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Abstract— We consider a scenario in which an autonomous
vehicle equipped with a downward facing camera operates in a
3D environment and is tasked with searching for an unknown
number of stationary targets on the 2D floor of the environment.
The key challenge is to minimize the search time while ensuring
a high detection accuracy. We model the sensing field using
a multi-fidelity Gaussian process that systematically describes
the sensing information available at different altitudes from the
floor. Based on the sensing model, we design a novel algorithm
called Expedited Multi-Target Search (EMTS) that (i) addresses
the coverage-accuracy trade-off: sampling at locations farther
from the floor provides wider field of view but less accurate
measurements, (ii) computes an occupancy map of the floor
within a prescribed accuracy and quickly eliminates unoccupied
regions from the search space, and (iii) travels efficiently to
collect the required samples for target detection. We rigorously
analyze the algorithm and establish formal guarantees on the
target detection accuracy and the detection time. We illustrate
the algorithm using a simulated multi-target search scenario.

I. INTRODUCTION

Autonomous multi-target search requires an autonomous

agent to quickly and accurately locate multiple targets of

interest in an unknown and uncertain environment. Examples

include search and rescue missions, mineral exploration, and

tracking natural phenomena. A key challenge in a multi-

target search task is to balance several trade-offs including

explore-vs-exploit: detecting a target with high accuracy

versus finding new targets, and speed-vs-accuracy: quickly

versus accurately deciding on the presence of a target. The

latter includes fidelity-vs-coverage trade-off: sampling at

locations farther from the floor provides a wider field of

view but less accurate measurements.

In this paper, we design and analyze a multi-target search

algorithm that addresses these trade-offs. In particular, our

algorithm leverages multi-fidelity Gaussian processes to

capture the fidelity-coverage trade-off. Information-theoretic

techniques are employed to efficiently explore the environ-

ment, and Bayesian techniques are used to accurately identify

targets and construct an occupancy map.

Search and persistent monitoring problems have been stud-

ied extensively in the literature. Informative path planning

is subclass of these problems in which robot trajectories

are designed to maximize the information collected along

the way-points while ensuring that the distance traveled is

within a prescribed budget. Such informative path planning

problems are studied in [1–5].
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Gaussian processes (GPs) are widely used models for

capturing spatiotemporal sensing fields in robotics [6, 7].

While GP-based approaches have been used extensively,

most of them rely on single-fidelity measurements, i.e., the

sensing model does not consider different altitudes at which

the measurements can be collected. GP models have also

been used extensively to plan informative trajectories for the

robots [5, 8–11]. However, most of these works focus on

maximizing the reduction in uncertainty of the estimates.

In the context of target search, the trajectory should be

designed to balance the explore-exploit tension—the robot

should spend more time at target locations, while learning

target locations. There have been some efforts to address such

explore-exploit tension within the context of informative path

planning [11–22].

Hollinger et al. [17] study an inspection problem in which

the robot needs to classify the underwater surface. They

use a combination of GP-implicit surface modeling and

sequential hypothesis testing to classify surfaces. Meera et

al. [21] study informative path planning for a target search

problem. They model target occupancy as a GP and design a

heuristic algorithm for target detection that handles trade-offs

among information gain, field coverage, sensor performance,

and collision avoidance. They illustrate the performance of

their algorithm using numerical simulations. Sung et al. [22]

study the hot-spot identification problem in an environment

within the framework of GP multiarmed bandits [23, 24].

The multi-target search can be viewed as a hot-spot iden-

tification problem in which, instead of global maximum of

the field, all locations with value greater than a threshold

need to be identified. Such problems have been studied in

the multiarmed bandit literature [25, 26]; however, we are not

aware of any such studies in the GP setting. Furthermore, all

these works focus on single fidelity measurements, while we

focus on multiple fidelities of measurements induced by the

altitudes relative to the 2D floor at which the measurements

are collected.

In this paper, we design an algorithm for expedited search

of unknown number of targets located at the 2D floor of

an unknown and uncertain 3D environment. We use autore-

gressive multi-fidelity GPs [27, 28] to model the likelihood

of the presence of a target at a location as computed by

a computer vision algorithm using the sample collected at

that location at a given altitude. Here, fidelity corresponds

to the altitude at which the samples are collected. A high

altitude (low fidelity) sample provide more global but less

accurate information compared with a low altitude (high

fidelity) sample. The low fidelity information can be used



to quickly find easy-to-detect targets and this enables the

robot to focus on high-fidelity information, possibly only in

small regions in the environment and consequently, expedite

the search. The proposed EMTS algorithm comprises three

main modules (i) a sampling and fidelity planner, (ii) a

classification and region-elimination algorithm to construct

occupancy map of the floor and eliminate unoccupied regions

from search space, and (iii) a path planner that allows the

vehicle to travel efficiently to collect required samples. The

major contributions of this work are:

• We extend the classical informative path planning ap-

proach for single-fidelity GPs to multi-fidelity GPs.

This novel extension allows for jointly planning for

sampling locations and associated fidelity-levels, and

thus, addresses the fidelity-coverage trade-off.

• We augment the sampling and fidelity planner with

a Bayesian classification and region-elimination algo-

rithm that ensures the targets are identified with desired

accuracy, as well as a Traveling Sales Person (TSP) path

planner that enables travel-efficient sampling.

• We rigorously analyze the interaction of above com-

ponents and establish formal guarantees of the target

detection accuracy and detection time.

The remainder of the paper is organized as the following.

We present a mathematical formulation of our problem in

Section II. In Section III, we present the EMTS algorithm

and illustrate it using an underwater victim search scenario

in Section IV. We analyze the performance of EMTS in

Section V and conclude this work in Section VI.

II. PROBLEM DESCRIPTION

We consider an autonomous vehicle that moves in a 3D

environment, e.g., an aerial or an underwater vehicle. We

assume that the vehicle either moves with unit speed or

hovers at a location. The vehicle is tasked with searching

for multiple targets on the 2D floor of the environment.

Let D ⊂ R
2 be the area of the floor in which the targets

may be present. The vehicle is equipped with a fixed camera

that points towards the floor. The vehicle travels across the

environment and collects images/videos of the floor (sam-

ples) from different sampling points. These sampling points

may be located at different altitudes relative to the floor of

the environment. We assume that no sample is collected

during the movement between sampling points to avoid

misleading low-quality sensing information. The collected

samples are processed with a computer vision algorithm that

outputs a score, which corresponds to the likelihood of a

target being present, for each frame. An example of such

computer vision algorithm is the state of art deep neural

network YOLOv3 [29]. The score will be used to update

the estimate of the sensing output, i.e., the estimated score

function f : D → [0, 1] which will be used to determine

the location of the targets. The stochastic model for f is

introduced below.

A. Multi-fidelity Sensing Model

GPs are widely used models for spatially distributed

sensing outputs. In [21], a GP is used to model the target

detection output of a computer vision algorithm. While target

presence is a binary event, the computer vision algorithms

such as YOLOv3 yield a score which is a function of

the saliency and location of the target in the image. GPs

are appropriate models for such score functions. So far

in the literature, GPs have been used in the context of

single-fidelity measurements. To characterized the inherent

fidelity-coverage trade-off in sensing the floor scene by an

autonomous vehicle operating in 3D space, we employ a

novel multi-fidelity GP model. The two key physical sensing

characteristics the model seeks to capture are: (i) there

is some information that can only be accessed at lower

altitudes, (ii) the sensing outputs are more spatially correlated

at higher altitudes, since the fields of view at neighboring

locations have higher overlaps in their field of views.

We assume that the vehicle can collect samples of the

floor from M possible heights from the floor z1 > z2 >
· · · > zM . We refer to these heights as the fidelity level

of the measurement, with M (resp. 1) corresponding to the

highest (resp. lowest) level of fidelity. Let the score function

gm : D → [0, 1] be defined by the output of the computer

vision algorithm for an ideal noise-free image collected at

fidelity level m ∈ {1, . . . ,M} with the field of view of

the camera centered at x ∈ D. We assume that the score

functions for a location x obtained from different altitudes

(fidelity levels) are related to each other in an autoregressive

manner as follows

gm(x) = am−1g
m−1(x) + bm(x), (1)

where am−1 is a scale parameter and bm is the bias

term that captures the information that can be only be

accessed at fidelities levels greater than m. Let fm(x) =
(

∏M−1
i=m ai

)

gm(x) and hm(x) =
(

∏M−1
i=m ai

)

bm(x).

Then, equation (1) reduces to

fm(x) = fm−1(x) + hm(x), (2)

where f0(x) = 0 and f(x) := fM (x) is the score

function at the highest fidelity level which we treat as ground

truth. We model the influence of systemic errors in sample

collection and environmental uncertainty on the output of

the computer vision algorithm for an input at fidelity level

m through an additive zero mean Gaussian random variable

εm with variance s2m, i.e., εm ∼ N(0, s2m). Consequently, the

(scaled) score obtained by collecting a sample at location x

is a random variable y = fm(x) + εm.

We assume that each hm is a realization of a Gaussian

process with a constant mean µm and a squared exponential

kernel function km(x,x′) expressed as

km(x,x′) = v2m exp



−

∥

∥x− x′
∥

∥

2

2l2m



 , (3)

where lm is the length scale parameter, and vm is the variance

parameter that satisfies v1 > v2 > · · · > vM . This kernel

function describes the spatial correlation of score function at

neighboring locations at each fidelity level. Since the fields



of view are more overlapped at lower fidelity levels, it results

in l1 > l2 > · · · > lM .

We make the following assumptions about the highest-

fidelity sample. If the target is not in the field of view at

(x, zM ), the mean score of the computer vision algorithm

f(x) is smaller than a threshold th. If a target is at the center

of image collected at (x, zM ), f(x) ≥ th + ∆, for some

constant ∆ > 0. Here, 1/∆ can be viewed as a measure

of detection difficulty that depends both on the quality of

computer vision algorithm and the environment complexity.

B. Objective of the Search Algorithm

Our objective is to design an algorithm for sequentially

determining sampling points that lead to expedited detection

and localization of targets within desired misclassification

rate δ ∈ (0, 1/2). In particular, the algorithm should esti-

mate the region containing targets Dt ⊆ D such that (i)

∀x ∈ Dt : P
(

f(x) < th
)

≤ δ and (ii) ∀x ∈ D \ Dt :
P
(

f(x) ≥ th+∆
)

≤ δ. The requirements about both false

alarm and mis-detection rate are set by above two conditions.

Let t(∆, δ) be the total (traveling and sampling) time to

finish the search task with misclassification rate smaller than

δ. Then, the objective of the algorithm is to determine the

sequence of sampling points that minimize t(∆, δ).

III. EXPEDITED MULTI-TARGET SEARCH ALGORITHM

The proposed EMTS algorithm is illustrated in Fig. 1.

It operates using an epoch-based structure. In each epoch,

sampling and fidelity planner computes a set of sampling

points and the path planner optimizes a TSP tour going

through those points. The vehicle follows the TSP tour to

collect measurements at sampling points and the inference

algorithm uses these measurements to update the estimate the

score function f . Then, the Bayesian classification uses these

estimates to compute an occupancy map of the floor and the

region elimination module removes regions with no target

with sufficiently high probability from the search space. In

the following, we describe each of these modules in detail.

Fig. 1: Architecture of EMTS

A. Inference Algorithm for Multi-fidelity GPs

The Bayesian inference method for multi-fidelity GPs

discussed in this section is an extension of the inference

procedure in [27] for the case of no sampling noise. Let

the set of sampling location-score-fidelity tuples after n
observations be Pn = {(xi, yi,mi) | i ∈ {1, . . . , n}}. For

each fidelity m, define a subset of Pn,

Pm
n = {(xi, yi,mi) ∈ Pn | mi = m},

and |Pm
n | denote the cardinality of Pm

n . Recall that ki(x,x′)
is the kernel function for the GP hi at i-th fidelity level.

Let Ki
0

(

Pm
n , Pm′

n

)

be a |Pm
n | × |Pm′

n | matrix with entries

ki(x,x′), x ∈ Pm
n , x′ ∈ Pm′

n and Ki
0(P

m
n ,x) be a |Pm

n |
dimensional vector with entries ki0(x

′,x), x′ ∈ Pm
n . Let K

be a M ×M block matrix with
(

m,m′
)

block submatrix

Km,m′ =

min(m,m′)
∑

i=1

Ki

(

P (m)
n , P (m′)

n

)

.

Let k(x) be a |Pn| dimensional vector constructed by

concatenating M sub-vectors k(x) =
(

k1(x), . . . ,kM (x)
)

,

where

km(x) =

m
∑

i=1

Ki(P
m
n ,x), ∀m ∈ {1, . . . ,M}. (4)

Denoted by Θ is the M ×M diagonal matrix with variance

of sampling noise at diagonal entries

Θ = diag
{

s2mI |Pm
n |

}

m={1,...,M}
.

Let νn = [ν1, . . . , νn] be the a priori mean of the sample

yn = (y1, . . . , yn). In particular, if yj is a sample at fidelity

m, then νj =
∑m

i=1 µi. The a priori covariance of yn is

K + Θ. In the training process with training dataset Pn,

the hyperparameters {µm, vm, lm, sm}Mm=1 and {am}M−1
m=1

in the multi-fidelity GP can be learned by maximizing a log

marginal likelihood function − 1
2 log

(

det
(

2π (K +Θ)
)

)

−
1
2 (y − νn)

T
(K +Θ)

−1
(y − νn). Such training can be

performed using the GP toolbox [30].

Due to the multi-fidelity structure described in (1) and (2),

the prior mean and covariance of f are

µ0(x) =

M
∑

m=1

µm, k0(x,x
′) =

M
∑

m=1

km(x,x′).

When running EMTS with learned hyperparameters, it can

be shown that the posterior mean and covariance functions

of f after n measurements are

µn(x) = µ0(x) + kT (x) (K +Θ)
−1

(y − νn)

kn
(

x,x′
)

= k0
(

x,x′
)

− kT (x) (K +Θ)
−1

k(x′).
(5)

Note that the posterior variance σ2
n(x) = kn (x,x) is a

measure of uncertainty that will be utilized to classify x. It

should be noted that the measurements collected at different

fidelity levels are appropriately scaled in inference (5).

B. Multi-fidelity Sampling & Path Planning

For each epoch j, we seek to design an

efficient sampling tour through sampling locations

{(xnj+1, znj+1), . . . , (xnj+1
, znj+1

)} to ensure

max
x∈D

σnj+1
(x)

/

max
x∈D

σnj
(x) ≤ α,







sampling locations and associated fidelity-levels, and thus,

addressed the fidelity-coverage trade-off. We proposed and

analyzed the EMTS algorithm for multi-target search that

yields sampling points that the robot should visit and the

fidelity level with which the robot should collect the in-

formation at these points. We illustrated our algorithm in

an underwater victim search scenario using the Unmanned

Underwater Vehicle Simulator. We rigorously analyzed the

algorithm in terms of its accuracy in classifying the locations

in the environment as empty or occupied by a target, as well

as the time the robot takes to detect targets.

Future research includes the extension to cooperative

multi-robot search scenarios and implementation of the

proposed algorithm in our underwater multi-target search

testbed.
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[35] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “UUV simulator: A Gazebo-based package for
underwater intervention and multi-robot simulation,” in MTS/IEEE

Oceans, Monterey, CA, 2016, pp. 1–8.
[36] L. Wei, X. Tan, and V. Srivastava, “Expedited multi-target search with

guaranteed performance via multi-fidelity Gaussian processes,” arXiv

preprint arXiv:2005.08434, 2020.
[37] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration

in the multi-armed bandit problem,” Journal of Machine Learning

Research, vol. 5, no. Jun, pp. 623–648, 2004.
[38] H. J. Karloff, “How long can a Euclidean traveling salesman tour be?”

SIAM Journal on Discrete Mathematics, vol. 2, no. 1, pp. 91–99, 1989.


