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Abstract— We study optimal fidelity selection for a human
operator servicing a queue of homogeneous tasks. The service
time distribution of the human operator depends on her
cognitive dynamics and the level of fidelity selected for servicing
the task. Cognitive dynamics of the operator evolve as a Markov
chain in which the cognitive state increases (decreases) with high
probability whenever she is busy (resting). The tasks arrive
according to a Poisson process and each task waiting in the
queue loses its value at a fixed rate. We address the trade-off
between high quality service of a task and consequent loss in
value of future tasks using a Semi-Markov Decision Process
(SMDP) framework. We numerically determine an optimal
policy and establish its structural properties.

I. INTRODUCTION

Advances in technology and automation has led towards
an era of intelligent machines capable of performing complex
tasks under extreme environments. However, to ensure safe
and efficient operation for many safety-critical systems,
human operators are often kept in the loop with autonomous
robots due to their perception and intelligent decision making
skills. Human-in-the-loop systems are pervasive in areas
such as search and rescue [1], [2], semi-autonomous vehicle
systems [3], and robot-assisted surgery [4]. Human-robot
collaboration allows for the integration of human knowledge
and perception skills with autonomy. In such systems, it is
often of interest to maximize the ratio of the number of
robots to the number of human operators, which leads to
increased workload for human operators. Thus, to facilitate
the effective use of cognitive resources of human operators,
the optimal fidelity selection is critically important.

We study optimal fidelity selection for a human operator
servicing a stream of homogeneous tasks. We incorporate
human cognitive dynamics into fidelity selection problem
and study its influence on an optimal policy. Our results
can provide insight into efficient design of human decision
support systems.

Recent years have seen significant efforts in integrating
human knowledge and perception skills with autonomy for
sophisticated tasks such as search and rescue; see [5] for an
overview. A key research theme within this area concerns
systematic allocation of human cognitive resources for effi-
cient overall performance. Therein, some of the fundamental
questions studied include optimal scheduling of the tasks
to be processed by the operator [6]-[9], enabling shorter
operator reaction times by controlling when to release a task
for the operator to process [10], efficient work-shift design to
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counter fatigue or interruption effects [11], determining op-
timal operator attention allocation [12]-[14], and managing
operator workload to enable better performance [15].

The optimal control of queueing systems [16]-[18] is a
classical problem in queueing theory. Of particular interest
are the works [19], [20], where authors study the optimal
servicing policies for a M/G/1 queues by formulating an
SMDP and describing its qualitative features. In this paper,
we study optimal fidelity selection for a human operator
servicing a queue of homogeneous tasks using an SMDP
framework. In contrast to a standard control of queues
problem, the server in our problem is a human operator, with
her own cognitive dynamics that needs to be incorporated
into the problem formulation.

We use a model for the time required to service a task
that is inspired by experimental psychology literature and
incorporates the influence of cognitive state as well as fidelity
on the service time. For servicing each task, the human
operator receives a reward based on the level of fidelity
selected for the task. However, with higher fidelity, the
cognitive state quickly rises to the high sub-optimal levels,
thereby requiring a longer time to process the next task.
Hence, there is a trade-off between the reward obtained by
servicing a task with high fidelity, and the penalty incurred
due to the resulting delay in processing other tasks. We
elucidate on this trade-off and find an optimal policy for
fidelity selection. The major contributions of this work are
threefold: (i) we pose the fidelity selection problem in an
SMDP framework and compute an optimal policy, (ii) we
show the influence of cognitive dynamics on the optimal
policy, and (iii) we establish structural properties of the
optimal policy and show the existence of thresholds on queue
lengths at which optimal policy switches different fidelity
levels.

The rest of the paper is structured in the following way.
Section II presents the problem setup and formulates the
fidelity selection problem using an SMDP framework. In
Section III, we numerically illustrate an optimal fidelity
selection policy. In Section IV, we establish some of the
structural properties of the optimal policy. Our conclusions
and future directions are discussed in Section V.

II. BACKGROUND AND PROBLEM FORMULATION
A. Problem Setup

We consider a human supervisory control system in which
a human operator is tasked with servicing a stream of
homogeneous tasks. The human operator may service these
tasks with different level of fidelity. The time human spends
on servicing a task depends on the level of fidelity with
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Fig. 1: Overall schematic of the problem setup. The incoming tasks arrive
as a Poisson process with rate A. The tasks are processed by the human
operator based on the recommended fidelity level by the decision support
system. Each task loses its value while waiting in the queue.

which she services the task as well as her cognitive state.
We assume that the mean service time of the human operator
increases with the level of fidelity to service the task, e.g.,
when human selects high fidelity, she may look into deeper
details and consequently take longer time.

For a fixed level of fidelity, we model the service time
as a unimodal function of human cognitive state. We treat
cognitive state as a lumped parameter that captures various
psychological factors such as workload, stress etc. The
unimodal behavior of the mean service time with the human
cognitive state is motivated by the Yerkes-Dodson law [21],
[22]: excessive stress (high cognitive state) overwhelms the
operator and too little stress (low cognitive state) leads to
boredom and reduction in vigilance. Specifically, the mean
service time is minimal corresponding to an intermediate
optimal cognitive state.

We are interested in optimal fidelity selection policy for
the human operator. To this end, we formulate a control of
queue problem, where in contrast to a standard queue, the
server is a human operator with her own cognitive dynamics.
The incoming tasks arrive according to a Poisson process at a
given rate A € R+ and are processed by the human operator
based on the fidelity level recommended by a decision
support system (see Fig. 1). We consider a dynamic queue
of homogeneous tasks with a maximum capacity L € N. Let
each task waiting in the queue lose value at a constant rate
c € Ry per unit delay in its processing. The set of possible
actions available for the human operator corresponds to: (i)
Waiting (W), when the queue is empty, (ii) Resting (R),
which provides the resting time for the human operator to
reach the optimal level of cognitive state, (iii) Skipping (S),
which allows the operator to skip a task to reduce the queue
length and thereby focus on newer tasks, (iv) Normal Fidelity
(N) for processing the task with normal fidelity, and (v) High
Fidelity (H) for processing the task more carefully with high
precision.

Let s € S be the state of the system and A, be the set
of admissible actions in state s, which we define formally

in II-B. The human receives a reward r : S x A, — R>
defined by
rg, ifa=H,
r(s,a) =< ry, ifa=N, (D

0, ifae{WR S}

where, rg, 7y € R>o and 7y > ry. For such a dynamic
queue setting, we intend to design a decision support system
that assists the human operator by recommending optimal
fidelity level to process each task. The recommendation is
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Fig. 2: Service time distribution of the human operator with (a) varying
cognitive state and normal fidelity, (b) varying fidelity level and fixed
cognitive state. (c) mean and variance of the service time are unimodal
functions the cognitive state (d) The mean sojourn time distribution takes
on different forms based on the selected action.

made based on the queue length and the cognitive state of
the human operator which we assume to have real time ac-
cess using, e.g., Electroencephalogram (EEG) measurements
(see [23] for measures of cognitive load from EEG data).

B. Mathematical Modeling

We formulate the control of queue problem as an SMDP
I" defined by six components described below:

(i) A finite state space S := {(q,cog)| ¢ € {0,1,..., L},
cog € C:= {(i —1)/N}icq1,....Ny1} }» for some N €
N, where ¢ is the queue length and cog represents
the lumped cognitive state, which increases when the
operator is busy, and decreases when the operator is
idle.

(ii) A set of admissible actions A, for each state s € S
which is given by: (i) Ay, := {W | s e S, ¢ =0}
when queue is empty, (i) A, := {{R, S, N, H }| s €
S, q # 0} when queue is non-empty and cog > cog*,
where cog™ € C is the optimal cognitive state, and (iii)
As = {{S, N, H }| s € S, ¢ # 0} when queue is
non-empty and cog < cog*.

(iii) A state transition probability distribution P(s’| 7, s, a)
from state s to s’ for each action a € A, conditioned
on sojourn time 7 (time spent in each state before tran-
sitioning into next state). P(s’| 7,s,a), which repre-
sents a transition from s = (g, cog) — s’ = (¢, cog’)
consists of two independent transition processes which
are given by (i) a Poisson process for transition from
q — ¢ (ii) human cognitive dynamics for a transition
from cog — cog’. We model the cognitive dynamics
of the human operator as a Markov chain in which the
probability of increase in cognitive state in small time
0t € Ry is greater than the probability of decrease in
cognitive state and increases with the level of fidelity
selected for servicing the task. Similarly, while waiting
or resting, the probability of decrease in cognitive
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state in small time d¢ is higher than the probability of
increase in cognitive state. Sample parameters of the
model used in our numerical simulations are shown
in Table I. This model of cognitive state dynamics
is a stochastic equivalent of deterministic models of
the utilization ratio considered in [10], [15]. It is
considered that the cognitive state remains unchanged
when the human operator chooses to skip the task.

TABLE I: Cognitive Dynamics modeled as Markov chain

Forward Backward Stay Probability©

Action | Probability® (\;dt) Probability® (\,0t) (I-\ 0t — A\y0t)
W Ay = 0.02 (Noise) Ap = 0.5 1 —0.526t
R Ay = 0.02 (Noise) Ap = 0.5 1 —0.526t
N Ay =0.6 Ap = 0.02 (Noise) 1 —0.626t
H Ap=1.1 Ap = 0.02 (Noise) 1—1.126t

2Forward Probability does not exist for cog = 1 (reflective boundary)
bBackward Probability does not exist for cog = 0 (reflective boundary)
“Stay Probability is 1 — A ¢t for cog = 0 and 1 — A,dt for cog = 1

(iv) Sojourn time distribution P(7| s,a) of (discrete) time
7 € Ry spent in state s until the next action is chosen
takes on different forms depending on the selected
action (see Fig 2d). The sojourn time is the service
time while processing the task (normal/ high fidelity),
resting time while resting, constant time of skip while
skipping, and time until the next task arrival while
waiting in case of an empty queue. We model the
rest time as the time required to reach from current
cognitive state to optimal cognitive state cog*. We
model the service time distribution (see Fig 2a and 2b)
while processing the task using a hypergeometric
distribution, where the parameters of the distribution
are chosen such that the mean service time of the
human operator has the desired characteristics i.e. it
increases with the fidelity level (see Fig 2d) and is a
unimodal function of the cognitive state (see Fig 2c).
While resting, sojourn time distribution is the first
passage time (FPT) distribution for transitioning from
current cognitive state cog to cog®. We determine this
distribution using matrix methods [24] applied on the
Markov chain used to model the cognitive dynamics.

(v) For selecting action a at state s, the human receives
a bounded immediate reward r(s,a) defined in (1).
We assume that each task waiting in the queue loses
its value continuously. Hence, the human incurs a
penalty at a constant cost rate ¢ € Ry due to
each task waiting in the queue, and consequently, the
cumulative expected cost for choosing action a at state
s = (g, cog) is given by:

Z]P’(TIS,(L)CT(]E [%q" T, s,a]) - ZP(Tls-,(l)CT(Qq -2- ,\7).

The expected net immediate reward received by the
operator for selecting action a in state s is given by:

R(s,a) =1(s,a) — ZP(T|S,&)C<¥>7. (2)

(vi) A discount factor « € [0, 1), which we choose as 0.98
for the purposes of numerical illustration.
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Fig. 3: (a) Optimal Policy 7* and the (b) Optimal Value Function V* for
SMDP I'" where time required to skip the tasks is not too small compared
to the mean service time required to process the task

Queue Length

C. Solving SMDP for Optimal Policy

For SMDP T, the optimal value function V* : § — R
satisfies the following Bellman equation [25]

V() = ma [R(s,0) + 30 TBSTls,a)V ()], @)
s’ T

where P(s’,7|s,a), which is the joint probability that a

transition from state s to state s’ occurs after time 7 when

action a is executed, can be rewritten as:

P(s',7|s,a) = P(s'|1, 5,a)P(7|s,a), 4)

where P(s'|7, s, a) and P(7|s, a) are given by the state transi-
tion probability distribution and the sojourn time probability
distribution, respectively. An optimal policy 7* : S — A, at
each state s selects an action that achieves the maximum
in (3). We utilize the value iteration algorithm [26] to
compute an optimal policy in our numerical illustrations.

III. NUMERICAL ILLUSTRATION OF OPTIMAL FIDELITY
SELECTION

We now numerically illustrate optimal policies for SMDP
T'. Figs. 3a and 3b show an optimal policy 7*, and the opti-
mal value function V'*, respectively, for the case in which the
time required for skipping the task is not too small compared
to the mean service time required to process the task. For
sufficiently high arrival rate A such that there is always a
task in the queue after the human finishes processing the
current task (queue is never empty), we observe that for
any given cognitive state cog, the optimal value function is
monotonically decreasing with the queue length.

Additionally, we also observe that for a given queue length
q, the optimal value function is a unimodal function of
the cognitive state, with its maximum value corresponding
to the optimal cognitive state (cog® = 0.6 for numerical
illustrations). For the optimal policy 7*, we observe that the
optimal policy selects the highest fidelity around the optimal
cognitive state for low queue length and thereafter transitions
to normal fidelity for higher queue lengths. We also observe
that in low cognitive states, the optimal policy is to keep
skipping the tasks until the queue length reduces to small
number, and then processing the tasks. In higher cognitive
states, we observe resting at small queue lengths followed
by skipping of tasks at large queue lengths. Additionally, we
observe the effect of cognitive state on the optimal policy. In
particular, we observe that the optimal policy switches from
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Fig. 4: (a) Optimal Policy 7* and the (b) Optimal Value Function V* when
the time required to skip the task is too small compared to the mean service
time required to process the task

Hto N, N toR,and R to § at certain thresholds on the queue
length and these thresholds appear to be a unimodal function
of the cognitive state. This behavior can be attributed to the
mean service time being a unimodal function of the cognitive
state. We prove some of these properties of the optimal policy
in the next section based on assumptions on the structure of
the optimal value function.

Figs 4a and 4b show an optimal policy 7* and the optimal
value function V'*, respectively, for the case in which the
time required to skip the task is very small compared to the
mean service time required to process the task. Here, we
observe that in general, the optimal policy is to reduce the
queue length by skipping all the tasks, and then processing
the most recent tasks. Around the optimal cognitive state, we
observe that we get a small region of skipping in between
the region of high fidelity and normal fidelity. This can be
attributed to the higher expected future rewards by skipping
some tasks followed by receiving a future high reward for
processing the recent tasks with high fidelity.

IV. STRUCTURAL PROPERTIES OF THE OPTIMAL POLICY

In this section, we characterize structural properties of the
optimal policy for SMDP I'. We first introduce the following
notation. Let ¢j : C — ZxoU{+oc}, for j € {1,2,3} be
some functions of the cognitive state. Let ' : SxA; — Ry
and 2 : S x A, — R+ be function defined by p'(s,a) =
E(7|s,a) and p%(s,a) = E(7%|s,a), where 7 is the sojourn
time. We study the properties of SMDP I' in the limit L —
400 and under following assumptions:

(A1) We assume that the optimal value function V'* satisfies:
(i) ¢ — V*(q,-) is a monotonically decreasing func-
tion, and (ii) cog — V*(-, cog) is a unimodal function
and admits the maximum at cog™® for any q.

(A2) The task arrival rate A is sufficiently high so that the
queue is never empty.

(A3) For any state s = (g, cog) such that cog > cog*:

pt(s,8) < p'(s, R) < p'(s,N) < p'(s, H), and
12 (s,8) < p*(s, R) < p*(s, N) < pi®(s, H).

(A4) The jump in the optimal value function V* over

one extra task in the queue is upper bounded by

a ie., V*(cog,q) — V*(cog,q + 1) < «, where

a € [0,k), with £ = min{E(r|cog*,H) —
E(r|cog®, N), E(7|cog*, N) — E(7|cog*, S)}.

Our numerical investigation suggests that assumptions

(A1) and (A4) hold for SMDP I'. We will seek to prove that

(&)

these assumptions indeed hold in our future work. We make
assumption (A2) for convenience. Indeed, if queue is allowed
to be empty, then we will need to deal with an extra “waiting”
action. Also, high arrival rate is the most interesting setting to
study optimal fidelity selection. Assumption (A3) is true for
a broad range of interesting parameters that define sojourn
time distribution(s).

Theorem 1 (Structure of optimal policy): For SMDP T°
under assumptions (A1-A4) and an associated optimal policy
7*, the following statements hold

(i) there exists unique threshold functions
q; (cog), g3 (cog), gi(cog) such that for each
cog > cog™:

H, q<qi(cog),
N N, ¢j(cog) < q < g5(cog),

(s = (g, cog)) = ifeos) (com): )

R, g3(cog) < q < qg3(cog),
S, ¢ > q3(cog);
(ii) there exists unique threshold functions

g3 (cog), g5 (cog) such that for any cog < cog™:

H, q < qi(cog),
(s = (q,c09)) = { N, ¢j(cog) < q<g3(cog), (7)

S, ¢> g5(cog).
We prove Theorem 1 with the help of following lemmas.

Lemma 2: For SMDP I' under assumption (A3), the im-
mediate expected reward R(s,a), for each action a € A,

(1) 1is linearly decreasing with queue length ¢ for any fixed
cognitive state cog;

(i) is a unimodal function' of the cognitive state cog for
any fixed queue length ¢ with its maximum value
achieved at the optimal cognitive state.

Proof: We start by establishing the first statement.
The expected net immediate reward received by the human
operator for selecting action a in state s (see Eq. (2)) can be
rewritten as:

1

A
R(s,a) = —cE(7|s,a)qg +r(s,a) — %E(72|S,a), (8)
where E(7| s,a) and E(72|s, a) represents the first and the
second moment of the sojourn time distribution, respectively.
We note that the moments of the sojourn time distribution is
independent of the queue length q.

R(s,a) = —ay(cog, a)q + az(cog, a), )

where a;(cog,a) = cE(7]s,a) and as(cog,a) = r(s,a) —
L E(72]s,a).

For a fixed cognitive state cog and action a, both a;
and ay are constants and therefore, the expected immediate
reward linearly decreases with the queue length ¢ and the
first statement follows.

The second statement follows by observing that, for a
given queue length ¢, the mean and variance of the sojourn
time for each action a € A, are unimodal functions of the
cognitive state with their peaks at cog®. [ ]

IThe expected immediate reward under action S is a constant, which we
treat as a unimodal function.
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Lemma 3: For the SMDP I' under assumptions (A1-A3),
and an associated optimal policy 7*, the following statements
hold for each cog > cog*:

(i) there exists a threshold function ¢ (cog), such that the
action N strictly dominates action H, for each q¢ >
41 (cog);

(ii) there exists a threshold function ¢5(cog), such that
for each ¢ > ¢5(cog), the action R strictly dominates
action N,

(iii) there exists a threshold ¢5(cog), such that for each
q > q3(cog), action S is optimal.

Proof: We start with the first statement. We first analyze
the expected immediate rewards. It follows from Lemma 2
that for a fixed cognitive state and for a given action the
expected immediate reward (9) is a linear function. Since
these linear functions have different slopes due to (5), it
follows that the graphs of the expected immediate rewards
for different actions intersect (see Fig. 5 for an illustration).
If the lines associated with the expected immediate reward
for action H and N intersect for ¢ > 0, then let ¢; € Zx>( be
the unique point of intersection. It follows that for ¢ > qi,
the expected immediate reward from N is strictly higher than
that of H. If the lines associated with the expected immediate
reward for action H and N intersect for ¢ < 0, the expected
immediate reward from N is strictly higher than that of H
for any ¢ > 0.
Let F(s,a) denote the expected future rewards received in
state s for taking action a (the second term in the Bellman
equation (3)).

F(s,a) = Z

cog’,q’,T

V*(cog'. ) x

ZAx (10)

where A=~"P(¢'|7,q)V*(cog’, q¢') & x = P(cog’, T|cog, a).
Note that F'(s,a) in (10) represents a linear affine function
over a probability simplex. Since V* is strictly decreasing
function of the queue length and is a unimodal function
of the cognitive state, for each cog > cog*, the expected
future rewards received from N is strictly higher than H.
This is due to the fact that action H, which has higher
mean service time, leads to the higher queue length (¢") with
higher probabilities. Furthermore, it also leads to cognitive
states farther from cog*® with higher probabilities. Therefore,
it follows from assumption (Al) that F(s,N) > F(s,H).
Hence, for each cog > cog®, there exists a unique threshold
qi < qi1, such that for ¢ > ¢j, the action N dominates the

Y P(q|7,q)

P(cog’ |, cog, a)P(7|cog, a)

action H, for a given cognitive state cog. The proof of the
second statement follows analogously to the first statement.

To establish the last statement, we note that the action
S has the largest expected immediate reward, when queue
length is sufficiently high, it is the action with minimum
sojourn time and it is the only action that reduces the
expected queue length. With these observations, the last
statement follows analogously to the first statement. [ ]

Proof of Theorem 1: The proof of the first statement
follows immediately from Lemma 3. We now focus on the
second statement. Recall that action R is not an admissible
action for cog < cog*. Unlike the case with cog > cog*,
where high sojourn time leads to high sub-optimal cognitive
state and high queue length; for cog < cog®, high sojourn
time might take the state towards optimal cognitive state and
high queue length. Although the expected immediate rewards
follows the trend similar to cog > cog®, there is a trade-off
between moving towards optimal cognitive state and reaching
high queue length. In the following, using assumption (A4),
we show that if action N is the optimal choice at queue
length ¢7 for a given cognitive state, then for all ¢ > ¢, N
dominates H. We further show that if action S is the optimal
choice at queue length ¢5 for a given cognitive state, then
for all ¢ > ¢35, S dominates both H and N.

Let N be the optimal action in state s = {¢}, cog}. Then,

R(s,N)—R(s,H)+ F(s,N)— F(s,H) >0,
= (E(7|s,H) — E(7|s,N))q; +
(E(|s, H) — E(7°]s, N))+
ZZZVTquJrQIqu) “(cog’,qf +7 —1)x

(IP’(cog ,T|cog, N) — P(cog’, T|cog, H)) > 0, (11)

where ¢ is the number of arrivals during service time 7.

Now for the state s’ = {¢7+1, cog}, under the assumption
(A1) we show that:

R(s',N)—R(s',H)+ F(s'",N) — F(s',H) > 0. (12)

To show (12), we prove that the difference between LHS of
(12) and (11) is positive. The difference between the LHS
of (12) and (11) is given by:

(E(r[s, H)-E

(rls,N)) +ZZZWTP (gi+glgi+1,7)x

T cog’
(V*(cog', ¢t +q—-1) -V~ (cog g1 +17))%

(P(COg/, TlCOg, N) - P(Cog/v T|C0g, H)) (13)

To find a lower bound on (13), we use assumption (A4)
and replace V*(cog’,qi +q — 1) — V*(cog’,qf + q) by
al(P(cog’, T|cog, N) < P(cog’,T|cog, H)), where 1(-) is



the indicator function. Hence, (13) is lower bounded by

(E(r|s, H) — E(7|s, N))+

SO D AP(g; +lgt + 1, 7)ax
T cog’ q
(P(cog’, T|cog, N) — P(cog’, T|cog, H))
x 1(P(cog’, |cog, N) < P(cog’, T|cog, H)),
> (E(r]s, H) — E(7]s, N))+

« Z Z(P(Cog/a T|C0g7 N) - P(Cog/7 T|C0g, H))
T cog’
x 1(P(cog’, 7|cog, N) < P(cog’, T|cog, I))
> (E(r]s, H) — E(7|s, N)) — «
> (E(rleog”, H) — E(|cog", N)) — .

The last term is positive under the assumption (A4). Hence,
for a given cognitive state cog, N strictly dominates H, for
each ¢ > ¢f, given that N is the optimal action at ¢ = ¢j.
Similarly, under the assumption (A4), i.e. with &k <
E(7]cog*, N)—E(7|cog*, S), for a given cognitive state cog,
S strictly dominates H and N, for each ¢ > ¢3, given that S
is the optimal action at ¢ = ¢5. O

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied optimal fidelity selection for a human operator
servicing a stream of supervision tasks using a SMDP
framework. In particular, we studied the influence of human
cognitive dynamics on an optimal policy. We modeled cog-
nitive dynamics using Markov chains and incorporated their
influence on servicing time using well-established models
in psychology. We presented numerical illustrations of the
optimal policy and showed that the value function is a
monotonically decreasing function of the queue length and a
unimodal function of the cognitive state. Assuming that the
value function satisfies these properties for generic param-
eters, we established some of the key structural properties
of the optimal policy for fidelity selection. We seek to
prove these properties in our future work. We showed the
existence of thresholds on queue lengths for each cognitive
state at which the optimal policy switches from selecting high
fidelity to selecting normal fidelity to resting to skipping.

There are several possible avenues of future research.
An interesting open problem is to control the task arrival
rate in order to control the thresholds for these transitions.
Another interesting direction is to conduct experiments with
the human operators servicing a steam of tasks, measure EEG
signal to assess their cognitive state and test the benefit of
recommending optimal fidelity. It is of interest to extend this
work to a team of human operators processing stream of
heterogeneous tasks. In such a setting, finding the optimal
strategies for routing and scheduling of these heterogeneous
tasks is also of interest.
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