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Abstract— We study the stochastic Multi-Armed Bandit
(MAB) problem under worst-case regret and heavy-tailed re-
ward distribution. We modify the minimax policy MOSS [1]
for the sub-Gaussian reward distribution by using saturated
empirical mean to design a new algorithm called Robust
MOSS. We show that if the moment of order 1 + ¢ for
the reward distribution exists, then the refined strategy
has a worst-case regret matching the lower bound while
maintaining a distribution-dependent logarithm regret.

Index Terms— Heavy-tailed distribution, stochastic MAB,
worst-case regret, minimax policy.

[. INTRODUCTION

HE dilemma of exploration versus exploitation is com-

mon in scenarios involving decision-making in unknown
environments. In these contexts, exploration means learning
the environment while exploitation means taking empirically
computed best actions. When finite time performance is con-
cerned, i.e., scenarios in which one cannot learn indefinitely,
ensuring a good balance of exploration and exploitation is
the key to a good performance. MAB and its variations are
prototypical models for these problems, and they are widely
used in many areas such as network routing, recommendation
systems and resource allocation; see [2, Chapter 1].

The stochastic MAB problem was originally proposed by
Robbins [3]. In this problem, at each time, an agent chooses
an arm from a set of K arms and receives the associated
reward. The reward at each arm is a stationary random variable
with an unknown mean. The objective is to design a policy
that maximizes the expected cumulative reward or equivalently
minimizes the expected cumulative regret, defined by the
expected cumulative difference between the maximum mean
reward and the reward obtained using the policy.

The worst-case regret is defined by the supremum of the
expected cumulative regret computed over a class of reward
distributions, e.g., sub-Gaussian distributions, or distributions
with bounded support. The minimax regret is defined as the
minimum worst-case regret, where the minimum is computed
over all the policies. By construction, the worst-case regret
uses minimal information about the underlying distribution
and the associated regret bounds are called distribution-free
bounds. In contrast, the standard regret bounds depend on the
difference between the mean rewards from the optimal and
suboptimal arms, and the corresponding bounds are referred
as distribution-dependent bounds.
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In their seminal work, Lai and Robbins [4] establish that the
expected cumulative regret admits an asymptotic distribution-
dependent lower bound that is a logarithmic function of the
time-horizon 7. Here, asymptotic refers to the limit 7' —
+o00. They also propose a general method of constructing
Upper Confidence Bound (UCB) based policies that attain
the lower bound asymptotically. By assuming rewards to be
bounded or more generally sub-Gaussian, several subsequent
works design simpler algorithms with finite time performance
guarantees, e.g., the UCB1 algorithm by Auer et al. [5]. By us-
ing Kullback-Leibler(KL) divergence based upper confidence
bounds, Garivier and Cappé [6] designed KL-UCB, which is
proved to have efficient finite time performance as well as
asymptotic optimality.

In the worst-case setting, the lower and upper bounds are
distribution-free. Assuming the rewards are bounded, Au-
dibert and Bubeck [1] establish a Q(vKT) lower bound
on the minimax regret. They also studied a modified UCB
algorithm called Minimax Optimal Strategy in the Stochastic
case (MOSS) and proved that it achieves an order-optimal
worst-case regret while maintaining a logarithm distribution-
dependent regret. Degenne and Perchet [7] extend MOSS to
an any-time version called MOSS-anytime.

The rewards being bounded or sub-Gaussian is a com-
mon assumption that gives sample mean an exponential
convergence and simplifies the MAB problem. However in
many applications, such as social networks [8] and financial
markets [9], the rewards are heavy-tailed. For the standard
stochastic MAB problem, Bubeck et al. [10] relax the sub-
Gaussian assumption by only assuming the rewards to have
finite moments of order 1 + € for some ¢ € (0,1]. They
present the robust UCB algorithm and show that it attains an
upper bound on the cumulative regret that is within a constant
factor of the distribution-depend lower bound in the heavy-
tailed setting. However, the solutions provided in [10] are not
able to provably achieve an order optimal worst-case regret.
Specifically, the factor of optimality is a poly-logarithmic
function of time-horizon.

In this paper, we study the minimax heavy tail bandit
problem in which reward distributions admit moments of order
1 4 €, with € > 0. We propose and analyze Robust MOSS
algorithm to show that it achieves worst-case regret match-
ing with the lower bound while maintaining a distribution-
dependent logarithm regret. To the best of our knowledge,
Robust MOSS is the first algorithm to achieve order optimal
worst-case regret for heavy-tailed bandits. Our results build
on techniques in [1] and [10], and augment them with new
analysis based on maximal Bennett inequalities.

The remaining paper is organized as follows. We describe



the minimax heavy-tailed multiarmed bandit problem and
present some background material in Section II. We present
and analyze the Robust MOSS algorithm in Sections III
and IV, respectively, and numerically compare it with the state
of the art in Section V. We conclude in Section VI

Il. BACKGROUND & PROBLEM DESCRIPTION
A. Stochastic MAB Problem

In a stochastic MAB problem, an agent chooses an arm
¢t from the set of K arms {1,...,K} at each time ¢t €
{1,...,T} and receives the associated reward. The reward
at each arm k is drawn from an unknown distribution fj with
unknown mean puy. Let the maximum mean reward among
all arms be p*. We use Ap = p* — pg to measure the
suboptimality of arm k. The objective is to maximize the
expected cumulative reward or equivalently to minimize the
expected cumulative regret defined by
T
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which is the difference between the expected cumulative
reward obtained by selecting the arm with the maximum mean
reward p* and selecting arms @1, ..., @7.

The expected cumulative regret R is implicitly defined for
a fixed distribution of rewards from each arm {f1,..., fx}.
The worst-case regret is the expected cumulative regret for the
worst possible choice of reward distributions. In particular,

R =  sup Ryp.
{fi, . frx}
The regret associated with the policy that minimizes the above

worst-case regret is called minimax regret.

B. Problem Description: Heavy-tailed Stochastic MAB

In this paper, we study the heavy-tailed stochastic MAB
problem, which is the stochastic MAB problem with following

assumptions.
Assumption 1: Let X be a random reward drawn from any
arm k € {1,..., K}. There exists a constant u € Ry such

that E [|X|""“] < u'** for some ¢ € (0, 1].
Assumption 2: Parameters T', K, u and e are known.

C. MOSS Algorithm for Worst-Case Regret

We now present the MOSS algorithm proposed in [1]. The
MOSS algorithm is designed for stochastic MAB problem with
bounded rewards and in this paper, we extend it to design
Robust MOSS algorithm for heavy-tailed bandits.

Suppose that arm k is sampled ny(t) times until time ¢ — 1,
and ﬂik (t is the associated empirical mean, then, at time ¢,
MOSS picks the arm that maximizes the following UCB

T
max <1n (W) ,0)
n(t) '

If the rewards from the arms have bounded support [0, 1],
then the worst-case regret for MOSS satisfies R%"“‘ <
49v KT, which is order optimal [1]. Meanwhile, MOSS
maintains a logarithm distribution-dependent regret bound.

k —k
Ini(t) = HFnpr) T

D. A Lower Bound for Heavy-tailed Minimax Regret

We now present the lower bound on the minimax regret for
the heavy tailed bandit problem derived in [10].

Theorem 1 ( [10, Th. 2]): For any fixed time horizon T
and the stochastic MAB problem under Assumptions 1 and 2
with u =1,

Ry > 0.0LK T T e .

Remark 1: Since Rp scales with u, the lower bound for
heavy tail bandit is Q(uK ﬁTf) This lower bound also
indicates that within a finite horizon 7', it is almost impos-
sible to differentiate the optimal arm from arm k, if Ay €
O(u(K/T )ﬁ) As a special case, rewards with bounded
support [0, 1] correspond to € = 1 and w = 1. Then, the lower
bound Q(v/KT) match with the regret upper bound achieved
by MOSS.

[1l. A ROBUST MINIMAX PoLICY

To deal with the heavy-tailed reward distribution, we replace
the empirical mean with a saturated empirical mean. Although
saturated empirical mean is a biased estimator, it has better
convergence properties. We construct a novel UCB index to
evaluate the arms, and at each time slot the arm with the
maximum UCB index is picked.

A. Robust MOSS

In Robust MOSS, we consider a robust mean estimator
called saturated empirical mean which is formally defined in
the following subsection. Let n (¢) be the number of times that
arm k has been selected until time ¢ — 1. At time ¢, let ﬂﬁk(t)
be the saturated empirical mean reward computed from the
nk(t) samples at arm k. Robust MOSS initializes by selecting
each arm once and subsequently, at each time ¢, selects the
arm that maximizes the following UCB

k ~k
gnk(t) = lunk(t) + (1 + n)c"k(t)7
where 7 > 0 is an appropriate constant, c,, ;) = u X

[$(nx(t))] ™ and
o) — o)

n

)

where Ing (z) := max(Inz,1). Note that both ¢(n) and ¢,
are monotonically decreasing in n.

B. Saturated Empirical Mean

The robust saturated empirical mean is similar to the
truncated empirical mean used in [10], which is employed
to extend UCB1 to achieve logarithm distribution-dependent
regret for the heavy-tailed MAB problem. Let {X;}icq1,....m)
be a sequence of i.i.d. random variables with mean p and
E [\Xi|1+6] < u'te, where v > 0. Pick @ > 1 and let
h(m) = allosa(m ]+ guch that h(m) > m. Define the
saturation point B,,, by

1

By i=ux [¢p(h(m))] .



Then, the saturated empirical mean estimator is defined by
1 m
= — E sat(X;, Bm), (1)
mia

where sat(X;, By,) := sign(X;) min {|X;|, Bn,

Define d; := sat(X;, By, ) —E [sat(X;, B,,)]- The following
lemma examines the estimator bias and provides an upper
bound on the error of saturated empirical mean.

Lemma 2 (Error of saturated empirical mean): For an
ii.d. sequence of random variables {X;}ic(1,....m} such that
E[X;] = p and E[X;]7] < u'*c, the saturated empirical
mean (1) satisfies

A 1 m ul-‘re
i 3 <
i—

Proof: Since p = E [ (1{|X <B.} T Hix, \>Bm})}
the error of estimator fi,, satisfies

m

fom — :% Z (Sat(XivBm) - ,u)
— Zd Z E [sat(X;, Bp)] — 1) ,
i=1

where the second term is the bias of fi,,. We now compute
an upper bound on the bias.

_ /L| <E [X1| l{IXi|>B'm,}:|
X[ u'te
(Bm)< |~ (Bm)’
which concludes the proof. [ |
We now establish properties of d;.
Lemma 3 (Properties of d;): For any i € {1,...,
satisfies (i) |d;| < 2B,, (i) E[d?] < ult<Bl-c.
Proof: Property (i) follows immediately from definition
of d;, and property (ii) follows from
E[d?] <E[sat*(X;, B,)] <E[|X:|'°BL]. =

V. ANALYSIS OF RoBUST MOSS

In this section, we analyze Robust MOSS to provide both
distribution-free and distribution-dependent regret bounds.

’E [sat(X;, Bmn)]

<E

m}, d;

A. Properties of Saturated Empirical Mean Estimator

To derive the concentration property of saturated empirical
mean, we use a maximal Bennett type inequality as shown in
Lemma 4.

Lemma 4 (Maximal Bennett’s inequality [11]): Let
{Xi}ieq1,....ny be a sequence of bounded random variables
with support [—B,B], where B > 0. Suppose that

E [X1|X1, ‘e ,Xi_ﬂ = WU; and Var[Xi|X1, [P ,Xi—l] S V.
Let Sy, = >.iv 1 (X; — p;) for any m € {1,...,n}. Then, for
any 6 > 0

P(3m e {1,...,n}: Sm > ) < exp (_w (Bé))
P(3me {1,...,n} : Sm < —5) < exp <_w <35)>

nv

where ¢(z) = (14 1/2)In(1 + z) — 1.

Remark 2: For x € (0, 00), function ¢ (x) is monotonically
increasing in x.

Now, we establish an upper bound on the probability that
the UCB underestimates the mean at arm k by an amount x.

Lemma 5: For any arm k € {1,...,K} and any t €
{K+1,...,T}and x > 0, if ne)(2n/a) > 2a, the probability
of event {gﬁk(t) < pp — z} is no greater than

EL)F (1 +2> ¥ (20/a) x

T In(a 2a  u
Proof: 1t follows from Lemma 2 that

P (gnk < g —IB)

<]P’(3m€{1... T}: ﬂ]fn+(1+77)cm<,uk—x)
odh ultte

<P( 4 1,....,T}: -+ < 1 -

_(me{, , };m_Bfn (I+n)em x)
1 m

<]P’<E|m€{l,... de< x—ncm>

where d¥ is defined similarly to d; for i.i.d. reward sequence
at arm k and the last inequality is due to

u[(b(m)} e = ¢, 2)

Recall a > 1. We apply a peeling argument [12, Sec 2.2] with
geometric grid a®* < m < a*** over time interval {1,...,T}.
Since c¢,, is monotonically decreasing with m,

m

de< x—ncm>
gZP(EmG[a“ st de

s>0

]P’(Elm e{1,...,

(x+ ncaéﬂ))

Also notice that B,, = B, for all m € [a®,a**!). Then with
properties in Lemma 3, we apply Lemma 4 to get

ZP(EImG[aS st de (x4 neg q+1)>
s>0
(z 4+ negs+1) 2Bys (T 4 negs+1)
< —
;Oexp 2B, v ( aulteBle

(since ¢ (x) is monotonically increasing)

(z+ncgs+1) | [2nBE.cgs+1
<> ew ( T ( e

(plug in cye+1, Bys and use h(a a*th

)=
e <_ ERm )
)2

(plug in ¢(a®) and use Ny (2n/a) > 2a,In (y) > In(y))

<Zexp (—a x - (22/&)> %as. 3)
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Let b = 2% (2n/a)/(2au). Since B,:-1 < uaT+, we have

3) §§ Z a’® exp <fba1%>

s>1

Heo (y=D)e
/ a¥ exp ( — ba TFe )dy
1
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K
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K
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(where we set z = ba%)
K 1 . +o0 .
—_ a +€b71t / 2%71 eXp(*Z)dZ
r b
K a 1 14€
<= L({=+2)b <«
=T In(a) (6 + ) ,

which concludes the proof. |

In(a) e

The following is a straightforward corollary of Lemma 5.

Corollary 6: For any arm k € {1,...,K} and any t €
{K+1,...,T}and x > 0, if ne)(2n/a) > 2a, the probability
of event {gfbk(t) —2(1+n)cp, 1) = pr + x} shares the same
bound in Lemma 5.

B. Distribution-free Regret Bound

The distribution-free upper bound for Robust MOSS, which
is the main result for the paper, is presented in this section.
We show that the algorithm achieves order optimal worst-case
regret.

Theorem 7: For the heavy-tailed stochastic MAB problem
with K arms and time horizon 7', if  and a are selected such
that m)(2n/a) > 2a, then Robust MOSS satisfies

Ry < CuK 75 (T/e) T + 2uK,

1 1+e
where C =T (1/e+2) [a/ (6+3n)]* [3/0(6+3n)] * +
el (1/e+2) (6—!—317)_% [6(1/#}(277/(1)] < a/ln(a) +
(64 3n) [e+ (1+ e)elTEe].

Remark 3: Parameter a and 7 as inputs to Robust MOSS
can be selected by minimizing the leading constant C' in the
upper bound on the regret in Theorem 7. We have found that
selecting a slightly larger than 1 and selecting smallest 7 that
satisfies 71 (2n/a) > 2a yields good performance.

Proof: Since both the UCB and the regret scales with
u defined in Assumption 1, to simplify the expressions, we
assume u = 1. Also notice that Assumption 1 indicates || <
u, s0 Ap < 2 for any k € {1,...,K}. In the following,
any terms with superscript or subscript “+” and “k” are with
respect to the best and the k-th arm, respectively. The proof
is divided into 4 steps.
Step 1: We follow a decoupling technique inspired by the
proof of regret upper bound in MOSS [1]. Take the set of
0-bad arms as Bs as

Bs:={ke{l,...,K} | A > 6}, “4)

where we assign 0 = (6 + 3n) (eK/T) T Thus,

K
Rp<T5+» Ac+E

> e € Bst (A, - 5)]

t=1 t=K-+1
T
STO+2K+E| ) I{WteBg}(A%—(S)]. ()
t=K+1

Furthermore, we make the following decomposition

T

Z 1{9015 € Bé} (Aw - 6)
t=K+1
T

A
= Z 1{90t68679:*(t)§ﬂ*_ ;t}(Aapf,_(s) (6)

t=K+1

T
A
+ Z 1{% € Bs, gnery > 1" — ;’t} (Ay, —0).
t=K-+1

Notice that (6) describes regret from underestimating optimal
arm *. For the second summand, since gf" ) > 9;*( 1)
Pt

T

* * A +
> e By > - 52 30 -9
t=K+1
d Pt QAL/%
< Z 1 ‘Ptelgéagnw(t)>ﬂ<pt+T Ag,
t=K+1 )
T
2A
-y ¥ 1{%k,gskm>uk+;}ak, ™
keBs t=K+1

which characterizes the regret caused by overestimating J-bad
arms.

Step 2: In this step, we bound the expectation of (6). When
event {gpt € Bg,g:ﬁ(t) < pr - Aw/?ui happens, we know

* * * * J
Ag, S 3,LL - 3gn*(t) and gn*(t) < pu = g

Thus, we get

* . A
1{%01563679”*(,5) <u - ;‘}(A%—é)
* * 5 * *
Sl{gn*(w <p - 3} X (3" = 3gp.(y —0) =Y

Since Y; is a positive random variable, its expected value can
be computed involving only its cumulative density function:

+oo
uzm]:/ P(Y; > z)do
0
“+o0
< P(3u" —3g).py —0>x)de
R o= 9>7)

+o0 T

Then we apply Lemma 5 at optimal arm * to get
_lte

KC, [T°1 KC,
E[Y;] < Zp e =
[Y:] < T /5 ex dx 757




where C; = €I (1/€ + 2) [Ga/w(Zn/a)} ‘ a/ In(a). We con-
clude this step by

E[(6)] < Z Y, < CL K& *.

t=K+1

Step 3: In this step, we bound the expectation of (7). For each
arm k € Bs,

24
Z 1{<Pt = kvgik(t) 2> pr+ Sk}

t=K+1
T t—K
2A
= > D Mo =km(t)=m}1 {gfnZquk}
t=K+1m=1
T-K T
2A
m=1 t=m+K
T
Ay
< 1< g8 > "
) 1 & 2A
<N 1 =Nk >R S 8
_mz_l{m;l_g (+17)C} ®

where in the last inequality we apply Lemma 2 and use the
fact that u' ¢/ B¢, < c,, in (2). We set

14e 14e
L — 6+ 377 € In Z Ak €
b Ay, K \6+3n

With Ap > 6, we get [, is no less than

lte 1te 1+e
6431\ © In T ) E (643 -
Ay K \ 6+ 3n o Ay

Furthermore, since c,, is monotonically decreasing with m,
for m > I,

©))

~6+3n

1te _e
Iny (%(6?757;) ‘ )]HE < Ay
Iy

cmSClkS[

With this result and [;; > 1, we continue from (8) to get

D1 2A
E[®)] <lp -1+ Z ]P{mde? > 3’“(2+n)cm}

m=ly =1
<zk—1+Z]P>{ Zk>Ak} (10)
T3
mlk =1

Therefore by using Lemma 4 together with statement (ii) from
Lemma 3, we get

(1)

where the last step is due to that ¢(z) is monotonically
increasing and B{, Ay > (6 + 31)B,cm > 6 + 31 from (9)
1

and (2). Since B,, = ¢(h(m))7ﬁ < (j)(am)*ﬁ <
(am)lii&, we have

T

an< Y exp (—mliealw(wsn) Agk) |

m=1

+oo
< — Byt ) d
_/0 eXP( By ) Y
(where we set 3 = a” T (6 4 3n) Ay/3)

g [T e oy
€ 0

(where z = ByT+)

:I‘<1 >Bl+e

Plugging it into (10),
oA T m (A
tos H(KC’3 g )

exp (

E[®)] < A,

where Co = T'(1/e+2) at [3/¢(6+377)}% and C3 =

(6 4+ 37) L Put it together with Ay > 6 for all k € Bs,
_1 T lte
kGBg
< CoK6™ ¢ + (14 €)eTeC3Ko <,

where we use the fact that o~ In (T <" / (KC3) ) takes its
maximum at z = d exp(e?/(1 + ¢)).

Step 4: Plugging the results in step 2 and step 3 into (5),
RY™ < T§ + [01 +Cy+ (14 e)el+€ Cg:| K6 ¢ +2K.

Straightforward calculation concludes the proof. [ ]

C. Distribution-dependent Regret Upper Bound

We now show that robust MOSS also preserves a logarithm
upper bound on the distribution-dependent regret.

Theorem 8: For the heavy-tailed stochastic MAB problem
with K arms and time horizon T, if ny)(2n/a) > 2a, the regret
Ry for Robust MOSS is no greater than

u1+6 % T Ak 1?
> (&) |om <K01 () ) H
k:AR>0
where () = 4+ 477)% and  Ch =

+
max (eCl,QF(l/e +2) (8a/v(2n/a)) © a/In(a ))
Proof: Let § = (4 + 4n) (eK/T) T and define B; the
same as (4). Since Ay < ¢ for all k ¢ By, the regret satisfies

T
Rp < Y TA +) 1{p; € Bs}A,,
k¢Bs t=1

1+
4+4n\ <
= ZeK( Ay )
k¢Bs

55 T
A+ D> 1{pr = k}A,.

keBs t=1
(12)



Pick arbitrary I, € Z, thus

T T
o=k} <l+ Y 1{ps = k,ng(t) > Ik}
t=1 t—K+1
<l Z {gnk > gy (1) > lk}.
t=K+1

Observe that gﬁk(t) > 92*@) implies at least one of the
following is true

Gty S W5 — Ap/4, (13)
95 = e+ Aw/4+ 21+ 1)), (14)
(1+ T])an(t) > A /4. (15)
We select
lte lt+e
4+4n € T Ay €
lk = ln —
A K \4 147

Similarly as (9), nx(t) > I} indicates c,, ;) < Ar/(4 + 4n),
so (15) is false. Then we apply Lemma 5 and Corollary 6,
P{gﬁk(t) > G (1) e(t) = lk;}
CéK 14e€
T B ©

where C5 = 2T (1/e + 2) (8a/v(2n/a) )
tuting it into (12), Ry is upper bounded by

Zeclf(+z Gy ( T A%>+C2 + A

<P ((13) or (14) is true ) <

. Substi-

a/ln(

kgBs A kEBs Ak KCy Af
Considering the scaling factor u, the proof can be concluded
with easy computation. |

V. NUMERICAL ILLUSTRATION

In this section, we compare Robust MOSS with MOSS
and Robust UCB (with truncated empirical mean or Catoni’s
estimator) [10] in a 3-armed heavy-tailed bandit setting. The
mean rewards are g1 = —0.3, po = 0 and pz = 0.3 and
sampling at each arm k returns a random reward equals to pi
added by sampling noise v, where |v| is a generalized Pareto
random variable and the sign of v has equal probability to be
positive and negative. The PDF of reward at arm k is

e = o (1 St

where we select £ = 0.33 and ¢ = 0.32. Thus, for a random
reward X from any arm, we know E[X?] < 1, which means
e =1 and u = 1. We select parameters ¢ = 1.1 and n = 2.2
for Robust MOSS so that condition 1) (2n/a) > 2a is met.
Fig.1 shows the mean cumulative regret together with
quantiles of cumulative regret distribution as a function of
time, which are computed using 200 simulations of each
policy. The simulation result shows that there is a chance
MOSS loses stability in heavy-tailed MAB and suffers linear
cumulative regret while other algorithms work consistently and
maintain sub-linear cumulative regrets. Robust MOSS slightly
outperforms Robust UCB in this specific problem.

for x € (—o0, +00),

MOSS Robust UCB-Truncated mean

400 400
300 300
©
200 200
o
100 100
0 0
0 500 1000 0 500 1000
time time
Robust UCB-Catoni's estimator 400 Robust MOSS
[ Tlower 95%
300 300 [ Tupper 5%
© mean regret
8200 200
0 0
0 200 400 600 800 0 500 1000
time time

Fig. 1. Comparison of 4 algorithms in heavy-tailed MAB: On each
graph, the bold curve is the mean regret while light shaded and dark
shaded regions correspond respectively to upper 5% and lower 95%
quantile cumulative regrets.

VI. CONCLUSIONS AND FUTURE DIRECTION

We proposed the Robust MOSS algorithm for heavy-tailed
bandit problem. We evaluate the algorithm by deriving upper
bounds on the associated distribution-free and distribution-
dependent regrets. Our analysis shows that Robust MOSS
achieves order optimal performance in both scenarios. The
saturated mean estimator centers at zero which make the
algorithm not translation invariant. Exploration of translation
invariant robust mean estimator in this context remains an open
problem.
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