LOCAL COHOMOLOGY AND THE MULTI-GRADED
REGULARITY OF 3J"-MODULES

LIPING LI AND ERIC RAMOS

ABSTRACT. We develop a local cohomology theory for
FJI™-modules, and show that it in many ways mimics the
classical theory for multi-graded modules over a polynomial
ring. In particular, we define an invariant of FJ"*-modules
using this local cohomology theory which closely resembles
an invariant of multi-graded modules over Cox rings defined
by Maclagan and Smith. It is then shown that this invariant
behaves almost identically to the invariant of Maclagan and
Smith.

1. Introduction. There has been a recent boom in the literature of
what one might call the representation theory of infinite combinatorial
categories. If k is a commutative ring, and C is a small category, then a
representation of C, or a C-module, is a functor from € to the category
of k-modules. One particular category whose representation theory has
garnered a tremendous amount of interest is FJ, the category of finite
sets and injections. This is largely due to the seminal work of Church,
Ellenberg, and Farb [CEF], who showed that FJ has deep connections
to representation stability theory [CF]. This has lead to an outpour-
ing of results applying FJ-modules to a variety of different subjects (see
[CE, CEFN, CMNR, N2] and the references therein).

While much of the original interest in studying FJ-modules was
based on newly discovered applications to fields such as topology and
number theory, there has also been a push to understand these ob-
jects from a more traditional representation theoretic perspective (see
[G, GL, LY, R, SS] for a small sampling of such results). Previous
work of the authors [LR] was focused on how the representation the-
ory of FJ-modules closely resembled the very classical study of graded
modules over polynomial rings. In particular, it was shown that one

L. Liis supported by the National Natural Science Foundation of China 11771135
and the Start-Up Funds of Hunan Normal University 830122-0037. E. Ramos was
supported by NSF grant DMS-1704811.



2 LIPING LI AND ERIC RAMOS

could make sense of a local cohomology theory for FJ-modules, extend-
ing previous work of Sam and Snowden [SS2], and that this theory
closely resembled the local cohomology theory of graded modules over
polynomial rings.

Using FJ-modules as a launching point, it has recently become inter-
esting to study representations of other categories which arise naturally
in various contexts. Just as with FJ-modules, these other categories are
now being considered from representation theoretic points of view (see
[G, W, LY2, NJ]). In this paper, we will be considering the represen-
tation theory of the category FIJ™, the m-fold product of FJ with itself.
FJ"-modules were first formally considered by Gadish in [G], where it
is shown that representations of this category are of FJ-type (see [G]
for the formal definition of this). They were then explored by the first
author and Yu in [LY2]. The primary objective of this paper is to
show that while the representation theory of FJ closely resembled the
study of graded modules over a polynomial ring, FJ™-modules more
closely resemble multi-graded modules over polynomial rings.

Let V denote an FJ"-module. For a given vector n = (ny,...,ny,) €
N™ we will often write V,, for the evaluation of V at [n;] x [ng] X

. X [nm]. The transition maps of V are the maps induced by the
non-invertible morphisms of FJ™. A B-torsion element of V,, is any el-
ement v € V,, which is in the kernel of some transition map originating
from V. The B-torsion functor is that which sends an FJ"*-module to
its maximal B-torsion submodule, while the local cohomology functors
are the derived functors of this B-torsion functor. We denote these
functors by H%(e).

Remark 1.1. It has been brought to the attention of the authors that
this notion of B-torsion is equivalent to the notion of a stably zero
functor. More specifically, using well established equivalences between
the theory of FJ-modules and the theory of polynomial functions [DV],
B-torsion modules correspond to stably zero functors. Such functors
were introduced by Djament and Vespa in [DV].
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Once one has established a local cohomology theory, one of the first
questions one might ask is whether the local cohomology modules of a
given module are in any way related to syzygies of that module. That
is, are the local cohomology modules in any way related to the regu-
larity of the given module. Such a relation was first noted in the case
of FJ-modules in [LR], and later expanded upon by Nagpal, Sam, and
Snowden [NSS]. For a variety of reasons, answering this fundamental
question becomes considerably more subtle when m > 1. Our approach
is designed to closely resemble the notion of regularity first introduced
by Maclagan and Smith [MS]. In particular, we treat regularity as a
set, as opposed to a single value.

Let V be an FJ"™-module. Then the positive Castelnuovo-Mumford
regularity of V is the set of vectors r € Z™ satisfying:

H%(V), = 0 whenever n € Ulay,.am) Yj (r = (a1,...,am) +e; +N™).

Here, ¢ > 0, the outer union is over vectors (ai,...,a;,) € N™ with
Zj aj = i, and e; is the usual standard basis vector. Note that this
definition is almost identical to the definition of multi-graded regqularity
given by Maclagan and Smith for multi-graded modules over Cox rings
in [MS]. The main theorem of this paper is also almost identical to
the main theorem of that work.

We denote the positive Castelnuovo-Mumford regularity of V' by
CMreg, (V) € Z™. For the purposes of the theorem which follows, we
also introduce the zeroth homological degree of an FJ""-module V/,

HD((V) = {n € N™| for all ng € N™ with ng —n € N™, 1, is generated by the images of V4.}

Put more intuitively, the zeroth homological degree is the set of integral
vectors n € N for which V}, contains, up to the action of the relevant
transition maps, the generators of V4, for all ny with ngp —n € N™
(see Definition 2.10).

Theorem A. Let V be a finitely generated FJ"'-module (see Definition
2.1) over a Noetherian ring k. Then for all vectors ¢ with positive
integral coordinates, and for all r € CMreg (V) "HDg (V') there exists
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a complex
.= F ==V =0

such that:

1. F; is an induced module (see Definition 2.3) generated in degree
r+i-c;
2. the homology of this complex is B-torsion.

Remark 1.2. Induced modules are analogous to free modules, and
may usually be thought of as such to develop intuition. For instance,
it is a fact that all projective FJ™-modules are induced. Despite this,
these modules are also local cohomology acyclic (see Theorem 3.10).
As a consequence, it is not possible for local cohomology to detect the
generating degrees of modules. This justifies why the above theorem
explicitly picks vectors from HDg(V). One may therefore think of the
above theorem as stating that while local cohomology cannot detect
generating degree, it can detect all higher syzygies up to B-torsion.

This paper is structured as follows. We begin by recalling:

e basic definitions from the study of FJ™-modules, and their
analogs in the classical study of multigraded modules over poly-
nomial rings(Section 2.1);

e FJ-module homology and homological degrees (Section 2.2);

o the shift functors and their relationship to torsion (Section 2.3).

Following these background sections, we turn our attention to devel-
oping the local cohomology theory of FJ™-modules (Section 3). While
these results are largely novel, they also closely resemble analogous re-
sults in the theory of FJ-modules, and should not be considered the
major contribution of this work. We conclude the paper by discussing
Castelnuovo-Mumford regularity, and performing the proof of Theorem
A (Section 4).
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2. Background.
2.1. Basic definitions.

Definition 2.1. The category FJ is that whose objects are the fi-
nite sets [n] := {1,...,n} and whose morphisms are injections. For
a fixed positive integer m, we define FI™ to be the m-fold categori-
cal product of FJ with itself. Namely, the objects of FI™ are tuples
[n1]X. .. X [nm,], while the morphisms are given by products fi x...X fp,
where for each j, f; : [n;] — [r;] is an injection. Given an integral
vector n = (ny,...,n,) € N™ where N is the set of nonnegative in-
tegers and [0] = @) by convention, we will write [n] as a shorthand for
[n1] X ... X [ny,]. Similarly, we write &, for the product of symmetric
groups &, X ... xS,

For a fixed Noetherian commutative ring k, an FJ"'-module over
k is a covariant functor from FJ™ to the category of k-modules. often
times, when the ring k is understood, we will refer to FI"-modules
over k as simply being FJ™-modules. Given an FJ"-module V', and a
vector n = (ny,...,ny) € N we write

Vo =Var.on, = V([na] x ... X [ny])

A transition map of V is any map induced by a map fi X ... X fi,
such that at least one f; is not invertible.

The category of FJ™-modules is abelian, with the usual abelian
operations defined pointwise. This allows us to formulate obvious
definitions for things such as submodules and quotient modules.
We say that an FJ™"-module is finitely generated if there is a finite
collection of elements

{vj} CUnVa
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such that no proper submodule of V' contains all of the v;.

FJI™-modules, as defined above, were originally considered by Gadish
in [G]. Later work of Gadish showed that these modules could be ap-
plied to the study of linear subspace arrangements [G2]. It is a fact
that the category of FJ™-modules over any Noetherian commutative
ring k is locally Noetherian. That is, submodules of finitely gener-
ated FJ™-modules are once again finitely generated. This was proven
for general FJ™-modules by Sam and Snowden in [SS], as well as by
Gadish in [G] when k is a field of characteristic 0. The specific case of
FJ-modules was proven earlier by Snowden [Sn], as well as by Church,
Ellenberg, Farb and Nagpal [CEF, CEFN]. We will be using this
Noetherian property all throughout the current work.

For the remainder of this paper, m will be reserved to denote the
positive integer in FI™. We also fix a commutative Noetherian ring k.

Our guiding philosophy in this paper is as follows: The combina-
torial commutaitve algebra of multigraded modules over a polynomial
ring should have many analogies to facts about FJ"-modules. We will
illustrate this philosophy throughout the work, culminating with our
proof of Theorem A. For now, we take some time to precisely illustrate
this connection in three settings: free modules, torsion, and homology.

Remark 2.2. Before we go forward describing the relationship between
our setting and more classical settings, we take a moment to note that
this analogy can be made even more obvious using the language of
twisted commutative algebras (TCAs) [SS2]. We do not pursue this
further here, although we do note that this alternative language might
be more suitable for the reader less familiar with the theory of functor
categories.

Definition 2.3. Fix an integral vector r = (r1,...,7,,) € N™ as well
as a k[S,y]-module, W. Then we define the induced FJ™-module on



LOCAL COHOMOLOGY AND THE MULTI-GRADED REGULARITY OF FJ™-MODULES

W by the assignment
M(W)n = k[Homgjm (I‘, n)] ®k[6r] W

where k[Homggm (r,n)] is the free k-module with basis indexed by the
set Homgym (r,n). The FI™-morphisms act on M (W) by composition
on the left factor. In the specific cases wherein W = k[G,] is the regu-
lar representation, we write M (W) = M(r).

An FJ™-module is said to be semi-induced if it admits a finite fil-
tration whose every co-factor is isomorphic to an induced module.

Induced and semi-induced modules play a pivotal role in the study
of FI™-modules (See Proposition 2.4). Continuing with our analogy
of multigraded modules over a polynomial ring, semi-induced modules
may be thought of as free modules in that setting, and we will see that
they serve almost the exact same purpose. For instance, one has the
following. Note that all of these facts are proven in [LY2], although
they essentially trace their origins to the work of Church, Ellenberg,
Farb, and Nagpal [CEFN].

Proposition 2.4. Let W denote a k[S,]-module for some fized integral
vector v € N™, and let V be an FI™-module. Then:

1. Homggm (M (W), V) = Homyg,| (W, V;);
2. V is finitely generated if and only if there is a surjective map of
FI" -modules
X=>V =0

where X is some finitely generated semi-induced FI™ -module;
3. if V is finitely generated and projective, then it is semi-induced.

Moving on, our next goal will be to define a homology theory of
FJ™-modules, which is analogous to that of modules over a multi-
graded polynomial ring. Namely, we hope to find a family of functors
which encode information about syzygies of the modules. The homol-
ogy functors were introduced by Church, Ellenberg, Farb, and Nagpal
in the case of FJ-modules [CEFN]. Following this, they were deeply
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explored by a large collection of authors [C, CE, GL, LR, LY, R].
The study of FI™-module homology originates with the work of the
first author and Yu [LY2].

Definition 2.5. Let V be an FJ"-module. The 0-th homology of
V is the FJ™-module defined on points by

HO(V)n = Vn/V<n

where V., is the submodule of V;, generated by elements which are in
the image of some transition map. The functor V — Hy(V) is right
exact, and we denote its derived functors by H;(e). These functors are
the FJ™ homology functors.

In later sections, we will explore these functors much more deeply. It
will be shown that there is an interpretation under which Ho(V') can be
realized as a tensor product of V' by an object very much resembling
a quotient of a ring by its maximal homogenous ideal. This is the
subject of Section 2.2. Another piece of evidence that the homology
functors are the correct analogs in our context is how they interact with
semi-induced modules. The following theorem was proven in [LY?2].

Theorem 2.6. IfV is finitely generated, then it is acyclic with respect
to the FI™ homology functors if and only if it is semi-induced.

Each of the parts of Proposition 2.4 and Theorem 2.6 illustrates
the significance of semi-induced modules when studying right exact
functors on the category of finitely generated FJ™-modules. One recent
insight, seen in the authors’ precurser work [LR] as well as in work of
Nagpal [N] and Church, Miller, Nagpal and Reinhold [CMNRY], is
that semi-induced modules are also fundamental to the study of left
exact functors on the category of finitely generated FJ™-modules. In
many ways, this is the subject of the entire third section of this paper
on local cohomology. For now, we simply take the time to define what
the correct torsion theory is for FJ™-modules.
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Definition 2.7. Let V be an FJ"-module. An element v € V, is said
to be B-torsion if it is in the kernel of some transition map Vi, — V;.
We say that V' is B-torsion if all of its elements are B-torsion. We say
that V is B-torsion-free if none of its elements are B-torsion.

The notion of B-torsion is borrowed from algebraic geometry and
the study of Cox rings. In that setting, B is usually used to denote
the geometrically irrelevant ideal and B-torsion is the basis for local
cohomology. The same will be true in this context. We will explore
more properties of torsion throughout the rest of this work.

Remark 2.8. The notion of B-torsion given in the above definition
is equivalent to the notion of stably zero functors, first introduced by
Djament and Vespa in [DV].

To conclude this section, we record various notation that will be
used throughout the paper.

Definition 2.9. For each 1 < j < m we write e; to denote the usual
standard basis vector of N, If r = (rq,...,7r,) € N™, then we use |r|
to denote the sum of its coordinates. Given two vectors r,n € N, we
say that r is at least one positive step from n if r € U;(n+e; +N™).

2.2. FJ"™-module homology. In this section we further explore the
homology functors, as defined in the previous section.

Definition 2.10. Given a finitely generated FJ™-module V, and an
integer ¢ > 0, we define the i-th homological degree of V' to be the
set

HD;(V) :={r € Z™ | H;(V)n = 0 whenever n € U;(r +¢; + N™).}

Remark 2.11. For minor technical reasons (see the Remark 4.9), we
have to consider HD, (V') as being a subset of Z™ instead of N™. Note
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that for this to make sense we simply assert that V,, = 0 whenever
n E ZTYL _ Nm.

Before we continue, we hope to develop some intuition for FJ™
homology which is rooted in more traditional algebra. Let kFJ™ denote
the ring whose additive group is given by

kFI™ = @ k[Homggm (n, 1)]

where k[Homggm (n,r)] is the free k-module with basis indexed by the

set Homggm (n,r). Multiplication in this ring is defined on basis vectors
by

if this makes sense

0 otherwise.

(f1><...xfm).(gl><.__xgm) _ {fl 0g1 X ... X fmn 0 gm

Then an FJ™"-module may be viewed as a left kFJ""-module V' which
admits a direct sum decomposition

V:@%&V

where id,, is the identity function on [n]. Then there is an ideal in
kFJ™, denoted by m, which is spanned by basis vectors which are not
bijections. In this language, the homology functors are precisely given
by

H;(V) = Tor;(kFI™ /m, V)

Thinking of kFJ™ as being analogous to a multi-graded polynomial
ring, and m as being the unique maximal homogeneous ideal, the ho-
mology can be thought of as capturing the generating degrees of syzy-
gies of V. In particular, we have the following.

Proposition 2.12. Let V be a finitely generated FI™ -module. Then
there exists an exact sequence

s FO S FO Ly 0

such that:
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1. FO 45 semi-induced for each i > 0;
2. HDo(F©)) = HDy(V);
3. HD;(V) D HDo(FW) fori > 1.

Proof
We can construct this exact sequence inductively, using Proposition 2.4,
and the Noetherian property. That such a sequence satisfies the third
assertion above will follow from a typical homological degree shifting

argument.
]

One of the main goals of this paper is to determine some kind of
connection between the homology of an FJ-module and its B-torsion.
For FJ-modules, the relationship between homology and B-torsion has
been made totally precise, and we will visit this connection later when
we define local cohomology. For general FJ™-modules the connection
becomes a bit more tenuous. To get an idea for why this is, recall
from above that homology is defined to be H;(V') = Tor;(kFI™ /m, V).
On the other hand, B-torsion elements in this language are elements
v € V for which BNv =0 for all N > 0, where B is the ideal of kFJ™
generated by maps f1 X ... X f, : [n] = [r] for which r; > n; for each 1.
This is similar to the setting of modules over multi-graded polynomial
rings, wherein one must distinguish the ideal generated by the variables
of the polynomial ring from the ideal which is geometrically irrelevant.
In the case m = 1, m and B are the same ideal, and the relationship
between homology and torsion becomes much more accessible.

For now, we state the following theorem, which shows that every
finitely generated FJ™-module can be approximated by B-torsion mod-
ules and homology acyclic modules. This theorem was famously proven
by Nagpal [N2] for FJ-modules, and was more recently generalized to
FJ™-modules by the first author and Yu in [LY2].

Theorem 2.13. Let V be a finitely generated FI™ -module. There there
exists a bounded complex of finitely generated FI™ -modules

CV:0=-V-oFO 5 LS F0 49
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such that:

1. HY(C*V) is B-torsion for all i;
2. F) s semi-induced for all i.

Remark 2.14. Note that the assignment V — C®V is not functorial.

Just as was the case for FJ-modules [LR], we will find that the com-
plex C*V is actually computing the local cohomology modules of V
(Theorem 3.11).

2.3. The shift functors and torsion. In this section we briefly re-
view the shift functors and the various notions of torsion. Shift functors
appeared in a variety of classical contexts (see [Sc, P, P2] for a treat-
ment of these in the language of polynomial functors. See also [DV,
Section 2] for exposition in that setting). The expository direction
taken in this work most closely resembles that taken in the paper of
Church, Ellenberg, Farb, and Nagpal in [CEF] and [CEFN]. The in-
credible utility of shift functors can be seen throughout the literature
[C, CE, L, LY, LR, N, P, P2, R, Sc].

The significance of torsion in the study of FJ-modules was consid-
ered by Sam and Snowden in [SS2], as well as by the authors in [LRY].
It has also appeared in the literature of polynomial functors (see [DV]
and the references therein, for instance).

In [LY2], The first author and Yu consider analogs of the shift func-
tors for FJ™-modules. The work in this section traces itself back to
that paper.

Definition 2.15. Let 1 < j < m be an integer. Then we define the
functor ¢; : FI™ — FI™ by

Lj([l’l]) = [nl] X ... X [nj_l] X [nj + 1] X [nj+1] X ... X [nnz]
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and for fi X ... X fm, : [n] = [n],
(fr(@1), .-, fm(@m)) if z; <n;
(fi(@), .., fimi(@j—1),m5 + 1, fi+1(zj41), - s fm(zm))  otherwise.
The j-th shift functor ¥; is defined on FI™-modules

EjV =Vo Lj

Lj(flx...Xfm)(Z‘l,...,xm) = {

Ifa=(ay,...,a,) € N™ then we write X, to denote the composition

YaV = (X o...o B¢V,

Perhaps one of the most significant properties of the shift functor is
how it interacts with induced and semi-induced modules. The following
theorem was first realized by Nagpal in the case of FJ-modules [N2].
It was shown for general FJ"-modules by the first author and Yu in
[LY2].

Theorem 2.16. Let W denote a k[S,]-module, and let 1 < j < m
denote a fized integer. Then:

1. S, M(W) = M(Resé:iej W)@ M(W). In particular, if V is a
finitely generated FI™ -module, then the same is true of X;W.

2. The standard maps n] — [n + e;] induce, for any FI™-module
V,amap V= 5;V. If V.= M(W) is induced, then this map
s a split injection.

3. HDo(3;V) D HDo(V) and HDg(coker(V — X;V)) +e; 2
HDo(V)

4. If V is a finitely generated FI™-module, then there exists a
non-negative integer N (V) such that for all integral vectors
a = (ar,...,am) € N™ with a; > N(V) for each i, X,V is
semi-induced.

5. The functor ¥; preserves injective objects. That is, if I is an
injective FI" -module, then the same is true of X;1.

Proof
The only part of this theorem that does not appear in [LY 2] is the last
part. We will prove the following stronger statement: The functor ¥;
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admits an exact left adjoint, Ind;.

In the case m = 1, the existence of Ind; is shown in [LR]. This
construction can be applied to the general situation in similar fashion.
This functor is exact, as it is given on points by

(Ind; V)n =Indg” Vo,

and note that kFJ™(n — e;, n) is a free right k&,_.,-module. O

The third part of Theorem 2.16 is particularly significant. We will
later see that it is the key piece needed to prove certain finiteness
statements for local cohomology, along with countless other facts. See
[LR, LY2, N, N2] for some of the countless applications of this the-
orem in a variety of contexts.

For the purposes of this paper, the relevance of the shift functors is
mostly in their connection to torsion.

Definition 2.17. If 1 < j < m, then we say an element v € Vj, is
B-torsion in direction j if it is in the kernel to all transition maps
into Viye;.- Note that this is equivalent to being in the kernel of the
map V — X,V of Theorem 2.16.

The following collects most of the important facts about B-torsion
in FJ™-modules. Proofs can be found throughout [LY2].

Proposition 2.18. Let V be an FI™-module. Then:
1. there is an exact sequence
0=>Vr =V -=>Vr—=0

where Vi is B-torsion, and Vg is B-torsion-free;

2. if V is B-torsion and finitely generated, then there exists a
positive integer, td(V'), such that Vi =0 for allr = (r1,...,7m)
with r; > td(V') for all i.;
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3. V' is B-torsion-free if and only if the map V' — X1 1
the second part of Theorem 2.16 is injective.

,,,,,

3. Local cohomology.

3.1. Definition and first properties.

Definition 3.1. Let V be an FJ™-module. We define the B-torsion
functor by the assignment

HY(V) :=Vr

where V7 is the B-torsion module guaranteed by the first part of Propo-
sition 2.18. The B-torsion functor is left exact, and therefore admits
right derived functors, which we denote H5 (V). The collection of func-
tors H5(V) are known as the local cohomology functors.

Remark 3.2. The category of FJ"-modules is Grothendieck by virtue
of the fact that it is a functor category from a small category into a
module category. From this it follows that it has sufficiently many
injective modules, and one may make sense of the local cohomology
functors. However, it is rarely the case that these injective modules are
also finitely generated. As a consequence, it is a priori unclear whether
the modules H5 (V) are finitely generated, even assuming that V is.
We will later prove that it is actually always the case that H5(V) is
finitely generated assuming that V is (see Corollary 3.12).

It will be useful to us to have an alternative definition of local coho-
mology in terms of a directed limit of Ext functors.

Definition 3.3. Let a = (a1,...,a,) € N, and let N > 0 be a fixed
positive integer. We define B - M(a) to be the submodule of M (a)
generated by M(a)atn.(1,...,1)-
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Lemma 3.4. Let V be an FI™ module. Then for eacha = (a1,...,am) €
N™ and N > 0 the k[&,]-module Hom(M (a)/BY - M(a),V) is iso-

morphic to the submodule of V, of elements which are in the kernel of

some transition map fi1 X ... X fn, : [a] = [n] with max; n; —a; < N.

Proof
By the first part of Theorem 2.4, a map M(a)/BY - M(a) — V is
uniquely determined by a choice of element of V, which is in the kernel
of every transition map into Vayn.(1,...,1)- It remains to show that this
condition is equivalent to being in the kernel of at least one transition
map with the stated condition on its image.

One direction is clear. Conversely, assume that v € Vj is in the kernel

of some transition map fi X...X fp, : [a] = [n] with max; n; —a; < N.

Then we may compose this function with a map n] — [a+N-(1,...,1)]

and find that v is in the kernel of some transition map into Vain.(1,...1)-

The action of the symmetric group allows us to now conclude v is in
the kernel of every transition map of the required form.

O

Lemma 3.5. Let V be an FI"-module, and fixr N > 0. Then there
exists an FI™ -module Hom(kFI™ /BN V') for which

Hom(kFI™ /BN, V)a = Hom(M (a)/BY - M(a), V),

such that the inclusions Hom(M(a)/BY - M(a),V) < Va induce an
inclusion Hom (kFI™ /BN, V) — V.

Proof
Let fi X ... X fm, : [a] — [n] be a morphism in FJ™, and let
¢ € Hom(M(a)/BY - M(a),V). Then we define the image of ¢ un-
der the transition map induced by f; X ... X f,, to be the morphism
¥ € Hom(M (n)/BY-M(n), V) uniquely determined by the assignment
lidn) = V(fr - % fo)(0lida).
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The second part of the statement follows immediately from the
construction.

O

These two lemmas lead into the following very natural alternative
definition of local cohomology.

Definition 3.6. For each fixed N > 0, the functor V ~ Hom/(kFI™ /BN V)
is left exact. We denote the right derived functors of this functor by

Ext' (kFI™ /BN o).
We note that for each a € N™ one has

Ext' (kFI™ /BN V), = Ext'(M(a)/BY - M(a),V).

Theorem 3.7. There is an isomorphism of functors
liin Hom(kFT™ /BN @) =2 H%(e).
inducing an isomorphism of derived functors
lim Ext' (kFT™ /BN o) = Hi(e)

for each i > 0.

Proof
Follows from the previous lemmas and standard homological argu-
ments.

O

3.2. Acyclic modules. The purpose of this section is to classify the
modules which are acyclic with respect to the local cohomology func-
tors. As a consequence of this classification, we will be able to prove
many different finiteness statements about local cohomology modules.

To begin, we prove the previously promised statement that semi-
induced modules are local cohomology acyclic. The following argument
is based on a similar argument of Nagpal appearing in [N].
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Proposition 3.8. If V is a semi-induced FI™ -module, then H5(V) =
0 for all 1 > 0.

Proof
It suffices to prove the statement for V' = M (W), where W is some
k[G,]-module. Fix 1 < j < m, and recall from Theorem 2.16 that
there is a split injection
V - EjV.

On the other hand, there are natural isomorphisms
Hp(%;V) = 3 Hp(V),
which induce isomorphisms
HL(Z,V) 2 HE(V).

Indeed, this follows from the fact that ¥ is exact, and that it preserves
injective objects by the last part of Theorem 2.16. It then follows that
the map

Hy(V) = Hp(Z;V) = S;Hp(V)

is injective. Moreover, this composition agrees with the map H5 (V) —
$;H5 (V) arising from the FIJ™-module structure of Hi (V) by natu-
rality of all of the relevant isomorphisms. In particular, the module
H%(V) has no B-torsion in direction j. Because j is arbitrary, it follows
that H5(V) is actually B-torsion-free. Because Hi (V') is a B-torsion
module by definition, it must be the case that it is actually the zero
module.

|

The second class of modules whose positive local cohomology groups
vanish are B-torsion-modules themselves. To accomplish this, we use
the alternative definition of local cohomology provided by Theorem 3.7.

Proposition 3.9. Let V be a finitely generated B-torsion module.
Then H5 (V) =0 for all i > 1.
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Proof
Fix a € N™, and i > 1. It will suffice to prove that for all N > 0,

Ext‘(M(a)/BY - M(a),V) =0

Choose N sufficiently large so that Hom(BY - M (a),, V) = 0 whenever
Va # 0. Note that for such an N to exist, it is critical that V' be finitely
generated. We may apply Hom(e, V') to the exact sequence

0— BY.M(a) - M(a) - M(a)/BY - M(a) = 0
to conclude the existence of the following exact sequences,

HongRB) - M(a),V) — Ext'(M(a)/BN - M(a),V) — 0
0 — ExB82)(BN - M(a),V) — Ext‘(M(a)/BN - M(a),V) = 0 (i >2)

The means by which N was chosen implies that Hom(B" - M (a),V) =
0, whence Ext' (M (a)/BY - M(a),V) = 0. For i > 2, the above tells us
that it suffices to compute Ext*"*(BN - M(a), V). These modules are
subquotients of modules of the form Hom(F, V'), where F' is a projective
module which is generated in degrees which are at least one positive
step from a+ N - (1,...,1). Once again relying on the choice of N, as
well as the classification of projective modules as being semi-induced,

we conclude that these extension groups must be zero, as desired.
|

These two propositions are the main ingredients in the following
classification theorem.

Theorem 3.10. Let V' be a finitely generated FI™ -module. Then V
is acyclic with respect to the positive local cohomology functors if and
only if it falls into an exact sequence of the form

0—=>Vr >V —->Vrp—0

where Vg is semi-induced, and Vi is B-torsion.

Proof
The two previous propositions imply the backward direction. Other-
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wise, V' can always be fit into an exact sequence
0—=>Vr >V —>Vr—=0

where Vr is B-torsion and Vg is B-torsion-free. It therefore suffices to
prove the following claim: If V' is a finitely generated FJ™-module for
which Hy (V) =0 for all ¢ > 0, then V is semi-induced.

Indeed, using the previous propositions it isn’t hard to see that in
this case the complex

CV:0=V-FO 5 L F0 49

of Theorem 2.13 is exact. Applying the homology functor and using
Theorem 2.6, we may therefore conclude that V is acyclic with respect
to the homology functors and is therefore semi-induced by Theorem 2.6
as well.

|

3.3. Consequences of the acyclic classification. In this section
we list consequences of the classification of local cohomology acyclic
modules. The first consequence was already hinted at in the proof of
the classification.

Theorem 3.11. Let V be a finitely generated FI™ -module. Then for
each i > 0, there are isomorphisms
H'7HCV) = H(V)
Proof
We have an exact sequence
0=Vr =V =Vrp—=0

where Vp is B-torsion and Vg is B-torsion-free. Thus Hy(V) =
H%(Vg) for all i > 1. The module Vp admits an injection

0=V =3 Vp=FO Q" 50

for some a € N™. We have that H°(C*V) = H%(Q®) = Hy(Vr) =
HE(V). Repeating this argument for Q(®), we conclude the desired



LOCAL COHOMOLOGY AND THE MULTI-GRADED REGULARITY OF FJ™-MODULR$

isomorphisms for each 3.
|

As an immediate consequence for this theorem, we will be able to
prove a variety of finiteness statements.

Corollary 3.12. Let V be a finitely generated FI™ -module. Then

1. H5(V) is finitely generated for all i > 0;
2. H5(V) =0 for all i > 0;

Proof
Both statements follow from Theorem 3.11 and the Noetherian prop-
erty.
(]

4. Local cohomology and regularity.

4.1. Definitions. In this section we consider more deeply the connec-
tion between homology and local cohomology. The overall arc of these
sections, as well as many of the definitions, is designed to invoke the
classical theory. Namely, we will be following the work of Maclagan
and Smith [MS].

Definition 4.1. Let V be a finitely generated FJ™-module. The
Castelnuovo-Mumford regularity, or CM regularity, is the set
of integral vectors r € Z™ such that:

1. fori >0, H5(V), = 0 whenever n € Uaenm,|aj=i Uj (r—a+e; +
N™);
2. r € HDy(V).

We denote the CM regularity of V by CMreg(V'). It will be convenient
for us to also set CMreg, (V') to be the collection of vectors which
satisfy the first of the two conditions above. Namely,

CMreg (V) = CMreg, (V) N HDgy(V)
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Remark 4.2. In the classical setting, the second requirement on r is
not necessary. In our setting, however, the homology acyclic modules
- i.e. the semi-induced modules - are also local cohomology acyclic
(see Theorem 3.10). As a consequence, the local cohomology modules
cannot detect HDo(V'). What we will find, however, is that they can
detect pieces of HD; (V') for higher i (see Theorem 4.8).

It will be illustrative for us to take a moment and look at an example.

Example 4.3. Let V be that F9%-module given by
kE ify=0
View) = .
0 otherwise.

whose transition maps are the identity on the z-axis, and the zero map
elsewhere. Then V is a B-torsion module, and subsequently has trivial
higher local cohomology groups by Proposition 3.9. It follows that,

CMreg(V)NN? = {r | Vi = 0 if n € Ujr+e;4+N?}NHDG(V) = {r | Vi = 0 if n € Ujr+e;+N?} = {(0,1)+N?}.
The module V' admits a presentation
0— K — M(0,0) >V =0
In other words, K is the module defined on points by
Kaw = {Ig ftiefw?se.

Applying the local cohomology functor to this presentation, and using
work of previous sections, we conclude that Hi (V) = Hi5 ™ (K) for all
1. Therefore,

CMreg(K)NN? = {r | V,, = 0 if n € U; s(r—e;+e,+N?)}NHD( (K)NN?
It is not hard to see that HDo(K) N N? = {(0,1) + N?}, and that
{r|Va=0ifne U, (r—e;+es+N)}NN? = {(0,2) + N?}.

Thus,
CMreg(K) NN? = {(0,2) + N?}.
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4.2. Theorem A for B torsion modules. Our first goal will be to
show Theorem A for B-torsion modules. In this setting, the statement
of this theorem reduces to the following. Note that facts which arise
in the proof of this theorem will effectively form the base case of an
eventual inductive proof of Theorem A.

Theorem 4.4. Let V be a finitely generated B-torsion module. If ¢ is
any integral vector with positive coordinates, and r is such that Vi, =0
whenever n € U;r + e; + N, then there exists a complex

Lo FO L RO Sy g
such that

1. F9 4s a semi-induced module generated in degree r + i - c;
2. the homology of the complex is B-torsion.

To prove this theorem, we will need an alternative characterization
of homology. The following definition is motivated by work of Church
and Ellenberg, as well as work of Gan and the first author [GL2]. It
is perhaps most natural to describe this construction using a different
version of FJ™. Note that FI™ is equivalent to the category whose
objects are m-fold products of finite sets

S1x ... xS,

and whose morphisms are m-fold products of injections.

Definition 4.5. For a given non-negative integer a, and an FJ™-
module V', we define a new FJ"*-module

(E—aV)six.xS = 138,50, 1Ty 1=aV (SINT1 X .. XS\ T )@k x...x T3,

where e, x . xT,, =€, X...Ker, and er is the sign representation of
& 1. Given a m-fold product of injections f1 X ...X fi, : S1X... xS, =
S x...x S/ we may define the induced map on ¥_,V by
E_WV)(fix oo X fr) @i A At ) @ @ (Bt A A1) =
V((fi X oo X fo) s\ Trx x 8, \ T ) (0) @ (fitr, ) A A filt ) @ oo @ (Fn (B i) Ao A (b))
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where T = {t;1,...,t; 1,/ } €5 for each j, and v € V(S1\ T x ... x
S \ Ton)-

Next we claim that the collection of S_,V, with a varying among
positive integers, form an complex of FJ"-modules. Note that, before
we describe the construction of the differentials, what follows will not
actually be used in the remainder of the paper. It is included here for
completeness. We can define a map

V(S] \Tl X ... X Sm \ Tm) Rk €Ty x...xT), — S,(Q,I)V(Sl X ... X Sm)

for any given Ty x.. . xT};, € S1X...X S, with 3 [T = a and a chosen

labeling T1 = {tl,la e Tl,\T1|}7 “eey Tm = {tm,a—|Tm|+1v e 7tm,a} by
setting

VR (t171 AN tl,\T1|) ®...Q0 (tm,af‘T,n‘Jrl AN tm,\T,,L\) —
Z(—l)ij(U) ® (tl,l AN tl,\Tl\) ®...0 (tm,af\TmHl AN tm,\Tm|)
J

where the wedge products in the j-th summand of the right hand side
are missing the term ?; ;, and ¢; is the map which adds #;; to S;. In
other words, the differentials in the complex S_4V are defined by all
possible ways to add an element from the 7} back into the S;.

The complex S_,V is known as the Koszul complex associated to
V.

One key fact about the Koszul complex is that is actually computes
the homology of V. The following theorem was proven independently
in [CE] and [GL2] for FJ-modules. The proof in our setting is similar,
and we omit it.

Theorem 4.6. If V is an FI-module, then for all i > 0
H;(V) = H;(S-.V).

Remark 4.7. While we omit the proof, it is still worth noting that its
roots are similar in spirit to classical commutative algebra. Namely, one
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begins with a minimal projective resolution of kFJ™ /m, and performs
a tensor product with the module V.

This theorem is the major piece needed to prove Theorem 4.4. Recall
that if V' is an FJ™-module, and n € N, then V|, is the submodule
of V generated by V,,.

Proof of Theorem 4.4
Let V be a finitely generated B-torsion FJ™-module, let r € CMreg(V)
and c be any integral vector with positive coordinates. By definition
of V|>y, there is an exact sequence

(4.1) 0= KY 5 MV:) = V]sy =0

Set F©) = M(V;).

We claim that r + ¢ € HDo(K (). Indeed, the exact sequence (4.1)
implies that H;(V|>,y) = Ho(K™). Using Theorem 4.6, one sees that
Hi(V|>r)r+e = 0 as it is a subquotient of a direct sum of modules of
the form

(V]se)([r1 + 1] = S1 X oo X [rm + €] — Sm)

where >, |S;| = 1 and S; C [rj + ¢;]. Because ¢; is positive for all
J, rj +¢; — |Sj| > rj with this inequality being strict for at least one
choice of j. By the definition of CMreg(V) it follows that

(V]se)([r14+c1] =St X ..o X [rm + €] — Sm) =0
as desired. As a consequence, r + ¢ € HDy(K ™)) and the quotient

KW /(KW ye) is B-torsion. Set FO = M(K{),).

Proceeding inductively, assume that we have constructed an exact
sequence
0— K@Y 5 PO 5 KOS 00— 0

where r +i - ¢ € HDo(K®), and FO = p(K

rﬂ-.c). By construction
we know that

Hy (KD |5ppi.0) 2 Ho(K D).
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Let n € N™ be such that n — (r + (i + 1) - ¢) € N is non-zero. We
have to show _
H, (K(l)|2r+i‘C)n =0

First note that it follows from Theorem 4.6, the definition of n, and
the fact that r + i - ¢ € HDo(K ), that

Hl(K(z) |2r+i-c)n = Hl (K(l))n

By induction we know that

Hi(KD)y 2 Hy (K9 V)5t i-1))n

~

and using the same argument as above we conclude Hi(K®), =
Hy(K(=Y),,. Inductively we eventually conclude that

Hl(K(i))n = Hiy1(Vise)n 2 Hit1(V)a =0,

once again using our choice of n. This concludes the proof.
|

4.3. The proof of Theorem A. We begin by stating a theorem
which implies Theorem A.

Theorem 4.8. Let V be a finitely generated FI™ -module, ¢ > 1, and
let c; € Z™ be any vector such that c; —a € CMreg , (V) for all vectors
a € N™ such that |a] =i. Then one has,

C; € HDz(V)

To see why this theorem implies Theorem A, we begin by noting
that, with r and ¢ as in the statement of Theorem A, ¢; = r+1i-c
satisfies the hypotheses of Theorem 4.8. In the case we have proven
Theorem 4.8, we would therefore be able to conclude that, for all 7,
r+i-c € HD;(V). Looking at the proof of Theorem 4.4, one can see
that the key ingredient that makes the induction work is the fact that

Hi(KD)y = Hipy (Vzr)n 2 Hip1(V)n =0

whenever n is at least one positive step from r + (i + 1) - ¢. It follows
that the proof of 4.4 can be replicated to prove Theorem A so long as
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we have Theorem 4.8.

Proof of Theorem 4.8
Fix ¢; € N as in the statement of the theorem. We will proceed by
induction on the largest d such that H% (V) # 0. This quantity is finite
by Corollary 3.12. Note that if this quantity is 0, then the theorem
follows by the proof of Theorem 4.4 and Theorem 3.10. Otherwise
assume that V is not local cohomology acyclic and recall there is an
exact sequence

0=Vr =V —=Vp—=0

where Vp is B-torsion, and Vg is B-torsion-free. This yields exact
sequences for all s > 0

HS(VT) — HS(V) — HS(VF).

It follows that ¢; € HD;(V) so long as ¢; € HD;(Vyr) NHD;(VE). On
the other hand, we have that Vz = H% (V) and therefore c; € HD;(Vr)
by definition of ¢; as well as Theorem 4.6. It remains to argue that
c; € HDl(VF)

The exact sequence (4.2) implies that
H3y (V) = Hyy (Vi)
whenever s > 1. Note that this also implies that
CMreg, (V) € CMreg, (V).
Theorem 2.16 tells us that there is an exact sequence
0>Vrp—>F—>0Q—0

Where F' is semi-induced. An induction implies that ¢, € HD;(Q)
whenever ¢ satisfies that ¢; — a € CMreg(Q) for all a € N™ with
la| = i. However, (4.2) tells us that H5(Q) = H5 ' (V) for s > 0
which implies that CMreg, (VF) € N;(CMreg, (Q) + €;). Once again
we may leverage (4.2) to find

Hi(Vr) = Hi11(Q),
for i > 1.
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Let a € N™ satisfies |a] = ¢+ 1. Then we can find some index j such
that a; # 0. Writing a = a’ + e; we have,

ci—a = (c¢;—a’)—e; € CMreg, (V)—e; C CMreg, (Vp)—e; € CMreg, (Q),

by definition of ¢;. By induction we conclude that ¢; € HD;11(Q) and
so ¢; € HD;(Vg). This concludes the proof.
O

Remark 4.9. It was critical in the above proof that CMreg, (Vr) C
N;(CMreg, (Q) +¢€;). For this statement to be true, it is necessary for
the CM regularity include vectors in Z™ — N™.
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