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ABSTRACT. We prove that the i*! graded pieces of the Orlik—Solomon algebras
or Cordovil algebras of resonance arrangements form a finitely generated FS°P-
module, thus obtaining information about the growth of their dimensions and
restrictions on the irreducible representations of symmetric groups that they
contain.

1. INTRODUCTION

Let A(n) be the collection of all hyperplanes in R™ that are perpendicular to
some nonzero vector with entries in the set {0,1}. This hyperplane arrangement
is called the resonance arrangement of rank n. The resonance arrangement
has connections to algebraic geometry, representation theory, geometric topology,
mathematical physics, and economics; for a survey of these connections, see [4,
Section 1]. Of particular interest is the set of chambers of A(n). Amazingly,
despite the simplicity of the definition, no formula for the number of chambers as
a function of n is known. A more refined invariant of A(n) is its characteristic
polynomial, whose coefficients (after taking absolute values) have sum equal to the
number of chambers. Kiihne has made some progress toward understanding the
coefficient of "% in the characteristic polynomial as a function of n with i fixed.
Our purpose is to shed a new light on Kiithne’s result, to generalize it to a wider class
of arrangements, and to study the action of the symmetric group ¥, on various
algebraic invariants of these arrangements.

Let S C R be any finite set, and let Ag(n) be the collection of hyperplanes that
are perpendicular to a nonzero vector with entries in S. If S = {0,1}, Ag(n) is the
resonance arrangement. If S = {%1}, it is the threshold arrangement, which is
studied in [3]. For each positive integer d, let Mg(n,d) denote the set of n-tuples
of vectors in R? such that no nontrivial® linear combination of all n vectors with
coefficients in S is equal to zero. The cohomology ring of Mg(n,d) is generated
in degree d — 1 [2, Corollary 5.6]. If d is even, the presentation of this ring in [2]
coincides with that of the Orlik—Solomon algebra of Ag(n) (with all degrees
multiplied by d — 1) [6]. If d is odd and greater than 1, then it coincides with that
of the Cordovil algebra of Ag(n) (with all degrees multiplied by d — 1) [1]; see
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INontrivial means that, if 0 € S, we do not allow all coefficients to be 0.
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also [5, Example 5.8].? In particular, for any n > 1, d > 2, and i > 0, the dimension
b(n) = dim H@=Vi(Mg(n,d); Q) is equal to (—1)" times the coefficient of t"~* in
the characteristic polynomial of Ag(n).

These vector spaces carry more information than just their dimension; they also
carry actions of the symmetric group 3,,, which acts by permuting the n vectors.
These representations are isomorphic for all even d > 2 and for all odd d > 3,
but the d = 2 and d = 3 cases are genuinely different. The total cohomology
H* (M s(n,3); Q) with all degrees combined is isomorphic as a representation of %,
to HO (M s(n,1); Q), which is the permutation representation with basis indexed by
the chambers of Ag(n) [5, Theorem 1.4(b)].

For fixed S C R, d > 2, and ¢ > 0, we will define in the next section a contravari-
ant module Bg’d over the category of finite sets with surjections that takes the set
[n] to H@=1¢(Mg(n,d); Q).

Theorem 1.1. The module Bfg’d is finitely generated in degrees < |S|*.

Combining Theorem 1.1 with [7, Theorem 4.1], we obtain the following numerical
results:®

Corollary 1.2. Fiz a finite set S C R and a pair of integers d > 2 and i > 0.

1. The generating function
G¢(t) .= Z b (n)t"
n=1

is a rational function with poles contained in the set {1/j |1 < j <|S|'},
with at worst a simple pole at |S|7t. Equivalently, there exist polynomials
{cd’(n) | 1 <4 <|S|'} such that, for n sufficiently large,

|S|¢

Vs(n) =g (),
j=1

and the last polynomial cis"s‘l(n) s a constant polynomial.

2. For any partition A of n, let V\ denote the irreducible representation of
¥, indezed by \. If Homy, (VA,H(d_l)i(Ms(n,d);@)) #£0, then \ has at

most |S|* rows.

3. For any partition A with n > |A| + A1, let A(n) be the padded partition
of n obtained from A by adding a row of length n — |\|. For any X, the
function

n + dim Homy; (V)\(n), H(dfl)i(Ms(n, d); @))

is bounded above by a polynomial in m. In particular, if \ is the empty
partition, this says that the multiplicity of the trivial representation in
H(d_l)i(Ms(n, d); Q) s bounded above by a polynomial in n.

2For d odd, the presentation in [2] incorrectly omits the relations that each of the generators
squares to zero.

3The deepest of these statements, namely the fact that the dimension generating function for
a finitely generated FS°P-module is rational with prescribed poles, is due to Sam and Snowden
[8, Corollary 8.1.4].
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Remark 1.3. A stronger version of item (1) above for the resonance arrangement
appears in [4, Theorem 1.4]. Kiihne proves that the polynomials cf{’g’l}(n) are

all constant (i.e. that all poles of Gz{o’l}(t) are simple), obtains bounds on their
sizes, and shows that the equality holds for all n, not just sufficiently large n
(i.e. that the limit as ¢ goes to oo of G?{O,l}(t) is zero). It should be possible to

categorify Kiithne’s theorem by proving that the restriction of Bf[’(il} to the category
of ordered surjections [8] is isomorphic to a direct sum of shifts of principal
projectives, with summands indexed by Kiihne’s functional prototypes. The
cost of working with ordered surjections would be that we would lose all information
about the action of the symmetric group.

Acknowledgments: The authors are grateful to Lou Billera for telling them about
the arrangement A(n) and about Kiihne’s work.

2. THE PROOF

Let FS denote the category whose objects are nonempty finite sets and whose
morphisms are surjective maps. An FS°P-module over Q is a contravariant functor
from F'S to the category of rational vector spaces. For each finite set F', we have the
principal projective module Pr, which sends a finite set F to the vector space
with basis Hompg(E, F'), with morphisms defined on basis elements by composition.
An FS°P-module N is said to be finitely generated if it is a quotient of a finite
sum @; P, of principal projectives, and it is said to be finitely generated in
degrees < m if the sets F; can all be taken to have cardinality less than or equal
to m. This is equivalent to saying that, for all E, the vector space N(E) finite
dimensional and is spanned by the images of the pullbacks along various maps
¢ : E— F| where F' has cardinality less than or equal to m.

Lemma 2.1. Suppose that Ny is finitely generated in degrees < mq and Ny is
finitely generated in degrees < mo. Then the pointwise tensor product N1 & No is
finitely generated in degrees < mimsa.

Proof. We immediately reduce to the case where Ny = P,;,;; and Ny = Pp,,,). For
any ¢ : = [m], let e, denote the corresponding basis element of Pj,,)(£). Then
N1 ® Ny has basis

{etpl ®etp2 | P1 B [ml],QOQ B [mQ}}

Given the pair of surjections (p1,¢2), let F' C [my] X [m2] denote the image of
©1 X 2, let o = 1 X o € Hompg(E, F), and let ¢, : F — [mq] and ¢ : F' — [mo]
denote the coordinate projections. It is clear that we have e,, ®e,, = p*(ey, @ey, ).
Since the cardinality of F' is at most mjms, this completes the proof. O

Fix a positive integer d and a finite set S C R. To any finite set F, we associated
the space Mg (E,d) of E-tuples of vectors in R? such that any nontrivial linear
combination of the vectors with coefficients in S is nonzero. Given a surjection
¢ : E — F, we obtain a map

Py - MS'(E7d) — MS(F7d)

by adding the vectors in each fiber of . These maps define a functor from FS to the
category of topological spaces. By taking rational cohomology in degree (d — 1)i,
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we obtain an FS°P-module Bgd. We prove the following theorem, which implies
the three statements in the introduction.

Proof of Theorem 1.1. As noted above, the cohomology of Mg(E,d) is generated
as an algebra in degree d — 1, hence Bgd is a quotient of (Bé’d)@’i. By Lemma 2.1,
this means that it is sufficient to prove that Bé’d is finitely generated in degrees
< |S]. For any finite set F', the vector space Bé’d(F ) has a generating set indexed
by nonzero elements of S¥' [2, Corollary 5.6] (these generators form a basis un-
less two nonzero elements of S are proportional, in which case the corresponding
generators are equal). For any nonzero v € S, let z,, € Bé’d(F ) be the correspond-
ing generator. Concretely, if we take x € H4}(R? \ {0};Q) to be the standard
generator, then x, is equal to the pullback of x along the map

fo: Ms(F,d) — R4~ {0}

that sends an F-tuple of vectors to its linear combination with coefficients deter-
mined by v. Given a surjection ¢ : E — F, we have f, o ¢, = fo+y, and therefore

* * * * ,d
P (x) = ¢ 0 f1(@) = [y (2) = Ty € Bg*(E).
Since every element of S¥ may be pulled back from a subset of cardinality at most
|S], B;’d is generated in degrees < |S]. O

Remark 2.2. Our construction also works if we replace R with an arbitrary field k
and we take S to be a finite subset of k. We define the arrangement Ay s(n) in k™
as above, we denote its complement by M} s(E, 1), and we take B,ZIS(E) to be the
étale cohomology group HY, (Mk7S(E, 1) @ k; Ql) for some prime [ not equal to the
characteristic of k, which is isomorphic to the degree i part of the Orlik—Solomon
algebra of Ay g(n). This is an FS°P-module over Q;, and the same argument shows
that it is finitely generated in degrees < |S|".

An interesting special case is where k = Fy is a finite field and S = k, so that our
arrangement Ar_r, (1) is the collection of all hyperplanes in Fy. This arrangement
has characteristic polynomial (t—1)(t—q) - -- (t —¢" '), and therefore the i*" Betti

number is equal to the evaluation of the i*" elementary symmetric polynomial at
the values 1,q,...,¢" . This implies that the Hilbert series of our module is
i
(2)¢i 1
R e

J=0

which has simple poles at g7 for j = 0, 1,...,4i. The projectivization of My, 7, (n,1)®F,

F, is a Deligne-Lusztig variety for the group GL, (F,).
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