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Abstract— We study the problem of multi-robot coverage
over an unknown, nonuniform sensory field. Modeling the
sensory field as a realization of a Gaussian Process and using
Bayesian techniques, we devise a policy which aims to balance
the tradeoff between learning the sensory function and covering
the environment. We propose an adaptive coverage algorithm
called Deterministic Sequencing of Learning and Coverage
(DSLC) that schedules learning and coverage epochs such that
its emphasis gradually shifts from exploration to exploitation
while never fully ceasing to learn. Using a novel definition of
coverage regret which characterizes overall coverage perfor-
mance of a multi-robot team over a time horizon 7', we analyze
DSLC to provide an upper bound on expected cumulative
coverage regret. Finally, we illustrate the empirical performance
of the algorithm through simulations of the coverage task over
an unknown distribution of wildfires.

I. INTRODUCTION

Autonomous systems must remain robust and resilient in
the face of uncertainty, capable of making decisions under
the influence of imperfect and incomplete information. Real-
world environments are unpredictable, noisy, and stochastic
by their nature—various factors including weather, terrain,
and human behavior combine with changing mission goals
and operating constraints to necessitate adaptive policies. To
successfully deal with uncertainty, autonomous systems must
strike a balance between exploration and exploitation, simul-
taneously learning about the environment while executing a
task depending on their collective knowledge about it.

The coverage problem [1] arises naturally in multi-robot
systems when a team of agents wishes to deploy them-
selves over an environment according to a particular sensory
function ¢, which specifies the degree to which a robot is
“needed.” Equivalently, the team of agents aims to partition
an environment and achieve a configuration which minimizes
the coverage cost defined by the sum of the ¢-weighted
distances from every point in the environment to the nearest
agent. Example applications of coverage range from search
and rescue to wildfire fighting, smart agriculture, ecological
surveying, environmental cleanup, and climate monitoring.

Classical approaches to coverage control [1]-[4] assume
a priori knowledge of ¢ and employ Lloyd’s algorithm [5]
to guarantee the convergence of agents to a local minimum
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of the coverage cost. In these algorithms, each agent com-
municates with the agents in the neighboring partitions at
each time and updates its partition. Distributed gossip-based
coverage algorithms [6] address potential communication
bottlenecks in classical approaches by updating partitions
pairwise between neighboring agents. While much of the
work in coverage considers continuous convex environments,
a discrete graph representation of the environment is consid-
ered and a corresponding gossip-based coverage algorithm is
proposed in [7], which allows for non-convex environments.

Recent works have focused on the problem of adaptive
coverage, in which agents are not assumed to have knowl-
edge of ¢ a priori. Parametric estimation approaches to
adaptive coverage [8], [9] model ¢ as a linear combination of
basis functions and propose algorithms to learn the weight of
each basis function, while non-parametric approaches [10]—
[15] model ¢ as the realization of a Gaussian Process
and make predictions by conditioning on observations of
¢ sampled over the operating environment. Todescato et
al. [14] use a Bernoulli random variable for each robot to
decide between learning and coverage steps. The probability
of exploration decays as the estimation of ¢ becomes more
accurate. Benevento er al. [15] use a Gaussian process
optimization [16] based approach to design an adaptive
coverage algorithm and derive an upper bound on the regret
with respect to coverage cost. However, they make the strong
assumption that Lloyd’s algorithm converges to the global
minimum of coverage cost. In contrast, the coverage regret
in this paper is defined with respect to the local minima and
consequently, the assumption is relaxed.

In this paper, we focus on a non-parametric adaptive cov-
erage algorithm with provable regret guarantees. The major
contributions of this work are threefold. First, we propose
an adaptive coverage algorithm—Deterministic Sequencing
of Learning and Coverage (DSLC)—that can balance the
exploration-exploitation trade-off. Second, we introduce a
novel coverage regret that characterizes the deviation of
agent configurations and partitions from a centroidal Voronoi
partition, and derive analytic bounds on the expected cumu-
lative regret for DSLC. In particular, we prove that DSLC
will achieve sublinear expected cumulative regret under
minor assumptions. Third, we illustrate the efficacy of DSLC
through extensive simulation and comparison with existing
state-of-the-art approaches to adaptive coverage.

The remainder of the paper is organized as follows. The
problem setup and preliminaries are presented in Section II.
The DSLC algorithm is presented and analyzed in Sections
IIT and IV, respectively. The performance of DSLC is elu-



cidated through empirical simulations and is compared with
the state-of-the-art algorithms in Section V. Conclusions and
future directions are discussed in Section VI.

II. PROBLEM FORMULATION

We consider a team of N agents tasked with provid-
ing coverage to a finite set of points in an environment
represented by an undirected graph. The team is required
to navigate within the graph to learn an unknown sensory
function while maintaining a near optimal configuration. In
this section, we present the preliminaries of the estimation
and coverage problem.

A. Graph Representation of Environment

We consider a discrete environment modeled by an undi-
rected graph G = (V, E), where the vertex set V' contains
the finite set of points to be covered and the edge set
E CV xV is the collection of physically adjacent pairs of
vertices that can be reached from each other without passing
through other vertices. Let the weight map w : E — Ry
indicate the distance between connected vertices. We assume
G is connected. Following standard definition of weighted
undirected graph, a path in G is an ordered sequence of
vertices where there exists an edge between consecutive
vertices. The distance between vertices v; and v; in G,
denoted by d¢(v;,v;), is defined by the minimum of the
sums of the weights in the paths between v; and v;.

Suppose there exists an unknown sensory function ¢ :
V' — Ry that assigns a nonnegative weight to each vertex
in G. Intuitively, ¢(v;) could represent the intensity of signal
of interest such as brightness or sound. A robot at vertex v;
is capable of measuring ¢(v;) by collecting a sample y =
é(v;) + €, where € ~ N(0,02) is an additive zero mean
Gaussian noise.

B. Nonparametric Estimation

Let ¢ be a vector with the i-th entry ¢(v;), i €
{1,...,]V]}, where | - | denotes set cardinality. We as-
sume a multivariate Gaussian prior for ¢ such that ¢ ~
N(pg, Agt), where p, is the mean vector and Ag is
the inverse covariance matrix. Let n;(t) be the number of
samples and s; () be the summation of sampling results from
v; until time t. Then, the posterior distribution of ¢ at time
tis N'(p(t), A" (¢)) [17, Chapter 10], where

=t (1)

Here, e; is the standard unit vector with ¢-th entry to be 1.

C. Voronoi Partition and Coverage Problem

We define the N-partition of a graph G as a collection P =
{P;}}N.| of N nonempty subsets of V such that UN , P, =V
and P, N P; = () for any ¢ # j. P is said to be connected
if the subgraph induced by P;, denoted G[P;], is connected

for each i € N. G[F;] being an induced subgraph means its
vertex set is P; and its edge set includes all edges in G for
which both end vertices are included in P;.

The configuration of the robot team is a vector of N
vertices 7 € V¥ occupied by the robot team, where the
i-th entry 7; corresponds to position of the i-th robot. The
i-th robot is tasked to cover vertices in P;. The coverage cost
corresponding to configuration 7 and connected /V-partition
P can be defined as

N
Hn,P)=>_ > dapy(ni,v)s). )

i=1v'eP;

In a coverage problem, the objective is to minimize this
coverage cost by selecting appropriate configuration 1 and
connected N-partition P. However, how to efficiently find
the optimal configuration-partition pair in a large graph with
arbitrary sensory function ¢ remains an open problem. There
are two intermediate results about the optimal selection of
configuration or partition when the other is fixed [7].

1) Optimal Partition with Fixed Configuration: For a
fixed configuration 7, an optimal connected N-partition P
minimizing coverage cost is a Voronoi partition, denoted
by V(n). Formally, for each P; € V(n) and any v' € P,
Vjed{l,...,N} :da(v',n) < da(v',n;).

2) Optimal Configuration with Fixed Partition: For a
fixed, connected N-partition P, the centroid of the i-th
partition P; € P is defined by

¢; 1= argmin Z dG[Pi](v,v’)qb(v'),

veP: v'eP;

and the optimal configuration is to place a robot at the
centroid of every P; € P. We denote the vector of centroids
of P by ¢(P) with ¢; as its i-th element.

Building upon the above two properties, the classic Lloyd
algorithm [5] iteratively places each robot at the centroid
of the current Voronoi partition and computes the new
Voronoi partition using the updated configuration. Under this
algorithm, it is known that the robot team will eventually
converge to a centroidal Voronoi partition, defined below.

Definition 1 (Centroidal Voronoi Partition, [18]): An N-
partition P is a centroidal Voronoi partition of G if P is
a Voronoi partition generated by some configuration with
distinct entries 17 such that P = V(n), and ¢ (V(n)) = .

It should be noted that an optimal partition and configu-
ration pair minimizing the coverage cost H(n, P) is of the
form (n*,V(n*)), where n* has distinct entries and V(n*) is
a centroidal Voronoi partition. A configuration-partition pair
(n’,V(n')) is considered to be an efficient solution to the
coverage problem if V(n') is a centroidal Voronoi partition,
even though it is possibly suboptimal [18].

D. Performance Evaluation

To evaluate the performance of online estimation and
coverage, we introduce a notion of coverage regret.

Definition 2 (Coverage Regret): At each time ¢, let the
team configuration be 7, and the connected /NV-partition
be P.. The coverage regret until time 7' is defined by



Algorithm 1: DSLC

Input : Environment graph G, pq , Ao ;
Set ta€(0,1)and 8 > 1;

for epoch j =1,2,... do

Exploration phase:

1 The robot team sample at vertices in V' to make
2 j 2
m o (t) <alog.
en vy 0
Information propagation phase:
2 Each robot agent propagates its sampling result to the team.
3 Each robot updates estimated sensory function ¢.

Coverage phase:

4 fortj:1,2,...,|—,8j-| do

Based on ¢, follow pairwise partitioning rule to update
robot team configuration and partition.

Zf:l Ri(¢), where R;(¢) is the instantaneous coverage
regret with respect to sensory function ¢, and is defined by

Ri(¢) = 2H(n,, Pr) — H(c(Br), Pr) — H(n,, V(n,)),

which is the sum of two terms H(n,, Pi) — H(c(P), P;)
and H(n,, P;) — H(n,,V(n,)). The former (resp., latter)
term is the regret induced by the deviation of the current
configuration (resp., partition) from the optimal configuration
(resp., partition) for the current partition (resp., configura-
tion). Accordingly, no regret is incurred at time ¢ if and only
if P, is a centroidal Voronoi N-partition and 1, = ¢(P;).
Thus, there are two sources contributing to coverage regret:
(1) the estimation error in the sensory function ¢, and (ii)
the deviation from a centroidal Voronoi partition inevitable
when agents sample the environment to learn ¢.

III. DETERMINISTIC SEQUENCING OF LEARNING AND
COVERAGE (DSLC) ALGORITHM

In this section, we describe the DSLC algorithm (Algo-
rithm 1). It operates with an epoch-wise structure, where each
epoch consists of an exploration (learning) phase and an ex-
ploitation (coverage) phase. The exploration phase comprises
two sub-phases: estimation and information propagation.

A. Estimation Phase

Let 02(t) be the marginal posterior variance of ¢(v;) at
time ¢, i.e., the i-th diagonal entry of A~'(t). Suppose the
marginal prior variance o2(0) < o2, for each i. Within each
epoch j, agents first determine the points to be sampled
in order to reduce max;e(i,.. v} o%(t) below a threshold
alo?, where o € (0,1) is a prespecified parameter.

Note that the posterior covariance computed in (1) depends
only the number of samples at each vertex, and does not
require actual sampling results. Therefore, the sequence
of sampling locations can be computed before physically
visiting the locations. Leveraging this deterministic evolution
of the covariance, we take a greedy sampling policy that
repeatedly selects the point v;, with maximum marginal
posterior variance, i.e.,

iy = argmax o;(t), 3)
i€{1,...,|V|}

for t € {t;,...,t;}, where t; and f; are the starting and
ending time of estimation phase in the j-th epoch. It has been
shown that the greedy sampling policy is near-optimal in
terms of maximizing the mutual information of the sampling
results and sensory function ¢ [19].

Let the set of points to be sampled during epoch j be X7
and let XJ = X7 N P, , be the set of sampling points that
belong to Ptj,,., the pairtition assigned to agent r at time ¢,.
Each agent r computes a path through the sampling points
in X7 and collects noisy measurements from those points.
The traveling path can be optimized by solving a Traveling
Salesperson Problem (TSP).

B. Information Propagation Phase

After the estimation phase, sampling results from each
agent must be passed to all other agents. There are several
mechanisms to accomplish this in a finite number of steps.
For example, agents can communicate with their neighboring
agents and use flooding algorithms [20] to relay their sam-
pling results to every agent. Alternatively, the agents may be
able to send their sampling results to a cloud and receive
global estimates after a finite delay. Another possibility for
the agents is to use finite time consensus protocols [21] in
the distributed inference algorithm discussed in [22].

For any of the above mechanisms, the sampling results
from the entire robot team can be propagated to each robot
agent in finite time. Then, each agent has an Aidentical
posterior distribution N (p (%), A_l(t)) of ¢, and ¢ := pu(t)
will be used as the estimate of the sensory function.

C. Coverage Phase

After the estimation and information propagation phases,
agents have the same estimate of the sensory function ¢. The
coverage phase involves no environmental sampling and its
length is designed to grow exponentially with epochs, i.e.,
the number of time steps in the coverage phase of the j-th
epoch is {Bj 1 , for some 5 > 1. We use pairwise partitioning,
a distributed gossip-based coverage algorithm proposed in
[7], with the estimated sensory function (ﬁ

In a connected N-partition P, P; and P; are said to be
adjacent if there exists a vertex pair v € P; and v’ € P; and
an edge in E connecting v and v’. At each time, a random
pair of agents (4,j), with P; and P; adjacent, compute an
optimal pair of vertices (a*, b*) within P; U P; that minimize

Z ¢(v') min (dG[P,itu](a»U/), daip,up;) (b, ’U/)) .
v’ € P;UP;

Then, agents ¢ and j move to a* and b*. Subsequently, P;
and P; are updated to

P+ {U EPUP; | dG[P,;tu](%”) < dG[Pf,UR;](nj»U)}
Pj < {v e P;UP; | dgip,up,)(ni,v) > darp,up,) (1j,v)}
IV. ANALYSIS OF DSLC ALGORITHM

In this section, we analyze DSLC to provide a performance
guarantee on the expected cumulative coverage regret. To this
end, we leverage the information gain from the estimation
phase to analyze the convergence rate of uncertainty. Then,



we recall convergence properties of the pairwise partitioning
algorithm used in DSLC. Based on these results, we establish
the main result of this paper: an upper bound on the expected
cumulative coverage regret.

A. Mutual Information and Uncertainty Reduction

Let X9 = (v,...,v;,) be a sequence of n vertices
selected by the greedy policy and Yxs = (y1,...,yn) be
observed sampling results corresponding to X 9. With a slight
abuse of notation, we denote the marginal posterior variance
of ¢(v;) after sampling at v;, ...v;, by o; (k) With greedy

sampling policy, i, = argmax;cy vy 07 (k — 1). Then,
the mutual information of Y9 and (;b
I(Yxo;¢) = H (Yxo) — H (Yxo | @)
I _
:§Zlog(1—|—a 07 (k—1)), &

where H(Yxs) and H(Yxs | ¢) denote the entropy and con-
ditional entropy respectively. Let v, := maxxcyn I (Yx; @)
be the maximal mutual information gain that can be achieved
with n samples. It is shown in [23] that I (Yx.; ¢) achieved
by the greedy sampling policy is near optimal, i.e.,

(1—1/e) v < I (Yx,;0) < - (5)

We now present a bound on the maximal posterior vari-
ance after sampling at vertices within X9. The following
lemma and proof techniques are adapted from our previous
work [24] to incorporate the discrete environment.

Lemma 1 (Uncertainty reduction): Under the greedy
sampling policy, the maximum posterior variance after n
sampling rounds satisfies

202 Tn
2 0 n
o;(n) < ——m———.
’L( ) log (1+O__2 2) n

Proof: For any i € {1,...,|V|}, oZ(k) is monotoni-
cally non-increasing in k. So, we get

max
ie{1,...|V[}

op (k) <af  (k—1) ©
2 2
(k—1)=o0; (k—1),
S eprax L oi(k—1) =0 (k—1)
which  indicates  that O'Z-2k+1 (k) is  monotonically
non- increasing Hence, from 4) and %),

log (1 +0%07 (n— 1)) < 27, /n. Since 2% /log (1 + 2?)
is an increasing function on [0, 00),

2

2 90 -2 2
P (n—1)< log(1+0 %0; (n—1)).

o %
log (1+ 0202

Substituting (6) into the above equation, we conclude that

20'0 In
~log (14 07203) n

)

ol (n—1) <
which establishes the lemma. [ ]

Typically, it is hard to characterize <, for a general
Gaussian random vector ¢ ~ N (g, Ay'). Therefore, we
make the following assumption.

Assumption 1: Vertices in V lie in a convex and compact
set D € R? and the covariance of any pair ¢(v;) and ¢(v;)
is determined by an exponential kernel function

2 (0 vs
K((0), 6(0;)) = o exp (-dg,>) NG

where de,(v;, v;) is the Euclidean distance between v; and
vj, [ is the length scale, and o2 is the variability parameter.
We now recall an upper bound on -, from [16].
Lemma 2 (Information gain for squared exp. kernel):
With Assumption 1, the maximum mutual information
satisfies v, € O((log(|V|n))?3).

B. Convergence within Coverage Phase

Since the sampling results of each agent are relayed to
the entire team before each coverage phase, the team have
a consensus estimate of the sensory function ¢. It has been
shown in [7] that using the pairwise partitioning algorithm,
the N-partition P for the team converges almost surely to a
class of near optimal partitions defined below.

Definition 3 (Pairwise-optimal Partition): A  connected
N-partition P is pairwise-optimal if for each pair of
adjacent regions P; and P;,

Y dale(P)), v

Y dale(P),v)o(v) + )é(v")

v/ EP; o' EP;
_ !/
_abIeIiDHbP Z ¢(v") min (dg(a, '), d(b,v")) .

! '€ P;UP;
This means that, w1th1n the induced subgraph generated

by any pair of adjacent regions, the 2-partition is optimal.
It is proved in [7] that if a connected N-partition P is
pairwise-optimal then it is also a centroidal Voronoi partition.
The following result on the convergence time of pairwise
partitioning algorithm is established in [7].

Lemma 3 (Expected Convergence Time): Using the pair-
wise partitioning algorithm, the expected time to converge
to a pairwise-optimal N-partition is finite.

Lemma 3 implies that the expected time for the Ry(¢) to
converge to 0 in each coverage phase is finite.

C. An Upper Bound on Expected Coverage Regret

We now present the main result for this paper.

Theorem 4: For any time horizon T, if Assumption 1
holds and o = 372/, then the expected cumulative coverage
regret for DSLC with respect to sensory function ¢ satisfies

2| R

Proof: We establish the theorem in four steps.
Step 1 (Regret from estimation phases): Let the total num-
ber of sampling steps before the end of the j-th epoch be s;.
By applying Lemma 1 and 2, we get s; € O((log(T))?/a?).
Thus, the coverage regret in the estimation phases until the
end of the j-th epoch belongs to O((log(T))3/a?).
Step 2 (Regret from information propagation phases):
The sampling information by each robot propagate to all the

€ O(T*3(log(T))?).




team members in finite time. Thus, before the end of the j-
th epoch, the coverage regret from information propagation
phases can be bounded by c;j for some constant ¢; > 0.
Step 3 (Regret from coverage phases): According to
Lemma 3, in each coverage phase, the expected time before
converging to a pairwise-optimal partition is finite. Thus,
before the end of the j-th epoch, the expected coverage regret
from converging steps can be upper bounded by coj for some
constant co > 0.

Note that the robot team converges to a pairwise optimal
partition with respect to the estimated sensory function (;AS,
which may differ from the actual ¢. The instantaneous
coverage regret R;(¢) due to the estimation error is

2H(n,, ) — H(e(Py), Py) — H(nV(n,)) == Al ¢,

for some A; € RIVI, Moreover, the posterior distribution
of R¢(¢) can be written as N'(AF pu(t), ATE(t)A;), where
3(t) = AY(t) is the posterior covariance matrix. Since
a pairwise-optimal partition P is also a centroidal Voronoi
partition and ¢ = u(t), Ri(¢) = 0 indicates AT p(t) = 0.
Now, we get R;(¢) ~ N(0, ATX(¢)A;) and
E[R(9)] < E [|R(6)]] = |/ 2ATS ()4,

Note that ATX(¢)A; is a weighed summation of the eigen-
values of 3(t). At any time ¢ in the coverage phase of the k-
th epoch, max;eq1,.. vy 02(t) < aFod, and its follows that
the summation of eigenvalues of 3(¢) equals trace(3(t)) <
|V|ako2. Thus, we get

E[ > Ri(9)

te 7’12:(»v

< es(BVa),

for some constant c3 > 0, where 7, are the time slots in the
coverage phase of the k-th epoch excluding those associated
with the transient of the pairwise partitioning algorithm, and
where we have used the fact that |7,2"| < [8*].

Step 4 (Summary): Summing up the expected coverage
regret from above steps, the expected cumulative coverage
regret at the end of the j-th epoch T satisfies

T
> Ri(6)
t=1

where C1,Cy > 0 are some constants. The theorem state-
ment follows by plugging in o = 32/, using j € O(log T)
and some simple calculations. |

J
< Chj+Cosj+ Y cs(BV),  (8)

k=1

E

V. SIMULATION RESULTS

Here, we present simulations which illustrate the empirical
promise of DSLC. In particular, we highlight DSLC’s ability
to achieve sublinear regret, and compare the performance of
DSLC to algorithms presented in [1] and [14].

Motivated by environmental applications, we construct
the sensory function ¢ over a discrete 21 x 21 point grid
in [0,1]? by performing kernel density estimation on a
subset of the geospatial distribution of Australian wildfires
observed by NASA in 2019 [25]. Intuitively, ¢ represents the

Posterior
TSP Tours Mean

Posterior

Partitions Variance

Wildfire Distribution
> -

t=0
epoch =1

(Exploration)

t=2
epoch =1

(Exploration)

t=10
epoch =1

(Coverage)

t=190
epoch =3

(Coverage)

Ground Truth

Fig. 1: Distributed implementation of DSLC in the unit square
with 7 = 3 epochs of length 16, 46, and 128. From left to right:
agent positions 7, and partitions P;; TSP sampling tours; posterior
mean and variance of ¢; ground truth sensory function ¢ based
on data from [25]. Pairwise partition updates between gossiping
agents are denoted by magenta lines in the leftmost column of
panels. Points along TSP tours in second-from-leftmost column of
panels are plotted in magenta prior to sampling, and in black after
sampling. Video is available online.!

probability that a wildfire may occur at a particular point of
the unit square, and may be used to model the demand for an
autonomous sensing agent at that point. In each simulation,
nine agents are placed uniformly at random over the grid
and execute three epochs of length 16, 46, and 128 to
achieve adaptive coverage of the environment. Partitions are
initialized by iterating over the grid and assigning each point
to the nearest agent. During the exploration phase of each
epoch, partitions are fixed; during the exploitation phase of
each epoch, partitions are updated according to the protocol
established in [7], where gossip-based repartitioning occurs
between randomly selected neighbors. Coverage cost, regret
and maximum variance are computed throughout using (2),
Definition 2, and the maximum diagonal entry of A~'(t)
from (1), respectively.

The sensory function ¢ is normalized in the range [0, 1]
and sampled by agents with Gaussian noise parameterized
by mean and standard deviation i = 0, 0 = 0.1. A global
Gaussian Process model is assumed to simplify estimation
of ¢ throughout the simulation, though in practice estimation
of ¢ could be implemented in a fully-distributed manner
by assuming each agent maintains its own model of ¢
and employing an information propagation phase described
in Section III. Setting the parameter a = 0.5 to reduce
uncertainty by half within each epoch, § = a~3/2 is fully
determined by Theorem 4. Fig. 1 visualizes the simulation
of DSLC. A video of the simulation is available online.!

Fig. 2 compares the evolution of regret and cost incurred
by DSLC with algorithms proposed in [1] and [14], denoted
Cortes and Todescato, respectively. Agents in Cortes
are assumed to have perfect knowledge of ¢ and simply go
to the centroid of their cell at each iteration, while agents
in Todescato follow a stochastic sampling approach with
probability of exploration proportional to posterior variance
in the estimate ¢ at each iteration. As expected, Cortes

https://youtu.be/nalwrzC6GiI
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Fig. 2: Cost, regret and maximum posterior variance of ¢A> for DSLC, Todescato and Cortes averaged over 16 simulations of 190
iterations each. Note that DSLC empirically achieves sublinear regret. Spikes in regret occur during the exploration phase of each epoch,
before agents converge to a pairwise-optimal coverage configuration with respect to ¢ during the exploitation phase.

achieves minimal cost and coverage regret over the course
of execution given complete access to ¢, and serves as a
baseline. On the other hand, DSLC achieves lower average
cost per iteration and cumulative regret than Todescato,
even after accounting for spikes in cost and regret incurred
by DSLC during the exploration phase of each epoch. This
suggests the deterministic, near-optimal greedy sampling
policy of DSLC is both theoretically and empirically sound.
All results are averaged over 16 simulations of 190 iterations,
aligned with the implementation of DSLC comprising three
epochs of lengths 16, 46, and 128.

VI. CONCLUSIONS

In this paper, we study the multi-robot coverage problem
over an unknown nonuniform sensory field. DSLC, a novel
adaptive coverage algorithm, is designed to drive agents
to simultaneously learn the sensory function and provide
satisfactory coverage. Defining a novel characterization of
coverage regret, we analyze DSLC to get a sublinear upper
bound on the cumulative expected coverage regret. We
illustrate the empirical promise of DSLC through simulations
in which a team of aerial robots is tasked with coverage of
an unknown geospatial distribution of wildfires.

In future works, we hope to extend our approach to
settings in which agents are assumed to have heterogeneous
sensing and motion capabilities. We also see potential for
extension to nonstationary settings in which a sensing field
evolves with time. Such settings more accurately reflect the
challenges presented by real-world implementation of multi-
robot control algorithms, and offer promising avenues to
broader impacts in multi-robot systems research.
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