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Abstract— We consider a scenario in which an autonomous
vehicle equipped with a downward facing camera operates in a
3D environment and is tasked with searching for an unknown
number of stationary targets on the 2D floor of the environment.
The key challenge is to minimize the search time while ensuring
a high detection accuracy. We model the sensing field using
a multi-fidelity Gaussian process that systematically describes
the sensing information available at different altitudes from the
floor. Based on the sensing model, we design a novel algorithm
called Expedited Multi-Target Search (EMTS) that (i) addresses
the coverage-accuracy trade-off: sampling at locations farther
from the floor provides wider field of view but less accurate
measurements, (ii) computes an occupancy map of the floor
within a prescribed accuracy and quickly eliminates unoccupied
regions from the search space, and (iii) travels efficiently to
collect the required samples for target detection. We rigorously
analyze the algorithm and establish formal guarantees on the
target detection accuracy and the detection time. We illustrate
the algorithm using a simulated multi-target search scenario.

I. INTRODUCTION

Autonomous multi-target search requires an autonomous
agent to quickly and accurately locate multiple targets of
interest in an unknown and uncertain environment. Examples
include search and rescue missions, mineral exploration, and
tracking natural phenomena. A key challenge in a multi-
target search task is to balance several trade-offs including
explore-vs-exploit: detecting a target with high accuracy
versus finding new targets, and speed-vs-accuracy: quickly
versus accurately deciding on the presence of a target. The
latter includes fidelity-vs-coverage trade-off: sampling at
locations farther from the floor provides a wider field of
view but less accurate measurements.

In this paper, we design and analyze a multi-target search
algorithm that addresses these trade-offs. In particular, our
algorithm leverages multi-fidelity Gaussian processes to
capture the fidelity-coverage trade-off. Information-theoretic
techniques are employed to efficiently explore the environ-
ment, and Bayesian techniques are used to accurately identify
targets and construct an occupancy map.

Search and persistent monitoring problems have been stud-
ied extensively in the literature. Informative path planning
is subclass of these problems in which robot trajectories
are designed to maximize the information collected along
the way-points while ensuring that the distance traveled is
within a prescribed budget. Such informative path planning
problems are studied in [1-5].
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Gaussian processes (GPs) are widely used models for
capturing spatiotemporal sensing fields in robotics [6, 7].
While GP-based approaches have been used extensively,
most of them rely on single-fidelity measurements, i.e., the
sensing model does not consider different altitudes at which
the measurements can be collected. GP models have also
been used extensively to plan informative trajectories for the
robots [5, 8-11]. However, most of these works focus on
maximizing the reduction in uncertainty of the estimates.

In the context of target search, the trajectory should be
designed to balance the explore-exploit tension—the robot
should spend more time at target locations, while learning
target locations. There have been some efforts to address such
explore-exploit tension within the context of informative path
planning [11-22].

Hollinger et al. [17] study an inspection problem in which
the robot needs to classify the underwater surface. They
use a combination of GP-implicit surface modeling and
sequential hypothesis testing to classify surfaces. Meera et
al. [21] study informative path planning for a target search
problem. They model target occupancy as a GP and design a
heuristic algorithm for target detection that handles trade-offs
among information gain, field coverage, sensor performance,
and collision avoidance. They illustrate the performance of
their algorithm using numerical simulations. Sung et al. [22]
study the hot-spot identification problem in an environment
within the framework of GP multiarmed bandits [23, 24].
The multi-target search can be viewed as a hot-spot iden-
tification problem in which, instead of global maximum of
the field, all locations with value greater than a threshold
need to be identified. Such problems have been studied in
the multiarmed bandit literature [25, 26]; however, we are not
aware of any such studies in the GP setting. Furthermore, all
these works focus on single fidelity measurements, while we
focus on multiple fidelities of measurements induced by the
altitudes relative to the 2D floor at which the measurements
are collected.

In this paper, we design an algorithm for expedited search
of unknown number of targets located at the 2D floor of
an unknown and uncertain 3D environment. We use autore-
gressive multi-fidelity GPs [27, 28] to model the likelihood
of the presence of a target at a location as computed by
a computer vision algorithm using the sample collected at
that location at a given altitude. Here, fidelity corresponds
to the altitude at which the samples are collected. A high
altitude (low fidelity) sample provide more global but less
accurate information compared with a low altitude (high
fidelity) sample. The low fidelity information can be used



to quickly find easy-to-detect targets and this enables the
robot to focus on high-fidelity information, possibly only in
small regions in the environment and consequently, expedite
the search. The proposed EMTS algorithm comprises three
main modules (i) a sampling and fidelity planner, (ii) a
classification and region-elimination algorithm to construct
occupancy map of the floor and eliminate unoccupied regions
from search space, and (iii) a path planner that allows the
vehicle to travel efficiently to collect required samples. The
major contributions of this work are:

o We extend the classical informative path planning ap-
proach for single-fidelity GPs to multi-fidelity GPs.
This novel extension allows for jointly planning for
sampling locations and associated fidelity-levels, and
thus, addresses the fidelity-coverage trade-off.

e« We augment the sampling and fidelity planner with
a Bayesian classification and region-elimination algo-
rithm that ensures the targets are identified with desired
accuracy, as well as a Traveling Sales Person (TSP) path
planner that enables travel-efficient sampling.

o We rigorously analyze the interaction of above com-
ponents and establish formal guarantees of the target
detection accuracy and detection time.

The remainder of the paper is organized as the following.
We present a mathematical formulation of our problem in
Section II. In Section III, we present the EMTS algorithm
and illustrate it using an underwater victim search scenario
in Section IV. We analyze the performance of EMTS in
Section V and conclude this work in Section VI.

II. PROBLEM DESCRIPTION

We consider an autonomous vehicle that moves in a 3D
environment, e.g., an aerial or an underwater vehicle. We
assume that the vehicle either moves with unit speed or
hovers at a location. The vehicle is tasked with searching
for multiple targets on the 2D floor of the environment.
Let D C R? be the area of the floor in which the targets
may be present. The vehicle is equipped with a fixed camera
that points towards the floor. The vehicle travels across the
environment and collects images/videos of the floor (sam-
ples) from different sampling points. These sampling points
may be located at different altitudes relative to the floor of
the environment. We assume that no sample is collected
during the movement between sampling points to avoid
misleading low-quality sensing information. The collected
samples are processed with a computer vision algorithm that
outputs a score, which corresponds to the likelihood of a
target being present, for each frame. An example of such
computer vision algorithm is the state of art deep neural
network YOLOv3 [29]. The score will be used to update
the estimate of the sensing output, i.e., the estimated score
function f : D — [0,1] which will be used to determine
the location of the targets. The stochastic model for f is
introduced below.

A. Multi-fidelity Sensing Model

GPs are widely used models for spatially distributed
sensing outputs. In [21], a GP is used to model the target

detection output of a computer vision algorithm. While target
presence is a binary event, the computer vision algorithms
such as YOLOV3 yield a score which is a function of
the saliency and location of the target in the image. GPs
are appropriate models for such score functions. So far
in the literature, GPs have been used in the context of
single-fidelity measurements. To characterized the inherent
fidelity-coverage trade-off in sensing the floor scene by an
autonomous vehicle operating in 3D space, we employ a
novel multi-fidelity GP model. The two key physical sensing
characteristics the model seeks to capture are: (i) there
is some information that can only be accessed at lower
altitudes, (ii) the sensing outputs are more spatially correlated
at higher altitudes, since the fields of view at neighboring
locations have higher overlaps in their field of views.

We assume that the vehicle can collect samples of the
floor from M possible heights from the floor z; > 29 >

- > zp. We refer to these heights as the fidelity level
of the measurement, with M (resp. 1) corresponding to the
highest (resp. lowest) level of fidelity. Let the score function
gm : D — [0,1] be defined by the output of the computer
vision algorithm for an ideal noise-free image collected at
fidelity level m € {1,..., M} with the field of view of
the camera centered at @ € D. We assume that the score
functions for a location = obtained from different altitudes
(fidelity levels) are related to each other in an autoregressive
manner as follows

g" () = am—lgmil(m) +b"(x), (D

where a,,_1 is a scale parameter and 0™ is the bias
term that captures the information that can be only be
accessed at fidelities levels greater than m. Let f™(x) =

(HM_la,;) g™(x) and h™(z) = (Hi]\i:nla,)bm(:c).

Thenj equation (1) reduces to
fm(w) _ fm_l(iL') + hm(iL‘), (2)
where fO(z) = 0 and f(x) := fM(x) is the score

function at the highest fidelity level which we treat as ground
truth. We model the influence of systemic errors in sample
collection and environmental uncertainty on the output of
the computer vision algorithm for an input at fidelity level
m through an additive zero mean Gaussian random variable
€m with variance s2,, i.e., €,, ~ N(0, s2,). Consequently, the
(scaled) score obtained by collecting a sample at location
is a random variable y = f,, () + €.

We assume that each h,, is a realization of a Gaussian
process with a constant mean i, and a squared exponential
kernel function k™ (x, x’) expressed as

pESE

| 3)

E™(x,2") = v2 exp

where [, is the length scale parameter, and v,, is the variance
parameter that satisfies v; > vy > --- > wvys. This kernel
function describes the spatial correlation of score function at
neighboring locations at each fidelity level. Since the fields



of view are more overlapped at lower fidelity levels, it results
inily >lp>--->ly.

We make the following assumptions about the highest-
fidelity sample. If the target is not in the field of view at
(x, zp), the mean score of the computer vision algorithm
f () is smaller than a threshold th. If a target is at the center
of image collected at (x,zpr), f(x) > th + A, for some
constant A > 0. Here, 1/A can be viewed as a measure
of detection difficulty that depends both on the quality of
computer vision algorithm and the environment complexity.

B. Objective of the Search Algorithm

Our objective is to design an algorithm for sequentially
determining sampling points that lead to expedited detection
and localization of targets within desired misclassification
rate § € (0,1/2). In particular, the algorithm should esti-
mate the region containing targets D, C D such that (i)
Ve € D, : P(f(x) <th) < 6 and (i) V& € D\ D; :
P (f(z) > th+ A) < 4. The requirements about both false
alarm and mis-detection rate are set by above two conditions.

Let ¢(A, ) be the total (traveling and sampling) time to
finish the search task with misclassification rate smaller than
0. Then, the objective of the algorithm is to determine the
sequence of sampling points that minimize ¢(A, ¢).

III. EXPEDITED MULTI-TARGET SEARCH ALGORITHM

The proposed EMTS algorithm is illustrated in Fig. 1.
It operates using an epoch-based structure. In each epoch,
sampling and fidelity planner computes a set of sampling
points and the path planner optimizes a TSP tour going
through those points. The vehicle follows the TSP tour to
collect measurements at sampling points and the inference
algorithm uses these measurements to update the estimate the
score function f. Then, the Bayesian classification uses these
estimates to compute an occupancy map of the floor and the
region elimination module removes regions with no target
with sufficiently high probability from the search space. In
the following, we describe each of these modules in detail.
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Fig. 1: Architecture of EMTS

A. Inference Algorithm for Multi-fidelity GPs

The Bayesian inference method for multi-fidelity GPs
discussed in this section is an extension of the inference
procedure in [27] for the case of no sampling noise. Let

the set of sampling location-score-fidelity tuples after n
observations be P,, = {(x;,y;,m;) | i € {1,...,n}}. For
each fidelity m, define a subset of P,,,

and | P""| denote the cardinality of P™. Recall that k*(x, z’)
is the kernel function for the GP h; at i-th fidelity level.
Let K{(P, P2 be a |[P;*| x |P/'| matrix with entries
Ei(x,x'), © € P, @’ € P and K\(P",x) be a |P"|
dimensional vector with entries k{(z’,x), ' € P/". Let K
be a M x M block matrix with (m,m’) block submatrix

min(m,m’)

Km,m’ = Z KZ (Pfgm)’Pflm’))
i=1
Let k(xz) be a |P,| dimensional vector constructed by
concatenating M sub-vectors k(x) = (kl(w), . .,kM(a:)),
where

m

K@) =Y KiPp'x), Yme{l,...,M}. (4
i=1

Denoted by ® is the M x M diagonal matrix with variance
of sampling noise at diagonal entries
. 2
©= dlag {SmI‘Pgn‘ }m:{l,...,M} ’

Let v, = [v1,...,Vy] be the a priori mean of the sample
Y, = (Y1, ..., Yn). In particular, if y; is a sample at fidelity
m, then v; = > " ;. The a priori covariance of y,, is
K + ©. In the training process with training dataset P,
the hyperparameters {/im, U, lm, $m }_; and {a,, 7]\,/{:_11
in the multi-fidelity GP can be learned by maximizing a log
marginal likelihood function —31 log (det (27 (K + @))) —

Ly —v,)" (K+©) " (y—v,). Such training can be
performed using the GP toolbox [30].
Due to the multi-fidelity structure described in (1) and (2),

the prior mean and covariance of f are

M M
Mo(m) = Z Hms k‘o(fﬂ,xl) = Z k‘m(.’JZ,L’C/).
m=1 m=1

When running EMTS with learned hyperparameters, it can
be shown that the posterior mean and covariance functions

of f after n measurements are
(@) = po(@) + K () (K +©) " (y —vy) 5)
kn (z,2') = ko (z,2') — K" (x) (K + ©) " k(2').

Note that the posterior variance o2(x) = k, (x,z) is a
measure of uncertainty that will be utilized to classify @x. It
should be noted that the measurements collected at different

fidelity levels are appropriately scaled in inference (5).

B. Multi-fidelity Sampling & Path Planning

For each epoch j, we seek to design an
efficient sampling tour through sampling locations
{(®n, 41, 2n,41)5 -+, (®njy 20,4, )} to ensure

max oy, () /max o, (z) < @,



where n; is the number of samples collected before the
beginning of the j-th epoch and the selection of uncertainty
reduction threshold « is discussed in Section III-C.

Notice that the posterior variance update in (5) depends
only on the location of the observations y,,, but not on the
realized value of y,,. Therefore, the sequence of sampling
location-fidelity tuples can be computed before physically
visiting the locations. Such deterministic evolution of the
variance has also been leveraged within the context of single-
fidelity GP planning to design efficient sampling tours [31].

1) Sampling Point Selection: The vehicle follows a greedy
sampling policy at each fidelity level, i.e., at each sampling
round the vehicle selects the most uncertain point as the next
sampling point

T, = argmax o,_1(x). (6)
xcD
In the information theoretic view [5], the greedy policy is
near optimal in terms of maximizing an appropriate measure
of uncertainty reduction.

2) Fidelity Selection: For each sampling point x,, a
fidelity level (or sampling altitude) needs to be assigned.
We let the vehicle start at fidelity level 1 and successively
visit all fidelity levels from the lowest to the highest. Since
sampling f™ is not able to reduce the uncertainty about
f introduced by the subsequent bias terms h™*+1, ... KM,
we define the inaccessible uncertainty at fidelity level m
as &, = Ziﬂim 11 v2. Accordingly, we define the acces-
sible uncertainty about f at fidelity level m by »r* =
maxgep 02 (x) — &y,. The assigned fidelity level to sample
point x,, is designed to change from fidelity m to m + 1
when

m 2 2 2
Tn S varllerl/lm'

Notice that before the vehicle begins to sample at fidelity
level m, r > vZ > o2 12,,,/I2,, where the second
inequality is due to the assumption that v,, > v,,,41 and
lyn > U1 This ensures that all fidelity levels are visited
from the lowest to the highest successively.

3) Path Planning: Since the order of sampling locations
does not influence the eventual posterior mean and vari-
ance, the path going through the sampling location can be
optimized by computing an approximate TSP tour using
packages, such as Concorde [32]. Such a tour-based sampling
policy allows for energy and time-efficient operation of the
vehicle. If all measurements within epoch j are collected
at the same fidelity level, the vehicle traverses the TSP
tour TSP(xy,;41,...,%n;,,) to collect measurements from
sampling points and update posterior distribution of f. Oth-
erwise, a TSP tour each is designed at every fidelity level.

C. Classification and Region Elimination

The classification and elimination of regions follows a
confidence-bound-based rule, which has been widely used
in pure exploration multi-armed bandit algorithms [33] and
robotic source seeking [34]. We extend these ideas to the
case of multi-fidelity GP setting considered in this paper.

Conditioned on P, the distribution of f(x) is Gaus-

sian with mean function p,(z) and variance o2(x). Let

(Lp(x,€),Up(x,€)) be the Bayesian confidence interval
containing f(ax) with probability greater than (1 — 2e).
Here, the lower confidence bound L, and upper confi-
dence bound U, are defined by L,(x,e) = pun(x) —
ce)op (x), Up(x, &) = pn(x) + c(e)oy, (x), with c(e) =

\/21In (1/(2¢)).

Given the desired maximum misclassification rate ¢, at
the end of epoch j, a location x is classified as rarget, if
Ly, (®,6/27) > th, and is added to Dy; while it is classified
as empty, if Uy, (¢,6/27) < th, and is added to the set
D.. Note that the confidence parameter ¢ = §/27 defining
the lower and upper bounds is decreased exponentially with
epochs, and we will show that it ensures a misclassification
rate smaller than 6. The locations in the set D, are removed
from sampling space D at the end of each epoch. EMTS is
terminated if maxgep 20y, () < A/c(5/27).

The selection of « depends on the balance between the
efficiency of TSP path planer and region elimination. TSP
path planer is more effective with smaller « since each
exploration tour includes more sample points. While region
elimination favors bigger a so that regions not likely to
contain targets are removed more frequently.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate EMTS using the Unmanned
Underwater Vehicle Simulator [35], which is a ROS package
designed for Gazebo robot simulation environment. We in-
tegrate it with YOLOv3 [29] for image classification and
Concorde solver [32] to compute TSP tours. We use 2
fidelity levels situated at 11m and 5m from the water floor,
respectively. Fig. 2 shows our simulation setup, where 3
victims are located at different locations on a 40m x 40m
water floor. At each sampling point, the vehicle take 20
images and YOLOv3 returns an average score about the
confidence level of the existence of victims in the view.

score: 0.942322

score: 0.762045

Gazebo+ROS YOLOV3 detection result YOLOV3 detection result

Fig. 2: Test Environment: An underwater vehicle is equipped with a
downward camera and a flash light to facilitate the searching task in dark
underwater environment. Middle figure and right figure are detection result
with YOLOV3 at a high fidelity level and a low fidelity level, respectively.

The first three subplots of Fig. 3 shows the classification
of regions before each epoch, the sampling points selected
by the greedy policy and the planned path. Classifications
of the environment are represented by 3 colors: red means
target exist, blue means no target, and green means uncertain.
The dark green points and lines are the planned sampling
locations and paths at the low fidelity level and red points
and lines are sampling locations and paths at the high fidelity
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Fig. 3: Performance of EMTS. (i) The green dots and lines are sampled
locations and the path traversed by the vehicle at the low fidelity level
and the red ones are for the high fidelity level. (ii) Classification results of
the environment are represented by 3 colors: red means target exist, blue
means no target, and green means uncertain. (iii) The vehicle switches to
high fidelity level at epoch 2.

level. At the beginning of epoch 1, all regions are classified as
uncertain. After each epoch, the region of targets is narrowed
down. The search task is terminated after three epochs.
Notice that the vehicle switches to the high fidelity level at
epoch 2. The tours at low and high fidelity levels are plotted
using two different colors. The vehicles do not sample in
blue regions since they have been classified as empty. In the
final result, the regions with target are successfully found. A
video of the simulation is available online'.

In Fig. 4a, we show the heat map of posterior variance for
the whole region. The regions classified as empty have larger
posterior variance since they have been eliminated from
sampling space. This shows that EMTS is able to put more
focus on areas likely to contain victims. The uncertainty
reduction, i.e. the decrease in maximum posterior variance,
for multi-fidelity greedy sampling and single-fidelity greedy
sampling, are compared in Fig. 4b. It shows that greedy
multi-fidelity sampling can reduce uncertainty much faster at
the beginning stage, which will enable EMTS to eliminate
unoccupied regions quickly, and hence, accelerate target
search.

V. ANALYSIS OF EMTS
In this section, we analyze accuracy and efficiency of
EMTS. Detailed proofs are presented in the extended version
of this paper [36].
A. Analysis of the classification algorithm

The Bayesian confidence interval classification rule is able
to provide the following accuracy guarantee about EMTS.

https://mediaspace.msu.edu/media/EMTS/1_phbul7ui
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Fig. 4: Uncertainty reduction results. (a) shows spatial nature of uncertainty
reduction with EMTS, i.e., the posterior variance is low only at areas
that likely contain a target. (b) shows the temporal nature of uncertainty
reduction by comparing the decreasing speed of posterior variance with
multi-fidelity greedy sampling and single fidelity greedy sampling.

Theorem 1 (Misclassification Rate): The EMTS algo-
rithm detects regions Dy C D with both false alarm and
miss-detection rate upper bounded by J.

B. Analysis of Detection Time

To analyze target search time, we first provide an upper
bound on the number of samples n(A, §) required by EMTS
to meet with the misclassification tolerance 9.

Lemma 2 (Sample complexity for EMTS): For a given
misclassification rate ¢, the number of samples satisfies

n(A,8) € O (dp(A,9) (lnp(A,6)*),

where p(A,0) = %2%111 (%l and d is the diameter of D.

Note this upper bound is similar to the sample complex-
ity [37] in a pure-exploration multi-armed bandit problem.
For kernels characterizing less correlations, e.g. Martén ker-
nels, more sampling rounds are expected.

The above sample complexity result considers only the
constant time required to collect the sample once the robot
is present at the location. The target search time includes
the sampling time as well as the travel time. Since EMTS
requires the vehicle to search from low fidelity level to high
fidelity level, the total number of altitude switches is no
greater than M — 1. Besides, there exist a constant number
of epochs before EMTS is terminated. As presented in [38],
for n points in [0, 1], the length of the shortest TSP Tour is
upper bounded by 0.984y/2n + 11. Therefore, the traveling
time belongs to O(d+/n(A,§)). Accordingly, we get the
following upper bound on target search time for EMTS.

Theorem 3 (Target search time for EMTS): For a given
misclassification tolerance ¢, the target search time satisfies

tHA,8) €O (d%(A, 5) (1nga(A,6))3) ,
This upper bound has a natural implication that the target
search time increases with the detection difficulty 1/A and
the desired classification accuracy 1 — J.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we extended the classical informative path
planning approach for single-fidelity GPs to multi-fidelity
GPs. This novel extension allowed for jointly planning for



sampling locations and associated fidelity-levels, and thus,
addressed the fidelity-coverage trade-off. We proposed and
analyzed the EMTS algorithm for multi-target search that
yields sampling points that the robot should visit and the
fidelity level with which the robot should collect the in-
formation at these points. We illustrated our algorithm in
an underwater victim search scenario using the Unmanned
Underwater Vehicle Simulator. We rigorously analyzed the
algorithm in terms of its accuracy in classifying the locations
in the environment as empty or occupied by a target, as well
as the time the robot takes to detect targets.

Future research includes the extension to cooperative
multi-robot search scenarios and implementation of the
proposed algorithm in our underwater multi-target search
testbed.
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