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Abstract. We prove that the ith graded pieces of the Orlik–Solomon algebras

or Cordovil algebras of resonance arrangements form a finitely generated FSop-
module, thus obtaining information about the growth of their dimensions and

restrictions on the irreducible representations of symmetric groups that they

contain.

1. Introduction

Let A(n) be the collection of all hyperplanes in Rn that are perpendicular to
some nonzero vector with entries in the set {0, 1}. This hyperplane arrangement
is called the resonance arrangement of rank n. The resonance arrangement
has connections to algebraic geometry, representation theory, geometric topology,
mathematical physics, and economics; for a survey of these connections, see [4,
Section 1]. Of particular interest is the set of chambers of A(n). Amazingly,
despite the simplicity of the definition, no formula for the number of chambers as
a function of n is known. A more refined invariant of A(n) is its characteristic
polynomial, whose coefficients (after taking absolute values) have sum equal to the
number of chambers. Kühne has made some progress toward understanding the
coefficient of tn−i in the characteristic polynomial as a function of n with i fixed.
Our purpose is to shed a new light on Kühne’s result, to generalize it to a wider class
of arrangements, and to study the action of the symmetric group Σn on various
algebraic invariants of these arrangements.

Let S ⊂ R be any finite set, and let AS(n) be the collection of hyperplanes that
are perpendicular to a nonzero vector with entries in S. If S = {0, 1}, AS(n) is the
resonance arrangement. If S = {±1}, it is the threshold arrangement, which is
studied in [3]. For each positive integer d, let MS(n, d) denote the set of n-tuples
of vectors in Rd such that no nontrivial1 linear combination of all n vectors with
coefficients in S is equal to zero. The cohomology ring of MS(n, d) is generated
in degree d − 1 [2, Corollary 5.6]. If d is even, the presentation of this ring in [2]
coincides with that of the Orlik–Solomon algebra of AS(n) (with all degrees
multiplied by d− 1) [6]. If d is odd and greater than 1, then it coincides with that
of the Cordovil algebra of AS(n) (with all degrees multiplied by d − 1) [1]; see
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also [5, Example 5.8].2 In particular, for any n ≥ 1, d ≥ 2, and i ≥ 0, the dimension
biS(n) = dimH(d−1)i

(
MS(n, d);Q

)
is equal to (−1)i times the coefficient of tn−i in

the characteristic polynomial of AS(n).
These vector spaces carry more information than just their dimension; they also

carry actions of the symmetric group Σn, which acts by permuting the n vectors.
These representations are isomorphic for all even d ≥ 2 and for all odd d ≥ 3,
but the d = 2 and d = 3 cases are genuinely different. The total cohomology
H∗
(
MS(n, 3);Q

)
with all degrees combined is isomorphic as a representation of Σn

to H0
(
MS(n, 1);Q

)
, which is the permutation representation with basis indexed by

the chambers of AS(n) [5, Theorem 1.4(b)].
For fixed S ⊂ R, d ≥ 2, and i ≥ 0, we will define in the next section a contravari-

ant module Bi,dS over the category of finite sets with surjections that takes the set

[n] to H(d−1)i
(
MS(n, d);Q

)
.

Theorem 1.1. The module Bi,dS is finitely generated in degrees ≤ |S|i.

Combining Theorem 1.1 with [7, Theorem 4.1], we obtain the following numerical
results:3

Corollary 1.2. Fix a finite set S ⊂ R and a pair of integers d ≥ 2 and i ≥ 0.

1. The generating function

GiS(t) :=

∞∑
n=1

biS(n)tn

is a rational function with poles contained in the set {1/j | 1 ≤ j ≤ |S|i},
with at worst a simple pole at |S|−i. Equivalently, there exist polynomials

{ci,jS (n) | 1 ≤ j ≤ |S|i} such that, for n sufficiently large,

biS(n) =

|S|i∑
j=1

ci,jS (n)jn,

and the last polynomial c
i,|S|i
S (n) is a constant polynomial.

2. For any partition λ of n, let Vλ denote the irreducible representation of

Σn indexed by λ. If HomΣn

(
Vλ, H

(d−1)i
(
MS(n, d);Q

))
6= 0, then λ has at

most |S|i rows.
3. For any partition λ with n ≥ |λ| + λ1, let λ(n) be the padded partition

of n obtained from λ by adding a row of length n − |λ|. For any λ, the
function

n 7→ dim HomΣn

(
Vλ(n), H

(d−1)i
(
MS(n, d);Q

))
is bounded above by a polynomial in n. In particular, if λ is the empty
partition, this says that the multiplicity of the trivial representation in
H(d−1)i

(
MS(n, d);Q

)
is bounded above by a polynomial in n.

2For d odd, the presentation in [2] incorrectly omits the relations that each of the generators
squares to zero.

3The deepest of these statements, namely the fact that the dimension generating function for
a finitely generated FSop-module is rational with prescribed poles, is due to Sam and Snowden
[8, Corollary 8.1.4].
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Remark 1.3. A stronger version of item (1) above for the resonance arrangement

appears in [4, Theorem 1.4]. Kühne proves that the polynomials ci,j{0,1}(n) are

all constant (i.e. that all poles of Gi{0,1}(t) are simple), obtains bounds on their

sizes, and shows that the equality holds for all n, not just sufficiently large n
(i.e. that the limit as t goes to ∞ of Gi{0,1}(t) is zero). It should be possible to

categorify Kühne’s theorem by proving that the restriction of Bi,d{0,1} to the category

of ordered surjections [8] is isomorphic to a direct sum of shifts of principal
projectives, with summands indexed by Kühne’s functional prototypes. The
cost of working with ordered surjections would be that we would lose all information
about the action of the symmetric group.

Acknowledgments: The authors are grateful to Lou Billera for telling them about
the arrangement A(n) and about Kühne’s work.

2. The proof

Let FS denote the category whose objects are nonempty finite sets and whose
morphisms are surjective maps. An FSop-module over Q is a contravariant functor
from FS to the category of rational vector spaces. For each finite set F , we have the
principal projective module PF , which sends a finite set E to the vector space
with basis HomFS(E,F ), with morphisms defined on basis elements by composition.
An FSop-module N is said to be finitely generated if it is a quotient of a finite
sum ⊕iPFi

of principal projectives, and it is said to be finitely generated in
degrees ≤ m if the sets Fi can all be taken to have cardinality less than or equal
to m. This is equivalent to saying that, for all E, the vector space N(E) finite
dimensional and is spanned by the images of the pullbacks along various maps
ϕ : E → F , where F has cardinality less than or equal to m.

Lemma 2.1. Suppose that N1 is finitely generated in degrees ≤ m1 and N2 is
finitely generated in degrees ≤ m2. Then the pointwise tensor product N1 ⊗ N2 is
finitely generated in degrees ≤ m1m2.

Proof. We immediately reduce to the case where N1 = P[m1] and N2 = P[m2]. For
any ϕ : E → [m], let eϕ denote the corresponding basis element of P[m](E). Then
N1 ⊗N2 has basis

{eϕ1
⊗ eϕ2

| ϕ1 : E → [m1], ϕ2 : E → [m2]} .

Given the pair of surjections (ϕ1, ϕ2), let F ⊂ [m1] × [m2] denote the image of
ϕ1×ϕ2, let ϕ = ϕ1×ϕ2 ∈ HomFS(E,F ), and let ψ1 : F → [m1] and ψ2 : F → [m2]
denote the coordinate projections. It is clear that we have eϕ1⊗eϕ2 = ϕ∗(eψ1⊗eψ2).
Since the cardinality of F is at most m1m2, this completes the proof. �

Fix a positive integer d and a finite set S ⊂ R. To any finite set E, we associated
the space MS(E, d) of E-tuples of vectors in Rd such that any nontrivial linear
combination of the vectors with coefficients in S is nonzero. Given a surjection
ϕ : E → F , we obtain a map

ϕ∗ : MS(E, d)→MS(F, d)

by adding the vectors in each fiber of ϕ. These maps define a functor from FS to the
category of topological spaces. By taking rational cohomology in degree (d − 1)i,
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we obtain an FSop-module Bi,dS . We prove the following theorem, which implies
the three statements in the introduction.

Proof of Theorem 1.1. As noted above, the cohomology of MS(E, d) is generated

as an algebra in degree d− 1, hence Bi,dS is a quotient of (B1,d
S )⊗i. By Lemma 2.1,

this means that it is sufficient to prove that B1,d
S is finitely generated in degrees

≤ |S|. For any finite set F , the vector space B1,d
S (F ) has a generating set indexed

by nonzero elements of SF [2, Corollary 5.6] (these generators form a basis un-
less two nonzero elements of SF are proportional, in which case the corresponding

generators are equal). For any nonzero v ∈ SF , let xv ∈ B1,d
S (F ) be the correspond-

ing generator. Concretely, if we take x ∈ Hd−1(Rd r {0};Q) to be the standard
generator, then xv is equal to the pullback of x along the map

fv : MS(F, d)→ Rd r {0}
that sends an F -tuple of vectors to its linear combination with coefficients deter-
mined by v. Given a surjection ϕ : E → F , we have fv ◦ ϕ∗ = fϕ∗v, and therefore

ϕ∗(xv) = ϕ∗ ◦ f∗v (x) = f∗ϕ∗v(x) = xϕ∗v ∈ B1,d
S (E).

Since every element of SE may be pulled back from a subset of cardinality at most

|S|, B1,d
S is generated in degrees ≤ |S|. �

Remark 2.2. Our construction also works if we replace R with an arbitrary field k
and we take S to be a finite subset of k. We define the arrangement Ak,S(n) in kn

as above, we denote its complement by Mk,S(E, 1), and we take Bi,1k,S(E) to be the

étale cohomology group Hi
ét

(
Mk,S(E, 1)⊗k k̄;Ql

)
for some prime l not equal to the

characteristic of k, which is isomorphic to the degree i part of the Orlik–Solomon
algebra of Ak,S(n). This is an FSop-module over Ql, and the same argument shows
that it is finitely generated in degrees ≤ |S|i.

An interesting special case is where k = Fq is a finite field and S = k, so that our
arrangement AFq,Fq (n) is the collection of all hyperplanes in Fnq . This arrangement

has characteristic polynomial (t−1)(t−q) · · · (t−qn−1), and therefore the ith Betti
number is equal to the evaluation of the ith elementary symmetric polynomial at
the values 1, q, . . . , qn−1. This implies that the Hilbert series of our module is

q(
i
2)ti

i∏
j=0

1

1− qjt
,

which has simple poles at q−j for j = 0, 1, . . . , i. The projectivization ofMFq,Fq
(n, 1)⊗Fq

F̄q is a Deligne–Lusztig variety for the group GLn(Fq).
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