Hilbert series in the category of trees with contractions

Eric Ramos

Department of Mathematics, University of Oregon, Fugene, OR 97403

We consider Hilbert series associated to modules over various categories of trees. Using the
technology of Sam and Snowden [SS17], we show that these Hilbert series must be algebraic.
We then apply these technical theorems to prove facts about certain natural generating functions

associated to trees.

1 Introduction

1.1 The setup

Let C denote an essentially small category and k a field. Then a representation of C is a functor
from C to the category of k vector spaces. In their seminal work [SS17], Sam and Snowden estab-
lished the study of representations of combinatorial categories; categories such as FI, of finite sets
and injections. Their framework got at the combinatorial heart of the concurrent development of
representation stability, due to Church, Farb, and Ellenberg [CEF15||[CF13], while also expanding
it in a variety of directions.

The language of Sam and Snowden, very broadly speaking, is useful for proving facts about
a category’s representations in two related, but distinct, realms. The first of these is related to
the presence, or lack thereof, of a Noetherian property. Just as with modules over rings, one can
make sense of finite generation when discussing representations of categories (see Definition 2.2)
The Noetherian property asserts that submodules of finitely generated modules are also finitely
generated. This is the theoretical backbone of virtually all of representation stability theory, as it
allows one to prove finite generation statements about representations appearing in the limits of
spectral sequences. The second tool granted by Sam and Snowden’s work is a means by which one
can understand Hilbert series of finitely generated representations of one’s category.

To explain what is meant by this, let M : C — Vecy, be a finitely generated C representation, and
assume that you have a function v from the isomorphism classes of objects of C (which is guaranteed
to be a set by our essential smallness assumption) to N. For example, in the case of FI, one may
take v to be the function which maps each set to its cardinality. Such a function is called a norm

of the category. Then the Hilbert series of M with respect to v is the formal power series

where the sum is over isomorphism classes of objects.
Work of Miyata, Proudfoot, and the author applied Sam and Snowden’s theory to a variety
of categories of graphs [PRb][PRa][MPRJ|. In all cases, a Noetherian property was proved for

representations of the categories being considered. This was then applied to prove non-trivial
consequences about homology groups of graph configuration spaces, as well as Kazhdan-Lusztig
coefficients of graphical matroids [EPW16]. Missing from this prior work, however, is a treatment
of the Hilbert series of these representations. The goal of the present work is to bridge this gap in

the literature, primarily for the category of planar rooted trees with contractions.

1.2 The main theorem

In this work, a tree is a nonempty, at most 1-dimensional, connected, and finite CW-complex that is
contractible. A contraction is a continuous map between trees that involves contracting one or more
edges of the tree while also possibly permuting the vertices (see Definition 2.1). A planar rooted tree
is a tree with a designated vertex (the root) along with total orderings on the sets of edges coming
out (e.g. away from the root) of every vertex. There is also a notion of planar contractions (see
Definition 2.1), which are contractions that preserve all of various structures of the planar tree. The
category of planar rooted trees and planar contractions is denoted PT. We consider representations
of the opposite category PT°P. These representations were the focal point of the precursor work
[PRb].

Before we can discuss the Hilbert series of these representations, we first must decide on a norm.
In this paper, we will be working with the norm v(T) = |Er|, where Ep is the edge set of T.

Therefore, for a finitely generated P7T°P-module M, one would like to consider
Hy(t) = dimy (M(T))tF].
T

Before we do this, however, we first take the time to decide upon a "nice" enumeration of the
isormophism classes of objects in PT°P.

Recall the formal language of Dyck paths. That is, the language whose alphabet is the set {u, d},
made up of words of even length, such that each of the characters u and d occupy exactly half of
the word, and up to any ¢, the sub word of letters up to index ¢ has no more d’s than u’s. It is a
fact that Dyck paths, which happen to be counted by the famous Catalan numbers, are in bijection
with planar rooted trees. Given a Dyck path w, we read the word from left to right, letter by letter.
Each time a wu is read, we take a step upward in the left-most (thusfar untraveled) direction, while
every time a d is read we step downward. Therefore, The word ud corresponds to a single edge,
while the word uududd corresponds to the planar rooted tree that looks like the letter Y. For a

Dyck path w, we will write T),(w) for the planar tree uniquely associated to w. We therefore write
Hay(t) =y dimy, (M (T, (w))#')2,
w

where [(w) is the length of the path w.

Theorem 1. Let M be a finitely generated P7T°P-module. Then the Hilbert series

Ha(t) =) dimy, (M (T(w)))#)72,

is algebraic.

The proof philosophy we apply for Theorem 1 follows the lingual category approach of Sam and
Snowden [SS17|. In particular, we show that the category of planar rooted trees and contractions
is unambiguous and context-free. In the final section of this work, we apply Theorem 1 to prove
certain natural generating functions associated to Dyck paths are algebraic. These applications are
novel (to the best knowledge of the author), and should be of some independent interest.

Because planar trees are just trees with extra structure, to every Dyck path w we can associate
a tree (not planar or rooted), which we call T'(w). Note that this association does not uniquely
recover the Dyck path, but every tree arises in this way. Writing 7 for the category of trees and
contractions, and given a finitely generated T°P-module M, we define its Hilbert-Dyck series as the

formal power series

HDy(t) ==Y _ dimy (M (T(w)))t*)/2,

where the sum is over all Dyck paths, and [(w) is the length of the path. By how the association
w — T(w) is defined, we observe that [(w)/2 = |Ep|. Moreover, because this association is not
a bijection, the Hilbert-Dyck series is not equal to the usual Hilbert series of modules over this

category. Indeed, one may write
HDy(t) = pr dimy,(M(T))t 57,
T

where pr is the total number of Dyck paths which correspond to the tree T. Unlike the afore-
mentioned Hilbert series of M, the Hilbert-Dyck series will prove to be much more tractable. For

instance, assuming M is the module which assigns k to every tree, one has

HDy(t) =Y prtrl =3 " cot”
T n

where ¢, is the n-th Catalan Number. This generating function is far better understood than the
generating function for the number of isomorphism classes of trees. For instance, it is a celebrated
fact that this generating function is algebraic. Our second technical result is that this is the case in

general.

Theorem 2. Let M be a finitely generated 7 °P-module. Then the Hilbert-Dyck series

HDy(t) =Y dimy (M (T (w)))t)/2,

is algebraic.

One nice property of algebraic generating functions is their asymptotics are fairly predictable.

For instance, one has the following fact.

Fact 1.1 (Theorem 3, [BD15|). Let (fn)n>0 be a sequence of natural numbers such that F(t) :=
Y n>0 fot™ is an algebraic function. Further assume that F(¢) has a unique singularity at its radius
of convergence. Then there exist constants C,p € R, o € Q, such that f, is asymptotically close to

Cn®%p™. That is to say,
In

nlLH;O Cnopn =1

Remark 1.2. The requirement that the generating function has a unique singularity on its radius
of convergence is not strictly necessary, though the statement is more complicated if we do not
assert it. In this more technical case, the ultimate conclusion is only true up to residue classes of n
(see [BD15, Theorem 3]).

This fact can be observed explicitly in the case where f,, = ¢, is n-th Catalan number. In this

case we have, from Stirling’s approximation,
1
N3

Coming back to the context of Theorem 1, we see that if you look at the total dimension

I

n=3/24m,

In

> dimy, M(T)

|Er|=n

then (possibly up to the residue class of n), it grows at worst like some power of n times an
exponential. That is, it grows at worst exponentially. This is consistent with the fact, proven in
[PRb], that each individual vector space M (T') is bounded by a polynomial in the number of edges
of T, whenever T is sufficiently large. Unfortunately the techniques of the current paper do not
immediately recover the constants C, «, and p. It would be interesting to see whether this can be
done in general, and how they compare to the analogous constants for the generating function of

the Catalan numbers.

1.3 Other categories of graphs

The current work mainly considers the category of trees with contractions. However, Because
edge contractions are homotopy equivalences, they preserve the first Betti-number, or genus, of
the graph. This shows that the category of all graphs and contractions is stratified by this genus
invariant, where the tree case is only one stratum. The work [PRa| shows that other strata of the
category of all graphs and edge contractions are also of great interest.

The techniques of this paper will generalize to these other strata, although statements of theo-
rems become considerably more difficult. Indeed, by looking at spanning trees, one may think of a
higher genus graph as being a tree decorated with the data of how the extra edges are attached to
each vertex. This is exemplified in the category PG, discussed in [PRal. Instead of working with

4

Dyck paths, one instead must work with Dyck paths that are decorated with this finite amount of
extra data. In particular, one may define generalized Hilbert-Dyck series and prove they are alge-
braic. To the author’s knowledge, these decorated Dyck paths have not appeared in the literature,
and it is therefore unclear whether they are of any particular interest. For this reason, we do not
pursue this direction further.

That being said, however, it is certainly possible that these more general categories of graphs
have differently defined Hilbert series that admit nice formulas. We leave this as an avenue for
possible future research. There is particular interest in understanding Hilbert series of the Graph

minor category, as described in [MPR].

Acknowledgements

The author was supported by NSF grant DMS-1704811. He would like to send thanks to Ben Young
for various conversations that were useful during the creation of this work. He would also like to send
thanks to Nick Proudfoot, whose editorial suggestions vastly improved the quality of the writing.
Finally, the author would like to send thanks to the anonymous referee, whose suggestions greatly

helped the clarity of certain arguments.

2 Background

2.1 Categories of trees

In this section, we outline the three main categories whose representations will be studied in this
work. Most of what follows can be found in [PRb]|, and |Bar].

Definition 2.1. A tree is a one-dimensional contractible CW-complex. A rooted tree is a tree
paired with a choice of vertex called the root. This choice of root implicitly directs the edges
of the tree away from the root. A planar rooted tree, or just a planar tree, is a rooted tree
equipped with well-orderings on the sets of edges leaving each vertex. Planar trees have a natural
well-ordering on their vertices via a depth-first search from the root.

Given trees T,T’, a contraction from T to 7" is a map of sets
QOIVTUET-)VTIHET/

satisfying:
o o(Vr) =Vr;

e for every ¢’ € Eps there exists a unique edge e € Ep with p(e) = ¢€’;

e for every e = {x,y} € Er, if p(e) = v’ € Vv then ¢(x) = p(y) = v/, while if p(e) = €’ € Ep
then ¢’ = {¢(2), p(y)};

e for every v’ € Vzr, the preimage ¢~ 1(v') C Vo U Er consists of the edges and vertices of some
subtree of T'.

Given two rooted trees, a rooted contraction between them is a contraction of the underlying
trees which preserves the root. Finally, a planar contraction between planar trees ¢ : T — T is
a rooted contraction with the property that given two vertices v}, vy € Vp such that v] < v/ in the
depth-first order, one has that the vertex in ¢ ~!(v]) closest to the root is smaller than the vertex
in ¢(vh) closest to the root, in the depth-first order.

Finally, we will write T for the category of trees with contractions, RT for the category of rooted

trees with rooted contractions, and PT for the category of planar trees with planar contractions.

In this paper, we will be largely concerned with the representation theory of the categories T,
RT,and PT. The study of such objects was essentially initiated by Barter [Bar|, although a different
language was used in that work. In the precursers to the current paper [PRb, PRa|, Proudfoot and

the author prove that the categories presented above are equivalent to those considered by Barter.

Definition 2.2. Let C denote anyone of the categories 7, RT, or PT and let k be a field. Then a

representation of C° or a C°’-module is a contravariant functor
M : C — Vecy,

where Vecy, is the category of finite dimensional vector spaces over k. Equivalently, a C°P-module is
a functor
M : C°? — Vecy, .

We say that a C°P-module M is finitely generated if there exists a finite list of trees (or rooted
trees, or planar trees) {7T;};er such that for any tree T' ¢ {T;}icr, the vector space M (T') is spanned
by the images

M() - M(T3) = M(T),

where ¢ : T — T; is a contraction. We call the trees {7;} the generators of the module M, and
say {T;} generates M.

Remark 2.3. The category of C°P-modules is abelian, with the standard abelian operations defined
point-wise. In particular, we can reuse terms from the language of modules over a ring without am-

biguity.

As the field £ will not affect the proofs of statements of results, we now fix a field

k for the remainder of the paper.

One of the most important properties of finitely generated C°P-modules is the Noetherian prop-

erty.

Theorem 2.4 (|Bar|, [PRb]). If M is a finitely generated C°P-module, then all submodules of M

are also finitely generated.

In this paper we consider the types of growth that can appear in the dimensions of the vector
spaces M(T'). This question was partially considered in the precursor work [PRb]|, where the

following is proved.

Theorem 2.5 ([PRb]). Let M be a finitely generated C°P-module. Then there exists a polynomial
Pyr(t) € Q[t] such that for all trees with |Er| > 0, one has

[PRb]| also proves results which show how this polynomial behavior is sharp, so long as you vary
the trees within certain natural families of trees. In this work we consider growth as it pertains to
the module M as a whole, instead of how it pertains to the individual vector spaces which comprise
it.

Definition 2.6. It is a well known fact that planar rooted trees with n edges are in bijection with
Dyck paths of length 2n. A Dyck path is a word of even length 2n in the alphabet {u,d} such
that each of the characters v and d appear exactly n times and up to any ¢, the sub word of letters
up to index ¢ has no more d’s than u’s.

Given a Dyck path w of length 2n, we write T'(w) (resp. Tr.(w), resp. Tp(w)) to denote the tree
(resp. rooted tree, resp. planar rooted tree) associated to w. Note that T'(w) and T,.(w) do not
uniquely determine the original word w, though every tree and rooted tree can be written in this
form for some w.

Let M denote a finitely generated 7°P-module. Then the Hilbert-Dyck series associated to M

is the formal power series

HDy(t) = dimy (M (T (w)))tFE @],

where the sum is over all Dyck paths. Note that |E(T(w))| = l(w)/2, where I(w) is the length of
the word w. We similarly define Hilbert-Dyck series for modules over the category RTP.

Example 2.7. Consider the T°-module which assigns to every tree the vector space k, and to
every contraction the identity map. This is sometimes referred to as the trivial 7°P-module. Then

we have
HD]M(t) = chtn,
n>1
where ¢, is the number of Dyck paths of length n, i.e. the n-th Catalan number. In particular,
HDj(t) is precisely the generating function for the Catalan numbers.
Note that, if instead M was the RTP-module (resp. PT°P-module) which assigns k to every
rooted (resp. planar rooted) tree, then HDys(t) (resp. Hps(t)) is identical to the above.

It is a well-known fact that the generating function for the Catalan numbers is algebraic. That
is, it satisfies a polynomial equation with coefficients in Q(n). Our main result can therefore be seen
as a categorification of this fact. See [BMO05| for a comprehensive treatment of algebraic generating

functions and their applications.

2.2 PDA’s and context-free languages

In this section we discuss the theory of Push-down Automata (PDA) and their associated context-
free languages. See [ABB97] for a standard reference. Before we dive into the somewhat intimidating
formalities of the subject, we take a moment to try to develop the basic intuition for what PDAs

are designed to accomplish.

Definition 2.8. Let X be a finite set. Then we define the Kleene star * to be the free monoid
generated by the set 3. A language £ with alphabet X is just any subset of X*. Given a word
w € L, we write [(w) to denote the length of w. That is, the number of elements of ¥ which
appear in w.

In this paper, we follow the standard practice of the field and reserve the symbol € to denote

the empty word.

Remark 2.9. Much of what follows will actually work for any norm on the language £, not just

the length. This level of generality will not be necessary for us.

Complexity in language theory is concerned with two distinct, but essentially equivalent, per-
spectives. The first perspective is the question of how complicated a grammar needs to be in order
to build the language from its alphabet. The second perspective is the question of how sophisticated
a machine needs to be to be able to detect whether a given word is in the language. The simplest
possible machines are finite state automata. These machines have finitely many states, and a finite
list of rules which allow one to move between states given an input element of . The kinds of
languages whose inclusion problem can be solved by finite state automata are the so-called regular
languages. In this paper we will largely be concerned with machines that are one step higher in

complexity: finite automata equipped with memory in the form of a stack.

Definition 2.10. A push-down automaton, or PDA, is a 7-tuple P = (Q,%,T',6,q0, Z, F),

where:

e () is a finite set called the states of P;

>’ is a finite set, disjoint from @, called the alphabet of P;

e ['is a finite set, disjoint from ¥ and @), called the stack symbols of P;

§:Qx (XU{e}) x (TU{e}) = P(Q x IT'*), where P denotes the power set, is the transition

function of P;

qo € @ is the initial state of P;

e 7 €T is the initial stack symbol of P;
e F C (@ is the set of final states of P.

An instantaneous description of P is a triple, (¢, w,S) € Q x ¥* x I'*. We interpret an
instantaneous description as telling us which state we are currently in, the remainder of the word
that is currently being processed, and the contents of the stack, where we understand the left most
symbol of S as being the top of the stack. If (¢,aw,AS) is an instantaneous description with
a € XU{e} and A € T'U {€}, then we write

(q,aw, AS) — (¢',w, aS) (1)

if (¢,) € 6(q,a,A). More generally, if (¢, w, S) and (¢/,w’, S’) are two instantaneous descriptions
of P, then we write

if there is a series of moves of the form (1) transforming (g, w,S) into (¢’,w’,S’). Finally, we say

that P recognizes a word w € * if

(QO77U7 Z) g (qT7 67 S)

where gy and Z are the initial state and stack symbol, respectively, S € I'*, and ¢, € F is a final
state. The language L£(P) of P is the set of all words that are recognized by P. We call P, as well
as the language £(P), unambiguous if for any w € L(P) there is precisely one sequence of moves
of the form (1) that leads to a final state.

We think of a push-down automaton P = (Q,>,T,0,qo, Z, F') as being a machine that inputs
a word w and outputs either "yes" or "no." It does so in the following way: Writing our word as
w = aw’, with a € X, it reads the letter a as well as the top of the stack, Z, and checks its available
moves, as prescribed by d(qo, a, Z). These moves may include popping the top of the stack, pushing
more symbols onto the stack, or some combination of both, along with a possible jump to a new
state. If there are no available moves, then the machine outputs "no." Otherwise, it continues
reading the remaining word w’ in this way. When the entire word has been read, if the machine is

" while otherwise it outputs "no."

in a final state it outputs "yes,

One should observe that the transition function of a PDA is permitted to read e for either the
input letter or the top stack symbol. This does not signify that the input word or stack must be
empty for this transition to occur. It is more correct to interpret these transitions (sometimes called
e-moves in the literature) as saying that this transition can happen regardless of what the next
input letter (or top of the stack) is. We will see examples of these kinds of transitions during the

proof of the main theorem.

Languages which are of the form £(P) for some PDA P are called context-free. Importantly

for us, one has the following foundational result about context-free languages.

Definition 2.11. Let £ be a language over some finite alphabet ¥. Then the generating function

He(t) =) ™),

weL

of L is the formal power series

where [(w) is the length of the word w € L.

Theorem 2.12 (Proposition 3.7, [BMO05]). Let L be a context-free language associated to an unam-
biguous PDA. Then Hp(t) is algebraic.

Remark 2.13. We will see that Hilbert-Dyck series are in fact always Z-algebraic (See [BD15,
Definition 3]). We do not make use of this distinction in this paper.

Example 2.14. We have already seen that the Catalan numbers have an algebraic generating
function. In fact, we can realize the Catalan numbers as the number of words of a given length in
an unambiguous context-free language as follows.

Set P = (Q,%,T,0,q0,Z, F), where Q = {qo,q1}, X = {u,d}, I' = {Z, A}, and F = {¢q;:}. Our

transition function will be defined by the assignments:

5(Q07U>Z) = (q()vAZ
(5((]0,U,A) = (QO7AA

d(qo.d, A) = (qo, €
5(qo,€,Z) = (

Note that we follow the standard practice in the field that when the output of the transition function
is a singleton, we suppress the set notation. Moreover, any transition whose output is the empty
set is not written.

Also note that in the third transition, the right hand side is of the form (g, €). By how instan-
taneous states were defined, one should always interpret this as saying the previous top of the stack
has been popped. In other words, what was once an A at the top of the stack has been replaced
with an empty character e.

In words, the first two transitions indicate that when a wu is read by the PDA, the symbol A
is added to the top of the stack, while the third indicates that if a d is read, the stack is popped.
Finally, the last transition indicates that, at any time when the stack only contains the initial
symbol, you may move on to the final state. It is clear from this description that P is unambiguous,
as the transition function has at most one move for any legal input. Moreover, a quick argument
shows that L is precisely the language of Dyck paths. Our claim then follows from the fact that the

number of Dyck paths of a given length agrees with the Catalan numbers.

2.3 Lingual categories

In their seminal work [SS17], Sam and Snowden develop a kind of language theory for categories,

which they call lingual categories. Roughly speaking, these are categories whose morphisms can be

10

encoded as "well-behaved" languages. The upshot to this is one can use well known combinatorial
theorems about the Hilbert series of these languages (See Definition 2.11) to conclude non-trivial

facts about the dimension growth of modules over the category. In particular, we have the following.

Definition 2.15. Let C denote an essentially small category with no non-trivial endomorphisms,

and write x for an object of C. Then we write |C,| for the set
|Col ={f:x — y|yis an object of C}/ ~,
where ~ is the relation
f~g <= ho f =g for some isomorphism h.
The set |C,| can be enhanced with the structure of a poset, with order relation given by
f<g < g=ho f for some morphism h.

We say that the category C is an unambiguous and context-free if the following four condi-
tions hold:

the category C is Grobner in the sense of Sam and Snowden [SS17, Definition 4.3.1];

e for every object x, there exists a set theoretic bijection
Lyt |Co| = Ly,

where £, is an unambiguous context-free language;

e for every object z, and every order ideal I of the poset |C,|, the image ¢, (I) C L, is also an

unambiguous context-free language;

e there exists a function v, called the norm of C, from the set of isomorphism classes of objects

of C to N such that for any object x and any morphism f :x — y,
v(y) = e (f))-

The theory of Grébner categories was developed by Sam and Snowden. One can think of this
condition as saying that the representation theory of the category admits a theory of Groébner
bases. This notation was extended by Miyata, Proudfoot, and the author in [MPR] to modules over
categorical algebras. For the purposes of the present work, just note that the category PT°P was
proved to be Grobner by Barter in [Bar|. We therefore do not need to worry too much about this

condition going forward.

11

Theorem 2.16 (Theorem 6.3.2, [SS17]). Let C be an unambiguous context-free category with norm
v, and let M be a C-module. If M is finitely generated, then the formal power series

Hyro(t) := Z dimk(M(m))tV(I)

1s algebraic.

In view of Theorem 2.16, and Definition 2.6, our path forward has now become clear. Our first
step will be to prove that the category PT°P is unambiguous and context-free, thereby generalizing
the computation in Example 2.14. This will imply that the Hilbert series for finitely generated
modules over PTP are algebraic by Theorem 2.16. Following this, we leverage the fact that the
forgetful functors PT — RT and PT — T have the so-called property (F) (see [PRb] and [SS17]).
In particular, pulling back any finitely generated RT’ or T°-module to a module over PTP
preserves finite generation. This will imply that Hilbert-Dyck series of finitely generated modules

over the categories RT? and TP will be algebraic, as desired.

3 The proof of the main theorem

In this section, we prove our main theorem via the strategy just outlined. In particular, our ultimate

goal is the prove the following.

Theorem 3.1. The category PTP is unambiguous and context-free, with norm given by

v(T) =2 (# of edges of T).

Remark 3.2. We note that, with the norm defined as it is above, the associated Hilbert series
are not exactly the previously defined Hilbert series (Definition 2.6). However, they are related by
substituting ¢ for v/¢. This operation clearly preserves the ultimate conclusion that the Hilbert series
are algebraic, and we therefore stick with the aforementioned norm so that Lemma 3.10 remains

true.

Proving this theorem happens in three steps. To begin, we must first decide on a means of

encoding the morphisms of P77 as words in a language.

For the remainder of this section, we fix a planar rooted tree T with n vertices.

Definition 3.3. We may assume that the vertices of T have been identified with {0,...,n — 1}.
Then we define the alphabet Y7 to be the finite set of symbols

Y= {ui,di ‘ 1€ {0,...,TL— 1}}
Thus, || = 2n. We will encode |PT7"| as a language over the alphabet Y.

12

o =

Figure 1: A planar tree 7"

Let T" be a planar rooted tree, and let ¢ : T — T’ be an opposite planar contraction, with
associated contraction v : 77 — T. Then we encode ¢ as a word in X7 as follows. Let w be the
Dyck path associated to the tree 7. We add subscripts to the u’s and d’s in this path by looking
at 1 applied to the head (directed, as always, away from the root) of the associated directed edge
when a u is read, and the tail of the associated edge when a d is read. We will write wg to denote
this word.

Finally, we write L7 for the language
ﬁT = {w¢|q§:T—>T’}.

Example 3.4. To see an example of the above encoding, let 7" be the planar tree pictured in Figure

1. Then the Dyck path associated to T” is given by
vuuudduvuudduudddddd.

Assume now that T is a single edge, with root and head labeled by 0 and 1, respectively, and let
1 : T" — T be the planar contraction which sends the vertices labeled 9 and 10 to the head of T,

and all other vertices to the root of T. Then,
w¢ = ’LLO’LLQuOUOdodUUOUOUQUQdodoulUldldldodododo.

Remark 3.5. The idea to encode these morphisms as modified Dyck paths was first accomplished
by Barter in |Bar|, where they were called Catalan words. Our encoding is different from his, but

the basic premise is the same.

Also note that if ¢ : V(T") — V(T') is any function of sets (not necessarily a planar contraction),
then one can similarly make sense of a word on the alphabet {u;,d;} corresponding to (. We will

use this observation during the proof of the main theorem.

It was already proven in [Bar| that PT° is Grébner. This resolves the first condition in Def-
inition 2.15. We will now prove that Lr is always an unambiguous context-free language, thus

verifying the second condition of Definition 2.15.

13

Proposition 3.6. The language L1 is an unambiguous context-free language.

Proof. Our goal will be to produce an unambiguous PDA, Pr, whose associated language is Lr.

We define the components of this PDA in turn as follows:

e The states of the PDA Qr are given by the initial state qo, the final state ¢, as well as a pair
of states q(c.) and g(q) for every edge e of T

e The alphabet of the PDA is X7, while the stack alphabet 'y contains the initial symbol Z,

as well as symbols A, for every vertex v of T'.

To finish the construction of Pr, we need to detail our transition relations. We accomplish this

by examining a handful of cases, which condition on the state we are currently situated at.
CASE: Transitions originating from the initial state ¢.

In this case we have

6(Q01 UQ, 6) = (QO7 AOAO)
6(q07d07A0) = (QO76>
6(qo,u1,€) = (q(e,,u)» A1), where ey is the first edge leaving the root.

In other words, in this state the PDA can read either ug, dg, or uy. while it is reading the
symbols ug and dp, it essentially acts as the PDA which recognizes the language of Dyck paths (see
Example 2.14). If it reads the symbol wu;, however, it moves to the first non-initial state, while
adding an A; to the top of the stack.

CASE: Transitions originating from the state g ,), where ¢ is some edge of 7" whose

head (directed away from the root) is the vertex v.

This case has two subcases. Firstly, assume that the vertex v is not a leaf, and that the smallest

edge leaving v is €/, with head v’. In this subcase we see,

5(q(e,u)7 Uy, Av) = (Q(e,u)y AyAy)
5(Q(e,u)u dy, Av) = (q(e,u)7 6)
5(Q(e,u) y o Av) = (Q(e’,u)7 Av’Av)-

Note that these transitions are essentially the same as in the previous case, with one somewhat

subtle difference. While this state can accept the letters u, and wu,, it can only do so if the top of

14

the stack displays the symbol A,. The reason for this is that, based on the first two transitions, it
is technically possible for a sufficient number of d, symbols to be read so as to completely pop A,
off the stack. If one were to then try to add either an A, or an A, to the stack (e.g. by reading
a Uy Or Uy-respectively), the input word could not possible be coming from a contraction. Indeed,
if a u, is read at this point, then the vertex map associated to the input word (see Remark 3.5)
would have a disconnected preimage at v. If a wu, is read, then the vertex map does not preserve
edge adjacency, and is therefore not a contraction either. These transitions are therefore modified
to save us from accepting such a word.

In the second subcase, we assume that e is a leaf, and that the tail of this leaf is v'. We have

5(‘])5 Uvs Ay) = (Q(e,u)7 AyAy)
5(Q(e u)s dy, A) = (Q(e,u)v 6)
5(Q(e,u)7 €, AU’) = <Q(e,d)7 Av’)-

This subcase is similar to the previous. Because we have assumed that e is a leaf, there is
nowhere to go but back down to v'. If at any point the top of the stack displays the symbol A,
then we have closed off all of the wu, letters in our word, and must now move back down the tree T'

to proceed with our mapping.

CASE: Transitions originating from the state ¢ 4), where e is some edge of 7' whose

tail (directed away from the root) is the vertex v.

Once again we have a few subcases. In the first subcase, we assume that v is not the root, and
that there is some edge €/, with head v’, which is the smallest edge outgoing from v for which A,/

has never appeared on the stack. We have

5(Q(e,d) y Uy, A’U) = (Q(e,d)a AUA’U)
6(Q(e,d)a dy, Av) = (Q(e,d)u 6)
5(Q(e,d)> Uy AU) = (Q(e’,u)y AU/AU)'

In our second subcase, we assume that v is still not the root, no such edge ¢’ exists, that e”
is the incoming edge of v, and that v” is the other endpoint of ¢”. Further assume that v” is also
not the root. In the context of planar contractions, we will be in this case when we have already
resolved how we are going to map the vertices of T” to the vertices of T' above v. All that remains

is to finish mapping vertices to v, and move back down the tree 7. We have

15

6(q(e,a)s wos Av) = (4(e,a)> AvAv)
6(q(e,d)a dy, AU) = <Q(e,d)7 6)
6(qe,d)s € Avr) = (q(er,ay, Avr)-

Repeating the previous subcase, but assuming that v” is the root we have,

5(Q(ed Uy, Ay) = (qed)aA Ay)

8(q(e,ay, dv, Av) (q(e,a),€)
6(q(e.a), € Ao) = (q(er.ay Ao)
6(qe,a), € 2) = (qeray,Z)-

This subcase is largely the same as the previous, with the extra caveat that Ag is the only
stack symbol that may never be pushed to the stack. This will happened, from the perspective of
contractions, if the only vertex of T mapping to the root of T is the root of T'. We therefore have
to be a bit careful to make sure the last two cases above are written separately.

For our penultimate subcase, we assume that v = 0 is the root, and that ¢’ is the smallest

unvisited outgoing edge with head v'.

6(q(e,ay> w0, Ao) = (q(e,a)» AoAo)
6(qe,d) w0, Z) = (4(e,a), AoZ)
5((J(ed do, Ag) = (Qed)a €)

0(q(e,dy, vy €)= (4(eruy Avr)

Finally, assume that v is the root, and that all outgoing edges of v have been visited. Then

there is nothing left to be done but resolve the symbols Ag and move on to the final state.

5(q(e,d) w0, A0) = (4(e,a), AoAo)

0(qe,a)su0, Z) = (q(e,a), AoZ)

0(q(e,a)>dos Ao) = (q(e,ay, €)
é(q Q(e,d); & zZ) = (q €)

We observe that, given any partial input, the transition function has at most one possible move.
In particular, this PDA is unambiguous. It therefore remains to prove that the language of this

PDA is L7. We proceed by induction on the number of edges of T

16

In the case wherein T'is a single point, the language Lr is clearly seen to be the language of Dyck
paths, whereas the PDA Pr is easily seen to precisely agree with the PDA of Example 2.14. Assume
then that Pp has associated language L7+ for all trees T” with < n edges for some n > 1, and let
T be a planar rooted tree with n edges. Write the planar rooted subtrees attached to the root of
T as T1,...,T,, ordered in the natural way. Then by induction, as well as the definition of Pr, we
see that £(Pr) is the language of words w such that there exists some Dyck path e = ejea- - e,
on the alphabet {ug,do}, as well as words wr, € L7, with

w=e€--- eile1ei1+1 T eiszQei2+l cEm.

Note that the respective alphabets we are using for the words wr, are on the symbols {u;, d;} where
the permitted j are determined by the vertices appearing in the respective subtrees 7T;. It is obvious

that this decomposition describes the words of L1, as desired. O

Example 3.7. To make things a bit more concrete, we fully describe the PDA Pr in the case
wherein T is the tree that looks like the letter Y, with root on the bottom leaf. In this case vertices
are numbered 0,1,2 and 3, in depth-first fashion, while we write our edges as e, es, e3. Here, the
index of the edge indicates the endpoint of the edge further from the root. Then we have

b QT = {q07 Q(er,u)s Aea,u)sr Aea,d)s Ues,u)s Ues,d)r 4(e1,d)> qf}

b ZT = {U(),U1,UQ,U3,d0,d1,d2,d3},FT = {Za AOaAlaA27A3}

The complete list of our transition rules are given as follows:

6(qo,uo,€) = (qo,Ao)

(g0, do, Ao) = (qo,€)
d(qo,u1,€) = (Qel, Ar)
0(qeruy v, A1) = (qeyu), A141)

0(d(eruy» @1, A1) = (G(ey,u): €)
6(qeruys U2, A1) = (Q(egyu), A241)
0(q(epu)r u2, A2) = (q(ez,u), A2A2)
0(q(es), d2, A2) = (qe2, €)
0(q(es,u)r € A1) = (d(es,a)> A1)
0(qen,ay, u1, A1) = (Qen,a)s A1A1)
0(d(es,ay: A1, A1) = (G, €)
0(qes,ay, u3s A1) = (Qegu)s AsA1)
0(qes) u3s A3) = (Qegu), A3A3)
5(6163” d3, A3) = (q(egu):€)
) (

A(es,d)> Al)

6(q(es,a) w1, A1) = (Q(es,a)> A1 A1)

6(d(es,ay A1, A1) = (Q(es,a) €)
6(q(es,a), 6 A40) = (g el,d)7A0)
6(qes,a), 6 Z) = (Q(er,a) Z)

0(q(ey,ay, 0> Ao) = (q(ey,a), Avo)
0(q(er,a), w0, Z) = (4(ey,a): AoZ)
6(q(er,ap 6 2) = (ay,)

In words: in the initial state, the PDA can process three letters: ug, dy and uq. In the first case,
the symbol Ag is pushed onto the stack, while in the second case Ag is popped from the stack. In
the third case, we jump to the first non-initial state, and push the symbol A; onto the stack. To
relate this to the context of planar contractions, we known that the root of 77 must map to the root
of T. At this point we traverse T” using the usual Dyck path method, at each step keeping track
of what vertex of T' the contraction is mapping our current vertex of 7" to. In particular, at the
beginning we map everything to the root of T7”, until we step to the first vertex of 7" which maps to
the first non-root vertex of 7' (in the depth-first order). At this point, we have entered the regime
of the word wg where the symbols u; and d; become active, while ug and dop become inactive. This
will remain the case until we close off all of the symbols u; (as well as any intermediate symbols
corresponding to the vertices of T" accessible from the vertex 1 without passing through the root).
That is to say, until the top of the stack is either the symbol Ay or Z. Here our PDA will have
the option to move into the section of the word corresponding to a region of 7" which is once more
being sent to the root. In this region, while we are free to use the symbols ug and dy, we have to
be careful not to suddenly begin reusing the symbol ;. Indeed, once we have stepped back to the
root in 7', it would be a violation of the definition of contraction to return to the first vertex. This
is why our states not only record which vertex of T" we are currently mapping to, but also whether

we have just entered this regime from below, or above.
The construction of the PDA in Proposition 3.6 inspires the following definition.

Definition 3.8. Let wy be a word in L7, and let (e,u) (resp. (e,d)) be a pair of an edge and a
direction corresponding to a state in the PDA of Proposition 3.6. Then the letters appearing in the
word wg which are processed by this PDA whilst in the state corresponding to (e,u) (resp. (e, d))
comprise what we call the (e, u) (resp. (e,d)) section of the word wg. The portion of wg which
is parsed in the gg-state of the PDA will be called the initial section. When the specific state of
the PDA is not relevant to what is being discussed, we will often times just refer to the sections of
the word wg. Very importantly, by how the PDA of Proposition 3.6 was defined, the only section
that can possibly be empty is the final section. In other words, the PDA can not, in all but one

case, skip states.

Example 3.9. If we take wy = uguodouiuidididy, then the initial section of wg is the subword
upupdouy, while the (e, u)-section is uydydy, and the (e, d)-section is dp.

18

In accordance with Definition 2.15, we have to verify that the order ideals of the poset |PT 7|
are also unambiguous context-free languages, as well as the condition that our norm agrees with
the length function on the language. The latter of these two goals is immediate from the relevant

definitions.
Lemma 3.10. The norm of v defined in the statement of Theorem 3.1 respects the length on L.

Before we can begin the proof of our final required statement,we introduce some notation that

will be useful.

Definition 3.11. Let wy,wy € L7 be two words. We say that wy is strongly contained in wy if
wgy is a subword of wy, and whenever u;, d; are a pair in wg - that is this d; is the alphabet symbol
whose reading pops the original contribution of u; from the stack of Pr - they are also a pair in
wg . For instance, while uudd appears as a subword of udududud, it is not strongly contained in

this word.

Remark 3.12. Counting patterns in Dyck paths is a relatively new field which seems to have many
results analogous to the much more classical setting of counting patterns in permutations. See
[BBFGPW14] for a treatment of these results. In this paper, we will be concerned with patterns
that strongly appear in the word, as in the above definition. Our goal will be to show that the
language of Dyck paths strongly containing any fixed pattern is actually unambiguous and context-

free.

Proposition 3.13. Let T be a fized planar tree, and let I be an order ideal of |PT7'|. Then the

language associated to I is unambiguous and context-free.

Proof. We first prove the proposition in the case where the order ideal is principal. In particular,

we assume that

I=(¢)={¢'| ¢ =¢" o ¢ for some ¢".}
Translating everything through various definitions and equivalences, our goal in this proposition is
to prove the following. We must show that the language

{wy | wy strongly contains wg} C Lo,

is unambiguous and context-free.

Consider the PDA with component parts written as:
[] Q - {QUv (6617)7(]() aCIfound7Qf}

o I'={Z, (ws;)},

where ¢ ranges from 0 to the size of the initial section of wy, and each i(.) or (¢ 4) range from 0 to
the length of the (e,u) or (e, d) section of the word wg, respectively.
In words, the states of the PDA will encode both the section of the word we are currently

parsing, as well as how much of wg we have observed thus-far. Thus, this PDA can be viewed as a

19

kind of refinement of the PDA of Proposition 3.6. we split each state of the PDA of Proposition 3.6
into a collection of states corresponding to the length of the corresponding section of the word wg.
Our stack symbols include the initial symbol Z as well as symbols corresponding to the subwords of
wg comprised of the first j letters for each 0 < j < I(wg). This will be done so that when a letter of
our word is read, the stack can be made to remember what part of the word wy it may correspond
to. Using the stack in this way also assures that we will have found a strongly included copy of wg,
and not just a normal copy.

We describe the transitions of this PDA in a particular example, and then discuss how they
generalize. Let T' be a single edge, and wg = updouiuidid;. In this case our PDA has states given
by

Q = {QSv q(%a an Q?e7u)a Q(le7u)7 Q(Qeyuy Q?@u)v q?e,d)’ 4dfound, Qf}7

while our stack alphabet is given by

I'={Z,(Uo), (UpDy), (UoDoUy), (UsDoUUy), (UyDoU U1 D), (UgDoU U1 D1 D)) }

Our transition function is given as follows

3(ap, w0, Z2) = (a5, (Uo)Z)
3(ap,u0,€) = (a9, (Vo))
0(ap: do, (U)) = (dp:e)
3(q5,u0.€) = (45, (UoDy))
8(a3. do, (Uo)) = (d5.€)
5(q3,do, (UoDo)) = (q5,€)
(g u1,€) = (4u)» (UoDol))
0@y u1,6) = (@euy> (UoDoULUY))
5(uj,€) = (Q(le,u) (UyDoU UY))
0(dfeuy» 1 (U0D0U1 U1) = (¢fu)©)
8(qt .y u1,€) = (a4 (UoDoUrULDy)) (2)
3(qe.uys 41, (UoDoU UL D)) = (Gl €) (3)
0(a(e s A1, (UoDolUrU1)) = (q(eyr€)
5(()dh(UODOUl)) = (q?e,d)7€)
3(@enyru15€) = (afu)r (UoDoUrU1D1Dy))
3(a, u),dla(UoDoUlUlDlDl)) = (@ ©)
5(61(@ 041, (UoDULT)) = (a(e s ©)
0(d(e, s A1, (UoDoUrUrD1)) = (ale - €)
(¢t dis UoDoU)) = (Gl)

20

= 5(Qfound767€)
qfound, (UoDoU Uy D1Dy))

() €5 €
5(Qfound7u0a €
(¢ found do, (UoDoU1U1 D1 Dy)
3(qfounds do, (UoDy)
3(qfound; do, (Uo)
6(qfound; €,

qfound, €)

qfound €)

)
) (
) (
) = (qround:€)
) (
Z) (

qf,€)-

To summarize, the states of the PDA indicate both the section of wy which has been thus far
detected, as well as the section of the input word currently being processed. We note that sections of
wyg must appear in the corresponding sections of the word being processed, and so there is nothing
lost by partitioning our states this way. The stack symbols are meant to indicate how much of the
word wg has been processed at the time the current letter is being read. This way, for instance,
when certain symbols are popped from the stack, the PDA can determine when it needs to leave a
certain state as the currently observed partial pattern can no longer be completed. On the other
hand, this also allows for us to know whether or not a currently being read down symbol corresponds
to the correct up symbol in so far as the pattern is concerned. In particular, it guarantees the copy
of wy being detected is strongly included in the word, and not just a subword. The state qfoung is
entered when the word wy has been fully detected, and we no longer have to worry about tracking
exactly what is being read.

In so far as the process of tracking the word wg, there are a few things that can happen that
are out of the expectation of wg. For instance, after having read a ug at the beginning of the word,
we have entered the state qé, indicating we are in the initial section of our word, and have already
found the first desired up letter of wg. In-so-far as wg is concerned, the expectation is to next
read a down letter. As one can see from the above PDA description, if, another up letter is read
instead, then we do not change states. More generally, if we are in a state that was entered after
successfully reading an expected up letter of wg, and unexpectedly read another up letter, then the
PDA stays in this state. We think of this unexpected up letter as a kind of buffer for the next kind
of unexpected move.

If we have entered a state having correctly read an up letter, but then unexpectedly read a
down letter, then it is impossible for the most recently read up letter to be part of a strong copy of
we. If we still have some of the aforementioned “buffer" up letters (which will be indicated by the
top of the stack having the correct symbol), then we may stay in this state and wait for the next
letter. Otherwise, we must abandon this state and fall back to a state that indicates we haven’t
seen as much of the pattern as originally thought. A similar phenomenon happens if we just read
an expected down letter, and then read an unexpected down letter.

The final kind of unexpected letter is seen in transitions (2) and (3). At this point in the PDA,
the partial pattern ugdouiuid; has been detected, and the next letter read is a u;. Whenever one
follows a down move with an unexpected up move, you have entered a section of your word which

can no longer contribute to completing the partial pattern originally being observed. Therefore, the

21

PDA must fall back to an earlier state and begin looking for a new pattern. If it finds this new
pattern, then it enters the "found" state. Otherwise the symbol (UyDoU,U1D;) will eventually be
popped from the stack, indicating to the PDA it must return to the original partial pattern and
attempt to complete it.

Note that the above four cases illustrate why it is not necessary for the PDA to backtrack. It
is essentially keeping track at all times of whether strong inclusion of wg is possible, not exactly
where that copy is located.

Observe many states and transitions are not strictly necessary in this example. For instance,
once two u; have been observed, it is impossible for us to not find our pattern. We present this
example in this overly long way just to make it more clear how it generalizes. Finally, Observe
that our PDA is unambiguous as for every input letter and top of the stack, there is at most one
transition available.

Now that we have treated the case of a principal order ideal, we must treat the general case
of an order ideal I. To begin, recall that Barter [Bar| has already shown that the poset |[PT |
is Noetherian. In particular, all order ideals can be expressed as a finite union I = Ui]il(qbi). We

therefore must prove
{wg | wy strongly contains at least one of the words wy, }

is unambiguous and context-free. Because the list of desired patterns is finite, it is clear that one
may modify the above so that our states record how much we have seen of each of the patterns
independently. Our stack symbols will encode the currently observed partial patterns for each of

the finitely many target patterns. O

4 Applications of the main theorem

In this section, we see certain concrete applications of the main Theorem 1. Our first application
involves counting a certain recursive invariant of Dyck words.

Definition 4.1. Given a Dyck path w, we define its degree sequence as the (@ + 1) — tuple

(agj))UGT(w) encoding the degree sequence of the associated planar rooted tree Tp,(w). If oy, is the

degree sequence of some Dyck path, then we write
(v)
«
foull- = 3 ()
veT (w)

for the star-norm of ay,.
Our first application involves the generating function of the star-norm.

Theorem 4.2. The generating function

Hitor(t) := Z ||O‘w||>i<75l(w)/2

22

is algebraic.

Proof. We will encode the series Hgqr(t) as the Hilbert series of some finitely generated P7T°P-
module. Let T be a tree, and let cone(7") denote the graph obtained by adding a single vertex and
connecting it to every vertex of T'. For instance, the cone of a single edge is a triangle, while the
cone of a path with three vertices is two triangles glued along an edge. In [PRb, Theorem 1.6], a

finitely generated P7T °P-module M is constructed with the property that for any Dyck path w,
M(Ty(w)) = Hi1(UConfa(cone(Ty(w)); Q)),

where UConfy(cone(7T,(w))) is the two particle unordered configuration space of the graph cone(7),(w))
(see [ADCK19||Ram18||Far06], for instance). It is also shown in [PRb, Example 3.11| that

dimg(H1(UConfz(cone(Ty(w)); Q))) = l(w)/2 + ||aw]|«-
Therefore, the Hilbert series of the module M is given by

Hyr(t) = Y (1(w) /2 + [l)2 =37 (1(w) /2)")2 + Hyar (8).

w w
On the other hand, one can see that

Z(l(w)/Q)tl(w)/z =t. ;(% tl(w)/2).

w

It is classically known that

Ztl(w)/Q _ 1-— \/]. — 4t
2t ’

whence

D~y (2= VI—AE+1)
8t(;tl Y= (212\/1 — 4t)

is an algebraic function. Tt follows that Y (I(w)/2)t(*)/2 is algebraic, and the same must be true
of Hstar (t) O

Remark 4.3. The observation that the derivative of > (I(w)/2)t/")/2 is once again algebraic is
really a specific case of a much more general phenomenon related to D-finite series. See [BD15,

Proposition 4| for more on this.

Note that the above Theorem is actually just applying the techniques of this paper to the case
of the first homology of tree configuration spaces. In fact, the results of [PRb] tell us that all of the
homology groups are finitely generated as P7 °P-modules. In particular, the same proof technique
as the above can be used to prove a variety of more complicated numerical invariants of degree
sequences of Dyck paths have algebraic generating functions. See [Ram18| for what these formulas
look like.

23

For our second application, we look to counting subtrees of a given tree. The generating function
for counting subtrees is of considerable interest in computer science (see [Rus81], For instance). In

this work we consider the generating function of the following collections of numbers.

Definition 4.4. Let w be a Dyck path with associated planar rooted tree T,,(w), and let I > 2 be

fixed. Then we set s;(w) to be the invariant

(w) #(planar rooted subtrees of T),(w)) if T,,(w) has no more than [leaves
S\w) =
0 otherwise.

Example 4.5. For instance, if [= 2, then those w for which s;(w) # 0 precisely correspond to
planar rooted paths. If T),(w) is a planar rooted path, then each subtree that is not a single vertex

is in bijection with unordered pairs of vertices of T),(w). In particular,

(w) (l(w)/2+1) + (l(w)é2+1) if T,(w) is a path (l(w)é2+2) if T, (w) is a path
So(wW) = =
0 otherwise 0 otherwise.

+2
;32(w)tl(w)/2 =1+ Zn(n 5)tn

n>1

where the factor of n is the number of Dyck paths corresponding to paths with n > 1 edges, and
the plus one comes from the case of the empty path corresponding to 7),(w) being a single point.
This implies that the generating function for so(w) is rational. In general, we will see that s;(w)

has an algebraic generating function.

Theorem 4.6. Let [> 2 be fized. Then the generating function

H(t) == Z s (w)t /2

w

15 algebraic.

Proof. We encode H(t) as the Hilbert series of some PTP-module. In [PRb, Theorem 1.9], Proud-
foot and the author construct a finitely generated PT°P-module M such that

) KLi(cone(T)) if T has <[leaves
dimg(M(T)) =
0 otherwise,

where K Lj(cone(T)) is the first Kazhdan-Lusztig coefficient of the graphical matroid associated to
cone(T') (see [EPW16, Proposition 2.12]). For our purposes, what is important is the fact that for
any matroid M,

KLi(M) = #(codimension 1 flats of M) — #(dimension 1 flats of M).

24

The graphical matroid of cone(7") has a 1 dimensional flat for every edge, and therefore
#(dimension 1 flats of cone(T)) = |Er| + |Vr| = 2|Er| + 1.

On the other hand, the number of codimension 1 flats of cone(7T") are easily seen to be in bijection
with subtrees of T'. Thus,

Hy(t) =Y dimg(M (T, (w))#*)/? = > (sy(w) — (I(w) + 1))t ®@)/2,

Tp(w) has <1 leaves

On the other hand, we can define a P7 °P-module N such that,

N(T) = QEconc(T)’

the vector space with basis indexed by the edges of cone(T"). N is finitely generated by a single
edge and a single vertex. Moreover, it contains a submodule N’ which is generated by the pieces
N(T), where T has strictly more than [leaves. The quotient N/N’ has the property that

N/N/(T) _ QEcone(T) if T has S l leaves

0 otherwise.

Therefore, the Hilbert series of N/N’ is precisely,

> (I(w) + 1)#H@)/2,

Tp(w) has <1 leaves

Because N is finitely generated, N/N' is as well, and therefore this Hilbert series must be algebraic.

This implies that our generating function is also algebraic, as desired. O

References

[ABB97] Jean-Michel Autebert, Jean Berstel, and Luc Boasson, Contezt-free languages and push-
down automata, Handbook of formal languages, Springer, 1997, pp. 111-174.

|[ADCK19| Byung Hee An, Gabriel C. Drummond-Cole, and Ben Knudsen, Subdivisional spaces and
graph braid groups, Doc. Math. 24 (2019), 1513-1583.

[Bar] Daniel Barter, Noetherianity and rooted trees, arXiv:1509.04228.

|[BBEFGPW14| Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, and
Julian West, The dyck pattern poset, Discrete Mathematics 321 (2014), 12-23.

[BD15] Cyril Banderier and Michael Drmota, Formulae and asymptotics for coefficients of al-
gebraic functions, Combinatorics, Probability and Computing 24 (2015), no. 1, 1-53.

25

[BMO5]

[CEF15]

[CF13]

[Drm04]

[EPW16]

|Far06]

|MPR|

[Ott48]

[PRa]

[PRb]

[Ram18|

[Rus81]

[$S17]

Mireille Bousquet-Mélou, Algebraic generating functions in enumerative combinatorics
and context-free languages, Annual Symposium on Theoretical Aspects of Computer

Science, Springer, 2005, pp. 18-35.

Thomas Church, Jordan S. Ellenberg, and Benson Farb, Fl-modules and stability for
representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833-1910.

Thomas Church and Benson Farb, Representation theory and homological stability, Adv.
Math. 245 (2013), 250-314.

M. Drmota, Combinatorics and asymptotics on trees, Cubo Journal (2004).

Ben Elias, Nicholas Proudfoot, and Max Wakefield, The Kazhdan-Lusztig polynomial of
a matroid, Adv. Math. 299 (2016), 36-70.

Daniel Farley, Homology of tree braid groups, Topological and asymptotic aspects of
group theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006,
pp- 101-112.

Dane Miyata, Nicholas Proudfoot, and Eric Ramos, The categorical graph minor theo-
rem, arXiv:2004.05544.

Richard Otter, The number of trees, Annals of Mathematics (1948), 583-599.

Nicholas Proudfoot and Eric Ramos, The contraction category of graphs,
arXiv:1907.11234.

Nicholas Proudfoot and Eric Ramos, Functorial invariants of trees and their cones,
arXiv:1903.10592.

Eric Ramos, Stability phenomena in the homology of tree braid groups, Algebraic &
Geometric Topology 18 (2018), 2305-2337.

Frank Ruskey, Listing and counting subtrees of a tree, SIAM Journal on Computing 10
(1981), 141-150.

Steven V. Sam and Andrew Snowden, Grébner methods for representations of combina-
torial categories, J. Amer. Math. Soc. 30 (2017), no. 1, 159-203.

26

	Introduction
	The setup
	The main theorem
	Other categories of graphs

	Background
	Categories of trees
	PDA's and context-free languages
	Lingual categories

	The proof of the main theorem
	Applications of the main theorem

