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Abstract. We study the category whose objects are trees (with or without roots) and whose

morphisms are contractions. We show that the corresponding contravariant module categories

are locally Noetherian, and we study two natural families of modules over these categories. The

�rst takes a tree to a graded piece of the homology of its unordered con�guration space, or to

the homology of the unordered con�guration space of its cone. The second takes a tree to a

graded piece of the intersection homology of the reciprocal plane of its cone, which is a vector

space whose dimension is given by a Kazhdan-Lusztig coe�cient. We prove �nite generation

results for each of these modules, which allow us to draw conclusions about the growth of Betti

numbers of con�guration spaces and of Kazhdan-Lusztig coe�cients of graphical matroids.

1 Introduction

Our aim in this paper is to study two di�erent ways to assign an abelian group or a vector space to

a graph, both of which are contravariantly functorial with respect to contractions. The �rst assigns

to a graph G the ith homology group of the unordered con�guration space of n points on G. It is

not obvious that a contraction of graphs induces a map on homology groups of con�guration spaces;

this follows from the fact that this homology group can be computed using the reduced �wi¡tkowski

complex [�01, ADCK], which is itself functorial with respect to contractions. The second assigns

to a graph G the 2ith intersection homology group of a certain algebraic variety XG called the

reciprocal plane of G. A contraction of graphs induces an inclusion of reciprocal planes, which in

turn induces a map on intersection cohomology.1

Let G be the category whose objects are graphs and whose morphisms are contractions (see

Section 2.2 for a more precise de�nition). Both of the aforementioned procedures of assigning an

abelian group or vector space to a graph may be regarded as functors from the opposite category

Gop to the category of �nite dimensional modules over a Noetherian commutative ring k. (For the

homology of con�guration spaces we will usually want to take k to be Z or Q, whereas for the

intersection homology of the reciprocal plane we will take k to be C.) Such functors are called

Gop-modules, and the category that they form is called Repk(Gop). Unfortunately, this category

is not well behaved. In particular, it is not locally Noetherian: there is a natural notion of �nite

generation for a Gop-module, and a submodule of a �nitely generated module need not itself be

�nitely generated. Since both of our modules are computed by passing to the homology of some

complex of modules, this means that we have no hope of proving any �nite generation results.

We deal with this di�culty by working with the subcategory T ⊂ G consisting of trees, which

has much nicer properties. Homology groups of con�guration spaces of trees are already relatively
1The induced map on varieties is not quite canonical, but it is canonical enough that the induced map on inter-

section homology does not depend on any choices.

1



well understood [Far06, MS17, Ram18], and Kazhdan-Lusztig coe�cients of trees are trivial in

positive degree. However, we can obtain much more interesting results by looking at the cone over

a tree, which is obtained by adding a single new vertex and connecting it to all other vertices.

For example, the cone over a path is a fan (see the �gure in Example 4.4), and the cone over the

complete bipartite graph Km,1 is the thagomizer graph [Ged17]. A contraction of trees more or less

induces a contraction of cones of trees (see Remark 1.7), and we therefore obtain modules over our

tree category.

Remark 1.1. This operation of taking the cone over a graph is very natural from the point of view

of matroid theory, since the graph may be recovered from the matroid associated with its cone (two

vertices are connected by an edge if and only if the corresponding three edges of the cone form a

cycle), but not from the matroid associated with the graph itself.

1.1 Categorical results

We now state our main results about tree categories, each of which is proved in Section 2. We

have already introduced the category T of trees whose morphisms are contractions. Let RT be the

category of rooted trees, which means that we mark one vertex and require our contractions to take

the root to the root. For any integer l ≥ 2, let Tl ⊂ T be the full subcategory consisting of trees

with at most l leaves. The following result is proved in Section 2.2.

Theorem 1.2. Fix a commutative Noetherian ring k. The categories Repk(T op), Repk(RT op),

and Repk(T op
l ) are all locally Noetherian.

One of our main motivations is to study the growth of the dimensions of various modules in

these categories. There is a notion of degree of generation, and we call a module d-small if it is

isomorphic to a subquotient of a module that is generated in degree at most d, and d-smallish if it

admits a �ltration whose associated graded is d-small. Theorem 1.2 easily implies that d-smallish

modules are themselves �nitely generated (Proposition 2.14), though not necessarily in degrees ≤ d.
The next result is proved in Section 2.5.

Theorem 1.3. Suppose that k is a �eld and M is a d-smallish k-linear module over T op, RT op, or

T op
l . There exists a polynomial fM (t) with the property that, for any tree T , dimkM(T ) ≤ fM (|T |),

where |T | is the number of edges of T .

It is impossible to ask dimkM(T ) to be equal to a polynomial in |T |, because this dimension

typically depends on more than just the number of edges. However, there are certain operations

that we can perform on a tree that cause the dimension of a smallish module to grow polynomially.

We will state the next result in a very informal way, and ask the reader to consult Sections 2.3-2.5

for more precise formulations. The relevant theorems are Theorems 2.15 and 2.17.

Theorem 1.4. Suppose that k is a �eld and M is a d-smallish object of Repk(T op) or Repk(RT op).

Fix a tree T , and build new trees from T via either subdivision (breaking �nitely many edges up into
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paths) or sprouting (adding new leaves at �nitely many vertices). The dimension of M evaluated at

one of these new trees is eventually equal to a polynomial of degree at most d in the new parameters.

If M is a d-smallish object of Repk(T op
l ), the same result holds for subdivision.

1.2 Homology of con�guration spaces

Graph con�guration spaces have been extensively studied in settings both theoretical [ADCK, Abr,

KP12] and applied [Far08]. The idea of �xing the number of points and varying the underlying

graph has been explored in a number of recent works [RW, Ram, Lüt]. We focus on trees and their

cones, and obtain the following results.

Theorem 1.5. Fix natural numbers n and i. The T op-module

T 7→ Hi

(
UConfn(T );Z

)
is (n+ i)-small. In particular, it is �nitely generated.

Theorem 1.6. Fix natural numbers n and i. The RT op-module

(T, v) 7→ Hi

(
UConfn(cone(T ));Z

)
is (n+ i)-small. In particular, it is �nitely generated.

Remark 1.7. It may seem funny that the second module in Theorem 1.6 is a module over RT op

rather than T op, since the con�guration space itself is not sensitive to the choice of root. The issue

is that a contraction of trees does not quite induce a contraction of cones, and we use the choice of

root to de�ne the maps in a natural way. This �x is not needed in the setting of the next application

(see Remark 4.1), so we will again be able to work with unrooted trees.

Remark 1.8. In this work we only consider unordered con�gurations of points. This is done mainly

because the tools we use largely derive from the paper [ADCK], and this is the setting in which

they work. It seems very likely that one can obtain analogues of Theorems 1.5 and 1.6 for ordered

con�guration spaces. To accomplish this, the �rst step would be to reprove certain technical results

from [ADCK] in the setting of ordered con�guration spaces.

1.3 Kazhdan-Lusztig coe�cients

Kazhdan-Lusztig polynomials of matroids were introduced in [EPW16], and are in many ways

analogous to the Kazhdan-Lusztig polynomials that appear in Lie theory [Pro18, Section 2.5]. If

a matroid comes from a graph (or more generally from a hyperplane arrangement), the coe�cient

of ti in its Kazhdan-Lusztig polynomial is equal to the dimension of the 2ith intersection homology

group of the reciprocal plane XG [EPW16].

Kazhdan-Lusztig coe�cients of graphical matroids have been the subject of many recent pa-

pers [PWY16, Ged17, PY17, LXY], with only a small number of special families being explicitly
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understood. An interesting special case is the thagomizer graph, which is the cone over the tree

Km,1. The Kazhdan-Lusztig coe�cients of this graph grow faster than any polynomial [Ged17], so

Theorem 1.3 tells us that the corresponding module over T op cannot be �nitely generated. The

problem goes away, however, if we restrict our attention to trees with a bounded number of leaves.

The following theorem is proved in Section 4.5.

Theorem 1.9. Fix natural numbers l and i. The C-linear T op
l -module

T 7→ IH2i

(
Xcone(T )

)
is (2i+ l − 2)-smallish. In particular, it is �nitely generated.

1.4 Future work

In a future paper, we will prove analogous results for the full subcategory of G consisting of con-

nected graphs with �xed Euler characteristic. Despite the fact that trees form a special case (Euler

characteristic equal to 1), it is a case made richer by the notion of rooted trees, which allows us to

work with cones (see Remark 1.7).

Acknowledgments: NP is supported by NSF grant DMS-1565036. ER is supported by NSF grant

DMS-1704811. The second author would also like to send thanks to Daniel Lütgehetmann for

various discussions related to Theorem 1.5 prior to this work.

2 Tree categories

The goal of this section is to give precise de�nitions of the tree categories T , RT , and Tl; to
prove that their contravariant module categories are locally Noetherian; and to study the dimension

growth of �nitely generated modules.

2.1 Gröbner categories and Noetherianity

Fix a Noetherian commutative ring k. Given an essentially small category C, we will be interested
in the Abelian category Repk(C) of covariant functors from C to the category of k-modules. Such

a functor will be called a C-module. If x is an object of C, we de�ne the principal projective
C-module Px ∈ Repk(C) by letting Px(y) be the free k-module with basis HomC(x, y) and de�ning

morphisms by composition. An arbitrary C-module M is called �nitely generated if it admits a

surjection from a direct sum of �nitely many principal projectives. The category Repk(C) is called
locally Noetherian if every submodule of a �nitely generated C-module is itself �nitely generated.

Sam and Snowden introduce the notions of Gröbner categories and quasi-Gröbner categories as

a means of proving that the corresponding module categories are locally Noetherian [SS17]. Let C
be an essentially small category. For any object x of C, let Cx denote the set of all morphisms in C
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with domain x. This set is equipped with a partial order by putting

f ≤ g ⇐⇒ g = h ◦ f for some morphism h.

The category C is said to have property (G2) if, for all objects x, the poset Cx is Noetherian,

which means that all descending chains stabilize and there are no in�nite anti-chains. The category

C is said to have property (G1) if, for all objects x, there exists some linear order 4 on Cx such

that, for all monomials f, g ∈ Cx with the same target y and all morphisms h ∈ Cy,

f 4 g =⇒ h ◦ f 4 h ◦ g.

The category C is Gröbner if it has properties (G1) and (G2) and objects of C have no nontrivial

endomorphisms.

Let C and C′ be essentially small categories. A functor Φ : C → C′ is said to have property

(F) if, given any object x of C′, there exist �nitely many objects y1, . . . , yn of C and morphisms

fi : x → Φ(yi) in C′ such that for any object y of C and any morphism f : x → Φ(y) in C′, there
exists a morphism g : yi → y in C such that f = Φ(g)◦fi. An essentially small category C′ is quasi-
Gröbner if there exists a Gröbner category C and an essentially surjective functor Φ : C → C′ with
property (F).

Remark 2.1. It is easy to see that property (F) is closed under composition [SS17, Proposition

3.2.6]. Thus, if C is quasi-Gröbner and Φ : C → C′ has property (F), then C′ is also quasi-Gröbner.

The motivation for these de�nitions comes from the following two theorems, both of which of

fundamental importance in our work.

Theorem 2.2. [SS17, Proposition 3.2.3] If Φ : C → C′ has property (F) andM is a �nitely generated

C′-module, then Φ∗M is a �nitely generated C-module.

Theorem 2.3. [SS17, Theorem 1.1.3] If C is quasi-Gröbner, then the module category Repk(C) is

locally Noetherian.

2.2 Trees, rooted and otherwise

A graph is a �nite CW complex of dimension at most 1. The 0-cells are called vertices and the

1-cells are called edges. If f : G→ G′ is a map of CW complexes, we say that f is very cellular if

it takes every vertex to a vertex and every edge to either a vertex or an edge. An edge that maps to

a vertex will be called a contracted edge. If G and G′ are graphs, we de�ne a graph morphism

from G to G′ to be an equivalence class of very cellular maps, where two very cellular maps are

equivalent if and only if they are homotopic through very cellular maps.2 We note that a graph

morphism ϕ : G → G′ induces a well de�ned map on vertex sets, and it also makes sense to talk

2If we are content to work with graphs without loops, then we could equivalently de�ne a graph to be a simplicial

complex of dimension at most 1 and a graph morphism to be a simplicial map. We will not care about loops in this

paper, but they will be necessary in the sequel paper, so we are giving this more general de�nition here.
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about the set of edges that are contracted by ϕ. We say that a graph morphism is a contraction

if it may be represented by a very cellular map that is a surjective homotopy equivalence with

connected �bers.

A tree is a graph that admits a contraction to a point. Equivalently, it is a nonempty connected

graph with no cycles. If T and T ′ are trees, a contraction from T to T ′ is uniquely determined by

the induced map on vertices, which can be any map with the property that the preimage of any

vertex in T ′ is equal to the set of vertices of a subtree of T . A rooted tree is a tree along with a

choice of vertex. Let T be the category of trees with contractions, and let RT be the category of

rooted trees with contractions that preserve the root. We have a forgetful functor Φ : RT → T .
Any rooted tree has a natural partial order on its vertex set, where the root is maximal, and

more generally v ≤ w if and only if the unique path from v to the root passes through w. Barter

[Bar] studies the category T whose objects are rooted trees and whose morphisms are pointed order

embeddings of vertex sets.

Proposition 2.4. The category RT op is equivalent to T.

Proof. Let (T, v) and (T ′, v′) be rooted trees. Given a contraction ϕ : (T, v) → (T ′, v′) in RT ,
we construct a morphism ϕ∗ : (T ′, v′) → (T, v) in T by sending each vertex of T ′ to the maximal

vertex in its preimage. Conversely, given a morphism ψ : (T ′, v′) → (T, v) in T, we construct a

contraction ψ∗ : (T, v)→ (T ′, v′) in RT that sends each vertex w of T to the minimal vertex of T ′

whose image under ψ lies weakly above w. It is easy to see that ϕ∗∗ = ϕ and ψ∗∗ = ψ, thus these

two constructions are mutually inverse.

Example 2.5. The following illustration depicts a morphism in the category RT alongside the

corresponding morphism in the category T. The fat vertices represent the roots.

Corollary 2.6. The categories RT op and T op are both quasi-Gröbner.

Proof. Barter proves that T is quasi-Gröbner [Bar, Theorem 5], thus so is RT op. The forgetful

functor Φop : RT op → T op is surjective on both objects and morphisms, and therefore has property

(F). It follows from Remark 2.1 that T op is also quasi-Gröbner.

Proof of Theorem 1.2. The fact that the categories Repk(RT op) and Repk(T op) are locally Noethe-

rian follows from Theorem 2.3 Corollary 2.6. The category Repk(T op
l ) can be identi�ed with the full

subcategory of Repk(T op) consisting of modules that evaluate to zero on any tree with more than
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l leaves, and a module in Repk(T op
l ) is �nitely generated over T op

l if and only if it is �nitely gener-

ated over T op. Thus the local Noetherian property for Repk(T op
l ) follows from the local Noetherian

property for Repk(T op).

Remark 2.7. One can also prove that Repk(T op
l ) is locally Noetherian by showing the category

T op
l is quasi-Gröbner; this would involve mimicking Barter's argument in the setting of trees with

at most l leaves.

2.3 Subdivision

Fix a tree T , a natural number r, and an ordered r-tuple e = (e1, . . . , er) of distinct directed edges of

T . For any ordered r-tuple m = (m1, . . . ,mr) of natural numbers, let T (e,m) be the tree obtained

from T by subdividing each edge ei into mi edges. The number mi is allowed to be zero, and we

adopt the convention that subdividing ei into 0 edges means contracting ei. For each i, the tree

T (e,m) has a directed path of length mi where the directed edge ei used to be, and we label the

vertices of that path v0i , . . . , v
mi
i .

Let OI be the category whose objects are linearly ordered �nite sets and whose morphisms are

ordered inclusions. Every object of OI is isomorphic via a unique isomorphism to the �nite set [m]

for some m ∈ N. For any m ∈ Nr, let [m] denote the corresponding object of the product category

OI×r.

Our goal in this section is to de�ne a subdivision functor ΦT,e : OI×r → T op and prove

that ΦT,e has property (F). We de�ne our functor on objects by putting ΦT,e([m]) := T (e,m). Let

f = (f1, . . . , fr) be a morphism in OI×r from [m] to [n]. We de�ne the corresponding contraction

ΦT,e(f) : T (e, n)→ T (e,m)

by sending vti to v
s
i , where s is the maximal element of the set {0}∪{j | fi(j) ≤ t} ⊂ {0, 1, . . . ,mi}.

Example 2.8. If T consists of a single edge and r = 1, then the essential image of ΦT,e is equal

to the path category T op
2 . On the other hand, OI may be identi�ed with the full subcategory of

T consisting of rooted paths with the root at an endpoint, where the ordered set [m] goes to the

standard path on vertex set {0, . . . ,m} with root 0. (It is a regretable convention that the root is

the maximal element of the vertex set of a rooted tree, so this identi�cation reverses the order on

[m].) The functor ΦT,e can be identi�ed with the composition of the equivalence from Proposition

2.4 (restricted to paths) with the functor that forgets the root.

For any n ∈ Nr, let |n| :=
∑
ni. Recall that for any tree R, we have de�ned |R| to be the

number of edges of R. We say that a contraction ϕ : T (e, n) → R factors nontrivially if there

exists a non-identity morphism f : [m]→ [n] in OI×r and a contraction ψ : T (e,m)→ R such that

ϕ = ψ ◦ ΦT,e(f).

Proposition 2.9. The subdivision functor ΦT,e : OI×r → T op has property (F).
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Proof. Property (F) says exactly that, for any tree R, the set of contractions from some T (e,m) to

R that do not factor nontrivially is �nite. Let ϕ : T (e,m)→ R be given. We have

|T (e,m)| = |T |+ |m| − r,

so ϕ must contract |T |+ |m| − r − |R| edges. If |m| is su�ciently large, then at least one of those

edges must be one of the subdivided edges. We may then factor ϕ nontrivially by �rst contracting

that edge.

This tells us that, if we are looking for contractions from some T (e,m) to R that do not factor

nontrivially, we only need to consider �nitely many r-tuples m. The proposition then follows from

the fact that all Hom sets in T are �nite.

Remark 2.10. It will be convenient to record a few variants of Proposition 2.9 in which the category

T op is replaced by other closely related tree categories. For example, if T is rooted, then we get

a functor from OI×r to RT op, which also has property (F). If T has at most l leaves, then we get

a functor from OI×r to T op
l , and this functor also has property (F). Both of these statements are

proved in exactly the same way as Proposition 2.9.

2.4 Sprouting

Fix a tree T , a natural number r, and an ordered r-tuple v := (v1, . . . , vr) of distinct vertices of T .

For any ordered r-tuplem = (m1, . . . ,mr) of natural numbers, let T (v,m) be the tree obtained from

T by attaching mi new edges to the vertex vi, each of which has a new leaf as its other endpoint.

We will label the new leaves connected to the vertex vi by the symbols v1i , . . . , v
mi
i .

Our goal in this section is to de�ne a sprouting functor ΨT,v : OI×r → T op and prove that

ΨT,v has property (F). We de�ne our functor on objects by putting ΨT,e([m]) := T (v,m). Let

f = (f1, . . . , fr) be a morphism in OI×r from [m] to [n]. We de�ne the corresponding contraction

ΨT,v(f) : T (v, n)→ T (v,m)

by �xing all of the vertices of T , sending vti to v
s
i if fi(s) = t, and sending vti to vi of t is not in the

image of fi.

Example 2.11. If T consists of a single vertex and r = 1, then the essential image of ΨT,v is equal

to the category consisting of the graphs Km,1 with one central vertex connected to m satellites.

As in Section 2.3, we say that a contraction ϕ : T (v, n) → R factors nontrivially if there

exists a non-identity morphism f : [m]→ [n] in OI×r and a contraction ψ : T (v,m)→ R such that

ϕ = ψ ◦ΨT,v(f).

Proposition 2.12. The sprouting functor ΦT,v : OI×r → T op has property (F).

Proof. The philosophy of the proof is nearly identical to that of Proposition 2.9. Property (F) says

exactly that, for any tree R, the set of contractions from some T (v,m) to R that do not factor
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nontrivially is �nite. Let ψ : T (v,m)→ R be given. We have

|T (v,m)| = |T |+ |m|,

so ψ must contract |T |+ |m| − |R| edges. If |m| is su�ciently large, then at least one of those edges

must be one of the newly sprouted edges. We may then factor ψ nontrivially by �rst contracting

that edge.

This tells us that, if we are looking for contractions from some T (e,m) to R that do not factor

nontrivially, we only need to consider �nitely many r-tuples m. The proposition then follows from

the fact that all Hom sets in T are �nite.

Remark 2.13. As in the case of subdivisons (Remark 2.10), we may de�ne an analogous functor

valued in RT op, and it will still have property (F). In contrast with Remark 2.10, we may not de�ne

an analogous functor valued in any bounded leaf category T op
l , since the operation of sprouting yields

trees with arbitrary numbers of leaves.

2.5 Generation degree, smallness, and dimension growth

We say that a moduleM in Repk(T op) is generated in degrees ≤ d if there exist trees T1, . . . , Tr,

each with at most d edges, such that M is isomorphic to a quotient of ⊕r
i=1PTi . Equivalently, M is

generated in degrees ≤ d if, for every tree T with more than d edges,M(T ) is spanned by the images

of ϕ∗ for various proper contractions ϕ : T → T ′. We say that M is d-small if it is isomorphic to a

subquotient of a module that is generated in degrees ≤ d, and d-smallish if it admits a �ltration

whose associated graded is d-small. We make similar de�nitions for modules in Repk(RT op) or

Repk(T op
l ).

Proposition 2.14. If M is d-smallish for some d, then M is �nitely generated.

Proof. Choose a �ltration ofM such that the associated graded grM is d-small. Theorem 1.2 implies

that grM is �nitely generated. This means that there is a �nite collection of trees T1, . . . , Tr of

trees, along with elements vi ∈ grM(Ti), such that, for any tree T , the natural map

r⊕
i=1

⊕
ϕ:T→Ti

k · ei,ϕ → grM(T )

taking ei,ϕ to ϕ∗vi is surjective. For each i, choose an arbitrary lift ṽi ∈ M(Ti) of vi. Since

surjectivity is an open condition, the nautral map

r⊕
i=1

⊕
ϕ:T→Ti

k · ei,ϕ →M(T )

taking ei,ϕ to ϕ∗ṽi is also surjective, which means that M is �nitely generated.
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Proof of Theorem 1.3. We may immediately reduce to the case where M is the principal projective

PR for some tree R with d edges. For any T , a contraction from R to T is determined, up to

automorphisms of R, by a choice of |T | − d edges of T to contract. The number of such choices is(|T |
d

)
, so dimk PR(T ) ≤ |Aut(R)|

(|T |
d

)
. The fact that we have an inequality rather than an equality

is a re�ection of the fact that not every contraction of T with d edges is isomorphic to R.

Theorem 1.3 only gives us an upper bound for the dimension of M(T ). We cannot possibly

expect equality, since the dimension of M(T ) usually depends on the structure of T , not just on

the number of edges. However, if we �x a tree T and an r-tuple e of distinct directed edges, we can

show that the dimension of M(T (e,m)) is eventually equal to a polynomial in m.

Theorem 2.15. Let k be a �eld, and suppose that M is d-smallish. Then there exists a multivariate

polynomial fM,T,e(t1, . . . , tr) of total degree at most d such that, if m is su�ciently large in every

coordinate,

dimkM(T (e,m)) = fM,T,e(m1, . . . ,mr).

Proof. Proposition 2.14 tells us that M is �nitely generated, though we have no control over the

degree of generation. Theorem 2.2 and Proposition 2.9 combine to tell us that Φ∗T,eM is a �nitely

generated OI×r-module. By [SS17, Theorem 6.3.2, Proposition 6.3.3, and Theorem 7.1.2], this im-

plies that there exists a multivariate polynomial fM,T,e(t1, . . . , tr) such that, if m ∈ Nr is su�ciently

large in every coordinate,

dimkM(T (e,m)) = dimk Φ∗T,eM([m]) = fM,T,e(m1, . . . ,mr).

Theorem 1.3 says that dimkM(T (e,m)) is bounded above by a polynomial of degree d in the

quantity |T (e,m)| = |T | − r + |m|, thus the total degree of fM,T,e(t1, . . . , tr) can be at most d.

Remark 2.16. Let Im be the standard path of lengthm. IfM is a d-smallish T op-module, Theorem

2.15 tells us that the function taking m to dimkM(Im) agrees with a polynomial for su�ciently

large m. For positive m, the automorphism group of Im is S2, and if k is a �eld of characteristic not

equal to 2, we might also guess that the dimensions of isotypic components of the trivial and sign

representations in M(Im) grow polynomially in m. This, however, is false. For example, suppose

that M is the module that assigns to each tree T the vector space with basis given by the edges

of T . More precisely, the principal projective PI1 assigns to each tree the vector space with basis

given by the directed edges of T , and we de�ne M := P
Aut(I1)
I1

. The module M is evidently 1-small.

However, the dimension of the trivial isotypic component ofM(Im) is dimkM(Im)Aut(Im) = bm+1
2 c,

which is quasi-polynomial in m.

We also have an analogue of Theorem 2.15 in which subdivision is replaced by sprouting. The

proof is identical, so we omit it. Fix a tree T and an r-tuple v of distinct vertices.

Theorem 2.17. Let k be a �eld, and suppose that M is d-smallish. Then there exists a multivariate

polynomial fM,T,v(t1, . . . , tr) of total degree at most d such that, if m is su�ciently large in every
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coordinate,

dimkM(T (v,m)) = fM,T,v(m1, . . . ,mr).

In the applications that follow, it will be crucial to know that tensor products of small modules

behave in the expected way.

Proposition 2.18. Suppose that M and N are T op-modules. If M is d-small and N is e-small,

then M ⊗k N is (d+ e)-small.

Proof. We may immediately reduce to the case where M = PR and N = PS , where |R| = d and

|S| = e. Then for any tree T , (M ⊗k N)(T ) has a basis given by ordered pairs consisting of a

T -morphism from T to R and a T -morphism from T to S. A T -morphism from T to R contracts

|T | − d edges, and a T -morphism from T to S contracts |T | − e edges. For any choice of this pair

of morphisms, the number of edges that are contracted by both morphisms is at least

(|T | − d) + (|T | − e)− |T | = |T | − d− e,

which means that the two morphisms both factor through a T -morphism from T to a tree with at

most d+ e edges.

Remark 2.19. By Theorem 1.2 and Remarks 2.10 and 2.13, almost all of the results in this section

hold equally well when Repk(T op) is replaced by Repk(RT op) or Repk(T op
l ). The only exception is

that it is not possible to replace Repk(T op) with Repk(T op
l ) in Theorem 2.17, since sprouting does

not make sense in a bounded leaf subcategory.

3 Homology of con�guration spaces

Given a graph G, the n-stranded unordered con�guration space of G is the topological space

UConfn(G) :=
{

(x1, . . . , xn) ∈ Gn
∣∣ xi 6= xj

}/
Sn.

We will study the homology of these spaces for �xed n, with G being either a tree or the cone over

a tree.

3.1 The reduced �wi¡tkowski complex

The primary tool used to compute the homology groups of con�guration spaces of graphs is the

reduced �wi¡tkowski complex, originally de�ned by An, Drummond-Cole, and Knudsen [ADCK].

Fix a graph G, and let AG to be the integral polynomial ring generated by the edges of G. A

half-edge of G is a pair consisting of a vertex v and an edge e such that v is an endpoint of e.

Given a half-edge h, we denote its vertex by v(h) and its edge by e(h).

For any vertex v, let S(v) denote the free AG-module generated by the symbol ∅ along with

all half-edges of G with vertex v. We equip S(v) with a bigrading by de�ning an edge to have

11



degree (0, 1), ∅ to have degree (0, 0), and a half-edge to have degree (1, 1). Let S̃(v) ⊂ S(v) be the

submodule generated by the elements ∅ and h− h′ for all half edges h and h′. We equip S̃(v) with

an AG-linear di�erential ∂v of degree (−1, 0) by putting

∂(h− h′) :=
(
e(h)− e(h′)

)
∅ and ∂∅ = 0.

We then de�ne the reduced �wi¡tkowski complex

S̃(G) :=
⊗

v∈Vert(G)

S̃(v),

where the tensor product is taken over the ring AG; this is a bigraded free AG-module with a

di�erential ∂.

For any graph G, let H•
(

UConf?(G)
)
denote the bigraded abelian group

H•
(

UConf?(G)
)

:=
⊕
(i,n)

Hi

(
UConfn(G);Z

)
.

Theorem 3.1. [ADCK, Theorem 4.5 and Proposition 4.9] If G has no isolated vertices, then there

is an isomorphism of bigraded abelian groups

H•
(

UConf?(G)
) ∼= H•

(
S̃(G)

)
.

Remark 3.2. If G is connected, then the only way that G can have isolated vertices is if G is

a single point. In this case, H•
(
S̃(G)

)
= S̃(G) = Z, concentrated in bidegree (0, 0), whereas

H•
(

UConf?(G)
) ∼= Z⊕Z, concentrated in bidegrees (0, 0) and (0, 1). Thus the reduced �wi¡tkowski

complex fails only to recognize that the degree zero homology of UConf1(G) is nontrivial.

3.2 Functoriality

If ι : G→ G′ is a simplicial embedding of graphs, then one obtains a natural pushforward map

ι∗ : Hi

(
UConfn(G);Z

)
→ Hi

(
UConfn(G′);Z

)
,

along with a natural lift to a map of di�erential bigraded modules [ADCK, Section 4.2]

ι̃∗ : S̃(G)→ S̃(G′).

What is less obvious is that, if ϕ is a contraction, then there is a natural map of di�erential bigraded

modules

ϕ̃∗ : S̃(G′)→ S̃(G),

which induces a map

ϕ∗ : Hi

(
UConfn(G′);Z

)
→ Hi

(
UConfn(G);Z

)
12



by passing to homology [ADCK, Lemma C.7].

To describe ϕ̃∗, we �rst consider the case where the number of edges of G is one greater than

the number of edges of G′; we call such a contraction ϕ a simple contraction. We identify the

unique edge of G that is contracted by ϕ with the interval [0, 1]. Let h0 (respectively h1) be the

half edge of G consisting of the vertex 0 (respectively 1) and the edge [0, 1]. Let w′ ∈ G′ be the

image of the edge [0, 1]. Each edge of G′ is mapped to isomorphically by a unique edge of G, and

similarly for half edges. This gives us a canonical ring homomorphism AG′ → AG along with an

AG′-module homomorphism ⊗
v′∈Vert(G′)r{w′}

S̃(v′) →
⊗

v∈Vert(G)r{0,1}

S̃(v).

Given a half edge h′ of G′ with v(h′) = w′, let h be the unique half edge of G mapping to h′. We

then de�ne an AG′-module homomorphism

S̃(w′)→ S̃(0)⊗ S̃(1)

by the formula

∅ 7→ ∅ ⊗ ∅ and h′ 7→

(h− h0)⊗ ∅ if v(h) = 0

∅ ⊗ (h− h1) if v(h) = 1.

Tensoring these two maps together, we obtain the homomorphism ϕ̃∗ : S̃(G′) → S̃(G), and it is

straightforward to check that this homomorphism respects the di�erential. Arbitrary contractions

may be obtained as compositions of simple contractions, and the induced homomorphism is inde-

pendent of choice of factorization into simple contractions. To summarize, we have the following

result.

Theorem 3.3. [ADCK] There is a bigraded di�erential T op-module that assigns to each tree T the

reduced �wi¡tkowski complex S̃(T ). The homology of this bigraded di�erential T op-module is the

bigraded T op-module that assigns to each tree T the bigraded Abelian group H•
(

UConf?(T )
)
.

3.3 Con�guration spaces of trees

The purpose of this section is to prove Theorem 1.5.

Proof of Theorem 1.5. Given a tree T and a pair of natural numbers i and n, let S̃(T )i,n be the

degree (i, n) summand of the reduced �wi¡tkowski complex. We will show that the T op-module

taking a tree T to the abelian group S̃(T )i,n is generated in degrees ≤ n + i. Smallness will then

follow from Theorem 3.3, and �nite generation from Theorem 1.2.

The group S̃(T )i,n is generated by elements of the form

σ := e1 · · · en−i
i⊗

j=1

(hj0 − hj1) ⊗
⊗

v/∈{v1,...,vi}

∅,
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where e1, . . . , en−i are edges (not necessarily distinct), v1, . . . , vi are vertices (distinct), and for each

j, hj0 are hj1 are half edges at the vertex vj . For a particular σ of this form, we will call {v1, . . . , vi}
the set of distinguished vertices. Without loss of generality, we may assume that there is some

integer r with 0 ≤ r ≤ i such that vj is adjacent to some other distinguished vertex if and only if

j ≤ r. We may also assume that, if j ≤ r, e(hj1) connects vj to another distinguished vertex; if

not, then σ may be written as a di�erence of classes of this form.

We call an edge e a distinguished edge if one of the following four conditions hold:

� e connects two distinguished vertices

� e = ek for some k ≤ n− i

� e = e(hj0) for some j ≤ i

� e = e(hj1) for some j ≤ i.

We claim that there are at most n+ i distinguished edges. Indeed, there are at most r edges that

connect two distinguished vertices3 and these include e(hj1) for every j ≤ r. This means that the

maximum possible number of distinguished edges is r + (n− i) + i+ (i− r) = n+ i.

Let T be given with |T | > n+i. Since there are at most n+i distinguished edges, we may choose

an edge e which is not distinguished. Let T ′ := T/e be the tree obtained from T by contracting e,

and let ϕ : T → T ′ be the canonical simple contraction. Let e′k be the image of ek in T ′, v′j the

image of vj in T ′, h′j0 the image of hj0 in T ′, and h′j1 the image of hj1 in T ′. Let

σ′ := e′1 · · · e′n−i
i⊗

j=1

(h′j0 − h′j1) ⊗
⊗

v′ /∈{v′1,...,v′i}

∅ ∈ S̃(T ′)i,n.

We claim that σ = ϕ̃∗σ′.

If e is not incident to any vertex vj , this is obvious. The interesting case occurs when e is

incident to one of the distinguished vertices. Assume without loss of generality that it is incident to

v1, and let w be the other end point of e. Let h be the half edge of T with e(h) = e and v(h) = v1.

Applying the map ϕ∗ replaces each e′k with ek. When j > 1, it replaces h′j0 with hj0 and h′j1 with

hj1. It replaces h′10 with h10 − h and h′11 with h11 − h. This means that it replaces h′j0 − h′j1 with
hj0 − hj1, and therefore that ϕ̃∗σ′ = σ.

We thus conclude that every element of S̃(T )i,n is a linear combination of elements in the images

of map associated with simple contractions; this completes the proof.

Remark 3.4. Chettih and Lütgehetmann prove that homology groups of ordered con�guration

spaces of trees are generated by products of what they call basic classes [CL18, Theorem A]. One

can produce an alternative proof of Theorem 1.5 by using this result, along with the coinvariant

map that takes the homology of an ordered con�guration space surjectively only the homology

of the corresponding unordered con�guration space, sending basic classes to the star classes of

3This is because the induced subgraph on v1, . . . , vr is a forest; equality is attained i� r = 0.
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[ADCK]. We prefer to work with the reduced �wi¡tkowski complex because the proof of Theorem

1.5 serves as a model for the proof of Theorem 1.6, where we will not have any analogue of the

Chettih�Lütgehetmann result available to us.

3.4 Cones over trees

For any tree G, we de�ne the cone over G to be the graph cone(G) obtained from G by adding

one new vertex p along with an edge connecting p to each of the original vertices. More precisely,

Vert(cone(T )) := Vert(T ) t {p} and Edge(cone(T )) := Edge(T ) t {ev | v ∈ Vert(T )},

where ev is an edge from v to p.

Suppose that ϕ : T → T ′ is a contraction. We would like to say that ϕ induces a contraction from

cone(T ) to cone(T ′), but this is not quite right. Indeed, contractions are by de�nition homotopy

equivalences, and cone(T ) cannot be homotopy equivalent to cone(T ′) unless ϕ is an isomorphism.

Instead, what happens is that ϕ induces a contraction from πϕ : cone(T )→ Gϕ, where Gϕ de�ned

by setting

Vert(Gϕ) := Vert(T ′) t {p′} and Edge(Gϕ) := Edge(T ′) t {e′w | w ∈ Vert(T )},

where ew is an edge from ϕ(w) to p′. In particular, the number of edges connecting a vertex w′ to

p′ is equal to the number of vertices in the preimage of w′.

We get around this technical di�culty by working with rooted trees. Let (T, v) be a rooted tree,

and consider the partial order on Vert(T ) introduced in Section 2.2. Let ϕ : (T, v) → (T ′, v′) be a

contraction. For each vertex w′ of T ′, there is a unique maximal vertex w ∈ ϕ−1(w′). This allows
us to de�ne an embedding ιϕ : cone(T ′)→ Gϕ by sending ew′ to e′w.

Example 3.5. Suppose that ϕ is the contraction of rooted trees depicted in the �gure on the left in

Example 2.5. Then Gϕ is the graph shown below, where T ′ is the vertical edge and p′ is the vertex

on the right. The embedding ιϕ identi�es the cone over T ′ with the triangle obtained by deleting

the lower of the two curved edges.

The embedding ιϕ induces a map

ιϕ∗ : Hi

(
UConfn(cone(T ′));Z

)
→ Hi

(
UConfn(Gϕ);Z

)
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and the contraction πϕ induces a map

π∗ϕ : Hi

(
UConfn(Gϕ);Z

)
→ Hi

(
UConfn(cone(T ));Z

)
,

and we de�ne

ϕ∗ := π∗ϕ ◦ ιϕ∗ : Hi

(
UConfn(cone(T ′));Z

)
→ Hi

(
UConfn(cone(T ));Z

)
.

Similarly, we de�ne

ϕ̃∗ := π̃∗ϕ ◦ ι̃ϕ∗ : S̃(cone(T ′))→ S̃(cone(T )).

We can then state the following analogue of Theorem 3.3.

Theorem 3.6. There is a bigraded di�erential RT op-module that assigns to each rooted tree (T, v)

the reduced �wi¡tkowski complex S̃(cone(T )). The homology of this bigraded di�erential T op-module

is the bigraded RT op-module that assigns to each rooted tree (T, v) the bigraded Abelian group

H•
(

UConf?(T )
)
.

Remark 3.7. We note that, for both of the RT op-modules in the statement of Theorem 3.6, the

Abelian group assigned to a rooted tree (T, v) depends only on the tree T , but the homomorphisms

between these groups depend on the root.

3.5 Con�guration spaces of cones over trees

The purpose of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. The proof of this theorem is similar to the proof of Theorem 1.5, but there

are some subtle di�erences in the details. Given a tree T and a pair of natural numbers i and n, let

S̃(cone(T ))i,n be the degree (i, n) summand of the reduced �wi¡tkowski complex. We will show that

the RT op-module taking a rooted tree (T, v) to the abelian group S̃(T )i,n is generated in degrees

≤ n+ i. Smallness will then follow from Theorem 3.6, and �nite generation from Theorem 1.2.

The group S̃(cone(T ))i,n is generated by classes of form

σ := e1 · · · en−i
i⊗

j=1

(hj0 − hj1) ⊗
⊗

v/∈{v1,...,vi}

∅,

where e1, . . . , en−i are edges of cone(T ) (not necessarily distinct), v1, . . . , vi are vertices of cone(T )

(distinct), and, for each j, hj0 are hj1 are half edges of cone(T ) at the vertex vj . For a particular σ

of this form, we will call {v1, . . . , vi} the set of distinguished vertices. Here is the �rst di�erence

between this proof and the proof of Theorem 1.5: we may assume that, for all j, e(hj1) = evj , the

edge connecting vj to the cone point p.

Let us �rst treat the case where p is not one of the distinguished vertices. We call an edge e of

T a distinguished edge if one of the following three conditions hold:
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� e connects two distinguished vertices

� e = ek for some k ≤ n− i

� e = e(hj0) for some j ≤ i.

Note that distinguished edges are edges of T , not of cone(T ). We claim that there are at most n+ i

distinguished edges. Indeed, there are at most i edges that connect two distinguished vertices (with

equality i� i = 0), so the maximum possible number of distinguished edges is i+ (n− i) + i = n+ i.

Next, let's treat the case where p is one of the distinguished vertices. Without loss of generality,

we will assume that p = vi. Let w0, w1 ∈ Vert(T ) be the endpoints of the edges e(hi0) and e(hi1).

We then call an edge e of T a distinguished edge if one of the following �ve conditions hold:

� e connects two distinguished vertices of T

� e = ek for some k ≤ n− i

� e = e(hj0) for some j ≤ i− 1

� e connects w0 to a vertex that is greater than w0 in the partial order on Vert(T )

� e connects w1 to a vertex that is greater than w1 in the partial order on Vert(T ).

We again claim that there are at most n + i distinguished edges. Indeed, there are at most i − 1

edges that connect two distinguished vertices (with equality i� i = 1). Furthermore, every vertex

of T has a unique cover in the partial order, so there is at most one edge connecting w0 to a vertex

greater than w0 (with equality i� w0 is not the root), and likewise for w1. Thus the maximum

possible number of distinguished edges is (i− 1) + (n− i) + (i− 1) + 1 + 1 = n+ i.

We now proceed as in the proof of Theorem 1.5. Let T be given with |T | > n + i. Since there

are at most n + i distinguished edges, we may choose an edge e which is not distinguished. Let

T ′ := T/e be the tree obtained from T by contracting e, and let ϕ : T → T ′ be the canonical simple

contraction. We de�ne σ′ as before, and we claim that σ = ϕ̃∗σ′.

The argument is basically the same, but there is a new subtlety that arises if p = vi and either

w0 or w1 is one of the endpoints of e. Assume without loss of generality that w0 is an endpoint of e,

and let u be the other endpoint. Since e is not a distinguished edge, we have u < w0 in the partial

order on Vert(T ), and this is exactly the condition that we need to ensure that σ = ϕ̃∗σ′.

Remark 3.8. For any tree T , cone(T ) is biconnected, which implies that H1

(
UConfn(cone(T ))

)
is canonically isomorphic to H1

(
UConf2(cone(T ))

)
[KP12, Lemma 3.12]. In particular, this means

that the RT op-module

(T, v) 7→ H1

(
UConfn(cone(T ))

)
is in fact 3-small.
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3.6 Examples

We next give a number of examples to illustrate Theorems 1.5 and 1.6.

Example 3.9. Consider the tree Km,1 with one central vertex connected to m satellites, ob-

tained from sprouting at a single isolated vertex. Theorems 2.17 and 1.5 together imply that

dimH1

(
UConfn(Km,1);Q

)
is a polynomial in m of degree at most n + 1. It was proved indepen-

dently in [Ghr01, Theorem 2.6] and [�01, Theorem 0.1] that, for any graph G, the space UConfn(G)

is homotopy equivalent to a simplicial complex of dimension equal to the number of vertices of G

of degree at least 3. In particular, UConfn(Km,1) is homotopy equivalent to a graph. For any m,

we have [Gal01, Theorem 2]

∑
n≥0

χ
(

UConfn(Km,1)
)
tn =

1− (m− 1)t

(1− t)m
.

From these two facts, we can deduce that

dimH1

(
UConfn(Km,1);Q

)
= 1−

(
m− 1 + n

n

)
+ (m− 1)

(
m− 2 + n

n− 1

)
,

which is in fact a polynomial in m of degree n. Note that the computation of the �rst Betti numbers

of con�guration spaces of star graphs has appeared in various places throughout the literature,

including [Ghr01, ADCK, MS17, Ram18, FS05].

Example 3.10. Next, consider the graph cone(Km,1). The graph cone(Km,1) has two vertices

of degree greater than 2, so the con�guration space of cone(Km,1) is homotopy equivalent to a

2-dimensional simplicial complex. Theorems 2.17 and 1.6, along with Remarks 2.19 and 3.8, to-

gether imply that dimH1

(
UConfn(cone(Km,1));Q

)
is a polynomial in m of degree at most 3 and

dimH2

(
UConfn(cone(Km,1));Q

)
is a polynomial in m of degree at most n+2. For any m, we have

[KP12, Lemma 3.14]

dimH1

(
UConfn(cone(Km,1));Q

)
=

(
m+ 1

2

)
,

which is in fact a polynomial in m of degree 2. We also have [Gal01, Theorem 2]

∑
n≥0

χ
(

UConfn(cone(Km,1))
)
tn =

(1−mt)2

(1− t)m+1
,

which implies that

χ
(

UConfn(cone(Km,1))
)

=

(
m+ n

n

)
+ 2m

(
m+ n− 1

n− 1

)
+m2

(
m+ n− 2

n− 2

)
.

Thus we conclude that dimH2

(
UConfn(cone(Km,1));Q

)
is in fact a polynomial in m of degree n.

Example 3.11. More generally, the techniques of Ko and Park will allow us to compute the �rst

Betti numbers of arbitrary cones over trees. Remark 3.8 tells us that these Betti numbers should be
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bounded above by a cubic polynomial in |T |, and that they should grow as a polynomial of degree

at most 3 when we subdivide or sprout.

Fix a vertex v of T and write {Ti}deg(v)i=1 for the deg(v) subtrees of T obtained by taking the

closures of the connected components after removing v. If we write bcone(T )(n) for the �rst Betti

number of UConfn(cone(T )), then [KP12, Lemma 3.14] tells us that

bcone(T )(n) =

(∑
i

bcone(Ti)(n)

)
+

(
deg(v)

2

)
.

If T is homeomorphic to a line segment, then cone(T ) is a circle and bcone(T )(n) = 1. Applying the

above recursion for every vertex, we �nd that

bcone(T )(n) = |T | +
∑

v∈Vert(T )

(
deg(v)

2

)
.

Note that this expression is bounded by a polynomial in |T | of degree 2, since

∑
v∈Vert(T )

(
deg(v)

2

)
≤ 1

2

∑
v∈Vert(T )

deg(v)2 ≤ 1

2

 ∑
v∈Vert(T )

deg(v)

2

= 2|T |2.

One also observes from this expression that bcone(T )(n) grows linearly under subdivision and quadrat-

ically under sprouting.

4 Kazhdan-Lusztig coe�cients

Let G be a graph. Let RG be the C-subalgebra of rational functions in {xv | v ∈ Vert(G)}
generated by the elements

{
1

xv−xw

∣∣∣ v 6= w adjacent
}
, and let XG := SpecRG. The ring RG is

called the Orlik-Terao algebra of G and the variety XG is called the reciprocal plane of G. We

will be interested in the intersection homology group IH2i(XG), which is a complex vector space

whose dimension is equal to the coe�cient of ti in the Kazhdan-Lusztig polynomial of the matroid

associated with G [EPW16, Theorem 3.10 and Proposition 3.12].

If ϕ : G→ G′ is a contraction, we obtain a canonical map ϕ∗ : IH2i(XG′)→ IH2i(XG), and these

maps compose in the expected way [PY17, Theorem 3.3(1,3)]. The matroid associated with any

tree is Boolean and Boolean matroids have trivial Kazhdan-Lusztig polynomials [EPW16, Corollary

2.10], so we do not obtain interesting T op-modules by letting G be a tree. However, by letting G be

the cone over a tree, we �nd many examples of graphs with interesting Kazhdan-Lusztig coe�cients,

including fan graphs [LXY] and thagomizer graphs [Ged17]. The purpose of this section is to study

the corresponding T op-modules.

Remark 4.1. If G is any graph, we de�ne the simpli�cation of G to be the graph obtained by

deleting loops and identifying any two edges with the same end points. It is clear from the de�nition

of RG that the ring RG, the variety XG, and the vector space IH2i(XG) do not change when G is
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replaced by its simpli�cation. This stands in stark contrast to homology groups of con�guration

spaces, and explains why we will not need to work with rooted trees (see Remark 1.7).

4.1 The spectral sequence

The intersection homology group IH2i(XG) can be computed by means of a certain spectral sequence,

which we now describe. For any graphG, letOS•(G) be theOrlik-Solomon algebra of the matroid

associated with G. For any natural number d, we will denote the linear dual of OSd(G) by OSd(G).

For the purposes of this paper, we will need to know �ve things about the Orlik-Solomon algebra:

� OS1(G) is spanned by classes {xe | e ∈ Edge(G)}, subject to the relations that xe = 0 if e is

a loop and xe = xe′ if e and e′ have the same endpoints.

� OS•(G) is generated as an algebra by OS1(G).

� The Orlik-Solomon algebra of a graph is canonically isomorphic to that of its simpli�cation.

� If G′ is a contraction of G, we obtain a canonical map OS•(G) → OS•(G′) by killing the

generators indexed by contracted edges. This in turn induces a map OS•(G′)→ OS•(G).

� If G is the disjoint union of G1 and G2 or if G is obtained by gluing G1 and G2 along a single

vertex, then OS•(G) ∼= OS•(G1)⊗OS•(G2).

A �at of G is a subgraph F ⊂ G with the same vertex set and that property that, if F contains

all but one edge of some cycle in G, then it contains the last edge, as well. If F is a �at, we de�ne

G/F to be the graph obtained by simultaneously contracting all of the edges in F .4 The rank of

F is equal to the number of vertices minus the number of connected components, and the corank

of F , denoted crkF , is the rank of G minus the rank of F .

Theorem 4.2. [PY17, Theorems 3.1 and 3.3] For any graph G and positive integer i, there is a

�rst quadrant homological spectral sequence E(G, i) converging to IH2i(XG), with

E(G, i)1p,q =
⊕

crkF=p

OS2i−p−q(F )⊗ IH2(i−q)(XG/F ).

If ϕ : G→ G′ is a contraction, there is a canonical map ϕ∗ : E(G′, i)→ E(G, i) of spectral sequences,

composing in the expected way, and converging to the aforementioned map IH2i(XG′)→ IH2i(XG).

The map E(G′, i)1p,q → E(G, i)1p,q kills the F -summand unless F contains all of the contracted edges.

In this case, the image of F in G′ is a �at F ′ of G′, and G′/F ′ is canonically isomorphic to G/F .

The map takes the F -summand of E(G, i)1p,q to the F ′-summand of E(G′, i)1p,q by the canonical map

OS2i−p−q(F )→ OS2i−p−q(F
′) tensored with the identity map on IH2(i−q)(XG/F ).

4It is slightly confusing to note that, if F contains a cycle, the natural graph morphism from G to G/F is not a

contraction in the sense of Section 2.2 because it is not a homotopy equivalence. We will refrain from using the word

�contraction� in any sense other than that in which we have de�ned it.
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4.2 Orlik-Solomon algebras of trees and their cones

Suppose that ϕ : T → T ′ is a contraction of trees. Since the Orlik-Solomon algebra is functorial

with respect to contractions, we have a T op-module OSd that takes a tree T to OSd(T ). Recall

from Section 3.4 that ϕ induces a contraction from cone(T ) to Gϕ, where Gϕ is a graph whose

simpli�cation is canonically isomorphic to cone(T ′). Since the Orlik-Solomon algebra of a graph is

canonically isomorphic to that of its simpli�cation, this tells us that we also have a T op-module

OScone
d that takes a tree T to OSd(cone(T )).

Proposition 4.3. The T op-modules OSd and OScone
d are d-small for all d ∈ N.

Proof. Recall from Example 4.8 that we have de�ned Im to be the standard path of length m on

the vertex set {0, . . . ,m}. We have OS0 = OScone
0 = PI0 , which proves that OS0 and OScone

0 are

both 0-small. Since OS• and OS•cone are generated as algebras in degree 1, Lemma 2.18 implies

that it is su�cient to prove that OS1 and OScone
1 are 1-small.

The module OS1 associates to any tree a vector space with basis given by its edges. In particular,

OS1(I1) = C · x01. If e is an edge of T and ϕ : T → I1 is a morphism that contracts every edge

except for e, then ϕ∗x01 = xe. This shows that OS1 is generated in degree 1 and therefore 1-small.

The edges of the cone over a tree are in bijection with the edges and vertices of the tree, so

the module OScone
1 associates to any tree a vector space with basis {xe} t {xv} indexed by edges

and vertices. In particular, OScone
1 (I1) = C{x01, x0, x1}. Let T be a tree and e an edge of T with

vertices v and w. Consider the unique morphism ψ : T → I1 that sends v to 0 and w to 1. Then

ϕ∗x01 = xe and ϕ∗x0 =
∑

ϕ(v′)=0

xv′ .

It is clear that classes of this form span OScone
1 (T ), hence OScone

1 is generated in degree 1 and

therefore 1-small.

4.3 Flats of cones over trees

Fix a tree R. For any tree T , let CompR(T ) be the set of ways to break T up into a collection of

disjoint subtrees, indexed by the vertices of R, with adjacency of subtrees determined by adjacency

in R. More precisely, an element of CompR(T ) is a tuple U =
(
Uv | v ∈ Vert(R))

)
of subtrees of T

such that

Vert(T ) =
⊔

v∈Vert(R)

Vert(Uv)

and Uv is adjacent to Uw in T if and only if v is adjacent to w in R.

We will say that a subset W ⊂ Vert(R) is groovy if it has the property that every edge of R is

incident to at least one vertex of W . Let F (T ) be the set of triples (R,W,U), where R is a tree,

U ∈ CompR(T ), and W ⊂ Vert(R) is groovy. We say that two triples (R,W,U) and (R′,W ′, U ′)

are equivalent if there is an isomorphism from R to R′ taking W to W ′ and U to U ′.
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Given a triple (R,W,U) ∈ F (T ), we may construct a �at of cone(T ) by taking the edges of Uv

for all v ∈ Vert(R) along with the edges connecting v to the cone point for all v ∈ W . Every �at

arises in this manner, and two elements of F (T ) give rise to the same �at if and only if they are

equivalent. The contraction of cone(T ) along this �at is isomorphic to cone(RW ), where RW is the

induced forest on the vertex set W .

Example 4.4. Let R be a path of length 3 and T a path of length 5. An element of CompR(T )

is a way to break the 6 vertices of T into 4 blocks, each of which consist of adjacent vertices. In

the picture below, we show an element of CompR(T ) consisting of blocks of sizes 2, 1, 2, and 1

(reading from left to right). We also select the groovy subset W ⊂ Vert(R) consisting of the �rst

and last vertex, which means that the �rst and last block get connected to the cone point in the

corresponding �at of cone(T ). We denote this �at by thickened edges.

LetOS•(R,W,U) denote the Orlik-Solomon algebra of the �at associated with the triple (R,W,U).

By the discussion of Orlik-Solomon algebras in Section 4.1, this is isomorphic to⊗
v∈W

OS•(Uv) ⊗
⊗
v/∈W

OS•
(
cone(Uv)

)
.

The following lemma is an analogue of [PY17, Lemma 4.2].

Lemma 4.5. Suppose that we have a tree R, a collection of T op-modules
(
Nv | v ∈ Vert(R)

)
,

and a collection of natural numbers
(
dv | v ∈ Vert(R)

)
such that Nv is dv-small for all v. Let

d = |R|+
∑
dv. De�ne a T op-module N by the formula

N(T ) :=
⊕

U∈CompR(T )

⊗
v∈Vert(R)

Nv(Uv).

Then N is d-small.

Proof. We may immediately reduce to the case where Nv = PSv for some tree Sv with |Sv| = dv.

Then for any tree T and any U ∈ CompR(T ), the corresponding summand of N(T ) has a basis

given by tuples of contractions from Uv to Sv. Such a map contracts |Uv| − dv edges. All together,

the number of edges that get contracted is
∑(
|Uv| − dv

)
= |T | − |R| −

∑
dv, which means that the

tuple of maps factors through a tree with |R|+
∑
dv edges.
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4.4 A leaf lemma

The following technical lemma and corollary will be important in the next section.

Lemma 4.6. Let T be a tree with at most l ≥ 2 leaves, and suppose that Y ⊂ Vert(T ) has the

property that every edge of T has exactly one vertex in Y . Then |T | ≤ 2|Y |+ l − 2.

Proof. We proceed by induction on l. If l = 2, the statement is clear. Now assume that the

statement holds for l, and let T be a tree with l + 1 leaves. Choose a leaf of T , and consider the

path from that leaf to the nearest vertex of degree greater than 2. Let k be the length of the path.

Let T ′ be the tree obtained from T by deleting that path, and let Y ′ be the subset of Y that lies

in T ′. Then T ′ has l leaves, |T | − |T ′| = k, and |Y | − |Y ′| is either bk/2c or dk/2e, depending on

whether or not the leaf is in Y . In particular, 2|Y ′| ≤ 2|Y | − k + 1. Then

|T | = k + |T ′| ≤ k + 2|Y ′|+ l − 2 ≤ k + 2|Y | − k + 1 + l − 2 = 2|Y |+ (l + 1)− 2,

which completes the proof.

Corollary 4.7. Suppose that T has at most l ≥ 2 leaves and (R,W,U) ∈ F (T ). Then

|R|+ |RW | ≤ 2|W |+ l − 2.

Proof. First, we note that since T has at most l leaves and U ∈ CompR(T ), R must also have at

most l leaves. Let R be the tree obtained from R by contracting the edges of RW , and let W be

the image of W in the vertex set of R. Then R is a tree with at most l leaves, and every edge in R

has exactly one vertex in W . Furthermore, we have |R|+ |RW | − 2|W | = |R| − 2|W |, so we need to

prove that |R| ≤ 2|W |+ l − 2. This follows from Lemma 4.6.

4.5 Kazhdan-Lusztig coe�cients of cones over trees

Let IHcone
2i be the T op-module that assigns to any tree T the vector space IH2i

(
Xcone(T )

)
, which is

well de�ned by Remark 4.1. We are now ready to state and prove Theorem 1.9.

Proof of Theorem 1.9. Suppose that R is a tree and W ⊂ Vert(R) is groovy. Fix a pair of natural

numbers p, q ≤ 2i, and for each v ∈ Vert(R), de�ne the T op-module

Nv :=

OS∗ if v ∈W

OScone
∗ if v /∈W .

Consider the T op-module

N(R,W )(T ) :=
⊕

U∈CompR(T )

 ⊗
v∈Vert(R)

Nv(Uv)


2i−p−q

⊗
IH2(i−q)

(
cone(RW )

)
.
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Then Theorem 4.2 gives us a spectral sequence E(cone(−), i) in the category of T op-modules,

converging to IHcone
2i , with

E(cone(−), i)1p,q
∼=

⊕
R

 ⊕
W⊂Vert(R) groovy

|W |=p

N(R,W )


Aut(R)

.

Here the outer direct sum is over isomorphism classes of trees, and the superscript denotes invariants

under the action of the group of automorphisms of R. By taking invariants, we ensure that for each

T we obtain a sum over �ats of cone(T ) rather than over elements of F (T ).

The direct sum in our expression for E(cone(−), i)1p,q is not �nite. However, if we restrict to the

subcategory T op
l , Corollary 4.7 tells us that N(R,W ) vanishes unless |R|+ |RW | ≤ 2p+ l − 2. Since

there are �nitely many trees with at most 2p+ l − 2 edges, the direct sum becomes �nite.

Note that, when we say that the spectral sequence converges to IHcone
2i , the precise meaning of

this statement is that the module IHcone
2i admits a �ltration whose associated graded is isomorphic

to the in�nity page of the spectral sequence. In particular, if we can prove that N(R,W ) is (2i+l−2)-

small, this will imply that the �rst page of the spectral sequence is (2i+ l− 2)-small, and therefore

that the in�nity page is also (2i+ l − 2)-small, and �nally that IHcone
2i is (2i+ l − 2)-smallish. By

Proposition 4.3 and Lemma 4.5, N(R,W ) is
(
|R|+ 2i− p− q

)
-small. We will complete the proof by

showing that IH2(i−q)
(
cone(RW )

)
= 0 unless |R|+ 2i− p− q ≤ 2i+ l − 2.

We may write RW
∼= R1 t · · · tRk as a disjoint union of trees. We have

Xcone(RW )
∼= Xcone(R1) × · · · ×Xcone(Rk),

thus the Künneth theorem tells us that

IH2(i−q)
(
Xcone(RW )

) ∼= (
IH∗

(
Xcone(R1)

)
⊗ · · · ⊗ IH∗

(
Xcone(Rk)

))
2i

∼=
⊕

r1+···+rk=i−q
IH2r1

(
Xcone(R1)

)
⊗ · · · ⊗ IH2rk

(
Xcone(Rk)

)
.

We also have IH2rj

(
Xcone(Rj)

)
= 0 unless 2rj ≤ |Rj | [EPW16, Proposition 3.4], thus this direct sum

vanishes unless 2(i− q) ≤
∑
|Rj | = |RW |. This means that, for IH2(i−q)

(
Xcone(RW )

)
to be nonzero,

we must have

|R|+ 2i− p− q = |R|+ 2(i− q)− p+ q ≤ |R|+ |RW | − p+ q.

By Corollary 4.7, this is at most p+ q + l − 2, which is in turn bounded above by 2i+ l − 2.

4.6 Examples

We end with four families of examples to illustrate Theorem 1.9.
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Example 4.8. Let Im be the path of length m. Theorem 1.9 says that the restriction of IHcone
2i

to the opposite category of paths is 2i-smallish, and then Theorem 2.15 says that the dimension of

IH2i

(
cone(Im)

)
is eventually a polynomial in m of degree at most 2i. The cone on a path is a fan

(see the picture in Example 4.4), so [LXY, Theorem 1.1] gives the precise formula

dim IH2i

(
cone(Im)

)
=

1

i+ 1

(
m

i, i,m− 2i

)
=

1

i!(i+ 1)!
m(m− 1) · · · (m− 2i+ 1).

This is indeed a polynomial in m of degree 2i, which means that our smallishness result is in fact

the best possible.

The next three examples will use the fact that, for any graph G, dim IH2(XG) is equal to the

number of corank 1 �ats of G minus the number of rank 1 �ats of G [EPW16, Proposition 2.12].

Corank 1 �ats of the cone over a tree are in bijection with subtrees (the corank 1 �at associated

with a triple (R,W,U) with |W | = 1 corresponds the subtree Uv for the unique element v ∈ W ),

while rank 1 �ats are edges, which are in bijection with edges and vertices of the original tree.

Example 4.9. Let us consider the restriction of IHcone
2 to the category T op

3 . Let T = K3,1 be the

tree with edges e1, e2, and e3 meeting at a single vertex, and let e = (e1, e2, e3). Every object of T op
3

is isomorphic to Te(m) for some 3-tuple m of natural numbers. Theorem 1.9 says that our functor

is 3-smallish, and then Proposition 2.15 says that the dimension of IHcone
2 (Te(m)) is eventually a

polynomial of degree at most 3 in the variables m1,m2,m3.

The number of subtrees of Te(m) is equal to

(m1 + 1)(m2 + 1)(m3 + 1) +

(
m1 + 1

2

)
+

(
m2 + 1

2

)
+

(
m2 + 1

2

)
,

where the �rst term counts subtrees that contain the vertex of degree 3, while the next three terms

count subtrees that touch only one of the three tails. The number of edges of cone(Te(m)) is equal

to 2(m1 +m2 +m3) + 1. We therefore have

dim IHcone
2 (Te(m)) = (m1 + 1)(m2 + 1)(m3 + 1) +

(
m1 + 1

2

)
+

(
m2 + 1

2

)
+

(
m2 + 1

2

)
−2(m1 +m2 +m3)− 1,

which is indeed a polynomial of degree 3. Thus our result that IH2 is 3-smallish is again the best

possible.

Example 4.10. Let T be an arbitrary T and e an edge of T . Let Te(m) be the tree obtained

by subdividing e into m edges. (In other words, we take r = 1 and drop the underlines from the

notation.) Theorem 1.9 and Proposition 2.15 combine to say that dim IHcone
2 (Te(m)) is eventually

polynomial in m of degree at most l, where l is the number of leaves of T .

The number of edges of cone(Te(m)) is equal to |T |+m−1, which is linear in m. There are three

types of subtrees of Te(m): those that are disjoint from the set of subdivided edges, those that are
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contained in the set of subdivided edges, and all the rest. The number of subtrees that are disjoint

from the set of subdivided edges is independent of m, the number of subtrees that are contained in

the set of subdivided elements is equal to
(
m+1
2

)
, and the number of remaining subtrees is linear in

m. Thus dim IHcone
2 (Te(m)) is equal to

(
m+1
2

)
+O(m). Our result on the growth of this dimension

is therefore sharp if and only if l = 2 (Example 4.8).

Example 4.11. Consider the tree Km,1 with one central vertex connected to m satellites. The

number of subtrees of Km,1 is equal to 2m +m, and the number of edges of cone(Km,1) is 2m+ 1,

so we have dim IHcone
2 (Km,1) = 2m −m − 1. This is clearly not bounded above by a polynomial

in |Km,1| = m, which re�ects the fact that there is no subcategory Tl ⊂ T that contains every

Km,1 and proves that IHcone
2 is not �nitely generated as a T op-module. The cone over Km,1 is

a Thagomizer graph, and the dimension of IHcone
2i (Km,1) for arbitrary i and m is computed in

[Ged17, Theorem 1.1].
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