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Abstract— We study optimal fidelity selection for a human
operator servicing a queue of homogeneous tasks. The service
time distribution of the human operator depends on her
cognitive dynamics and the level of fidelity selected for servicing
the task. Cognitive dynamics of the operator evolve as a Markov
chain in which the cognitive state increases (decreases) with high
probability whenever she is busy (resting). The tasks arrive
according to a Poisson process and each task waiting in the
queue loses its value at a fixed rate. We address the trade-off
between high quality service of a task and consequent loss in
value of future tasks using a Semi-Markov Decision Process
(SMDP) framework. We numerically determine an optimal
policy and establish its structural properties.

I. INTRODUCTION

Advances in technology and automation has led towards

an era of intelligent machines capable of performing complex

tasks under extreme environments. However, to ensure safe

and efficient operation for many safety-critical systems,

human operators are often kept in the loop with autonomous

robots due to their perception and intelligent decision making

skills. Human-in-the-loop systems are pervasive in areas

such as search and rescue [1], [2], semi-autonomous vehicle

systems [3], and robot-assisted surgery [4]. Human-robot

collaboration allows for the integration of human knowledge

and perception skills with autonomy. In such systems, it is

often of interest to maximize the ratio of the number of

robots to the number of human operators, which leads to

increased workload for human operators. Thus, to facilitate

the effective use of cognitive resources of human operators,

the optimal fidelity selection is critically important.

We study optimal fidelity selection for a human operator

servicing a stream of homogeneous tasks. We incorporate

human cognitive dynamics into fidelity selection problem

and study its influence on an optimal policy. Our results

can provide insight into efficient design of human decision

support systems.

Recent years have seen significant efforts in integrating

human knowledge and perception skills with autonomy for

sophisticated tasks such as search and rescue; see [5] for an

overview. A key research theme within this area concerns

systematic allocation of human cognitive resources for effi-

cient overall performance. Therein, some of the fundamental

questions studied include optimal scheduling of the tasks

to be processed by the operator [6]–[9], enabling shorter

operator reaction times by controlling when to release a task

for the operator to process [10], efficient work-shift design to
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counter fatigue or interruption effects [11], determining op-

timal operator attention allocation [12]–[14], and managing

operator workload to enable better performance [15].

The optimal control of queueing systems [16]–[18] is a

classical problem in queueing theory. Of particular interest

are the works [19], [20], where authors study the optimal

servicing policies for a M/G/1 queues by formulating an

SMDP and describing its qualitative features. In this paper,

we study optimal fidelity selection for a human operator

servicing a queue of homogeneous tasks using an SMDP

framework. In contrast to a standard control of queues

problem, the server in our problem is a human operator, with

her own cognitive dynamics that needs to be incorporated

into the problem formulation.

We use a model for the time required to service a task

that is inspired by experimental psychology literature and

incorporates the influence of cognitive state as well as fidelity

on the service time. For servicing each task, the human

operator receives a reward based on the level of fidelity

selected for the task. However, with higher fidelity, the

cognitive state quickly rises to the high sub-optimal levels,

thereby requiring a longer time to process the next task.

Hence, there is a trade-off between the reward obtained by

servicing a task with high fidelity, and the penalty incurred

due to the resulting delay in processing other tasks. We

elucidate on this trade-off and find an optimal policy for

fidelity selection. The major contributions of this work are

threefold: (i) we pose the fidelity selection problem in an

SMDP framework and compute an optimal policy, (ii) we

show the influence of cognitive dynamics on the optimal

policy, and (iii) we establish structural properties of the

optimal policy and show the existence of thresholds on queue

lengths at which optimal policy switches different fidelity

levels.

The rest of the paper is structured in the following way.

Section II presents the problem setup and formulates the

fidelity selection problem using an SMDP framework. In

Section III, we numerically illustrate an optimal fidelity

selection policy. In Section IV, we establish some of the

structural properties of the optimal policy. Our conclusions

and future directions are discussed in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

A. Problem Setup

We consider a human supervisory control system in which

a human operator is tasked with servicing a stream of

homogeneous tasks. The human operator may service these

tasks with different level of fidelity. The time human spends

on servicing a task depends on the level of fidelity with



Fig. 1: Overall schematic of the problem setup. The incoming tasks arrive
as a Poisson process with rate λ. The tasks are processed by the human
operator based on the recommended fidelity level by the decision support
system. Each task loses its value while waiting in the queue.

which she services the task as well as her cognitive state.

We assume that the mean service time of the human operator

increases with the level of fidelity to service the task, e.g.,

when human selects high fidelity, she may look into deeper

details and consequently take longer time.

For a fixed level of fidelity, we model the service time

as a unimodal function of human cognitive state. We treat

cognitive state as a lumped parameter that captures various

psychological factors such as workload, stress etc. The

unimodal behavior of the mean service time with the human

cognitive state is motivated by the Yerkes-Dodson law [21],

[22]: excessive stress (high cognitive state) overwhelms the

operator and too little stress (low cognitive state) leads to

boredom and reduction in vigilance. Specifically, the mean

service time is minimal corresponding to an intermediate

optimal cognitive state.

We are interested in optimal fidelity selection policy for

the human operator. To this end, we formulate a control of

queue problem, where in contrast to a standard queue, the

server is a human operator with her own cognitive dynamics.

The incoming tasks arrive according to a Poisson process at a

given rate λ ∈ R>0 and are processed by the human operator

based on the fidelity level recommended by a decision

support system (see Fig. 1). We consider a dynamic queue

of homogeneous tasks with a maximum capacity L ∈ N. Let

each task waiting in the queue lose value at a constant rate

c ∈ R>0 per unit delay in its processing. The set of possible

actions available for the human operator corresponds to: (i)

Waiting (W), when the queue is empty, (ii) Resting (R),

which provides the resting time for the human operator to

reach the optimal level of cognitive state, (iii) Skipping (S),

which allows the operator to skip a task to reduce the queue

length and thereby focus on newer tasks, (iv) Normal Fidelity

(N) for processing the task with normal fidelity, and (v) High

Fidelity (H) for processing the task more carefully with high

precision.

Let s ∈ S be the state of the system and As be the set

of admissible actions in state s, which we define formally

in II-B. The human receives a reward r : S × As → R≥0

defined by

r(s, a) =











rH , if a = H,

rN , if a = N,

0, if a ∈ {W, R, S},

(1)

where, rH , rN ∈ R≥0 and rH > rN . For such a dynamic

queue setting, we intend to design a decision support system

that assists the human operator by recommending optimal

fidelity level to process each task. The recommendation is
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Fig. 2: Service time distribution of the human operator with (a) varying
cognitive state and normal fidelity, (b) varying fidelity level and fixed
cognitive state. (c) mean and variance of the service time are unimodal
functions the cognitive state (d) The mean sojourn time distribution takes
on different forms based on the selected action.

made based on the queue length and the cognitive state of

the human operator which we assume to have real time ac-

cess using, e.g., Electroencephalogram (EEG) measurements

(see [23] for measures of cognitive load from EEG data).

B. Mathematical Modeling

We formulate the control of queue problem as an SMDP

Γ defined by six components described below:

(i) A finite state space S := {(q, cog)| q ∈ {0, 1, ..., L},
cog ∈ C := {(i− 1)/N}i∈{1,...,N+1}}, for some N ∈
N, where q is the queue length and cog represents

the lumped cognitive state, which increases when the

operator is busy, and decreases when the operator is

idle.

(ii) A set of admissible actions As for each state s ∈ S
which is given by: (i) As := {W | s ∈ S, q = 0}
when queue is empty, (ii) As := {{R, S, N, H }| s ∈
S, q 6= 0} when queue is non-empty and cog > cog∗,

where cog∗ ∈ C is the optimal cognitive state, and (iii)

As := {{S, N, H }| s ∈ S, q 6= 0} when queue is

non-empty and cog ≤ cog∗.

(iii) A state transition probability distribution P(s′| τ, s, a)
from state s to s′ for each action a ∈ As conditioned

on sojourn time τ (time spent in each state before tran-

sitioning into next state). P(s′| τ, s, a), which repre-

sents a transition from s = (q, cog) → s′ = (q′, cog′)
consists of two independent transition processes which

are given by (i) a Poisson process for transition from

q → q′ (ii) human cognitive dynamics for a transition

from cog → cog′. We model the cognitive dynamics

of the human operator as a Markov chain in which the

probability of increase in cognitive state in small time

δt ∈ R>0 is greater than the probability of decrease in

cognitive state and increases with the level of fidelity

selected for servicing the task. Similarly, while waiting

or resting, the probability of decrease in cognitive



state in small time δt is higher than the probability of

increase in cognitive state. Sample parameters of the

model used in our numerical simulations are shown

in Table I. This model of cognitive state dynamics

is a stochastic equivalent of deterministic models of

the utilization ratio considered in [10], [15]. It is

considered that the cognitive state remains unchanged

when the human operator chooses to skip the task.

TABLE I: Cognitive Dynamics modeled as Markov chain

Forward Backward Stay Probabilityc

Action Probabilitya (λf δt) Probabilityb (λbδt) (1-λf δt− λbδt)

W λf = 0.02 (Noise) λb = 0.5 1− 0.52δt

R λf = 0.02 (Noise) λb = 0.5 1− 0.52δt

N λf = 0.6 λb = 0.02 (Noise) 1− 0.62δt

H λf = 1.1 λb = 0.02 (Noise) 1− 1.12δt

S λf = 0 λb = 0 1
aForward Probability does not exist for cog = 1 (reflective boundary)
bBackward Probability does not exist for cog = 0 (reflective boundary)
cStay Probability is 1− λf δt for cog = 0 and 1− λbδt for cog = 1

(iv) Sojourn time distribution P(τ | s, a) of (discrete) time

τ ∈ R>0 spent in state s until the next action is chosen

takes on different forms depending on the selected

action (see Fig 2d). The sojourn time is the service

time while processing the task (normal/ high fidelity),

resting time while resting, constant time of skip while

skipping, and time until the next task arrival while

waiting in case of an empty queue. We model the

rest time as the time required to reach from current

cognitive state to optimal cognitive state cog∗. We

model the service time distribution (see Fig 2a and 2b)

while processing the task using a hypergeometric

distribution, where the parameters of the distribution

are chosen such that the mean service time of the

human operator has the desired characteristics i.e. it

increases with the fidelity level (see Fig 2d) and is a

unimodal function of the cognitive state (see Fig 2c).

While resting, sojourn time distribution is the first

passage time (FPT) distribution for transitioning from

current cognitive state cog to cog∗. We determine this

distribution using matrix methods [24] applied on the

Markov chain used to model the cognitive dynamics.

(v) For selecting action a at state s, the human receives

a bounded immediate reward r(s, a) defined in (1).

We assume that each task waiting in the queue loses

its value continuously. Hence, the human incurs a

penalty at a constant cost rate c ∈ R>0 due to

each task waiting in the queue, and consequently, the

cumulative expected cost for choosing action a at state

s = (q, cog) is given by:
∑

τ

P(τ |s, a)cτ
(

E

[q + q′

2

∣

∣

∣
τ, s, a

])

=
∑

τ

P(τ |s, a)cτ
(2q + λτ

2

)

.

The expected net immediate reward received by the

operator for selecting action a in state s is given by:

R(s, a) = r(s, a)−
∑

τ

P(τ |s, a)c
(2q + λτ

2

)

τ. (2)

(vi) A discount factor α ∈ [0, 1), which we choose as 0.98

for the purposes of numerical illustration.
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Fig. 3: (a) Optimal Policy π∗ and the (b) Optimal Value Function V ∗ for
SMDP Γ where time required to skip the tasks is not too small compared
to the mean service time required to process the task

C. Solving SMDP for Optimal Policy

For SMDP Γ, the optimal value function V ∗ : S → R

satisfies the following Bellman equation [25]

V ∗(s) = max
a∈As

[

R(s, a) +
∑

s′,τ

γτ
P(s′, τ |s, a)V ∗(s′)

]

, (3)

where P(s′, τ |s, a), which is the joint probability that a

transition from state s to state s′ occurs after time τ when

action a is executed, can be rewritten as:

P(s′, τ |s, a) = P(s′|τ, s, a)P(τ |s, a), (4)

where P(s′|τ, s, a) and P(τ |s, a) are given by the state transi-

tion probability distribution and the sojourn time probability

distribution, respectively. An optimal policy π∗ : S → As at

each state s selects an action that achieves the maximum

in (3). We utilize the value iteration algorithm [26] to

compute an optimal policy in our numerical illustrations.

III. NUMERICAL ILLUSTRATION OF OPTIMAL FIDELITY

SELECTION

We now numerically illustrate optimal policies for SMDP

Γ. Figs. 3a and 3b show an optimal policy π∗, and the opti-

mal value function V ∗, respectively, for the case in which the

time required for skipping the task is not too small compared

to the mean service time required to process the task. For

sufficiently high arrival rate λ such that there is always a

task in the queue after the human finishes processing the

current task (queue is never empty), we observe that for

any given cognitive state cog, the optimal value function is

monotonically decreasing with the queue length.

Additionally, we also observe that for a given queue length

q, the optimal value function is a unimodal function of

the cognitive state, with its maximum value corresponding

to the optimal cognitive state (cog∗ = 0.6 for numerical

illustrations). For the optimal policy π∗, we observe that the

optimal policy selects the highest fidelity around the optimal

cognitive state for low queue length and thereafter transitions

to normal fidelity for higher queue lengths. We also observe

that in low cognitive states, the optimal policy is to keep

skipping the tasks until the queue length reduces to small

number, and then processing the tasks. In higher cognitive

states, we observe resting at small queue lengths followed

by skipping of tasks at large queue lengths. Additionally, we

observe the effect of cognitive state on the optimal policy. In

particular, we observe that the optimal policy switches from
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Fig. 4: (a) Optimal Policy π∗ and the (b) Optimal Value Function V ∗ when
the time required to skip the task is too small compared to the mean service
time required to process the task

H to N, N to R, and R to S at certain thresholds on the queue

length and these thresholds appear to be a unimodal function

of the cognitive state. This behavior can be attributed to the

mean service time being a unimodal function of the cognitive

state. We prove some of these properties of the optimal policy

in the next section based on assumptions on the structure of

the optimal value function.

Figs 4a and 4b show an optimal policy π∗ and the optimal

value function V ∗, respectively, for the case in which the

time required to skip the task is very small compared to the

mean service time required to process the task. Here, we

observe that in general, the optimal policy is to reduce the

queue length by skipping all the tasks, and then processing

the most recent tasks. Around the optimal cognitive state, we

observe that we get a small region of skipping in between

the region of high fidelity and normal fidelity. This can be

attributed to the higher expected future rewards by skipping

some tasks followed by receiving a future high reward for

processing the recent tasks with high fidelity.

IV. STRUCTURAL PROPERTIES OF THE OPTIMAL POLICY

In this section, we characterize structural properties of the

optimal policy for SMDP Γ. We first introduce the following

notation. Let q∗j : C → Z≥0 ∪{+∞}, for j ∈ {1, 2, 3} be

some functions of the cognitive state. Let µ1 : S×As → R>0

and µ2 : S × As → R>0 be function defined by µ1(s, a) =
E(τ |s, a) and µ2(s, a) = E(τ2|s, a), where τ is the sojourn

time. We study the properties of SMDP Γ in the limit L →
+∞ and under following assumptions:

(A1) We assume that the optimal value function V ∗ satisfies:

(i) q 7→ V ∗(q, ·) is a monotonically decreasing func-

tion, and (ii) cog 7→ V ∗(·, cog) is a unimodal function

and admits the maximum at cog∗ for any q.

(A2) The task arrival rate λ is sufficiently high so that the

queue is never empty.

(A3) For any state s = (q, cog) such that cog > cog∗:

µ1(s, S) < µ1(s,R) < µ1(s,N) < µ1(s,H), and

µ2(s, S) < µ2(s,R) < µ2(s,N) < µ2(s,H).
(5)

(A4) The jump in the optimal value function V ∗ over

one extra task in the queue is upper bounded by

α i.e., V ∗(cog, q) − V ∗(cog, q + 1) < α, where

α ∈ [0, k), with k = min{E(τ |cog∗, H) −
E(τ |cog∗, N), E(τ |cog∗, N)− E(τ |cog∗, S)}.

Our numerical investigation suggests that assumptions

(A1) and (A4) hold for SMDP Γ. We will seek to prove that

these assumptions indeed hold in our future work. We make

assumption (A2) for convenience. Indeed, if queue is allowed

to be empty, then we will need to deal with an extra “waiting”

action. Also, high arrival rate is the most interesting setting to

study optimal fidelity selection. Assumption (A3) is true for

a broad range of interesting parameters that define sojourn

time distribution(s).

Theorem 1 (Structure of optimal policy): For SMDP Γ
under assumptions (A1-A4) and an associated optimal policy

π∗, the following statements hold

(i) there exists unique threshold functions

q∗1(cog), q
∗
2(cog), q

∗
3(cog) such that for each

cog > cog∗:

π∗(s = (q, cog)) =



















H, q ≤ q∗1(cog),

N, q∗1(cog) < q ≤ q∗2(cog),

R, q∗2(cog) < q ≤ q∗3(cog),

S, q > q∗3(cog);

(6)

(ii) there exists unique threshold functions

q∗1(cog), q
∗
2(cog) such that for any cog ≤ cog∗:

π∗(s = (q, cog)) =











H, q ≤ q∗1(cog),

N, q∗1(cog) < q ≤ q∗2(cog),

S, q > q∗2(cog).

(7)

We prove Theorem 1 with the help of following lemmas.

Lemma 2: For SMDP Γ under assumption (A3), the im-

mediate expected reward R(s, a), for each action a ∈ As

(i) is linearly decreasing with queue length q for any fixed

cognitive state cog;

(ii) is a unimodal function1 of the cognitive state cog for

any fixed queue length q with its maximum value

achieved at the optimal cognitive state.

Proof: We start by establishing the first statement.

The expected net immediate reward received by the human

operator for selecting action a in state s (see Eq. (2)) can be

rewritten as:

R(s, a) = −cE(τ |s, a)q + r(s, a)−
cλ

2
E(τ2|s, a), (8)

where E(τ | s, a) and E(τ2|s, a) represents the first and the

second moment of the sojourn time distribution, respectively.

We note that the moments of the sojourn time distribution is

independent of the queue length q.

R(s, a) = −a1(cog, a)q + a2(cog, a), (9)

where a1(cog, a) = cE(τ |s, a) and a2(cog, a) = r(s, a) −
cλ
2
E(τ2|s, a).
For a fixed cognitive state cog and action a, both a1

and a2 are constants and therefore, the expected immediate

reward linearly decreases with the queue length q and the

first statement follows.

The second statement follows by observing that, for a

given queue length q, the mean and variance of the sojourn

time for each action a ∈ As are unimodal functions of the

cognitive state with their peaks at cog∗.

1The expected immediate reward under action S is a constant, which we
treat as a unimodal function.
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Lemma 3: For the SMDP Γ under assumptions (A1-A3),

and an associated optimal policy π∗, the following statements

hold for each cog > cog∗:

(i) there exists a threshold function q∗1(cog), such that the

action N strictly dominates action H, for each q >
q∗1(cog);

(ii) there exists a threshold function q∗2(cog), such that

for each q > q∗2(cog), the action R strictly dominates

action N,

(iii) there exists a threshold q∗3(cog), such that for each

q > q∗3(cog), action S is optimal.

Proof: We start with the first statement. We first analyze

the expected immediate rewards. It follows from Lemma 2

that for a fixed cognitive state and for a given action the

expected immediate reward (9) is a linear function. Since

these linear functions have different slopes due to (5), it

follows that the graphs of the expected immediate rewards

for different actions intersect (see Fig. 5 for an illustration).

If the lines associated with the expected immediate reward

for action H and N intersect for q ≥ 0, then let q̃1 ∈ Z≥0 be

the unique point of intersection. It follows that for q > q̃1,

the expected immediate reward from N is strictly higher than

that of H. If the lines associated with the expected immediate

reward for action H and N intersect for q < 0, the expected

immediate reward from N is strictly higher than that of H

for any q ≥ 0.

Let F (s, a) denote the expected future rewards received in

state s for taking action a (the second term in the Bellman

equation (3)).

F (s, a) =
∑

cog′,q′,τ

γτ
P(q′|τ, q)V ∗(cog′, q′)×

P(cog′|τ, cog, a)P(τ |cog, a) =:
∑

Ax, (10)

where A=γτ
P(q′|τ, q)V ∗(cog′, q′) & x = P(cog′, τ |cog, a).

Note that F (s, a) in (10) represents a linear affine function

over a probability simplex. Since V ∗ is strictly decreasing

function of the queue length and is a unimodal function

of the cognitive state, for each cog > cog∗, the expected

future rewards received from N is strictly higher than H.

This is due to the fact that action H, which has higher

mean service time, leads to the higher queue length (q′) with

higher probabilities. Furthermore, it also leads to cognitive

states farther from cog∗ with higher probabilities. Therefore,

it follows from assumption (A1) that F (s,N) > F (s,H).
Hence, for each cog > cog∗, there exists a unique threshold

q∗1 ≤ q̃1, such that for q > q∗1 , the action N dominates the

action H, for a given cognitive state cog. The proof of the

second statement follows analogously to the first statement.

To establish the last statement, we note that the action

S has the largest expected immediate reward, when queue

length is sufficiently high, it is the action with minimum

sojourn time and it is the only action that reduces the

expected queue length. With these observations, the last

statement follows analogously to the first statement.

Proof of Theorem 1: The proof of the first statement

follows immediately from Lemma 3. We now focus on the

second statement. Recall that action R is not an admissible

action for cog ≤ cog∗. Unlike the case with cog > cog∗,

where high sojourn time leads to high sub-optimal cognitive

state and high queue length; for cog < cog∗, high sojourn

time might take the state towards optimal cognitive state and

high queue length. Although the expected immediate rewards

follows the trend similar to cog > cog∗, there is a trade-off

between moving towards optimal cognitive state and reaching

high queue length. In the following, using assumption (A4),

we show that if action N is the optimal choice at queue

length q∗1 for a given cognitive state, then for all q > q∗1 , N

dominates H. We further show that if action S is the optimal

choice at queue length q∗2 for a given cognitive state, then

for all q > q∗2 , S dominates both H and N.

Let N be the optimal action in state s = {q∗1 , cog}. Then,

R(s,N)−R(s,H) + F (s,N)− F (s,H) > 0,

=⇒ (E(τ |s,H)− E(τ |s,N))q∗1+

(E(τ2|s,H)− E(τ2|s,N))+
∑

τ

∑

cog′

∑

q

γτ
P(q∗1 + q|q∗1 , τ)V

∗(cog′, q∗1 + q − 1)×

(P(cog′, τ |cog, N)− P(cog′, τ |cog, H)) > 0, (11)

where q is the number of arrivals during service time τ .

Now for the state s′ = {q∗1+1, cog}, under the assumption

(A1) we show that:

R(s′, N)−R(s′, H) + F (s′, N)− F (s′, H) > 0. (12)

To show (12), we prove that the difference between LHS of

(12) and (11) is positive. The difference between the LHS

of (12) and (11) is given by:

(E(τ |s,H)−E(τ |s,N))+
∑

τ

∑

cog′

∑

q

γτ
P(q∗1+q|q∗1+1, τ)×

(V ∗(cog′, q∗1 + q − 1)− V ∗(cog′, q∗1 + q))×

(P(cog′, τ |cog, N)− P(cog′, τ |cog, H)). (13)

To find a lower bound on (13), we use assumption (A4)

and replace V ∗(cog′, q∗1 + q − 1) − V ∗(cog′, q∗1 + q) by

α1(P(cog′, τ |cog, N) ≤ P(cog′, τ |cog, H)), where 1(·) is



the indicator function. Hence, (13) is lower bounded by

(E(τ |s,H)− E(τ |s,N))+
∑

τ

∑

cog′

∑

q

γτ
P(q∗1 + q|q∗1 + 1, τ)α×

(P(cog′, τ |cog, N)− P(cog′, τ |cog, H))

× 1(P(cog′, τ |cog, N) ≤ P(cog′, τ |cog, H)),

≥ (E(τ |s,H)− E(τ |s,N))+

α
∑

τ

∑

cog′

(P(cog′, τ |cog, N)− P(cog′, τ |cog, H))

× 1(P(cog′, τ |cog, N) ≤ P(cog′, τ |cog, H))

≥ (E(τ |s,H)− E(τ |s,N))− α

≥ (E(τ |cog∗, H)− E(τ |cog∗, N))− α.

The last term is positive under the assumption (A4). Hence,

for a given cognitive state cog, N strictly dominates H, for

each q > q∗1 , given that N is the optimal action at q = q∗1 .

Similarly, under the assumption (A4), i.e. with k ≤
E(τ |cog∗, N)−E(τ |cog∗, S), for a given cognitive state cog,

S strictly dominates H and N, for each q > q∗2 , given that S

is the optimal action at q = q∗2 . �

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied optimal fidelity selection for a human operator

servicing a stream of supervision tasks using a SMDP

framework. In particular, we studied the influence of human

cognitive dynamics on an optimal policy. We modeled cog-

nitive dynamics using Markov chains and incorporated their

influence on servicing time using well-established models

in psychology. We presented numerical illustrations of the

optimal policy and showed that the value function is a

monotonically decreasing function of the queue length and a

unimodal function of the cognitive state. Assuming that the

value function satisfies these properties for generic param-

eters, we established some of the key structural properties

of the optimal policy for fidelity selection. We seek to

prove these properties in our future work. We showed the

existence of thresholds on queue lengths for each cognitive

state at which the optimal policy switches from selecting high

fidelity to selecting normal fidelity to resting to skipping.

There are several possible avenues of future research.

An interesting open problem is to control the task arrival

rate in order to control the thresholds for these transitions.

Another interesting direction is to conduct experiments with

the human operators servicing a steam of tasks, measure EEG

signal to assess their cognitive state and test the benefit of

recommending optimal fidelity. It is of interest to extend this

work to a team of human operators processing stream of

heterogeneous tasks. In such a setting, finding the optimal

strategies for routing and scheduling of these heterogeneous

tasks is also of interest.
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