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Abstract— We study the problem of multi-robot coverage
over an unknown, nonuniform sensory field. Modeling the
sensory field as a realization of a Gaussian Process and using
Bayesian techniques, we devise a policy which aims to balance
the tradeoff between learning the sensory function and covering
the environment. We propose an adaptive coverage algorithm
called Deterministic Sequencing of Learning and Coverage
(DSLC) that schedules learning and coverage epochs such that
its emphasis gradually shifts from exploration to exploitation
while never fully ceasing to learn. Using a novel definition of
coverage regret which characterizes overall coverage perfor-
mance of a multi-robot team over a time horizon T , we analyze
DSLC to provide an upper bound on expected cumulative
coverage regret. Finally, we illustrate the empirical performance
of the algorithm through simulations of the coverage task over
an unknown distribution of wildfires.

I. INTRODUCTION

Autonomous systems must remain robust and resilient in

the face of uncertainty, capable of making decisions under

the influence of imperfect and incomplete information. Real-

world environments are unpredictable, noisy, and stochastic

by their nature—various factors including weather, terrain,

and human behavior combine with changing mission goals

and operating constraints to necessitate adaptive policies. To

successfully deal with uncertainty, autonomous systems must

strike a balance between exploration and exploitation, simul-

taneously learning about the environment while executing a

task depending on their collective knowledge about it.

The coverage problem [1] arises naturally in multi-robot

systems when a team of agents wishes to deploy them-

selves over an environment according to a particular sensory

function φ, which specifies the degree to which a robot is

“needed.” Equivalently, the team of agents aims to partition

an environment and achieve a configuration which minimizes

the coverage cost defined by the sum of the φ-weighted

distances from every point in the environment to the nearest

agent. Example applications of coverage range from search

and rescue to wildfire fighting, smart agriculture, ecological

surveying, environmental cleanup, and climate monitoring.

Classical approaches to coverage control [1]–[4] assume

a priori knowledge of φ and employ Lloyd’s algorithm [5]

to guarantee the convergence of agents to a local minimum
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of the coverage cost. In these algorithms, each agent com-

municates with the agents in the neighboring partitions at

each time and updates its partition. Distributed gossip-based

coverage algorithms [6] address potential communication

bottlenecks in classical approaches by updating partitions

pairwise between neighboring agents. While much of the

work in coverage considers continuous convex environments,

a discrete graph representation of the environment is consid-

ered and a corresponding gossip-based coverage algorithm is

proposed in [7], which allows for non-convex environments.

Recent works have focused on the problem of adaptive

coverage, in which agents are not assumed to have knowl-

edge of φ a priori. Parametric estimation approaches to

adaptive coverage [8], [9] model φ as a linear combination of

basis functions and propose algorithms to learn the weight of

each basis function, while non-parametric approaches [10]–

[15] model φ as the realization of a Gaussian Process

and make predictions by conditioning on observations of

φ sampled over the operating environment. Todescato et

al. [14] use a Bernoulli random variable for each robot to

decide between learning and coverage steps. The probability

of exploration decays as the estimation of φ becomes more

accurate. Benevento et al. [15] use a Gaussian process

optimization [16] based approach to design an adaptive

coverage algorithm and derive an upper bound on the regret

with respect to coverage cost. However, they make the strong

assumption that Lloyd’s algorithm converges to the global

minimum of coverage cost. In contrast, the coverage regret

in this paper is defined with respect to the local minima and

consequently, the assumption is relaxed.

In this paper, we focus on a non-parametric adaptive cov-

erage algorithm with provable regret guarantees. The major

contributions of this work are threefold. First, we propose

an adaptive coverage algorithm—Deterministic Sequencing

of Learning and Coverage (DSLC)—that can balance the

exploration-exploitation trade-off. Second, we introduce a

novel coverage regret that characterizes the deviation of

agent configurations and partitions from a centroidal Voronoi

partition, and derive analytic bounds on the expected cumu-

lative regret for DSLC. In particular, we prove that DSLC

will achieve sublinear expected cumulative regret under

minor assumptions. Third, we illustrate the efficacy of DSLC

through extensive simulation and comparison with existing

state-of-the-art approaches to adaptive coverage.

The remainder of the paper is organized as follows. The

problem setup and preliminaries are presented in Section II.

The DSLC algorithm is presented and analyzed in Sections

III and IV, respectively. The performance of DSLC is elu-



cidated through empirical simulations and is compared with

the state-of-the-art algorithms in Section V. Conclusions and

future directions are discussed in Section VI.

II. PROBLEM FORMULATION

We consider a team of N agents tasked with provid-

ing coverage to a finite set of points in an environment

represented by an undirected graph. The team is required

to navigate within the graph to learn an unknown sensory

function while maintaining a near optimal configuration. In

this section, we present the preliminaries of the estimation

and coverage problem.

A. Graph Representation of Environment

We consider a discrete environment modeled by an undi-

rected graph G = (V,E), where the vertex set V contains

the finite set of points to be covered and the edge set

E ⊆ V × V is the collection of physically adjacent pairs of

vertices that can be reached from each other without passing

through other vertices. Let the weight map w : E → R>0

indicate the distance between connected vertices. We assume

G is connected. Following standard definition of weighted

undirected graph, a path in G is an ordered sequence of

vertices where there exists an edge between consecutive

vertices. The distance between vertices vi and vj in G,

denoted by dG(vi, vj), is defined by the minimum of the

sums of the weights in the paths between vi and vj .

Suppose there exists an unknown sensory function φ :
V → R>0 that assigns a nonnegative weight to each vertex

in G. Intuitively, φ(vi) could represent the intensity of signal

of interest such as brightness or sound. A robot at vertex vi
is capable of measuring φ(vi) by collecting a sample y =
φ(vi) + ε, where ε ∼ N (0, σ2) is an additive zero mean

Gaussian noise.

B. Nonparametric Estimation

Let φ be a vector with the i-th entry φ(vi), i ∈
{1, . . . , |V |}, where | · | denotes set cardinality. We as-

sume a multivariate Gaussian prior for φ such that φ ∼
N (µ0,Λ

−1
0 ), where µ0 is the mean vector and Λ0 is

the inverse covariance matrix. Let ni(t) be the number of

samples and si(t) be the summation of sampling results from

vi until time t. Then, the posterior distribution of φ at time

t is N
(

µ(t),Λ−1(t)
)

[17, Chapter 10], where

Λ(t) = Λ0 +

|V |
∑

i=1

ni(t)

σ2
eie

T
i

µ(t) = Λ
−1(t)

(

Λ0µ0 +

|V |
∑

i=1

ei
si(t)

σ2

)

.

(1)

Here, ei is the standard unit vector with i-th entry to be 1.

C. Voronoi Partition and Coverage Problem

We define the N -partition of a graph G as a collection P =
{Pi}

N
i=1 of N nonempty subsets of V such that ∪Ni=1Pi = V

and Pi ∩ Pj = ∅ for any i 6= j. P is said to be connected

if the subgraph induced by Pi, denoted G[Pi], is connected

for each i ∈ N . G[Pi] being an induced subgraph means its

vertex set is Pi and its edge set includes all edges in G for

which both end vertices are included in Pi.

The configuration of the robot team is a vector of N
vertices η ∈ V N occupied by the robot team, where the

i-th entry ηi corresponds to position of the i-th robot. The

i-th robot is tasked to cover vertices in Pi. The coverage cost

corresponding to configuration η and connected N -partition

P can be defined as

H(η, P ) =

N
∑

i=1

∑

v′∈Pi

dG[Pi](ηi, v
′)φ(v′). (2)

In a coverage problem, the objective is to minimize this

coverage cost by selecting appropriate configuration η and

connected N -partition P . However, how to efficiently find

the optimal configuration-partition pair in a large graph with

arbitrary sensory function φ remains an open problem. There

are two intermediate results about the optimal selection of

configuration or partition when the other is fixed [7].

1) Optimal Partition with Fixed Configuration: For a

fixed configuration η, an optimal connected N -partition P
minimizing coverage cost is a Voronoi partition, denoted

by V(η). Formally, for each Pi ∈ V(η) and any v′ ∈ Pi,

∀j ∈ {1, . . . , N} : dG(v
′, ηi) ≤ dG(v

′, ηj).
2) Optimal Configuration with Fixed Partition: For a

fixed, connected N -partition P , the centroid of the i-th
partition Pi ∈ P is defined by

ci := argmin
v∈Pi

∑

v′∈Pi

dG[Pi](v, v
′)φ(v′),

and the optimal configuration is to place a robot at the

centroid of every Pi ∈ P . We denote the vector of centroids

of P by c(P ) with ci as its i-th element.

Building upon the above two properties, the classic Lloyd

algorithm [5] iteratively places each robot at the centroid

of the current Voronoi partition and computes the new

Voronoi partition using the updated configuration. Under this

algorithm, it is known that the robot team will eventually

converge to a centroidal Voronoi partition, defined below.

Definition 1 (Centroidal Voronoi Partition, [18]): An N -

partition P is a centroidal Voronoi partition of G if P is

a Voronoi partition generated by some configuration with

distinct entries η such that P = V(η), and c
(

V(η)
)

= η.
It should be noted that an optimal partition and configu-

ration pair minimizing the coverage cost H(η, P ) is of the

form (η∗,V(η∗)), where η∗ has distinct entries and V(η∗) is

a centroidal Voronoi partition. A configuration-partition pair

(η′,V(η′)) is considered to be an efficient solution to the

coverage problem if V(η′) is a centroidal Voronoi partition,

even though it is possibly suboptimal [18].

D. Performance Evaluation

To evaluate the performance of online estimation and

coverage, we introduce a notion of coverage regret.

Definition 2 (Coverage Regret): At each time t, let the

team configuration be ηt and the connected N -partition

be Pt. The coverage regret until time T is defined by



Algorithm 1: DSLC

Input : Environment graph G, µ0 , Λ0 ;
Set : α ∈ (0, 1) and β > 1;

for epoch j = 1, 2, . . . do

Exploration phase:
1 The robot team sample at vertices in V to make

max
i∈{1,...,|V |}

σ2

i (t) ≤ αjσ2

0 .

Information propagation phase:
2 Each robot agent propagates its sampling result to the team.

3 Each robot updates estimated sensory function φ̂.

Coverage phase:
4 for tj = 1, 2, . . . ,

⌈

βj
⌉

do

Based on φ̂, follow pairwise partitioning rule to update
robot team configuration and partition.

∑T
t=1 Rt(φ), where Rt(φ) is the instantaneous coverage

regret with respect to sensory function φ, and is defined by

Rt(φ) = 2H(ηt, Pt)−H(c(Pt), Pt)−H(ηt,V(ηt)),

which is the sum of two terms H(ηt, Pt) − H(c(Pt), Pt)
and H(ηt, Pt) − H(ηt,V(ηt)). The former (resp., latter)

term is the regret induced by the deviation of the current

configuration (resp., partition) from the optimal configuration

(resp., partition) for the current partition (resp., configura-

tion). Accordingly, no regret is incurred at time t if and only

if Pt is a centroidal Voronoi N -partition and ηt = c(Pt).
Thus, there are two sources contributing to coverage regret:

(i) the estimation error in the sensory function φ, and (ii)

the deviation from a centroidal Voronoi partition inevitable

when agents sample the environment to learn φ.

III. DETERMINISTIC SEQUENCING OF LEARNING AND

COVERAGE (DSLC) ALGORITHM

In this section, we describe the DSLC algorithm (Algo-

rithm 1). It operates with an epoch-wise structure, where each

epoch consists of an exploration (learning) phase and an ex-

ploitation (coverage) phase. The exploration phase comprises

two sub-phases: estimation and information propagation.

A. Estimation Phase

Let σ2
i (t) be the marginal posterior variance of φ(vi) at

time t, i.e., the i-th diagonal entry of Λ
−1(t). Suppose the

marginal prior variance σ2
i (0) ≤ σ2

0 , for each i. Within each

epoch j, agents first determine the points to be sampled

in order to reduce maxi∈{1,...,|V |} σ
2
i (t) below a threshold

αjσ2
0 , where α ∈ (0, 1) is a prespecified parameter.

Note that the posterior covariance computed in (1) depends

only the number of samples at each vertex, and does not

require actual sampling results. Therefore, the sequence

of sampling locations can be computed before physically

visiting the locations. Leveraging this deterministic evolution

of the covariance, we take a greedy sampling policy that

repeatedly selects the point vit with maximum marginal

posterior variance, i.e.,

it = argmax
i∈{1,...,|V |}

σi(t), (3)

for t ∈ {tj , . . . , tj}, where tj and tj are the starting and

ending time of estimation phase in the j-th epoch. It has been

shown that the greedy sampling policy is near-optimal in

terms of maximizing the mutual information of the sampling

results and sensory function φ [19].

Let the set of points to be sampled during epoch j be Xj

and let Xj
r = Xj ∩ Ptj ,r

be the set of sampling points that

belong to Ptj ,r
, the partition assigned to agent r at time tj .

Each agent r computes a path through the sampling points

in Xj
r and collects noisy measurements from those points.

The traveling path can be optimized by solving a Traveling

Salesperson Problem (TSP).

B. Information Propagation Phase

After the estimation phase, sampling results from each

agent must be passed to all other agents. There are several

mechanisms to accomplish this in a finite number of steps.

For example, agents can communicate with their neighboring

agents and use flooding algorithms [20] to relay their sam-

pling results to every agent. Alternatively, the agents may be

able to send their sampling results to a cloud and receive

global estimates after a finite delay. Another possibility for

the agents is to use finite time consensus protocols [21] in

the distributed inference algorithm discussed in [22].

For any of the above mechanisms, the sampling results

from the entire robot team can be propagated to each robot

agent in finite time. Then, each agent has an identical

posterior distribution N
(

µ(t),Λ−1(t)
)

of φ, and φ̂ := µ(t)
will be used as the estimate of the sensory function.

C. Coverage Phase

After the estimation and information propagation phases,

agents have the same estimate of the sensory function φ̂. The

coverage phase involves no environmental sampling and its

length is designed to grow exponentially with epochs, i.e.,

the number of time steps in the coverage phase of the j-th

epoch is
⌈

βj
⌉

, for some β > 1. We use pairwise partitioning,

a distributed gossip-based coverage algorithm proposed in

[7], with the estimated sensory function φ̂.

In a connected N -partition P , Pi and Pj are said to be

adjacent if there exists a vertex pair v ∈ Pi and v′ ∈ Pj and

an edge in E connecting v and v′. At each time, a random

pair of agents (i, j), with Pi and Pj adjacent, compute an

optimal pair of vertices (a∗, b∗) within Pi ∪ Pj that minimize

∑

v′∈Pi∪Pj

φ̂(v′)min
(

dG[Pi∪Pj ](a, v
′), dG[Pi∪Pj ](b, v

′)
)

.

Then, agents i and j move to a∗ and b∗. Subsequently, Pi

and Pj are updated to

Pi ← {v ∈ Pi ∪ Pj | dG[Pi∪Pj ](ηi, v) ≤ dG[Pi∪Pj ](ηj , v)}

Pj ← {v ∈ Pi ∪ Pj | dG[Pi∪Pj ](ηi, v) > dG[Pi∪Pj ](ηj , v)}.

IV. ANALYSIS OF DSLC ALGORITHM

In this section, we analyze DSLC to provide a performance

guarantee on the expected cumulative coverage regret. To this

end, we leverage the information gain from the estimation

phase to analyze the convergence rate of uncertainty. Then,



we recall convergence properties of the pairwise partitioning

algorithm used in DSLC. Based on these results, we establish

the main result of this paper: an upper bound on the expected

cumulative coverage regret.

A. Mutual Information and Uncertainty Reduction

Let Xg = (vi1 , . . . , vin) be a sequence of n vertices

selected by the greedy policy and YXg = (y1, . . . , yn) be

observed sampling results corresponding to Xg . With a slight

abuse of notation, we denote the marginal posterior variance

of φ(vi) after sampling at vi1 . . . vik by σ2
i (k). With greedy

sampling policy, ik = argmaxi∈{1,...,|V |} σ
2
i (k − 1). Then,

the mutual information of Y g and φ is

I (YXg ;φ) = H (YXg )−H
(

YXg |φ
)

=
1

2

n
∑

k=1

log
(

1 + σ−2σ2
ik
(k − 1)

)

, (4)

where H(YXg ) and H(YXg |φ) denote the entropy and con-

ditional entropy respectively. Let γn := maxX∈V n I (YX ;φ)
be the maximal mutual information gain that can be achieved

with n samples. It is shown in [23] that I (YXg ;φ) achieved

by the greedy sampling policy is near optimal, i.e.,

(

1− 1/e
)

γn ≤ I
(

YXg
;φ
)

≤ γn. (5)

We now present a bound on the maximal posterior vari-

ance after sampling at vertices within Xg . The following

lemma and proof techniques are adapted from our previous

work [24] to incorporate the discrete environment.

Lemma 1 (Uncertainty reduction): Under the greedy

sampling policy, the maximum posterior variance after n
sampling rounds satisfies

max
i∈{1,...,|V |}

σ2
i (n) ≤

2σ2
0

log
(

1 + σ−2σ2
0

)

γn
n
.

Proof: For any i ∈ {1, . . . , |V |}, σ2
i (k) is monotoni-

cally non-increasing in k. So, we get

σ2
ik+1

(k) ≤ σ2
ik+1

(k − 1)

≤ max
i∈{1,...,|V |}

σ2
i (k − 1) = σ2

ik
(k − 1), (6)

which indicates that σ2
ik+1

(k) is monotonically

non-increasing. Hence, from (4) and (5),

log
(

1 + σ−2σ2
in
(n− 1)

)

≤ 2γn/n. Since x2/log
(

1 + x2
)

is an increasing function on [0,∞),

σ2
in (n− 1) ≤

σ2
0

log
(

1 + σ−2σ2
0

) log
(

1 + σ−2σ2
in (n− 1)

)

.

Substituting (6) into the above equation, we conclude that

σ2
in (n− 1) ≤

2σ2
0

log
(

1 + σ−2σ2
0

)

γn
n
,

which establishes the lemma.

Typically, it is hard to characterize γn for a general

Gaussian random vector φ ∼ N (µ0,Λ
−1
0 ). Therefore, we

make the following assumption.

Assumption 1: Vertices in V lie in a convex and compact

set D ∈ R
2 and the covariance of any pair φ(vi) and φ(vj)

is determined by an exponential kernel function

k(φ(vi), φ(vj)) = σ2
v exp

(

−
d2eu(vi, vj)

2l2

)

, (7)

where deu(vi, vj) is the Euclidean distance between vi and

vj , l is the length scale, and σ2
v is the variability parameter.

We now recall an upper bound on γn from [16].

Lemma 2 (Information gain for squared exp. kernel):

With Assumption 1, the maximum mutual information

satisfies γn ∈ O((log(|V |n))3).

B. Convergence within Coverage Phase

Since the sampling results of each agent are relayed to

the entire team before each coverage phase, the team have

a consensus estimate of the sensory function φ̂. It has been

shown in [7] that using the pairwise partitioning algorithm,

the N -partition P for the team converges almost surely to a

class of near optimal partitions defined below.

Definition 3 (Pairwise-optimal Partition): A connected

N -partition P is pairwise-optimal if for each pair of

adjacent regions Pi and Pj ,

∑

v′∈Pi

dG(c(Pi), v
′)φ(v′) +

∑

v′∈Pj

dG(c(Pj), v
′)φ(v′)

= min
a,b∈Pi∪Pj

∑

v′∈Pi∪Pj

φ(v′)min
(

dG(a, v
′), d(b, v′)

)

.

This means that, within the induced subgraph generated

by any pair of adjacent regions, the 2-partition is optimal.

It is proved in [7] that if a connected N -partition P is

pairwise-optimal then it is also a centroidal Voronoi partition.

The following result on the convergence time of pairwise

partitioning algorithm is established in [7].

Lemma 3 (Expected Convergence Time): Using the pair-

wise partitioning algorithm, the expected time to converge

to a pairwise-optimal N -partition is finite.

Lemma 3 implies that the expected time for the Rt(φ̂) to

converge to 0 in each coverage phase is finite.

C. An Upper Bound on Expected Coverage Regret

We now present the main result for this paper.

Theorem 4: For any time horizon T , if Assumption 1

holds and α = β−2/3, then the expected cumulative coverage

regret for DSLC with respect to sensory function φ satisfies

E

[

T
∑

t=1

Rt(φ)

]

∈ O
(

T 2/3(log(T ))3
)

.

Proof: We establish the theorem in four steps.

Step 1 (Regret from estimation phases): Let the total num-

ber of sampling steps before the end of the j-th epoch be sj .

By applying Lemma 1 and 2, we get sj ∈ O((log(T ))3/αj).
Thus, the coverage regret in the estimation phases until the

end of the j-th epoch belongs to O((log(T ))3/αj).
Step 2 (Regret from information propagation phases):

The sampling information by each robot propagate to all the






