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Abstract— We study the stochastic Multi-Armed Bandit
(MAB) problem under worst-case regret and heavy-tailed re-
ward distribution. We modify the minimax policy MOSS [1]
for the sub-Gaussian reward distribution by using saturated
empirical mean to design a new algorithm called Robust
MOSS. We show that if the moment of order 1 + ε for
the reward distribution exists, then the refined strategy
has a worst-case regret matching the lower bound while
maintaining a distribution-dependent logarithm regret.

Index Terms— Heavy-tailed distribution, stochastic MAB,
worst-case regret, minimax policy.

I. INTRODUCTION

THE dilemma of exploration versus exploitation is com-

mon in scenarios involving decision-making in unknown

environments. In these contexts, exploration means learning

the environment while exploitation means taking empirically

computed best actions. When finite time performance is con-

cerned, i.e., scenarios in which one cannot learn indefinitely,

ensuring a good balance of exploration and exploitation is

the key to a good performance. MAB and its variations are

prototypical models for these problems, and they are widely

used in many areas such as network routing, recommendation

systems and resource allocation; see [2, Chapter 1].

The stochastic MAB problem was originally proposed by

Robbins [3]. In this problem, at each time, an agent chooses

an arm from a set of K arms and receives the associated

reward. The reward at each arm is a stationary random variable

with an unknown mean. The objective is to design a policy

that maximizes the expected cumulative reward or equivalently

minimizes the expected cumulative regret, defined by the

expected cumulative difference between the maximum mean

reward and the reward obtained using the policy.

The worst-case regret is defined by the supremum of the

expected cumulative regret computed over a class of reward

distributions, e.g., sub-Gaussian distributions, or distributions

with bounded support. The minimax regret is defined as the

minimum worst-case regret, where the minimum is computed

over all the policies. By construction, the worst-case regret

uses minimal information about the underlying distribution

and the associated regret bounds are called distribution-free

bounds. In contrast, the standard regret bounds depend on the

difference between the mean rewards from the optimal and

suboptimal arms, and the corresponding bounds are referred

as distribution-dependent bounds.
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In their seminal work, Lai and Robbins [4] establish that the

expected cumulative regret admits an asymptotic distribution-

dependent lower bound that is a logarithmic function of the

time-horizon T . Here, asymptotic refers to the limit T →
+∞. They also propose a general method of constructing

Upper Confidence Bound (UCB) based policies that attain

the lower bound asymptotically. By assuming rewards to be

bounded or more generally sub-Gaussian, several subsequent

works design simpler algorithms with finite time performance

guarantees, e.g., the UCB1 algorithm by Auer et al. [5]. By us-

ing Kullback-Leibler(KL) divergence based upper confidence

bounds, Garivier and Cappé [6] designed KL-UCB, which is

proved to have efficient finite time performance as well as

asymptotic optimality.

In the worst-case setting, the lower and upper bounds are

distribution-free. Assuming the rewards are bounded, Au-

dibert and Bubeck [1] establish a Ω(
√
KT ) lower bound

on the minimax regret. They also studied a modified UCB

algorithm called Minimax Optimal Strategy in the Stochastic

case (MOSS) and proved that it achieves an order-optimal

worst-case regret while maintaining a logarithm distribution-

dependent regret. Degenne and Perchet [7] extend MOSS to

an any-time version called MOSS-anytime.

The rewards being bounded or sub-Gaussian is a com-

mon assumption that gives sample mean an exponential

convergence and simplifies the MAB problem. However in

many applications, such as social networks [8] and financial

markets [9], the rewards are heavy-tailed. For the standard

stochastic MAB problem, Bubeck et al. [10] relax the sub-

Gaussian assumption by only assuming the rewards to have

finite moments of order 1 + ε for some ε ∈ (0, 1]. They

present the robust UCB algorithm and show that it attains an

upper bound on the cumulative regret that is within a constant

factor of the distribution-depend lower bound in the heavy-

tailed setting. However, the solutions provided in [10] are not

able to provably achieve an order optimal worst-case regret.

Specifically, the factor of optimality is a poly-logarithmic

function of time-horizon.

In this paper, we study the minimax heavy tail bandit

problem in which reward distributions admit moments of order

1 + ε, with ε > 0. We propose and analyze Robust MOSS

algorithm to show that it achieves worst-case regret match-

ing with the lower bound while maintaining a distribution-

dependent logarithm regret. To the best of our knowledge,

Robust MOSS is the first algorithm to achieve order optimal

worst-case regret for heavy-tailed bandits. Our results build

on techniques in [1] and [10], and augment them with new

analysis based on maximal Bennett inequalities.

The remaining paper is organized as follows. We describe



the minimax heavy-tailed multiarmed bandit problem and

present some background material in Section II. We present

and analyze the Robust MOSS algorithm in Sections III

and IV, respectively, and numerically compare it with the state

of the art in Section V. We conclude in Section VI.

II. BACKGROUND & PROBLEM DESCRIPTION

A. Stochastic MAB Problem

In a stochastic MAB problem, an agent chooses an arm

ϕt from the set of K arms {1, . . . ,K} at each time t ∈
{1, . . . , T} and receives the associated reward. The reward

at each arm k is drawn from an unknown distribution fk with

unknown mean µk. Let the maximum mean reward among

all arms be µ∗. We use ∆k = µ∗ − µk to measure the

suboptimality of arm k. The objective is to maximize the

expected cumulative reward or equivalently to minimize the

expected cumulative regret defined by

RT := E

[

T
∑

t=1

(

µ∗ −Xϕt

)

]

= E

[

T
∑

t=1

∆ϕt

]

,

which is the difference between the expected cumulative

reward obtained by selecting the arm with the maximum mean

reward µ∗ and selecting arms ϕ1, . . . , ϕT .

The expected cumulative regret RT is implicitly defined for

a fixed distribution of rewards from each arm {f1, . . . , fK}.

The worst-case regret is the expected cumulative regret for the

worst possible choice of reward distributions. In particular,

Rworst
T = sup

{f1,...,fK}

RT .

The regret associated with the policy that minimizes the above

worst-case regret is called minimax regret.

B. Problem Description: Heavy-tailed Stochastic MAB

In this paper, we study the heavy-tailed stochastic MAB

problem, which is the stochastic MAB problem with following

assumptions.

Assumption 1: Let X be a random reward drawn from any

arm k ∈ {1, . . . ,K}. There exists a constant u ∈ R>0 such

that E
[

|X|1+ε ] ≤ u1+ε for some ε ∈ (0, 1].
Assumption 2: Parameters T , K, u and ε are known.

C. MOSS Algorithm for Worst-Case Regret

We now present the MOSS algorithm proposed in [1]. The

MOSS algorithm is designed for stochastic MAB problem with

bounded rewards and in this paper, we extend it to design

Robust MOSS algorithm for heavy-tailed bandits.

Suppose that arm k is sampled nk(t) times until time t−1,

and µ̄k
nk(t)

is the associated empirical mean, then, at time t,
MOSS picks the arm that maximizes the following UCB

gknk(t)
= µ̄k

nk(t)
+

√

√

√

√

√

max

(

ln
(

T
Knk(t)

)

, 0

)

nk(t)
.

If the rewards from the arms have bounded support [0, 1],
then the worst-case regret for MOSS satisfies Rworst

T ≤
49
√
KT , which is order optimal [1]. Meanwhile, MOSS

maintains a logarithm distribution-dependent regret bound.

D. A Lower Bound for Heavy-tailed Minimax Regret

We now present the lower bound on the minimax regret for

the heavy tailed bandit problem derived in [10].

Theorem 1 ( [10, Th. 2]): For any fixed time horizon T
and the stochastic MAB problem under Assumptions 1 and 2

with u = 1,

Rworst
T ≥ 0.01K

ε
1+εT

1
1+ε .

Remark 1: Since RT scales with u, the lower bound for

heavy tail bandit is Ω
(

uK
ε

1+εT
1

1+ε

)

. This lower bound also

indicates that within a finite horizon T , it is almost impos-

sible to differentiate the optimal arm from arm k, if ∆k ∈
O
(

u(K/T )
ε

1+ε

)

. As a special case, rewards with bounded

support [0, 1] correspond to ε = 1 and u = 1. Then, the lower

bound Ω(
√
KT ) match with the regret upper bound achieved

by MOSS.

III. A ROBUST MINIMAX POLICY

To deal with the heavy-tailed reward distribution, we replace

the empirical mean with a saturated empirical mean. Although

saturated empirical mean is a biased estimator, it has better

convergence properties. We construct a novel UCB index to

evaluate the arms, and at each time slot the arm with the

maximum UCB index is picked.

A. Robust MOSS

In Robust MOSS, we consider a robust mean estimator

called saturated empirical mean which is formally defined in

the following subsection. Let nk(t) be the number of times that

arm k has been selected until time t− 1. At time t, let µ̂k
nk(t)

be the saturated empirical mean reward computed from the

nk(t) samples at arm k. Robust MOSS initializes by selecting

each arm once and subsequently, at each time t, selects the

arm that maximizes the following UCB

gknk(t)
= µ̂k

nk(t)
+ (1 + η)cnk(t),

where η > 0 is an appropriate constant, cnk(t) = u ×
[

φ(nk(t))
]

ε
1+ε and

φ(n) =
ln+

(

T
Kn

)

n
,

where ln+(x) := max(lnx, 1). Note that both φ(n) and cn
are monotonically decreasing in n.

B. Saturated Empirical Mean

The robust saturated empirical mean is similar to the

truncated empirical mean used in [10], which is employed

to extend UCB1 to achieve logarithm distribution-dependent

regret for the heavy-tailed MAB problem. Let {Xi}i∈{1,...,m}

be a sequence of i.i.d. random variables with mean µ and

E
[

|Xi|1+ε ] ≤ u1+ε, where u > 0. Pick a > 1 and let

h(m) = abloga(m)c+1 such that h(m) ≥ m. Define the

saturation point Bm by

Bm := u×
[

φ
(

h(m)
)]− 1

1+ε .



Then, the saturated empirical mean estimator is defined by

µ̂m :=
1

m

m
∑

i=1

sat(Xi, Bm), (1)

where sat(Xi, Bm) := sign(Xi)min
{

|Xi| , Bm

}

.
Define di := sat(Xi, Bm)−E [sat(Xi, Bm)]. The following

lemma examines the estimator bias and provides an upper

bound on the error of saturated empirical mean.

Lemma 2 (Error of saturated empirical mean): For an

i.i.d. sequence of random variables {Xi}i∈{1,...,m} such that

E [Xi] = µ and E
[

X1+ε
i

]

≤ u1+ε, the saturated empirical

mean (1) satisfies
∣

∣

∣

∣

∣

µ̂m − µ− 1

m

m
∑

i=1

di

∣

∣

∣

∣

∣

≤ u1+ε

Bε
m

.

Proof: Since µ = E

[

Xi

(

1{|Xi|≤Bm} + 1{|Xi|>Bm}
)

]

,

the error of estimator µ̂m satisfies

µ̂m − µ =
1

m

m
∑

i=1

(

sat(Xi, Bm)− µ
)

=
1

m

m
∑

i=1

di +
1

m

m
∑

i=1

(

E [sat(Xi, Bm)]− µ
)

,

where the second term is the bias of µ̂m. We now compute

an upper bound on the bias.

∣

∣E [sat(Xi, Bm)]− µ
∣

∣ ≤ E

[

|Xi|1{|Xi|>Bm}
]

≤ E

[

|Xi|1+ε

(Bm)ε

]

≤ u1+ε

(Bm)ε
,

which concludes the proof.

We now establish properties of di.
Lemma 3 (Properties of di): For any i ∈ {1, . . . ,m}, di

satisfies (i) |di| ≤ 2Bm (ii) E [d2i ] ≤ u1+εB1−ε
m .

Proof: Property (i) follows immediately from definition

of di, and property (ii) follows from

E [d2i ] ≤ E
[

sat2(Xi, Bm)
]

≤ E
[

|Xi|1+ε
B1−ε

m

]

.

IV. ANALYSIS OF ROBUST MOSS

In this section, we analyze Robust MOSS to provide both

distribution-free and distribution-dependent regret bounds.

A. Properties of Saturated Empirical Mean Estimator

To derive the concentration property of saturated empirical

mean, we use a maximal Bennett type inequality as shown in

Lemma 4.

Lemma 4 (Maximal Bennett’s inequality [11]): Let

{Xi}i∈{1,...,n} be a sequence of bounded random variables

with support [−B,B], where B ≥ 0. Suppose that

E [Xi|X1, . . . , Xi−1] = µi and Var[Xi|X1, . . . , Xi−1] ≤ v.

Let Sm =
∑m

i=1(Xi − µi) for any m ∈ {1, . . . , n}. Then, for

any δ ≥ 0

P
(

∃m ∈ {1, . . . , n} : Sm ≥ δ
)

≤ exp

(

− δ

B
ψ

(

Bδ

nv

)

)

,

P
(

∃m ∈ {1, . . . , n} : Sm ≤ −δ
)

≤ exp

(

− δ

B
ψ

(

Bδ

nv

)

)

,

where ψ(x) = (1 + 1/x) ln(1 + x)− 1.

Remark 2: For x ∈ (0,∞), function ψ(x) is monotonically

increasing in x.

Now, we establish an upper bound on the probability that

the UCB underestimates the mean at arm k by an amount x.

Lemma 5: For any arm k ∈ {1, . . . ,K} and any t ∈
{K + 1, . . . , T} and x > 0, if ηψ(2η/a) ≥ 2a, the probability

of event
{

gknk(t)
≤ µk − x

}

is no greater than

K

T

a

ln(a)
Γ

(

1

ε
+ 2

)

(

ψ
(

2η/a
)

2a

x

u

)− 1+ε
ε

.

Proof: It follows from Lemma 2 that

P

(

gknk(t)
≤ µk − x

)

≤P

(

∃m ∈ {1, . . . , T} : µ̂k
m + (1 + η)cm ≤ µk − x

)

≤P

(

∃m ∈ {1, . . . , T} :
m
∑

i=1

dki
m

≤ u1+ε

Bε
m

− (1 + η)cm − x

)

≤P

(

∃m ∈ {1, . . . , T} :
1

m

m
∑

i=1

dki ≤ −x− ηcm

)

,

where dki is defined similarly to di for i.i.d. reward sequence

at arm k and the last inequality is due to

u1+ε

Bε
m

= u
[

φ
(

h(m)
)]

ε
1+ε ≤ u

[

φ(m)
]

ε
1+ε = cm. (2)

Recall a > 1. We apply a peeling argument [12, Sec 2.2] with

geometric grid as ≤ m < as+1 over time interval {1, . . . , T}.

Since cm is monotonically decreasing with m,

P

(

∃m ∈ {1, . . . , T} :
1

m

m
∑

i=1

dki ≤ −x− ηcm

)

≤
∑

s≥0

P

(

∃m ∈ [as, as+1) :
m
∑

i=1

dki ≤ −as (x+ ηcas+1)

)

.

Also notice that Bm = Bas for all m ∈ [as, as+1). Then with

properties in Lemma 3, we apply Lemma 4 to get

∑

s≥0

P

(

∃m ∈ [as, as+1) :
m
∑

i=1

dki ≤ −as (x+ ηcas+1)

)

≤
∑

s≥0

exp



−a
s (x+ ηcas+1)

2Bas

ψ

(

2Bas (x+ ηcas+1)

au1+εB1−ε
as

)





(

since ψ(x) is monotonically increasing
)

≤
∑

s≥0

exp

(

−a
s (x+ ηcas+1)

2Bas

ψ

(

2ηBε
ascas+1

au1+ε

)

)

(

plug in cas+1 , Bas and use h(as) = as+1)

=
∑

s≥1

exp

(

−as
(

x

Bas−1

+ ηφ(as)

)

ψ
(

2η/a
)

2a

)

(

plug in φ(as) and use ηψ(2η/a) ≥ 2a, ln+(y) ≥ ln(y)
)

≤
∑

s≥1

exp

(

−as x

Bas−1

ψ
(

2η/a
)

2a

)

K

T
as. (3)



Let b = xψ
(

2η/a
)

/(2au). Since Bas−1 ≤ ua
s

1+ε , we have

(3) ≤K
T

∑

s≥1

as exp
(

−ba εs
1+ε

)

≤K
T

∫ +∞

1

ay exp
(

− ba
(y−1)ε
1+ε

)

dy

=
K

T
a

∫ +∞

0

ay exp
(

− ba
yε
1+ε

)

dy

(

where we set z = ba
yε
1+ε

)

=
K

T

a

ln(a)

1 + ε

ε
b−

1+ε
ε

∫ +∞

b

z
1+ε
ε

−1 exp
(

− z
)

dz

≤K
T

a

ln(a)
Γ

(

1

ε
+ 2

)

b−
1+ε
ε ,

which concludes the proof.

The following is a straightforward corollary of Lemma 5.

Corollary 6: For any arm k ∈ {1, . . . ,K} and any t ∈
{K + 1, . . . , T} and x > 0, if ηψ(2η/a) ≥ 2a, the probability

of event
{

gknk(t)
− 2(1 + η)cnk(t) ≥ µk + x} shares the same

bound in Lemma 5.

B. Distribution-free Regret Bound

The distribution-free upper bound for Robust MOSS, which

is the main result for the paper, is presented in this section.

We show that the algorithm achieves order optimal worst-case

regret.

Theorem 7: For the heavy-tailed stochastic MAB problem

with K arms and time horizon T , if η and a are selected such

that ηψ(2η/a) ≥ 2a, then Robust MOSS satisfies

Rworst
T ≤ CuK

ε
1+ε (T/e)

1
1+ε + 2uK,

where C = Γ
(

1/ε+ 2
) [

a/ (6 + 3η)
]

1
ε
[

3/ψ (6 + 3η)
]

1+ε
ε +

εΓ
(

1/ε+ 2
)

(6 + 3η)
− 1

ε
[

6a/ψ(2η/a)
]

1+ε
ε a/ ln(a) +

(6 + 3η)
[

e+ (1 + ε)e
−ε
1+ε

]

.

Remark 3: Parameter a and η as inputs to Robust MOSS

can be selected by minimizing the leading constant C in the

upper bound on the regret in Theorem 7. We have found that

selecting a slightly larger than 1 and selecting smallest η that

satisfies ηψ(2η/a) ≥ 2a yields good performance.

Proof: Since both the UCB and the regret scales with

u defined in Assumption 1, to simplify the expressions, we

assume u = 1. Also notice that Assumption 1 indicates |µk| ≤
u, so ∆k ≤ 2 for any k ∈ {1, . . . ,K}. In the following,

any terms with superscript or subscript “∗” and “k” are with

respect to the best and the k-th arm, respectively. The proof

is divided into 4 steps.

Step 1: We follow a decoupling technique inspired by the

proof of regret upper bound in MOSS [1]. Take the set of

δ-bad arms as Bδ as

Bδ := {k ∈ {1, . . . ,K} | ∆k > δ}, (4)

where we assign δ = (6 + 3η)
(

eK/T
)

ε
1+ε . Thus,

RT ≤ Tδ +

K
∑

t=1

∆k + E

[

T
∑

t=K+1

1{ϕt ∈ Bδ}
(

∆ϕt
− δ
)

]

≤Tδ + 2K + E

[

T
∑

t=K+1

1{ϕt ∈ Bδ}
(

∆ϕt
− δ
)

]

. (5)

Furthermore, we make the following decomposition

T
∑

t=K+1

1{ϕt ∈ Bδ}
(

∆ϕt
− δ
)

=

T
∑

t=K+1

1

{

ϕt ∈ Bδ, g
∗
n∗(t) ≤ µ∗ − ∆ϕt

3

}

(

∆ϕt
− δ
)

(6)

+

T
∑

t=K+1

1

{

ϕt ∈ Bδ, g
∗
n∗(t) > µ∗ − ∆ϕt

3

}

(

∆ϕt
− δ
)

.

Notice that (6) describes regret from underestimating optimal

arm ∗. For the second summand, since gϕt

nϕt
(t) ≥ g∗n∗(t),

T
∑

t=K+1

1

{

ϕt ∈ Bδ, g
∗
n∗(t) > µ∗ − ∆ϕt

3

}

(

∆ϕt
− δ
)

≤
T
∑

t=K+1

1

{

ϕt ∈ Bδ, g
ϕt

nϕt
(t) > µϕt

+
2∆ϕt

3

}

∆ϕt

=
∑

k∈Bδ

T
∑

t=K+1

1

{

ϕt = k, gknk(t)
> µk +

2∆k

3

}

∆k, (7)

which characterizes the regret caused by overestimating δ-bad

arms.

Step 2: In this step, we bound the expectation of (6). When

event
{

ϕt ∈ Bδ, g
∗
n∗(t) ≤ µ∗ −∆ϕt

/3
}

happens, we know

∆ϕ ≤ 3µ∗ − 3g∗n∗(t) and g∗n∗(t) < µ∗ − δ

3
.

Thus, we get

1

{

ϕt ∈ Bδ, g
∗
n∗(t) ≤ µ∗ − ∆ϕt

3

}

(∆ϕt
− δ)

≤1

{

g∗n∗(t) < µ∗ − δ

3

}

×
(

3µ∗ − 3g∗n∗(t) − δ
)

:= Yt

Since Yt is a positive random variable, its expected value can

be computed involving only its cumulative density function:

E [Yt] =

∫ +∞

0

P (Yt > x) dx

≤
∫ +∞

0

P

(

3µ∗ − 3g∗n∗(t) − δ > x
)

dx

=

∫ +∞

δ

P

(

µ∗ − g∗n∗(t) >
x

3

)

dx.

Then we apply Lemma 5 at optimal arm ∗ to get

E [Yt] ≤
KC1

T

∫ +∞

δ

1

ε
x−

1+ε
ε dx =

KC1

Tδ
1
ε



where C1 = εΓ
(

1/ε+ 2
) [

6a/ψ(2η/a)
]

1+ε
ε a/ ln(a). We con-

clude this step by

E [(6)] ≤
T
∑

t=K+1

Yt ≤ C1Kδ
− 1

ε .

Step 3: In this step, we bound the expectation of (7). For each

arm k ∈ Bδ ,

T
∑

t=K+1

1

{

ϕt = k, gknk(t)
≥ µk +

2∆k

3

}

=

T
∑

t=K+1

t−K
∑

m=1

1
{

ϕt = k, nk(t) = m
}

1

{

gkm ≥ µk +
2∆k

3

}

=

T−K
∑

m=1

1

{

gkm ≥ µk +
2∆k

3

} T
∑

t=m+K

1
{

ϕt = k, nk(t) = m
}

≤
T
∑

m=1

1

{

gkm ≥ µk +
2∆k

3

}

≤
T
∑

m=1

1

{

1

m

m
∑

i=1

dki ≥ 2∆k

3
− (2 + η)cm

}

, (8)

where in the last inequality we apply Lemma 2 and use the

fact that u1+ε/Bε
m ≤ cm in (2). We set

lk =









(

6 + 3η

∆k

)
1+ε
ε

ln

(

T

K

(

∆k

6 + 3η

)
1+ε
ε

)









.

With ∆k ≥ δ, we get lk is no less than

(

6 + 3η

∆k

)
1+ε
ε

ln

(

T

K

(

δ

6 + 3η

)
1+ε
ε
)

=

(

6 + 3η

∆k

)
1+ε
ε

.

Furthermore, since cm is monotonically decreasing with m,

for m ≥ lk,

cm ≤ clk ≤
[

ln+
(

T
K

(

∆k

6+3η

)
1+ε
ε
)

lk

]
ε

1+ε

≤ ∆k

6 + 3η
. (9)

With this result and lk ≥ 1, we continue from (8) to get

E [(8)] ≤lk − 1 +

T
∑

m=lk

P

{

1

m

m
∑

i=1

dki ≥ 2∆k

3
− (2 + η)cm

}

≤lk − 1 +

T
∑

m=lk

P

{

1

m

m
∑

i=1

dki ≥ ∆k

3

}

(10)

Therefore by using Lemma 4 together with statement (ii) from

Lemma 3, we get

T
∑

m=lk

P

{

1

m

m
∑

i=1

dki ≥ ∆k

3

}

≤
T
∑

m=lk

exp

(

−m∆k

3Bm
ψ (Bε

m∆k)

)

≤
T
∑

m=lk

exp

(

−m∆k

3Bm
ψ (6 + 3η)

)

, (11)

where the last step is due to that ψ(x) is monotonically

increasing and Bε
m∆k ≥ (6 + 3η)Bε

mcm ≥ 6 + 3η from (9)

and (2). Since Bm = φ
(

h(m)
)− 1

1+ε ≤ φ(am)−
1

1+ε ≤
(am)

1
1+ε , we have

(11) ≤
T
∑

m=1

exp

(

−m ε
1+ε a−

1
1+εψ (6 + 3η)

∆k

3

)

.

≤
∫ +∞

0

exp
(

−βy ε
1+ε

)

dy

(

where we set β = a−
1

1+εψ (6 + 3η)∆k/3
)

=
1 + ε

ε
β− 1+ε

ε

∫ +∞

0

z
1+ε
ε

−1 exp (−z) dy
(

where z = βy
ε

1+ε

)

= Γ

(

1

ε
+ 2

)

β− 1+ε
ε .

Plugging it into (10),

E [(8)] ≤ C2∆
− 1+ε

ε

k + C3∆
− 1+ε

ε

k ln
( T

KC3
∆

1+ε
ε

k

)

where C2 = Γ
(

1/ε+ 2
)

a
1
ε

[

3/ψ (6 + 3η)
]

1+ε
ε and C3 =

(6 + 3η)
1+ε
ε . Put it together with ∆k ≥ δ for all k ∈ Bδ ,

E [(7)] ≤
∑

k∈Bδ

C2∆
− 1

ε

k + C3∆
− 1

ε

k ln

(

T

KC3
∆

1+ε
ε

k

)

≤ C2Kδ
− 1

ε + (1 + ε)e
−ε
1+εC3Kδ

− 1
ε ,

where we use the fact that x−
1
ε ln

(

Tx
1+ε
ε / (KC3)

)

takes its

maximum at x = δ exp(ε2/(1 + ε)).
Step 4: Plugging the results in step 2 and step 3 into (5),

Rworst
T ≤ Tδ +

[

C1 + C2 + (1 + ε)e
−ε
1+εC3

]

Kδ−
1
ε + 2K.

Straightforward calculation concludes the proof.

C. Distribution-dependent Regret Upper Bound

We now show that robust MOSS also preserves a logarithm

upper bound on the distribution-dependent regret.

Theorem 8: For the heavy-tailed stochastic MAB problem

with K arms and time horizon T , if ηψ(2η/a) ≥ 2a, the regret

RT for Robust MOSS is no greater than

∑

k:∆k>0

(u1+ε

∆k

)
1
ε

[

C1 ln

(

T

KC1

(∆k

u

)
1+ε
ε

)

+ C2K

]

+∆k.

where C1 = (4 + 4η)
1+ε
ε and C2 =

max
(

eC1, 2Γ(1/ε+ 2)
(

8a/ψ(2η/a)
)

1+ε
ε a/ln(a)

)

.

Proof: Let δ = (4 + 4η)
(

eK/T
)

ε
1+ε and define Bδ the

same as (4). Since ∆k ≤ δ for all k /∈ Bδ , the regret satisfies

RT ≤
∑

k/∈Bδ

T∆k +
T
∑

t=1

1{ϕt ∈ Bδ}∆ϕt

≤
∑

k/∈Bδ

eK

(

4 + 4η

∆k

)
1+ε
ε

∆k +
∑

k∈Bδ

T
∑

t=1

1{ϕt = k}∆k.

(12)




