FI-graph with stable degree
k.

We could generalize this example further, allowing edges to correspond to inter-
sections of various specified sizes.

Example 3.5. For any fixed k ≥ 0, we can define a variant of the Kneser graph,
which we denote KGn,≤k. The vertices of KGn,≤k will be labeled by subsets of [n]
of size at most k, and the edges will connect disjoint subgraphs, just as was the
case with the Kneser graph. Because self-loops are forbidden, we do not connect
the empty set to itself.

Note that for each n, the symmetric group action on KGn,≤k is not transitive. De-
spite this, the collection KG•,≤k still forms a vertex-stable FI-graph with stable
degree k. It will be useful to consider the orbits of vertices under the symmetric
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group actions. Our examples tend to have few orbits for the sake of being simple
examples, but this is not a restriction on general FI-graphs.

Example 3.6. For any fixed k ≥ 0, the complete bipartite graphs K•,k form a
vertex-stable FI-graph with stable degree 1. Here, our transition maps and per-
mutations fix the vertices in the part of size k. It follows that the series of star
graphs, Star• = K•,1 form a vertex-stable FI-graph.

Example 3.7. For any fixed n, k ≥ 0, define the Johnson graph Jn,k as that whose
vertices are labeled by subsets of [n] with size k, and whose edges connect subsets
with intersection size k − 1. Then J•,k naturally forms a vertex-stable FI-graph
with stable degree k.

In the notation of Example 3.4, the Johnson graph Jn,k is the generalized Kneser
graph KGn,k,k−1.

Example 3.8. Recall that the n-cube graph Qn is defined to be the 1-skeleton of
the n-dimensional hypercube. This collection cannot be endowed with the struc-
ture of a vertex-stable FI-graph, as its number of vertices grows too fast (see
Theorem 4.3). There is, however, a variation of the n-cube graph which can be
endowed with the structure of a finitely generated FI-graph.

For fixed n, k ≥ 0, let Qn,k denote the graph whose vertices are ordered k-tuples
of elements of [n], where two vertices are connected if they differ in only one coor-
dinate. This graph is sometimes called the k-lattice graph of characteristic n. The
cubic lattice graph of characteristic n is notable in that it can be entirely charac-
terized by certain simple combinatorial properties (see [30]). For our purposes, we
simply note that for any fixed k the family Q•,k can be endowed with the structure
of a vertex-stable FI-graph. Indeed, let n > k, and let (i1, . . . , ik) be a vertex of
Qn+1,k. Because k < n, we know that there is some integer l ∈ [n] such that l 6= ij
for any j. Then (i1, . . . , ik) is in the image of the transition map induced by the
injection f : [n] ↪→ [n+ 1] given by,

f(x) =

{
n+ 1 if x = l,

x otherwise.

This FI-graph has stable degree k.

Example 3.9. Our next example appears in earlier work of Lütgehetmann [27].
Let G,H be any pair of pointed graphs. Then we can construct a new graph by
wedging G with H n times, producing the graph

Gn := G
∨
H∨n
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Then we may endow Gn with the structure of an FI-graph by having the sym-
metric group act by permuting the factors of H. This FI-graph has stable degree 1.

The examples thus far have been quite regular, in the sense that for each n, the
construction of the vertices and edges of the graph Gn has been the same. It is
worth examining how this can be varied, particularly because results later in this
section will limit how wild such variation can be.

Example 3.10. Let G• be an FI-graph, and modify it by removing all edges from
each Gi, for i = 1 to k − 1.

Example 3.11. Let G• be an FI-graph, and modify it by replacing each Gi by
the empty graph, for i = 1 to k − 1.

While Examples 3.10 and 3.11 remove vertices and edges from graphs in the first
few degrees, this cannot necessarily be done in later degrees. The transition maps
are permitted to map pairs of vertices not connected by an edge to pairs of vertices
connected by an edge, but not the reverse. Two vertices joined by an edge may
not map to the same vertex, because there cannot be an edge from this vertex to
itself. For instance, if Gn contains a complete graph on k vertices then Gn+1 also
contains a complete graph on k vertices.

Disjoint unions of FI-graphs are FI-graphs, and it is possible to increase the number
of copies from a certain point onwards.

Example 3.12. Fix a positive integer k, and let G• be any FI-graph with stable
degree at most k. We create a new FI-graph H• as follows. For i < k, the graph
Hi is equal to Gi. For i ≥ k, the graph Hi is a disjoint union of two copies of
Gi. For concreteness, color vertices and edges in one of these subgraphs red and
in the other, blue. The action of Sn preserves the color of vertices. Transition
maps preserve the color of vertices and take uncolored vertices to red vertices.
This FI-graph has stable degree k.

Example 3.12 did not need the two graphs to be the same — the new graphs intro-
duced from degree k could have been the respective components of any FI-graph.

It is also possible to decrease the number of components. This does require the
use of transition maps which are not injective.

Example 3.13. Let G• be any FI-graph. Fix a positive integer k, and create a
new FI-graph H• as follows. For i < k, the graph Hi is a disjoint union of two
copies of Gi. Color vertices and edges in one of these subgraphs red and in the
other, blue. For i ≥ k, the graph Hi is equal to Gi. The action of Sn preserves
the color of vertices. Transition maps preserve the color of vertices if their image
is in Gi with i < k, and forget colors otherwise.

An FI-graph may be modified by changing the times at which the various ‘types’
of edges begin to appear, as in the following variant of the Kneser graph.
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Example 3.14. Let the vertex set of Gn be indexed by subsets of [n] of size r,
and let a0 to ar be r + 1 fixed positive integers. In Gn, there is an edge between
two vertices if and only if n ≥ ak, where k is the number of elements the two
vertices have in common.

That is, Example 3.14 is describing a sequence of graphs where edges between
disjoint sets are present from the a0th graph onwards, edges between sets with a
single element in common are present from the a1th graph onwards, and so on.

Example 3.14 could be generalized further by taking the vertices to be ordered
r-tuples, in which case there would be more edge orbits — two tuples may be
compared not just by how many elements they have in common, but also by
which positions these overlaps occupy. For instance, if the vertices are ordered
pairs, then there are five orbits of edges rather than three in the unordered case
— between pairs of vertices ((a, b), (a, c)),((a, b), (c, b)),((a, b), (b, c)),((a, b), (c, a)),
and ((a, b), (c, d)).

There are also examples whose vertices are in between sets (unordered) and tuples
(ordered) — we could start with vertices indexed by r–tuples, choose a subgroup
H of the symmetric group Sr, and identify two tuples if the action of H takes
one to the other. For instance, we might care about the order of an r–tuple up
to cyclic permutation. It turns out that all finitely-generated FI-graphs may be
constructed in essentially this way — see Theorem A of [36].

The next example fails to be an FI-graph in a subtle way. If it was an FI-graph,
it would violate Theorem 3.31.

Example 3.15. For each i 6= 2, let Gi be the complete graph on the vertex set [i],
with the natural symmetric group action where the group Si permutes the set [i].
Let G2 have vertex set {1, 2, 3}, with edges 13 and 23 and the nonidentity element
of S2 interchanging the vertices 1 and 2 and fixing 3. Transition maps from Gn
to Gn+1 are obtained by including Gn into Gn+1, using the same symbols for the
vertex labels of each graph, and then acting by any element of Sn+1. We shall
not attempt to define further transition maps, because this cannot be done in a
consistent manner, as we shall now see.

From Remark 3.2, we know that for G• to be an FI-graph, the transposition (3 4)
would need to fix the image of G2 in G4, because it fixes 1 and 2. But this isn’t
the case, so G• can’t be an FI-graph. This is perhaps a surprising failure, because
transition maps from each Gi to the next graph Gi+1 can be defined naturally, and
it is only longer-range maps which fail. Attempts to define such transition maps
in a consistent way will run into difficulties deciding where to send the vertex 3
from G2. This example illustrates the consistency condition required by Remark
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3.2.

If rather than FI we were working over a category where maps from [2] to [n] were
instead sequences of maps from [2] to [3] to [4] and so on, then this construction
would not fail in this way, and so over such a category, the analogue of Theorem
3.31 is false.

Example 3.16. Consider the FI-graph defined as follows. Let Gn have five orbits
of n vertices, indexed by the colors red, orange, yellow, green, and blue. At the
moment, these orbits are isomorphic, though they will differ once we introduce
the edges. The symmetric group action and the transition maps both preserve the
colors. The graph Gn has edges between

• Each red vertex and each red or orange vertex
• Each yellow vertex and the orange and green vertices of equal label, and
• Each green or blue vertex and each blue vertex.

See Figure 2 for a schematic of this graph.

This particular FI-graph is of theoretical interest, as it provides an example of
a global property which does not stabilize in n. In particular, we claim that Gn
admits a Hamiltonian cycle if and only if n is even.

When n is even, consider the path which starts at the top left of Figure 2 and
‘snakes’ downward by moving all the way to the right, takes one step down, moves
all the way to the left, takes a step down, and repeats. The initial and final vertices
of this path are adjacent, so this is a Hamiltonian cycle.

When n is odd, each time a non-backtracking path passes through a yellow vertex,
it switches between the left and right pieces of the graph, comprised of red and
orange or green and blue vertices, respectively. There is no other way to move
between the two sides, and there are an odd number of yellow vertices, so any
path passing through each vertex once must end on the opposite side to which it
started.

3.2. Vertex-stability and its consequences. While it is clearly the case that
the examples of Section 3.1 are vertex-stable, one might also note that these cases
seem to have much more structure than this. For instance, it is natural to go a
step further and make the following definitions:

Definition 3.17.

1. An FI-graph is eventually injective if for n � 0, the transition maps of
G• are injective;
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Red Orange Yellow Green Blue

Figure 2. The FI-graph of Example 3.16. The key feature is that
there are n ‘bridges’ from the right side of the graph to the left,
and any Hamiltonian path must cross each of them.

2. An FI-graph is eventually induced if for n� 0, the image of any transi-
tion map is an induced subgraph;

3. An FI-graph is edge-stable with edge-stable degree ≤ k if for n ≥ k and
any {x, y} ∈ E(Gn) there is an edge {v, w} ∈ V (Gk) and an injection
f : [k] ↪→ [n] such that G(f)(v) = x and G(f)(w) = y;

4. An FI-graph is r-vertex-stable if for all n � 0, and any collection of r
vertices of V (Gn+1), {x1, . . . , xr}, there is a collection of vertices of Gn,
{v1, . . . , vr}, and an injection f : [n] ↪→ [n+ 1], such that G(f)(vi) = xi for
each i.

These stability properties may occur at quite different times, and at different times
to vertex-stability. Example 3.13 is injective only from degree k onwards, Example
3.12 is vertex-stable and edge-stable from degree k onwards, and Example 3.14 is
vertex-stable in degree r, but edge-stable only once the degree is greater than all
of a0 through ar.

The Kneser graphs KG•,k (Example 3.4) are vertex-stable in degree k, edge-stable
in degree 2k, and r-vertex-stable in degree rk. In contrast, the lattice graphs Q•,k
(Example 3.8) are vertex-stable in degree k, edge-stable in degree k + 1, and r-
vertex-stable in degree rk.

It is left to the reader to verify that all of the examples of the previous section
satisfy each of the above conditions. Somewhat miraculously, it turns out that this
is not a coincidence.
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Theorem 3.18. Let G• be a vertex-stable FI-graph. Then:

1. G• is r-vertex-stable for all r ≥ 1;
2. G• is edge-stable;
3. G• is eventually injective and induced.

It is worth noting that vertex-stability is strictly stronger than edge-stability, as
shown by the following example.

Example 3.19. For each n, let Gn be the union of the complete graph Kn and n
isolated vertices. The symmetric group Sn acts naturally on the complete graph
and fixes each of the other vertices. This FI-graph is edge-stable in degree 2, but
is not vertex-stable.

Edge stability may happen either before or after 2-vertex-stability, because edge-
stability includes only pairs of vertices which are connected by edges, but it is
possible for edges to not appear until long after any pair of vertices are contained
in the image of some transition map. Example 3.14 is 2-vertex-stable in degree 2r,
but is not edge-stable until the degree equal to the maximum of the ai.

Before we prove Theorem 3.18, it will be useful to us to rephrase the above prop-
erties in terms of finite generation of certain FI-modules.

Definition 3.20. Let G• denote an FI-graph, and let r ≥ 1 be fixed. We write

R
(
V (G•)

r

)
to denote the FI-module whose evaluation at [n] is the R vector space with basis

indexed by collections of r vertices of Gn. We will often write RV (G•) := R
(
V (G•)

1

)
.

Note that the image of a collection of r vertices under a transition map may not
be a collection of r vertices if this transition map is not injective on vertices. In
this case we simply declare the map to be zero on this collection. Similarly, we
define RE(G•) to be the FI-module whose evaluation at [n] is the R vector space
with basis indexed by the edges of E(Gn).

Remark 3.21. The modules R
(
V (G•)
r

)
can also be constructed in the following

fashion. Observe that if G• is an FI-graph, then
(
V (G•)
r

)
is an FI-set, i.e. a functor

from FI to the category of finite sets. There is a functor from the category of
finite sets to the category of R vector spaces given by linearization. Specifically,
this is the functor which sends a set to the R vector space with a basis indexed

by the elements of the set. The module R
(
V (G•)
r

)
can therefore be realized as a

composition of the functor
(
V (G•)
r

)
with linearization. This perspective is pervasive
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through the sequel work [36], where FI-sets are a more primary focus. In this work
we will not dive too deeply into this idea.

Lemma 3.22. Let G• be an FI-graph.

1. G• is vertex-stable with stable degree ≤ d if and only if RV (G•) is finitely
generated in degree ≤ d.

2. G• is eventually injective if and only if the transition maps of RV (G•) are
eventually injective.

3. G• is edge-stable with edge-stable degree ≤ d if and only if RE(G•) is finitely
generated in degree ≤ d.

4. G• is r-vertex-stable if and only if R
(
V (G•)
r

)
is finitely generated.

Proof
All of these assertions follow from the relevant definitions.

�

Remark 3.23. Note that this lemma is critically dependent on the assumption
that Gn has finitely many vertices and edges for each n. For instance, consider the
collection of infinite graphs

V (Gn) := N, E(Gn) := {{1, 2}, {2, 3}, . . . , {n− 1, n}}
We can introduce an FI-structure on G• by having the symmetric group act triv-
ially. Then it is clear that RV (Gn) is not finitely generated, despite G• being
“vertex-stable” in some sense. Also note that the collection G• is not edge-stable
in this case, seemingly violating Theorem 3.18.

This lemma is the key piece in the proof of Theorem 3.18.

Proof of Theorem 3.18
To begin, Lemma 3.22 implies that we must show that R

(
V (G•)
r

)
is finitely gener-

ated. We note that there is a surjection of FI-modules

RV (G•)
⊗r → R

(
V (G•)

r

)
Indeed, this is induced by the assignments

x1 ⊗ . . .⊗ xr 7→

{
{x1, . . . , xr} if xi 6= xj for i 6= j

0 otherwise.

By assumption RV (G•) is finitely generated, whence the same is true of (RV (G•))
⊗r

by Proposition 2.17. This concludes the proof of the first statement.

The second statement follows from the Noetherian property as well as the inclusion

RE(G•) ↪→ R
(
V (G•)

2

)
.
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Eventual injectivity follows from Theorem 2.18.

By definition, G• is eventually induced if and only if for n large enough and for
{x, y} /∈ E(Gn) any pair of nonadjacent vertices of Gn, then the images of x and
y under any injection f : [n] ↪→ [n+ 1], f*(x) and f*(y), are not connected by an
edge in Gn+1. For each n, let On denote the set of Sn-orbits of pairs of vertices in
Gn. Note that On may be partitioned into two subsets, depending on whether or
not pairs in the orbit correspond to edges or not. Further note that the transition
maps of G• will send an “edge” orbit to an edge orbit. On the other hand, the
third part of Theorem 2.18 implies that |On| is eventually independent of n, as it

is equal to the multiplicity of the trivial representation in R
(
V (Gn)

2

)
.

For similar reasons the orbits of pairs corresponding to edges must stabilize as
well. Note that even once the number of orbits of pairs of orbits has stabilized
(that is, that |Ok| is constant for all k ≥ n), it may not be the case that the edge
orbits have already stabilized at the same graph n. Rather, this value of |Ok| gives
a finite upper bound on the number of times that the number of edge orbits may
increase, which shows that this number eventually stabilizes. However, there is no
bound on how long this may take, as can be seen by considering Example 3.14 and
taking any of the ak to be arbitrarily large.

Once the edge orbits have stabilized, non-edged orbits will eventually map exclu-
sively into non-edged orbits, as desired.

�

Remark 3.24. Proposition 2.17 and the above proof together imply that R
(
V (G•)
r

)
is generated in degree ≤ rd, where d is the generating degree of RV (G•). In par-
ticular, RE(G•) is 2d-small.

Remark 3.25. It is possible to prove one part of Theorem 3.18 directly. Consider
any set of k vertices v1 through vk in Gn, for n ≥ kr. Each vi is in the image of
a transition map from Gk to Gn, and each of these transition maps is induced by
an injection from [k] to [n]. Let f1 through fk be these injections. Take f to be an
injection from [kr] to n whose image includes the image of each fi. Then each fi
factors through f , so each vi is in the image of the transition map induced by f .
This completes the proof.

The proof of r-vertex-stability in Theorem 3.18 relies on the tensor product of
finitely generated FI-modules being finitely generated. The proof of this fact may
be made explicit, and this is what lies behind the proof given above.

An application of Theorem 3.18 is the following construction of new vertex-stable
FI-graphs from existing vertex-stable FI-graphs.
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Definition 3.26. Let G be a graph. The line graph of G, L(G), is the graph
whose vertices are labeled by the edges of G such that two vertices are connected
if and only if the corresponding edges of G share an end point.

Line graphs have been studied extensively. One avenue of research is the ques-
tion of how much of the graph G can be determined by studying its line graph.
A celebrated theorem of Whitney [41] implies that the line graph almost always
uniquely determines the original graph. Indeed, the only exception to this is the
fact that L(K3) = L(K3,1). Algebraically, one is also interested in the question of
deciding when a line graph is determined by its spectrum (See, for instance, [25]
or Chapter 1.3 of [14]).

Corollary 3.27. Let G• denote a vertex-stable FI-graph. Then the collection of
line graphs L(G•) can be endowed with the structure of a vertex-stable FI-graph.

Proof
This result follows immediately from Theorem 3.18 and the definition of the line
graph.

�

Remark 3.28. We note that the line graph L(Kn) is isomorphic to the Johnson
graph Jn,2. The line graphs of the complete bipartite graphs Kn,m have been stud-
ied (see, for instance, [32] or the references in [14]), and are sometimes referred to
as the rook graphs, as they can be thought of as encoding legal rook moves on
an m× n chess board.

3.3. Determining when the induced property begins. Theorem 3.18 implies
that all FI-graphs are eventually induced. In this section we consider the question
of bounding when this behavior begins. To begin we impose the following technical
condition on the FI-graph G•. We will see this condition return again when we
consider configuration spaces of graphs.

Definition 3.29. We say an FI-graph G• is torsion-free if for all injections
f : [n] ↪→ [m] the transition map G(f) is injective.

Most of the examples in Section 3.1 are torsion-free. Example 3.13 is not torsion-
free.

Remark 3.30. We say an FI-module is torsion-free if all of its transition maps
are injective. The above definition is intended to emulate this.
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Theorem 3.18 insists that vertex-stability implies edge-stability. In particular, at
some point the transition maps of a vertex-stable FI-graph will contain every edge
in the union of their respective images. It is therefore natural for one to guess that
it will be at this point that the image of these transition maps must be induced.
We do indeed find this to be the case for torsion-free FI-modules.

Theorem 3.31. Let G• be a torsion-free vertex-stable FI-graph with edge-stable
degree ≤ dE. Then for any n ≥ dE and any injection f : [n] ↪→ [n + 1] the image
of Gn under the transition map G(f) is an induced subgraph of Gn+1.

While it might seem natural for there to be some kind of pigeon-hole or count-
ing argument for the above theorem, such an argument has thus far eluded the
authors. Just like much of the rest of this work, we instead prove Theorem 3.31
through the algebra of FI-modules. To begin, we must rephrase the eventually
induced property in the language of FI-modules.

Definition 3.32. The coinvariants functor Φ from FI-modules to graded R[x]-
modules is defined by

Φ(V )n := Vn ⊗Sn
R

Multiplication by x is induced by the action of the transition maps.

In the setting of FI-graphs and their associated FI-modules, the coinvariants func-
tor takes a particularly nice form.

Recall that we define R
(
V (G•)

2

)
to be the FI-module encoding pairs of vertices of

G•. The coinvariants of R
(
V (G•)

2

)
can be constructed in the following way. We

define Φ to be the graded R[x]-module for which Φn is the free R vector space
with basis indexed by the orbits of the symmetric group action on pairs of vertices
of Gn. For each n we may define ιn : [n] ↪→ [n + 1] to be the standard inclusion.
Then G(ιn) induces a map between the orbits of pairs of vertices of Gn and those
of Gn+1. Multiplication by x in the module Φ will be defined by this map.

Lemma 3.33. Let V be a finitely generated FI-module. If V is torsion-free as an
FI-module, then Φ(V ) is torsion-free as a R[x]-module.

Proof
This follows from the fact that coinvariants are exact over fields of characteristic
0.

�
This lemma is the key piece needed to prove Theorem 3.31.
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Proof of Theorem 3.31
Let G• be a torsion-free vertex-stable FI-graph, and assume that G• has edge-
stable degree ≤ dE . Assume by way of contradiction that there is some n ≥ dE
such that the image of Gn under any transition map G(f) : Gn → Gn+1 is not an
induced subgraph. This implies that there is some pair of vertices {v1, v2} in Gn,
which are not connected by an edge, while G(f)({v1, v2}) is an edge of Gn+1. On
the other hand, because n ≥ dE , there must be some transition map G(h), as well
as some edge e ∈ E(Gn) such that G(h)(e) = G(f)({v1, v2}). We may apply some
element of Sn+1 to conclude the following: The transition map G(f) must map
some non-edge of Gn, as well as some edge of Gn, to the same Sn+1 orbit on the
pairs of vertices of Gn+1. In particular, this would imply that the coinvariants of

R
(
V (G•)

2

)
has torsion. This contradicts Lemma 3.33.

�

4. Applications

In the following sections we prove the variety of applications of the primary struc-
ture theorem that were claimed in the introduction. Many of these proofs ulti-
mately take the same form: one encodes the invariant or homology groups as the
graded pieces of a finitely generated FI-module (over Z). Finite generation in these
cases is usually proven by embedding the FI-module into a larger FI-module which
is known to be finitely generated, and then applying the Noetherian property.

These ”bigger” FI-modules which we embed into are almost always R
(
V (G•)
j

)
(Re-

mark 3.24), as well as tensor products of the modules R
(
V (G•)
j

)
(Proposition 2.17).

4.1. Enumerative consequences of vertex-stability. We begin this section
by revisiting the invariants ηH and ηindH for some fixed graph H. In particular, if
G• is a vertex-stable FI-graph, we consider the functions

n 7→ ηH(Gn) and n 7→ ηindH (Gn).

Our primary result in this direction is the following.

Theorem 4.1. Let G• be a vertex-stable graph with stable degree ≤ d. Then for
any graph H there exists polynomials pH(X), pindH (X) ∈ Q[X] of degree ≤ d·|V (H)|
such that for all n� 0,

pH(n) = ηH(Gn) and pindH (n) = ηindH (Gn)

Proof
We will count the number of graph injections from H to G•. This quantity is a
constant multiple of ηH(G•), and it is therefore sufficient to count. Let V H• denote
the FI-module whose evaluation at [n] is the R vector space with basis indexed by
the distinct graph theoretic injections of H into Gn. To make sure the transition
maps are well defined, we will set V Hn = 0 before the point where the transition
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maps of G• are both induced and injective. We therefore see that V H• can be
realized as a submodule

V H• ↪→ (RV (G•))
⊗|V (H)|

via the point-wise assignment,

φ 7→
⊗

x∈V (H)

(φ(x)).

Proposition 2.17 implies that V H• is (d · |V (H)|)-small, and Theorem 2.18 implies
the existence of our desired polynomial. The proof for the induced case is the same.

�

Example 4.2. Looking the FI-graph K• of complete graphs, the above result is
clear. H cannot appear in Kn when n < |V (H)|. If we call γH the number of copies
of H in K|V (H)|, then

pH(n) =

(
n

|V (H)|

)
γH

The content of Theorem 4.1 is that this behavior is common to all vertex-stable
FI-graphs. The examples of the previous section illustrate that vertex-stable FI-
graphs can be fairly diverse, and so this might come as a bit of a surprise.

Fix k ≥ 2 and let KG•,k be the FI-graph which encodes the Kneser graphs. In this
case we may easily count the number of triangles which appear in KGn,k. Indeed,
to form a triangle, one needs to provide three mutually disjoint subsets of [n] of
size k. It follows that

pK3(n) =

(
n
3k

)(
3k
k,k,k

)
6

.

Note that if we take the usual convention that
(
n
k

)
= 0 whenever n < k, then the

above polynomial agrees with ηK3
(KGn,k) for all n ≥ 0. If we instead try to count

the number of occurrences of the six-vertex graph which looks like the letter H,
things get considerably more complicated. Despite the seeming drastic increase in
difficulty, Theorem 4.1 assures us that the value of ηH(KGn,k) must (eventually)
agree with a polynomial, and that this polynomial will have degree at most 6k.

As an immediate corollary to the above, we find that vertex-stable FI-graphs have
very controlled growth in their vertices and edges, as well as in the degrees of their
vertices.

Corollary 4.3. Let G• be a vertex-stable FI-graph. Then the following functions
are each equal to a polynomial for n� 0:

1. n 7→ |V (Gn)|;
2. n 7→ |E(Gn)|;
3. n 7→ δ(Gn);
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4. n 7→ ∆(Gn).

If the stable degree of G• is at most d, then these polynomials have degree at most
d in the first, third, and fourth cases, and degree at most 2d in the second case
(n 7→ |E(Gn)|).

Proof
The first two statements follow from a direct application of Theorem 4.1 with H
being an isolated vertex and a single edge, respectively.

For the final two statements, we prove a more general statement. Fix m� 0, and
let v ∈ V (Gm). Then every vertex in the Sm-orbit of v, which we denote Ov(m),
has the same degree. Let ROv(•) denote the submodule of RV (G•) generated by
v, and for n ≥ m let µ(Ov(n)) denote the degree of any (and therefore all) vertices
in Ov(n). We will prove that the map

n 7→ µ(Ov(n))

is equal to a polynomial. To see that this implies the final two statements of our
corollary, note that the final part of Theorem 2.18 implies that the total number of
distinct orbits of V (Gn) is eventually independent of n. Because non-equal poly-
nomials are only permitted to be equal at finitely many points, the above implies
that there is a well-defined polynomial which outputs the smallest (or largest)
degree of any vertex of Gn when n is large enough.

To prove our more general claim, we need a bit of notation. We will write RE(Ov(•))
for the submodule of RE(G•) whose n-th piece is spanned by edges whose both
end points are in Ov(n). We will also write N(Ov(n)) to denote the subgraph of
Gn comprised of all vertices and edges that one may encounter by beginning at
a vertex in Ov(n) and moving along any single edge adjacent to it. Put another
way, N(Ov(n)) is the neighborhood graph on the vertex set Ov(n). By setting
N(Ov(n)) = ∅ whenever n < m, we see that N(Ov(•)) is actually a vertex-stable
FI-graph. Therefore, by the second part of this corollary,

n 7→ |E(N(Ov(n)))|

is eventually equal to a polynomial. On the other hand, we may count the set
|E(N(Ov(n)))| in the following alternative way,

|E(N(Ov(n)))| = µ(Ov(n)) · |Ov(n)| − |E(Ov(n))|.

In other words, if we sum the degrees of all vertices in Ov(n), then we would have
counted each edge in E(Ov(n)) exactly twice. Because ROv(•) is a submodule
of RV (G•), we know that its dimension is eventually equal to a polynomial. A
similar statement can also be made about |E(Ov(n))|. Solving for µ(Ov(n)), we
find that it is equal to a rational function for n sufficiently large. However, the only
rational functions which can take integral values at all sufficiently large integers
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are polynomials. This concludes the proof.
�

Another consequence of vertex-stability concerns finite walks in the graph Gn. Re-
call that a walk of length r in a graph G is a tuple of vertices of G, (v0, . . . , vr),
such that for each i, {vi, vi+1) is an edge of G. We say that a walk is closed if
vr = v0.

Theorem 4.4. Let G• be a vertex-stable FI-graph with stable degree ≤ d. Then
the following functions are each equal to a polynomial, of degree ≤ (r+ 1)d in the
first case and of degree ≤ rd in the second, for n� 0 and any fixed r ≥ 0:

1. n 7→ |{walks in Gn of length r}|;
2. n 7→ |{closed walks in Gn of length r}|.

Proof
Our strategy here is similar to the strategy of much of the rest of the paper. Encode
the objects we hope to count as the dimension of some vector space, and use the
Noetherian property to prove that the collection of all these vector spaces form a
finitely generated FI-module. Let Wr(G•) denote the FI-module for which Wr(Gn)
is the formal vector space spanned by walks of length r in Gn. Similarly define
W c
r (G•) for closed walks. Note that these FI-modules may not be well defined if

the transition maps of G• are not injective. While injectivity may not be the case
for small n, Theorem 3.18 implies that it certainly will be the case for n � 0.
Therefore, we simply define Wr(Gn), and W c

r (Gn) to be zero before injectivity
takes effect. To prove that Wr(G•) is finitely generated, we simply note that there
is an embedding,

Wr(G•) ↪→ RV (G•)
⊗(r+1)

defined on points by

(v0, . . . , vr) 7→ v0 ⊗ v1 ⊗ . . .⊗ vr

The module RV (G•)
⊗(r+1) is finitely generated in degree ≤ (r+ 1) · d by Proposi-

tion 2.17. The Noetherian property concludes the proof. Note that in the case of
closed walks, the fact that v0 = vr removes a degree of freedom in our choices of
vertices. In particular, we may embed W c

r (G•) into RV (G•)
⊗r. By consequence,

the dimension of W c
r (G•) is bounded by a polynomial of degree ≤ rd, as required.

�
The above work illustrates how certain invariants of Gn can grow with n. We also
find, however, there are some invariants which must eventually stabilize.

Proposition 4.5. Let G• denote a vertex-stable FI-graph. Then the following
invariants are independent of n for n� 0:

1. The diameter of Gn;
2. The girth (i.e. the size of the smallest cycle) of Gn;

34



Proof
For both statements, it suffices to show that the relevant invariant is eventually
weakly decreasing in n. If n � 0, and u, v ∈ V (Gn), then by Theorem 3.18 there
exists x, y ∈ V (Gn−1) and an injection f : [n−1] ↪→ [n] such that u = G(f)(x), v =
G(f)(y). In particular, if P is any path in Gn−1 connecting x and y, then G(f)(P )
is a path in Gn connecting u to v. This shows that the shortest path between u
and v cannot be longer than the shortest path between x and y. By definition, the
diameter of Gn cannot be bigger than the diameter of Gn−1. A similar argument
works for girth.

�

4.2. Topological consequences of vertex-stability. In this section we con-
sider a collection of topological applications of vertex-stability. Our first applica-
tions are simple consequences of the work in the previous section, as well as facts
from our background sections.

Lemma 4.6. Let H be a graph, G• a vertex-stable FI-graph of stable degree ≤ d,
and CHn,i denote the free Z-module with basis indexed by the i-cells of Hom(H,Gn).

Then CH•,i can be endowed with the structure of a finitely generated FI-module over
Z which is (d(|V (H)|+ i))-small.

Proof
We first recall the definition of the Hom-complex Hom(H,Gn). The cells of Hom(H,Gn)
are multi-homomorphisms, where α is contained in the closure of τ if and only if
α(x) ⊆ τ(x) for all x. It is clear that the transition maps of G• induce the transi-
tion maps of CH•,i, turning this collection of abelian groups into an FI-module over
Z.

We have that i-cells of the complex correspond to multi-homomorphisms α satis-
fying ∑

x∈V (H)

|α(x)| = |V (H)|+ i

The data of an i-cell can therefore be encoded as an |V (H)|-tuple

(αx)x∈V (H)

such that:

• Each αx is a non-empty subset of V (Gn);
•
∑
x∈V (H) |αx| = |V (H)|+ i;

• If {x, y} ∈ E(H) then for all v ∈ αx and w ∈ αy, {v, w} ∈ E(Gn).
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Just as we have done previously, such as in the proof of Theorem 3.18, we may
realize CH•,i as a submodule of

⊕
r1+...+r|V (H)|=|V (H)|+i

(⊗
k

R
(
V (G•)

rk

))

The Noetherian property, as well as previous discovered facts about the modules

R
(
V (G•)
j

)
(see the proof of Theorem 3.18) imply our lemma.

�
Lemma 4.6 is the main tool we will need in proving that Hom-complexes of vertex-
stable FI-graphs are representation stable in the sense of Church and Farb. Before
we get to this theorem, we observe the following consequence of the above in terms
of counting homomorphisms into G•.

Corollary 4.7. Let H be any graph, and let G• be a vertex-stable FI-graph of
stable degree ≤ d. Then for n� 0, then the function

n 7→ |Hom(H,G•)|

agrees with a polynomial of degree ≤ d · |V (H)|.

Proof
This follows from Theorem 2.18, Lemma 4.6, and the fact that the module CHn,0
from Lemma 4.6 has basis indexed by Hom(H,Gn).

�

Remark 4.8. It is easily seen that homomorphisms Hom(H,Kn) are in bijection
with vertex colorings of H for which no adjacent vertices are of the same color. The
above corollary therefore recovers the existence of the so-called chromatic poly-
nomial. Note that the chromatic polynomial exists for all n ≥ 0, while the above
only guarantees it for n� 0. One can recover the fact that the chromatic polyno-
mial exists for n ≥ 0 by showing that the collection of vector spaces RHom(H,K•)
can be endowed with the structure of an FI]-module (see [10]).

Note that a similar idea, i.e. using FI-module techniques to recover the chromatic
polynomial, was conveyed to the authors by John Wiltshire-Gordon and Jordan El-
lenberg. This alternative technique was very similar in spirit, but used FA-modules
instead of FI-modules. Here, FA is the category of finite sets and all maps (see,
for instance, [42]).

Theorem 4.9. Let H be a graph, G• a vertex-stable FI-graph of stable degree ≤ d,
and let i ≥ 0 be a fixed integer. Then the FI-module over Z

Hi(Hom(H,G•))
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is (d(|V (H)|+ i))-small.

Proof
Recall the groups CHn,i from the Lemma 4.6. Standard polyhedral homology informs
us that there is a complex,

CHn,? : . . .→ CHn,i
∂→ CHn,i−1 → . . .→ CHn,0 → 0

with homology isomorphic to H?(Hom(H,Gn)). Lemma 4.6 tells us that for each
fixed i the groups CH•,i form a finitely generated FI-module over Z. It isn’t hard to

show that the action of the transition maps of CH•,i commute with the differentials
∂. It follows that there is a complex of FI-modules over Z

CH•,? : . . .→ CH•,i
∂→ CH•,i−1 → . . .→ CH•,0 → 0

whose homology agrees with the FI-modules Hi(Hom(H,G•)). The Noetherian
property and Lemma 4.6 imply our result.

�
To conclude this section, we review some fundamental concepts and definitions
which will be used in the proof of Theorem G.

For the remainder of this section, we fix a vertex-stable, torsion-free FI-graph G•
as well as a positive integer m. We will assume that G• has stable degree ≤ d and
edge-stable degree ≤ dE .

To begin, we note that the necessary edge subdivisions of Theorem 2.9 can be
accomplished in a way consistent with the FI-module structure of G•.

Proposition 4.10. There exists an FI-graph, G
(m)
• , for which G

(m)
n is the m-th

subdivision of Gn and for any injection of sets f : [n] ↪→ [r] one has

G(m)(f)(x) = G(f)(x)

for all x ∈ V (Gn). If G• has stable degree ≤ d and edge-stable degree ≤ dE, then

G
(m)
• has stable degree ≤ max{d, dE} and edge-stable degree ≤ dE.

Proof
The existence of G

(m)
• follows from the definition of the m-th subdivision. If

x, y ∈ V (Gn) are connected via an edge, then the same must be true of G(f)(x)
and G(f)(y), for any f . Therefore, if we enumerate the subdivision vertices of
{x, y} (resp. {G(f)(x), G(f)(y)}) as v1, . . . , vm−1 (resp. w1, . . . , wm−1), where v1
is adjacent to x (resp. w1 to G(f)(x)), then we set G(f)(vi) = wi. The statement
on stable degrees follows from the fact that subdivision creates new vertices and
edges within existing edges.

�
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This proposition will prove to be critical for us, as it essentially asserts, with The-
orem 2.9, that there exists a combinatorial model of Confm(G•) which interacts
nicely with the FI-graph structure of G•.

We are now ready to provide the main novel computational construction of this
section. Recall that we have fixed a vertex-stable torsion-free FI-graph G•.

Definition 4.11. Fix integers m,n, i ≥ 0. We write Kn,m,i to denote the free Z-
module with basis vectors indexed by the i-dimensional cells of the cubical complex

DConfm(G
(m)
n ). Given any injection of sets f : [n] ↪→ [r], Proposition 4.10 implies

that the transition map G(f) induces a transition map G
(m)
n → G

(m)
r , which, in

turn, induces a map

f* : Kn,m,i → Kr,m,i.

This procedure equips the family {Kn,m,i}n with the structure of an FI-module
over Z.

Having observed the FI-module structure on the families K•,m,i, the strategy of our
proof of Theorem G becomes clear. We begin by proving that, for all choices of m
and i, the FI-module K•,m,i is finitely generated. In fact, we will prove that K•,m,i
is (max{d, dE}(m− i) + dEi)-small, where d is the stable degree of G•. Following
this one notes that the action of FI on the collection {Kn,m,i}n commutes with
the usual differentials

∂n,i,m : Kn,m,i → Kn,m,i−1.

This implies that the collection of complexes

. . .→ Kn,m,i → Kn,m,i−1 → . . .→ Kn,m,0 → 0

can be pieced together to form a complex of FI-modules. The Noetherian property
is then sufficient for us to prove the main theorem.

We observe that this approach has the downside that it cannot be used to estimate
the generating degree of the FI-module over Z, Hi(Confm(G•)). It is the belief of
the authors that proving a result of this kind will require a deeper topological
understanding of the spaces Confm(Gn) as n-varies. This seems like a rich avenue
for future research, as surprisingly little is thus far understood about these spaces.

Theorem 4.12. Assume that G• has stable degree ≤ d and edge-stable degree ≤
dE. Then for all choices of m, i ≥ 0, the FI-module over Z, K•,m,i, is (max{d, dE}(m−
i) + dEi)-small. In the case wherein Gn is connected for n� 0, the module K•,m,i
is dEm-small.
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Proof
Note that it follows from definition that RV (G•) is generated in degrees ≤ d, while
RE(G•) is generated in degrees ≤ dE . Propositions 2.17 and 4.10 imply that the
FI-module

Qi :=
⊕

f :[n]→{V,E},|f−1(E)|=i

n⊗
j=1

Qf,j

is generated in degrees ≤ max{d, dE}(m− i) + dEi, where,

Qf,j =

{
RE(G

(m)
• ) if f(j) = E

RV (G
(m)
• ) otherwise.

We have that K•,m,i is a submodule of Qi, whence it is (max{d, dE}(m− i)+dEi)-
small.

In the case where Gn is connected for n � 0, it is a fact that dE = max{d, dE}.
This concludes the proof.

�

Example 4.13. Let G• be the FI-graph of Example 3.9. Then the above implies
that the Betti numbers of Hi(Confm(Gn)) eventually agree with a polynomial of
degree ≤ m. This bound is sharp for m ≥ 2, and i = 1 in the case wherein G is
a single point, and H is an edge. Namely, the case where G• =Star• (see [23] for
this computation).

4.3. Algebraic consequences of vertex-stability. In this section, we consider
adjacency and Laplacian matrices associated to an FI-graph. We focus on proper-
ties of the eigenspaces associated to these matrices.

To begin, note that we may view the adjacency and Laplacian matrices of a graph
G as linear endomorphisms of RV (G). Given an FI-graph G•, it is unfortunately
not the case that the collections AG• and LG• can be considered as endomorphisms
of the FI-module RV (G•). Despite this, we will find that these matrices have some
surprising interactions with the FI-module structures. To begin, we have the fol-
lowing key observation.

Lemma 4.14. Let G• be an FI-graph. Then for each n the matrices AGn and LGn

commute with the action of Sn. In particular, the eigenspaces of these matrices
are sub-representations of RV (Gn).

Proof
For a fixed vertex v ∈ V (Gn), we write N(v) to denote the collection of vertices
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adjacent to v. Then,

AGn
v =

∑
w∈N(v)

w.

Therefore if σ ∈ Sn,

AGnσ(v) =
∑

w∈N(σ(v))

w =
∑

w′∈N(v)

σ(w′) = σ(AGnv).

The same proof works for the Laplacian matrix.

The second half of the lemma follows from linear algebra. If two matrices commute,
then they preserve each others’ eigenspaces.

�
As an immediate consequence of Lemma 4.14, we obtain the following:

Proposition 4.15. Let G• be a vertex-stable FI-graph. Then there is a constant
c, independent of n, such that the number of distinct eigenvalues of the adjacency
matrix (resp. the Laplacian) of Gn is bounded by c for all n.

Proof
This follows from Lemma 4.14 as well as the third part of Theorem 2.18. In partic-
ular, we see that the number of distinct eigenvalues are both bounded from above
by the (eventually constant) number of irreducible factors of the Sn-representation
RV (Gn).

�

Remark 4.16. Proposition 4.15 can be used in certain cases to prove that cer-
tain families of graphs cannot be endowed with the structure of a vertex-stable
FI-graph. For example, the cycle graphs Cn and the wheel graphs Wn have n dis-
tinct eigenvalues.

In fact Proposition 4.15 is the first piece of evidence describing a much more robust
structure. The following theorem follows as a consequence of upcoming work of
David Speyer and the authors [36].

Theorem 4.17 (Ramos, Speyer, and White, [36]). Let G• denote a vertex-stable
FI-graph. Then there exist constants cA, cL such that for all n � 0, AGn

(resp.
LGn

) has cA (resp. cL) distinct eigenvalues. For i = 1, . . . cA (resp. i = 1, . . . , cL)
and n� 0, let λAi (n) (resp. λLi (n)) denote the i-th largest eigenvalue of AGn (resp.
LGn). Then the for all i and all n� 0 the functions

n 7→ the multiplicity of λAi (n), n 7→ the multiplicity of λLi (n)

each agree with a polynomial.
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Example 4.18. We illustrate the above theorem with some examples. Let G• =
K• denote the FI-graph of complete graphs. Then for n ≥ 1, the Sn-representation
RV (Gn) is isomorphic to the usual permutation representation on Rn. This de-
composes into a pair of irreducible representations

Rn ∼= R⊕ Sn,

where R is the trivial representation, and Sn is the standard irreducible (n − 1)-
dimensional representation of Sn. We note that the decomposition Rn ∼= R ⊕ Sn
agrees with the eigenspace decomposition of RV (Gn) with respect to both the adja-
cency matrix and the Laplacian matrix. The trivial representation is the eigenspace
for n− 1 (resp. 0), while Sn is the eigenspace for −1 (resp. −n). It is easy to see
that the collection S• actually forms a submodule of the FI-module RV (Gn), and
is therefore finitely generated. This implies that dimR Sn agrees with a polynomial
for n� 0, which implies the same about the eigenvalue multiplicities in question.

Next let G• = Star• = K•,1. For simplicity we only work with the eigenspaces for
the adjacency matrix, although the Laplacian is not much different. For n ≥ 1, the
distinct eigenvalues of Gn are ±

√
n and 0. We may decompose the representation

RV (Gn) as

RV (Gn) = R⊕ R⊕ Sn
where Sn is as in the previous example, and R is once again the trivial represen-
tation. As before, this decomposition of RV (Gn) as a representation corresponds
exactly to its decomposition in terms of eigenspaces.

Of course, one should not expect these eigenspaces to be irreducible as Sn-representations
in general. For example if we instead consider G• = K•,m, where m > 1, then the
eigenspaces of the adjacency matrix are not all irreducible as Sn-representations.
Generally, one will find it much easier to use the fact that the adjacency and
Laplacian matrices preserve isotypic components of RV (Gn) to work with these
submodules instead of the eigenspaces themselves. Indeed, the proof of the pre-
vious theorem involves working with a filtration of the FI-module RV (G•) by its
isotypic pieces.

5. Generalizations and alterations

In this final section, we briefly discuss how the work of the previous sections can
be generalized and altered to prove facts about different families of graphs and
other simplicial complexes. We begin by considering graphs over categories other
than FI, and then move on to higher dimensional analogues to the previous work.
Note that these sections are intended to be more motivation for further study, and
should by no means be considered exhaustive.
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5.1. Other categories. The representation theory of categories has seen a recent
explosion in the literature, largely motivated by its connections with representa-
tion stability. In this section we consider representations of the categories VI(q),
where q is a power of a prime, and FIm, where m is a positive integer. These
categories can be seen discussed in [20, 24, 31, 34, 40].

Definition 5.1. Let m be a fixed positive integer, and let q be a power of a fixed
prime p. The category VI(q) is that whose objects are free vector spaces over the
finite field Fq, and whose morphisms are injective linear maps. The category FIm

is defined to be the categorical product of FI with itself m times. That is, it is the
category whose objects are m-tuples of non-negative integers (n1, . . . , nm), and
whose morphisms are m-tuples of injective maps (f1, . . . , fm) : [n1]× . . .× [nm] ↪→
[n′1]× . . .× [n′m], where fi : [ni]→ [n′i].

One may think of VI(q) as an analog of FI, where the relevant acting groups
are the finite general linear groups GL(n, q). Similarly, FIm is the analog of FI
where the relevant acting groups are Sn1 × . . .×Snm . Just as with FI, a module
over either of these categories will be defined to be a functor from the category to
R vector spaces. Definitions such as finite generation carry over in the obvious way

The following facts can be found in [20, 24, 31, 34, 40].

Theorem 5.2. Let C denote either the category FIm or VI(q). Then:

1. [20, 31] If C = FIm, and V is a finitely generated C-module, then there exists
a polynomial pV (x1, . . . , xm) ∈ Q[x1, . . . , xm] such that for all (n1, . . . , nm)
with

∑
i ni � 0,

dimR(Vn1,...,nm
) = pV (n1, . . . , nm)

2. [40, 20] If V,W are finitely generated C-modules, then the same is true of
V ⊗W .

3. [24] If V is a finitely generated VI(q)-module, then there exists a polynomial
pV (x) ∈ Q[x] such that for all n� 0

pV (qn) = dimR V (Fnq ).

4. If V is a finitely generated C-module, then the transition maps of V are all
eventually injective.

5. [34, 40] If V is a finitely generated C-module, then all submodules of V are
also finitely generated.

As one can see, these two categories have very similar properties to FI-modules.
Indeed, it is sufficient for us to recover virtually everything that was proven in
previous sections.
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Definition 5.3. Let C denote either the category FIm or VI(q). Then a C-graph
is a functor G• : C → Graph. We say that G• is vertex-stable if the associated
C-module RV (G•) is finitely generated.

Borrowing notation and proofs from the previous sections, we conclude the follow-
ing.

Theorem 5.4. Let C denote either VI(q) or FIm, and let G• be a vertex-stable
C-graph. Then:

1. The C-module RE(G•) is finitely generated;

2. For any r ≥ 1, the C-module R
(
V (G•)
r

)
is finitely generated;

3. If C = FIm, and H is any fixed graph, then there exist polynomials pH(x1, . . . , xm), pindH (x1, . . . , xm) ∈
R[x] such that for all n := (n1, . . . , nm) with

∑
i ni � 0

pH(n) = ηH(Gn), and pindH (n) = ηindH (Gn)

4. If C = VI(q), and H is any fixed graph, then there exist polynomials pH(x), pindH (x) ∈
Q[x] such that for all n� 0

pH(qn) = ηH(GFn
q
), and pindH (qn) = ηindH (GFn

q
)

5. If C = FIm, and r ≥ 1 is fixed, then there exist polynomials pr(x), pcr(x) ∈
Q[x1, . . . , xm] such that for all n := (n1, . . . , nm) with

∑
i ni � 0

pr(n) = |{number of walks in Gn of length r}|, and pcr(n) = |{number of closed walks in Gn of length r}|.
6. If C = VI(q), and r ≥ 1 is fixed, then there exist polynomials pr(x), pcr(x) ∈

Q[x] such that for all n� 0

pr(q
n) = |{number of walks in Gn of length r}|, and pcr(q

n) = |{number of closed walks in Gn of length r}|
7. For any fixed i, and any fixed graph H the C-module over Z, Hi(Hom(H,G•)),

is finitely generated;
8. If G• is torsion-free then for any fixed m, i the C-module over Z, Hi(Confm(Gn)),

is finitely generated.

To conclude this section, we consider various natural examples of FIm and VI(q)
graphs. The reader should keep in mind Theorem 5.4 while reading what follows.

Example 5.5. Recall that for fixed m, we considered the vertex-stable FI-graph
K•,m. While this yielded various results, it is perhaps more correct to allow m

to vary, and consider the vertex-stable FI2-graph K•1,•2 . More generally, we can
consider the complete r-partite graph K•1,...,•r as a vertex-stable FIr-graph.

If G,H are any graphs, then there are multiple ways one can define the product
of G and H. One such method is with the tensor (or categorical) product G×H.
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The graph G×H is that whose vertex set is given by V (G×H) = V (G)× V (H)
and for which {(x1, y1), (x2, y2)} ∈ E(G × H) if and only if {x1, x2}, {y1, y2} ∈
E(G) ∪ E(H). If G• and H• are two vertex-stable FI-graphs, then we may define
the FI2-graph G• ×H• by the assignments

(G• ×H•)n1,n2
= Gn1

×Hn2
.

It is clear that this family is vertex-stable as an FI2-graph. Note that a similar
statement will hold for many of the other common graph products such as strong
products and Cartesian products (see any standard reference on algebraic graph
theory for definitions of these products such as [3]).

Turning our attention to VI(q), one is immediately reminded of the Grassmann
graphs Jq(n, k). The vertices of Jq(n, k) are k-dimensional subspaces of Fnq , and
two vertices form an edge if and only if the intersection of the corresponding
subspaces is non-trivial. Note that one may think of Jq(n, k) is a “q-version” of
the Johnson graph J(n, k). In fact, many of the FI-graphs we previously studied
will have associated VI(q)-graphs. For instance, we may define KGq(n, k) to be the
graph whose vertices are subspaces of Fnq of dimension k, and for which two vertices
are connected if and only if their corresponding subspaces have trivial intersection.

5.2. FI-simplicial-complexes. In this section, we generalize the work of the pre-
vious sections to higher dimensional simplicial complexes.

Definition 5.6. Let X be a (compact) simplicial complex. We will write Vi(X)
for the set of i-simplices of X. A simplicial map between simplicial complexes
X,Y is a continuous morphism f : X → Y such that f(Vi(X)) ⊆ Vi(Y ).

An FI-simplicial-complex is a (covariant) functor from FI to the category of sim-
plicial complexes and simplicial maps. Given an FI-simplicial complex X•, we write
RV0(X•) for the FI-module whose evaluation at [n] is the vector space with basis

indexed by RV0(Xn). We similarly define the FI-modules RVi(X•), and
(
Vi(X•)
r

)
for all i, r ≥ 0.

We say that an FI-simplicial complex X• is vertex-stable with stable degree
≤ d if the FI-module RV0(X•) is finitely generated in degree ≤ d.

The following theorem is proven in the exact same way as Theorem 3.18.

Theorem 5.7. Let X• be a vertex-stable FI-simplicial-complex with stable degree
≤ d. Then:

1. For all i the FI-modules RVi(X•) are (d(i+ 1))-small;

2. For all i, r the FI-modules
(
Vi(X•)
r

)
are (rd(i+ 1))-small;
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From the perspective of representation stability, the above reveals something a
bit striking about FI-simplicial-complexes. Note that the following was also true
about graphs, though in that case it is less interesting.

Corollary 5.8. Let X• be a vertex-stable FI-simplicial-complex with stable degree
≤ d. Then for all i ≥ 0 the FI-module over Z

Hi(X•)

is d(i+ 1)-small.

Proof
This follows from the first part of Theorem 5.7, as well as the usual complex for
computing simplicial homology and the Noetherian property of FI-modules.

�
Another interesting corollary of Theorem 5.7 relates to counting colorings of a
simplicial complex T . Just as in the graph case, the colorings we will consider
are intimately linked with simplicial maps into a certain FI-simplicial-complex. To
begin, we therefore note the following.

Theorem 5.9. Let X• denote a vertex-stable FI-simplicial-complex. Then for any
simplicial complex T , the FI-module,

RHom(T,X•),

whose evaluation on [n] is the real vector space with basis indexed by Hom(T,Xn),
is finitely generated. In particular, for n� 0, the function

n 7→ |Hom(T,Xn)|

agrees with a polynomial of degree ≤ |V0(T )| ·d, where d is the vertex degree of X•.

Proof
The FI-module RHom(T,X•) can be realized as a submodule of (RV0(X•))

⊗|V0(T )|.
This module is finitely generated by Proposition 2.17, so the Noetherian property
implies our result. The bound on the degree of the polynomial follows immedi-
ately from the fact that we have embedded our FI-module into the vector space
(RV0(Xn))⊗|V0(T )|, whose dimension agrees with a polynomial of the required de-
gree.

�

Definition 5.10. Let (r, s) be a pair of positive integers. An (r, s)-coloring of a
simplicial complex T is a map of sets f : V0(T ) → [r] such that if {v0, . . . , vi} ∈
Vi(T ), then at most s of the vertices v0, . . . , vi share the same color.

45



Colorings of simplicial complexes have recently seen interest in the literature, and
seem to have deep connections with Stanley-Reisner theory [6, 18].

Corollary 5.11. Let T be a simplicial complex, and let s ≥ 1 be an integer. If

we write V T,s• to denote the FI-module whose evaluation on [r] is the real vector

space with basis indexed by (r, s)-colorings of T , then V T,s• is finitely generated and
|V0(T )|-small. In particular, for r � 0, the function

r 7→ |{(r, s)-colorings of T}|
agrees with a polynomial of degree ≤ |V0(T )|.

Proof
Let X• denote the FI-simplicial-complex for which V0(Xr) = [r]× V0(T ), and for
which the i-cells are given by all possible collections of pairs of size i. It is clear
that X• is vertex-stable with vertex degree 1, whence RHom(T,X•) is finitely gen-
erated. Given an element of V T,sr , we may associate a morphism f ∈ Hom(T,Xr)
by assigning

f(v) = (iv, v)

where iv is the color of the vertex v ∈ V0(T ). This defines an injective map of
FI-modules

V T,s• ↪→ RHom(T,X•)

as desired. From the proof of Theorem 5.9, we see that RHom(T,X•) is |V0(T )|-
small, and so we conclude the same about V T,s• .

�
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[15] D. M. Cvetković, P. Rowlinson and S. Simic, An introduction to the theory of graph
spectra, Cambridge University Press, 2010.

[16] A. Dochtermann, Homotopy groups of Hom complexes of graphs, Journal of Com-
binatorial Theory Series A 116 (2009), 180-194.

[17] A. Dochtermann, The universality of Hom complexes of graphs, Combinatorica 29
(2009), 433-448.

[18] N. Dobrinskaya, J. M. Moller, and D. Notbohm, Vertex colorings of simplicial
complexes, arXiv:1007.0710.

[19] D. Farley and L. Sabalka, Discrete Morse theory and graph braid groups, Algebr.
Geom. Topol. 5 (2005), 1075-1109 (electronic). http://www.users.miamioh.edu/
farleyds/FS1.pdf.

[20] N. Gadish, Categories of FI type: a unified approach to generalizing representation
stability and character polynomials J. Algebra, 480 (2017), 450-486.

[21] N. Gadish, Representation Stability for Families of Linear Subspace Arrangements,
Advances in Mathematics, 322 (2017), 341-377.

[22] S. R. Gal, Euler characteristic of the configuration space of a complex, Colloq.
Math. 89 (2001), 61-67.

[23] R. Ghrist, Configuration spaces and braid groups on graphs in robotics, Knots,
braids, and mapping class groups - papers dedicated to Joan S. Birman (New
York, 1998), AMS/IP Stud. Adv. Math., 24, Amer. Math. Soc., Providence, RI
(2001), 29–40.

[24] W. L. Gan, and J. Watterlond, Stable decompositions of certain representations of
the finite general linear groups, Transformation Groups, 23 (2018), 425–435.

[25] A. J. Hoffman, On the line graph of a projective plane, Proc. Amer. Math. Soc. 16
(1965), 297-302.

[26] M. Konagaya, Y. Otachi, and R. Uehara, Polynomial-time algorithms for subgraph
isomorphism in small graph classes of perfect graphs, Discrete Applied Mathemat-
ics 199 (2016), 37-45.

[27] D. Lütgehetmann, Representation Stability for Configuration Spaces of Graphs,
arXiv:1701.03490.

[28] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. The-
ory Ser. A 25 (1978), 319–324, 1978.

[29] L. Lovász, Large networks and graph limits, American Mathematical Soc. Vol. 60,
2012.

[30] R. Laskar, Eigenvalues of the adjacency matrix of cubic lattice graphs, Pacific J.
Math. 29 (1969), 623-629.

47

http://arxiv.org/abs/1007.0710
http://www.users.miamioh.edu/farleyds/FS1.pdf
http://www.users.miamioh.edu/farleyds/FS1.pdf
http://arxiv.org/abs/1701.03490


[31] L. Li, and N. Yu, FIm-modules over Noetherian rings, Journal of Pure and Applied
Algebra, 223 (2019), 3436-3460

[32] J. W. Moon, On the line-graph of the complete bigraph, Annals of Mathematical
Statistics 34 (1963), 664-667.

[33] D. McDuff, Configuration spaces of positive and negative particles, Topology, Vol-
ume 14, Issue 1, March 1975, Pages 91-107.

[34] A. Putman, and S. Sam, Representation stability and finite linear groups, Duke
Math J., 166 (2017), 2521-2598.

[35] E. Ramos, Stability phenomena in the homology of tree braid groups, Algebraic &
Geometric Topology, 18 (2018), 2305-2337.

[36] E. Ramos, D. Speyer, G. White, FI-sets with relations, arXiv:1804.04238.
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