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Quasi-cliques are dense incomplete subgraphs of a graph that generalize the notion of cliques. Enumerat-
ing quasi-cliques from a graph is a robust way to detect densely connected structures with applications in
bioinformatics and social network analysis. However, enumerating quasi-cliques in a graph is a challeng-
ing problem, even harder than the problem of enumerating cliques. We consider the enumeration of top-k
degree-based quasi-cliques and make the following contributions: (1) we show that even the problem of de-
tecting whether a given quasi-clique is maximal (i.e., not contained within another quasi-clique) is NP-hard.
(2) We present a novel heuristic algorithm KErNELQC to enumerate the k largest quasi-cliques in a graph. Our
method is based on identifying kernels of extremely dense subgraphs within a graph, followed by growing
subgraphs around these kernels, to arrive at quasi-cliques with the required densities. (3) Experimental re-
sults show that our algorithm accurately enumerates quasi-cliques from a graph, is much faster than current
state-of-the-art methods for quasi-clique enumeration (often more than three orders of magnitude faster),
and can scale to larger graphs than current methods.
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1 INTRODUCTION

Finding dense subgraphs within a large graph is a foundational problem in graph mining, with
wide applications in bioinformatics, social network mining, and security. Much attention has been
paid to the problem of enumerating cliques [13, 29, 46, 53, 67, 69], which are complete dense struc-
tures in a graph. The requirement of complete connectivity among vertices of the graph is often
too strict, and edges may be missing among some pairs of vertices, or the existence of some edges
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may not be captured during observation. For example, cliques were found to be overly restrictive
in identifying cohesive subgroups in social network analysis [2, 30]; instead, dense subgraph mod-
els other than cliques were preferred because they relax the complete connectivity requirements.
A similar need was found in the analysis of protein—protein interaction networks [66]. This leads
to the concept of “incomplete dense structures” or “clique relaxations” that are dense subgraphs
where the strict requirement of having edge between every pair of vertices is relaxed. Such con-
cepts lead to more robust methods for identifying dense structures in a graph. In summary, the
study of clique relaxations is important in large-scale graph analysis.

In this work, we consider a type of clique relaxation called a degree-based quasi-clique in a
graph. For a parameter 0 < y < 1, an m-vertex subgraph H of a graph G = (V,E) is a degree-
based y-quasi-clique (henceforth called “y-quasi-clique”) if the degree of each vertex in H is at
least y - (m — 1). Note that if y = 1, the definition requires H to be a clique. By increasing y, it
is possible to create a stricter threshold for a subgraph to be admitted as a quasi-clique. If y < 1,
it is possible for the subgraph to be missing some edges among its vertices and still be admitted
as a y-quasi-clique. A y-quasi-clique is said to be maximal if it is not a proper subgraph of any
other larger y-quasi-clique. We consider enumerating maximal quasi-cliques. Maximality reduces
redundancy in the output by ensuring that if a quasi-clique Q is output, no other quasi-clique
contained in Q is also output. Note that a maximal quasi-clique may not be the largest (maximum)
quasi-clique in the graph.

Quasi-clique mining has been applied in many areas such as biological, social, and telecommu-
nication networks. Specific examples include detecting co-functional protein modules from a pro-
tein interaction network [11], clustering in a multilayer network [12, 34], and exploring correlated
patterns from an attributed graph [64]. Here, we list three real-world applications of quasi-clique
mining in detail.

—Criminal Activity Detection. Criminals are unlikely to reveal their personal data in so-
cial networks; therefore, identifying them through profile information is not a practical
approach. However, their interactions with other criminals on the underlying network can
help to uncover criminal groups. Studies such as [7, 41, 57] show that the 19 hijackers of
the tragic terrorist attack of September 11, 2001 form a tightly knit subgraph that resembles
a quasi-clique (or is interpreted as a clique with missing edges) in the underlying network,
constructed by Krebs [41]. Note that the data used to construct the network were publicly
available even before the tragic attack. Therefore, mining tightly connected subgraphs and
further processing and gathering information about the user accounts involved in the dense
subgraphs could have uncovered the terrorist group.

—Neurological Disorder Detection. Neurological disorders are caused by an abnormal-
ity of the structure and function of the central nervous system or peripheral nervous sys-
tem. Genetic and environmental factors are the root of some diseases such as Alzheimer’s
and Parkinson’s. According to Centers for Disease Control and Prevention, approximately
60,000 Americans are diagnosed with Parkinson’s disease each year; in 2017 alone, 32,964
Americans died of this disease, which is identified as the second most common neurological
disorder in the United States [49]. In a brain network, the correlation network for Parkin-
son’s disease is identified by mining densely-connected regions in protein—protein interac-
tion networks, which uncovers significant pathways, such as the Parkinson’s disease path-
way [68]. This process, i.e., analyzing the structure and function of brain networks using
dense subgraph mining algorithms, is critical to understanding the causes and mechanisms
of disease progression and, thus, promoting better treatments and aiding in drug discovery
for Parkinson’s disease.
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— Applications in Biological Networks. Biological networks contain a molecular landscape
that is basically a biological process in living cells. In a biological network, many proteins
interact with each other to form larger molecular machines that perform complex molecular
functions. A protein complex is indeed formed by a group of proteins which are tightly con-
nected through strong and long-lasting interactions [45]. In other words, protein complexes
are interpreted as dense subgraphs in the underlying network and are considered to be one
of the most important types of molecular machines. Extracting dense subgraphs (such as
quasi-cliques) in a biological network is, therefore, one of the best-known computational
tasks in biology which helps biologists to explore the structural and functional properties
of the underlying biological network.

We consider top-k maximal quasi-clique enumeration, where it is required to enumerate the k
largest maximal quasi-cliques in a graph. There are a few reasons why enumerating top-k maximal
quasi-cliques is better than enumerating all maximal quasi-cliques. (1) If we focus on the top-k,
then the output size is no more than k quasi-cliques. Compare this with enumerating all maximal
quasi-cliques in a graph, whose output size can be exponential in the size of the input graph. For
instance, it is known that there can be as many as ©(3"/*) maximal cliques in a graph [51]; hence,
there can be at least as many maximal quasi-cliques, as each clique is a y-quasi-clique with y = 1.
(2) The largest quasi-cliques in a graph are often the most interesting among all the quasi-cliques.
(3) The time required for enumerating top-k can potentially be less than the time required for
enumerating all maximal quasi-cliques.

A straightforward approach for enumerating top-k maximal quasi-cliques is to first enumerate
all maximal quasi-cliques in a graph using an existing algorithm for quasi-clique enumeration such
as QUICK [44], which is a state-of-the-art exact algorithm for degree-based quasi-clique enumera-
tion, followed by extracting the k largest among them. Certainly, this approach is not efficient from
the computation time perspective. When the number of maximal quasi-cliques is much larger than
k, most of the enumerated quasi-cliques are discarded and the resulting computation is wasteful.
We address this challenge by designing a heuristic algorithm motivated by an empirical observa-
tion that a large quasi-clique contains smaller but denser quasi-cliques within it. To the best of our
knowledge, we are the first to propose a heuristic algorithm for mining top-k degree-based maxi-
mal quasi-cliques. Our heuristic algorithm is orders of magnitude faster than the only competitor
(i.e., Quick), and it keeps intact the quality of the solution with respect to the exact algorithm in
most cases. We summarize our contributions as follows:

NP-hardness of maximality: At a high level, checking for the maximality of a quasi-clique is not
easy because this structure does not follow the hereditary property, meaning that a subgraph of a
quasi-clique may not be a quasi-clique. We prove the strong result that the problem of detecting
whether a given quasi-clique in a graph is maximal is an NP-hard problem. This is unlike the case
of cliques that follow the hereditary property—detecting the maximality of a clique can be done
in polynomial time, through simply checking whether it is possible to add one more vertex to
the clique. Note that our result is not about checking maximum-sized quasi-cliques [55], which is
known to be an NP-complete problem. Here, we show that checking for maximality of a quasi-
clique is NP-hard.

Algorithm for Top-k y-quasi-cliques: We present a novel heuristic algorithm KERNELQC for
enumerating top-k maximal quasi-cliques without enumerating all maximal quasi-cliques in G.
Our algorithm is based on the observation that a y-quasi-clique typically contains a smaller but
denser subgraph, a y’-quasi-clique, for a value y” > y. KErRNELQC exploits this fact by first detect-
ing “kernels” of extremely dense subgraphs, followed by expanding these kernels into y-quasi-
cliques in a systematic manner. KERNELQC uses the observation that for y’ > y, it is (typically)
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much faster to enumerate y’-quasi-cliques than to enumerate y-quasi-cliques. Further, the result-
ing set of y’-quasi-cliques can be expanded into y-quasi-cliques more easily than constructing the
set of y-quasi-cliques from scratch.

Experimental evaluation: We empirically evaluate our algorithm on large real-world graphs
and show that KERNELQC enumerates top-k maximal quasi-cliques with high accuracy and is or-
ders of magnitude faster than the baseline, which uses a state-of-the-art algorithm for quasi-clique
enumeration. For instance, on the graph Advogato,! KErNELQC yields a nearly 1,000-fold speedup
for enumerating the top 100 0.7-quasi-cliques as compared to a baseline based on the Quick algo-
rithm [44].

While KErNELQC is not guaranteed to return exactly the set of top-k maximal quasi-cliques, we
show, through an empirical evaluation, that the accuracy is high in practice. Note that the high
cost of enumeration follows, given that the problem of even checking the maximality of a quasi-
clique is NP-hard. In many cases that we considered, the output of KERNELQC exactly matched the
output of the exact algorithm that used exhaustive search. Usually, the distance of the output, when
compared to the output of the exact algorithm, was less than 107%. See section 5 for more details
on the metrics used to measure the distance and performance of KERNELQC over the baseline
algorithm. Significantly, KERNELQC was able to scale to much larger graphs than current methods.

1.1 Related Works

Degree-based and density-based quasi-cliques: The problem of finding y-quasi-cliques ap-
pears in a wide spectrum of applications such as biological [44, 58], social [71, 75], telecommuni-
cation [59], and financial [65]. Motivated by a study on protein sequences, Matsuda et al. [48] first
defined the degree-based y-quasi-clique in the context of a protein sequence clustering problem.
The degree-based y-quasi-clique has also been referred to as a y-complete-graph in the litera-
ture [40]. Pei et al. [58] studied the problem of enumerating those degree-based y-quasi-cliques
from a graph database that occurred in every graph of the graph database. It was the first study
on quasi-clique search problem. Jiang and Pei [37] and Zeng et al. [77] studied the same prob-
lem as Pei et al. [58] but generalized in the sense that their algorithm enumerated degree-based
y-quasi-cliques that occur in at least a certain number of graphs in the database. Note that the
algorithms discussed so far can also enumerate all maximal y-quasi-cliques. Although [77] and
[58] proposed algorithms for finding complete sets of quasi-cliques in a graph, they did not exploit
pruning techniques. Liu and Wong [44] proposed the algorithm Quick for enumerating all max-
imal y-quasi-cliques from a simple undirected graph that uses a number of pruning techniques,
some from prior works and some newly developed. Recently, Guo et al. [35] developed parallel
algorithms, powered by load balancing techniques, to enumerate maximal quasi-cliques in a dis-
tributed framework. Lee and Lakshmanan [42] investigated the problem of finding a maximum
y-quasi-clique containing a given subset of vertices S of the original graph and proposed a heuris-
tic algorithm. Pastukhov et al. [55] studied the maximum degree-based y-quasi-clique problem.
First, they proved that finding a maximum y-quasi-clique is an NP-hard problem and presented
algorithms for a y-quasi-clique of maximum cardinality. It is worth noting that while this work
focused on finding a single quasi-clique of the largest size, our goal is not simply to find a single
large quasi-clique; rather, it is to enumerate the k largest maximal quasi-cliques. Further, the NP-
hardness result in [55] was for finding the maximum y-quasi-clique, while our NP-hardness result
is for finding out whether a quasi-clique is maximal.

Abello et al. [1] first studied the problem of finding a density-based d-quasi-clique, defined as
a subgraph Q of the original graph with the ratio of the edges in Q to the total number of edges

I The details of the graphs used in the experiments are presented in Section 5.
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in a complete subgraph of size |Q| being at least §. Note that a degree-based quasi-clique is also
a density-based quasi-clique, but the inverse is not true. They proposed a heuristic algorithm for
finding a large §-quasi-clique. Haraguchi and Okubo [36] designed a method for finding useful
clusters of web pages using quasi-cliques. To obtain a cluster of similar web pages, they exploited
Singular Value Decomposition in a term-document matrix created by a corpus to find semantic cor-
relations. Thereafter, similarities among web pages were calculated based on those correlations to
make clusters. They represented the set of web pages in a graph, and clusters were found as quasi-
cliques in it. The experimental results in this work showed that their method can perform well in
finding valuable clusters in a graph. Following this work, Uno [73] considered density-based quasi-
cliques and proposed an algorithm for enumerating all §-quasi-cliques, with polynomial delay. In
another study, Pattillo et al. [56] proved that deciding whether there exists a §-quasi-clique of size
at least 0 is an NP-complete problem. Brunato et al. [14] defined a (y, §)-quasi-clique combining
the minimum degree requirement of degree-based y-quasi-clique and minimum edge requirement
of density based §-quasi-clique. They proposed a heuristic algorithm for finding a maximum (y, §)-
quasi-clique. Recently, Balister et al. [8] further investigated the work of Veremyev et al. [74], in
which an upper bound on the largest y-quasi-clique is presented. Balister et al. studied the largest
order of y-quasi-clique and derived the concentration bound on the size of the maximum density-
based d-quasi-clique. Other exact and heuristic methods for maximum density-based quasi-cliques
include [28, 47, 60].

Other works on dense subgraphs: The study of dense subgraphs has been of high interest in
research community for many decades. There have been numerous works on graphlet mining
[19, 54, 63], on complete dense subgraphs such as maximal cliques [13, 18, 23-26, 29, 46, 53, 69],
maximal bicliques [3, 43, 52], and graph summarization based on maximal cliques and quasi-cliques
[76]. There exist many different types of degree-based incomplete dense subgraphs other than the
quasi-clique, such as k-core [9, 17, 27, 38], k-truss [20], and k-plex [10, 21, 22]. A k-core is a maximal
connected subgraph such that each vertex in that subgraph has a degree of at least k; this subgraph
is quite different from a quasi-clique in the sense that the degree threshold in the k-core is an
absolute threshold, whereas the threshold in the quasi-clique (either degree threshold or density
threshold) are relative thresholds, equal to a certain factor (y) times the size of the subgraph. In
a k-truss subgraph, each edge is contained in at least (k — 2) triangles. k-truss is different from
the quasi-clique because the threshold in k-truss is an absolute threshold. k-plex is an induced
subgraph, where induced degree of a vertex is at least n — k with n being the size of the k-plex. For
n(l—y)+y <k<n(l-y)+y+1,ak-plex with size n is a y-quasi-clique; however, in general,
we cannot conclude that any k-plex is a y-quasi-clique or vice versa because we do not know n.
Indeed, k-plexes are different from quasi-cliques because the number of (allowable) missing edges
of a vertex in a quasi-clique is a function of n while the number of missing edges of each vertex of
a k-plex is fixed and up to k — 1. Other works on dense subgraphs different from the quasi-clique
subgraph include the densest subgraph [4, 15, 33, 39], triangle densest subgraph [72], k-clique
densest subgraph [50, 70], and dense subgraphs in dynamic networks whose edges appear in short
time intervals [61]. Similar to k-core, these subgraphs are based on an absolute threshold for the
degree, rather than a relative threshold. Prior work on top-k dense subgraph discovery includes the
work of Zou et al. [78] on enumeration of top-k maximal cliques from an uncertain graph, defined
as the set of cliques with the k largest clique probabilities, and the works of Balalau et al. [6] and
Galbrun et al. [31] on the enumeration of top-k densest subgraphs. Another variant of the densest
subgraph problem is Tsourakakis et al.’s work [71] in which the notion of the quasi-clique is used to
define an alternative of density. Angel et al. [5] studied the set of all subgraphs exceeding a density
threshold where the weights of edges are altered under streaming conditions. Chen and Saad [16]

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 81. Publication date: April 2021.



81:6 S.-V. Sanei-Mehri et al.

b ¢ b C b c
a d a a d
9 9 9
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(a) Input Graph G (b) Quasi-Clique (c) Maximal Quasi-Clique

Fig. 1. (a) G is the input graph. (b) Vertices {a, b, c, f, g} form a y-quasi-clique with y = 0.6 and minsize = 5.
(c) Vertices {a, b, c,d, f, g} form a maximal y-quasi-clique with y = 0.6 and minsize = 5.

proposed a matrix-blocking model to identify dense subgraphs. In their proposed method, they
were searching for those subgraphs which best cover the input graph.

2 PRELIMINARIES AND PROBLEM DEFINITION

Let G = (V, E) be a simple undirected graph. Let V(G) denote the set of vertices and E(G) denote
the set of edges of G. Let d°(u) denote the degree of vertex u in G. When the context is clear, we
use d(u) to mean d°(u). We use the following definition of degree-based quasi-cliques.

Definition 2.1 (y-quasi-clique). For parameter 0 < y < 1 and integer minsize, a vertex-induced
subgraph Q of G is called a y-quasi-clique if Q is connected, |Q| > minsize, and for every vertex

v e V(Q),d? () = [y(IQ] - 1)1.

Note that when y = 1, the above definition reduces to a clique. For a y-quasi-clique Q, by the
phrase “size of Q” and notation |Q|, we mean the number of vertices in Q. A y-quasi-clique Q is
called maximal if another y-quasi-clique Q" does not exist, such that V(Q) c V(Q’). See Figure 1
for an example of the above definition.

ProBLEM 1 (Top-k y-QCE). Given integer k > 0, parameter 0 <y < 1, and a simple undirected
graph G = (V, E), enumerate k maximal y -quasi-cliques from G that have the largest sizes among all
maximal y-quasi-cliques in G.

Given 0 < y < 1 and a simple undirected graph G = (V, E), the y-quasi-clique enumeration
(y-QCE) problem asks us to enumerate all maximal y-quasi-cliques from G. If the value of y is
clear from the context, we use “QCE” to mean y-QCE.

Here, we briefly describe algorithm Quick due to Liu and Wong [44] because we utilized
a modified version of this algorithm in our proposed method for enumerating top-k maximal
quasi-cliques.

Quick algorithm: Quick is the state-of-the-art algorithm for QCE [44] that enumerates all max-
imal quasi-cliques using a depth first search-based technique. While this enumeration is prohib-
itively expensive, due to the exponential number of quasi-cliques (e.g., for y = 1, quasi-cliques
are indeed cliques, and the number of maximal cliques can be exponential [51]), a widely used
technique called pruning can significantly reduce the search space by removing the unpromising
candidate vertices. Quick performs several pruning techniques considering factors such as the
degree of the vertices and the bounds on the number of vertices that can be added to a growing
quasi-clique. The pruning techniques are described in detail in [44]. At each step, Quick adds an
eligible vertex to the existing quasi-clique, removes the vertices from the candidate set that are
deemed ineligible considering the pruning rules, and expands the quasi-clique as much as possi-
ble by calling the main procedure recursively. Quick also applies a post-processing step to filter
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.

Quasi-clique X of size 2r* +7 | / .

Fig. 2. The construction of graph G for the proof of Theorem 2.

out any enumerated quasi-clique that is contained within other quasi-cliques. Indeed, Quick re-
moves all non-maximal quasi-cliques using the post-processing step, which is time-consuming.
We develop QuickM, a variant of Quick, which skips the post-processing step to obtain a better
runtime while our heuristic method still reports only maximal quasi-cliques. We present QuickM
in Section 4.

3 HARDNESS OF CHECKING THE MAXIMALITY OF A QUASI-CLIQUE

It is easy to deduce that y-QCE is an NP-hard problem because the problem of enumerating max-
imal cliques is a special case when y = 1. However, QCE presents an even more severe challenge.
We now prove that even determining whether a given quasi-clique is maximal is an NP-hard prob-
lem. This is very different from the case of maximal cliques—checking whether a given clique is
maximal can be done in polynomial time, by simply checking whether there exists a vertex outside
the clique that is connected to all vertices within the clique. If such a vertex exists, then the given
clique is not maximal; otherwise, it is maximal.

PROBLEM 2 (MAXIMALITY OF A QUAsI-CLIQUE). Given a graph G = (V,E) and a y-quasi-clique
X CV, determine whether X is a maximal quasi-clique in G.

THEOREM 1. Maximality of a Quasi-Clique is NP-hard.

Proor. We prove NP-hardness by reducing the r-clique problem, which asks whether a given
graph G’ = (V',E’) contains a clique of size r, to the problem of checking the maximality of a
quasi-clique. This r-clique problem is NP-complete [32]. Given graph G’ on which we must solve
the r-clique problem, construct a graph G = (V, E) as follows (see Figure 2). Let V = V' U X where
X is a set of 2r% + r vertices. X consists of three parts: two sets A; and A,, each of size r?, and B,
of size r. We construct edges in G as follows:

—All edges E" in G’ are retained in G.

—Add edges within Ay, within A,, and within B such that A; is a clique, A; is a clique, and B
is a clique.

—Add edges connecting each vertex in A; with each vertex in A, and B. Thus, A; U A; is a
clique and, A; U B is a clique, but X = A; U A, U B is not a clique.

— Add edges connecting each vertex of A; to each vertex of V'.
Sety = 5 25:1 We first show that X is a y-quasi-clique. To see this, consider that the total
number of vertices in X is 2r? + r. For X to be a y-quasi-clique, each vertex should have a degree
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of atleast [y - (2r2 +r —1)] =r%] < (r*+r-1). We can verify that every vertex in X has at
least a degree of r* + r — 1. We now claim that X is not a maximal y-quasi-clique in G if and only
if G’ contains an r-clique.

(1) Suppose that G’ contains an r-clique. There exists a set of vertices L € V” such that L is a
clique and |L| = r. Consider the set Q = X U L. We show that Q is a y-quasi-clique. Because X N L =
0, we have |Q| = |X| + |L| = 2r? + 2r. Therefore, [y - (|Q] = 1)] = [%1 =r’+r-1.
It can be verified that every vertex in Q has at least a degree of r> + r — 1. Thus, Q is a y-quasi-
clique.

(2) Suppose that X is not a maximal y-quasi-clique in G. Then, there must be a non-empty
set M c V'’ such that R=MUX is a y-quasi-clique in G. We note that it is not possible that

M| > r. If this were the case, then the minimum degree threshold for a vertex in R would be

[y - (R -1)] = f(ﬂ;::)z(rlil_l)] = [(’2*”;1(22:zrf:'”1"1)] > r? +r -1, as |[M| > r. However, the mini-
mum degree of vertices in R is ? + r — 1 (consider a vertex from the set B C R).

Similarly, it is not possible that [M| < r. Let’s assume that this was the case. Then, the minimum
degree threshold for a vertex in R would be [y - (|R| — 1)1 = [y - (2r? + r + |[M| — 1)]. However, the
minimum degree of a vertex in R is r? + |M| — 1 (consider a vertex from M). It can be verified that
because M| < r, [y - (2r? + r + |[M| = 1)] > r? + |M| — 1. Then, R cannot be a quasi-clique.

Therefore, it must be that [M| = r. In this case, M must be a clique of size r. In the case that M
is not a clique, the minimum degree of a vertex in R is at most r + r — 2 (consider a vertex from

r2+r—l)(2r2+2r—1)'| —

M). However, the minimum degree threshold for a vertexin Ris [y - (|R| — 1)] = [¢ o
r? +r—1>r?+r— 2. This completes the proof. m

4 ALGORITHM FOR TOP-k QCE

In this section, we present algorithms for enumerating top-k y-quasi-cliques given the input graph
G and parameters k and y.

4.1 Baseline

A straightforward algorithm for Tor-k QCE is to enumerate all maximal y-quasi-cliques using
the Quick algorithm [44] and to then extract the k largest among them. We call this algorithm
BaseLINE. While this algorithm is simple and generates an exact solution to our problem, it is
computationally expensive because the total number of maximal quasi-cliques can be exponen-
tial.2 On the other hand, we showed that the maximality checking of a quasi-clique is an NP-hard
problem. Therefore, developing an exact and efficient solution to enumerate maximal quasi-cliques
is quite challenging. To end this, we developed KERNELQC, a heuristic algorithm that generates
fewer quasi-cliques through the appropriate choice of parameter y which runs orders of magni-
tude faster than BASELINE with high accuracy, such that in most cases the output of our method
matches the output of the exact solution. We present the results in Section 5.

4.2 KerNELQC Algorithm

We now present our heuristic algorithm, KERNELQC, for Tor-k QCE. The idea of KERNELQC is
built upon our empirical observations which can be stated as follows: Within a larger y-quasi-
clique, there are denser and relatively large y’-quasi-cliques, where y” > y. We call these denser
quasi-cliques kernels of a y-quasi-clique. That being said, our algorithm KErNELQC can discover
a y-quasi-clique by first extracting its kernels with degree-threshold y” and then expanding the

2The number of maximal cliques in a graph can be as many as Q(3"/3) [51]; hence, there can be at least as many maximal
quasi-cliques, when y = 1.
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Fig. 3. On the x-axis is the size of a y’-quasi-clique. The y-axis shows what fraction of the top 1,000 maximal
0.8-quasi-cliques contained a y’-quasi-clique of a given size. The results are shown for three different graphs,
Advogato, Route-views, and Bible. The average sizes of top 1,000 maximal 0.8-quasi-cliques for Advogato,
Route-views, and Bible are 23.49, 12.24, and 12.37, respectively.

kernels with parameter y. Experiments on several graphs show that our two-step heuristic method
extracts large y-quasi-cliques and is orders of magnitude faster than the naive method which mines
y-quasi-cliques directly from scratch.

Here, we briefly show results to verify the effectiveness of KERNELQC. We considered graphs
Advogato, Route-views, and Bible?, and y = 0.8. We looked into the 1,000 largest maximal y-
quasi-cliques each from graphs Advogato, Route-views, and Bible.? Interestingly, we found that
every sampled 0.8-quasi-clique from Advogato, Route-views, and Bible graphs had, as a subgraph,
a y’-quasi-clique with a size of at least 7, for different values of y’, ranging from 0.85 to 1.0. Note that
the average sizes of top 1,000 maximal y-quasi-cliques for graphs Advogato, Route-views, and
Bible are 23.49, 12.24, and 12.37, respectively, which suggests that large y-quasi-cliques (usually)
contain y’-quasi-cliques of substantial sizes as subgraphs for y’ > y. Details are shown in Figure 3.

Note that an adversary can form a y-quasi-clique without any large y’-quasi-clique contained
within. This can happen either if the density of a quasi-clique is not relatively high, i.e., the num-
ber of edges is relatively low compared to the total number of possible edges, or if the difference
between hyperparameters y and y’ is high. For example, within a (4, 4)-biclique which is a 0.5-
quasi-clique, there is no kernel with y’ = 0.7 (assuming minsize > 3). However, our experiments
show that this is not the case in real-world networks, and the size of y’-quasi-cliques (or “ker-
nels”) in y-quasi-cliques is relatively large (see Figure 3). We further note that as y increases, the
complexity of finding y-quasi-cliques decreases substantially. To illustrate this, Figure 4 shows
the computational cost of enumerating y-quasi-cliques as y increases. Note that the y-axis is in
log-scale. The trend is that the cost decreases exponentially as y increases. Based on the above ob-
servations, our algorithm idea is as follows. Given a threshold 0 < y < 1, we choose y’ such that
Y <y’ < 1. We then enumerate the set Y consisting of the largest-k” maximal y’-quasi-cliques in
graph G. These dense subgraphs in Y are considered “kernels” that are then further expanded to
recover k maximal y-quasi-cliques in G. Thus, our algorithm has two steps:

(1) Kernel Detection: Find kernels in the graph, i.e., y’-quasi-cliques for the chosen value of y’.
Then, among all kernels, the largest k" maximal kernels are extracted.

(2) Kernel Expansion: Expand detected kernels into larger y-quasi-cliques. This can be per-
formed by iterating through the enumerated y’-quasi-cliques and then using an existing
algorithm for QCE, such as Quick [44], to enumerate all maximal quasi-cliques that
contain each kernels. Next, among all extracted y-quasi-cliques, the largest-k maximal
y-quasi-cliques are enumerated.

3These graphs are described in Table 1.
4We did not consider graph Slash because the the size of largest y-quasi-clique in this graph is less than 10.
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Fig. 5. A schematic of algorithm KERNELQC.

Figure 5 briefly sketches two steps of algorithm KerNELQC. Algorithm 1 describes KERNELQC
in detail. In line 2 of Algorithm 1, a modified version of Quick, QUICKM, is used to extract all
y’-quasi-cliques. This version does not actually check whether a quasi-clique is maximal, before
outputting it. For KERNELQC, the quasi-cliques from the subroutine do not need to be maximal, as
Algorithm 2 sorts quasi-cliques in the descending order of their sizes and suppresses non-maximal
quasi-cliques. By omitting a maximality check, QuickM is more efficient than Quick. With Lem-
mas 1 and 2, we show that every y-quasi-clique returned by Algorithm 1 is maximal and has at
least minsize vertices.

LEmMA 1. Algorithm 2 returns at most k largest quasi-cliques that are maximal with respect to a
set of quasi-cliques S (i.e., not contained within any other quasi-clique in S).

PRrROOF. A quasi-clique q is added to the set Q in line 5 of Algorithm 2 if the size of Q is less than
k, and q is not a subset of any other quasi-clique in Q (using the if block in line 4). Because of the
latter condition, all quasi-cliques in Q are maximal with respect to the quasi-cliques of S. On the
other hand, because all y-quasi-cliques in S are sorted in the descending order of their sizes (line
1), Q maintains the largest maximal quasi-cliques from S, and the size of Q cannot be larger than
k. m]

LEMMA 2. The set R in Algorithm 1 contains at most k y-quasi-cliques, where each quasi-clique
has at least minsize vertices, and is a maximal quasi-clique in the graph.

Proor. Inline 2 of Algorithm 1, QuIckM extracts all y’-quasi-cliques in graph G. Then, in line 3
and by Lemma 1, X contains the largest maximal y’-quasi-cliques of G, where |X| < k’. In lines 5
and 6, every y-quasi-clique of set Z contains at least a y’-quasi-clique from set Y. This is because
we expand every y’-quasi-clique in Y by QuickM using the parameter y. Therefore, any quasi-
clique in set Z has at least minsize vertices. Because R C Z (line 7), any quasi-clique in R has at
least minsize vertices. In addition, by Lemma 1, we know that |R| < k. In the rest, we show that
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ALGORITHM 1: KerNELQC (G, y, minsize, k)
Input: Graph G = (V,E), parameter 0 < y < 1, size threshold minsize, and an integer k.
Output: k maximal y-quasi-cliques in G with at least minsize vertices in each.
1 Choose y’ such thaty <y’ < 1,and k’ > k

2 X « QUICKM(G, ¢, y’, minsize) > Kernel Detection — retrieve y’-quasi-cliques from G.
3 Y « TorkMAXIMALQC(X, k") > Algorithm 2.
1 Z <0

5 for a quasi-cliqueq € Y do
6 L Z « Z U QUIcKM(G, q, y, minsize) > Kernel Expansion — add y-quasi-cliques by expanding q.

7 R « TorkMaXIMALQC(Z, k) > Algorithm 2.
s return R

ALGORITHM 2: TopkMaxIMALQC (S, k)
Input: Set of quasi-cliques S and an integer k.
Output: top (largest)-k maximal quasi-cliques from S.
1 Sort S in the descending order of the sizes of quasi-cliques
2 Q<0
3 for a quasi-clique g € S do

L if (101 <k)A (Vg €Q.q ¢ ') then

'S

| Q<0Qug

6 return Q

quasi-cliques in R are maximal in G. By contradiction, assume that there is a y-quasi-clique in R
which is not maximal in G, i.e., suppose that there are two y-quasi-cliques h and " in G s.t. h € R,
h c h’, and b’ ¢ R. We know that h is discovered by the expansion of a y’-quasi-clique g (line 6).
Hence, g € hand g C h’. On the other hand, QuickM ensures that all y-quasi-cliques containing q
are enumerated. The enumerated quasi-cliques are added to Z in line 6. Therefore, h’ € Z because
h’ is a y-quasi-clique and contains q. In addition, because h C h’, Lemma 1 ensures that " € R and
h ¢ R. This contradicts our assumption that h € R and h’ ¢ R. O

In line 1 of Algorithm 1, we must choose two user-defined parameters y” and k’, based on the
given values of y and k. Here, we discuss the impact of these parameters on the accuracy and
runtime of KERNELQC.

Dependence on y’: For a given y, varying the value y’ € (y, 1] has effect on the runtime of
KerNELQC. Based on our observation in Figure 4, for a high value of y’, the kernel detection
phase of KERNELQC can extract kernels faster. However, these kernels are relatively smaller in
sizes, and the expansion phase will take longer. Conversely, if y’ is small (close to y), kernel de-
tection takes more time to extract y’-quasi-cliques while the kernel expansion phase requires less
time as kernels are relatively larger in sizes; hence, they have less chance to be expanded.
Dependence on k’: In Algorithm 1, k” determines the number of kernels, which must be extracted
in the kernel detection and then expanded to mine y-quasi-cliques. The higher the value of k’,
the greater the number of kernels required to be processed in KERNELQC. Then, the runtime of
KerNELQC may increase with a higher value for k’. However, the chance to mine larger maximal y-
quasi-cliques also increases because more kernels must be enlarged in the kernel expansion phase.
Therefore, a higher value of k’ can increase both the runtime and the accuracy of KERNELQC. In
Section 5, we present an empirical sensitivity analysis of parameters minsize, y, y’, k, and k’ on
the accuracy and runtime of the algorithm.
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Fig. 6. The runtimes of KERNELQC and BASELINE as a function of y.

Table 1. The Summary of Input Graphs

Graph #Vertices  #Edges  Max Degree Avg Degree
Advogato 5,155 39,285 803 15.24
Route-views 6,474 12,572 1,458 3.88
Bible 1,773 9,131 364 10.30
Slash 51,083 116,573 2,915 4.56
Live-mocha 104,103 2,193,083 2,980 42.13
Youtube 1,134,890 2,987,624 28,754 5.27
Hyves 1,402,673 2,777,419 31,883 3.96

5 EXPERIMENTS

Networks and experimental setup: We used real-world networks from a network repository
at KONECT. The networks are summarized in Table 1 and are converted to simple graphs by
removing self-loops and multiple edges. We implemented the BASELINE and KERNELQC algorithms
in C++° and compiled them with g++ compiler with -03 as the optimization level. The experiments
are conducted on a cluster of machines equipped with 2.0 GHz 8-Core Intel E5 2650 and 64.0 GB
memory.

Metrics: As discussed in Section 4, KERNELQC is a heuristic algorithm for extracting the top-
k maximal y-quasi-cliques. There is no guarantee that it will always be correct, i.e., it may not
always enumerate the k largest maximal quasi-cliques. On the other hand, BASELINE mines the
exact top-k maximal y-quasi-cliques. We need a metric to measure the accuracy of KERNELQC
compared to the BASELINE algorithm. For this purpose, we use sgergel distance, which is as fol-
lows. Suppose that H = (hy, hy, hs, . . ., hi) is a descending ordered list, maintaining the sizes of k
maximal y-quasi-cliques returned by KErNELQC.® Similarly, suppose that Z = (z1, z3, 23, . . ., 2 ) is
a list in descending order, which contains the sizes of the top-k maximal y-quasi-cliques, returned
by BASELINE, the exact algorithm. The sgergel distance between the two lists H and Z is as follows:

Zf:l lhi — zi

SE o W

Seergel Distance (H, Z) =

i—q max (h;, z;)
For our purpose, we used sgergel distance (also known as tanimoto distance) because the output
lists contain non-negative numbers, representing the sizes of largest maximal quasi-cliques. Also,
this metric compares two lists element-wise, which fits our need, as i element in a list shows the

size of i'h largest maximal quasi-clique. The sgergel distance is better suited than other metrics

Shttps://github.com/beginner1010/topk-quasi-clique-enumeration.
®A size of a quasi-clique is the number of vertices in the quasi-clique.
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Fig. 8. The accuracy and runtime of KERNELQC on graph Route-views, with k = 100, k" = 300, minsize = 5.
The sgergel distance is 0 for the four values of y.

such as Jaccard similarity. In particular, if we used Jaccard similarity to measure the similarity
between the vertex sets of two quasi-cliques, this will fail to consider the sizes of the quasi-cliques.
If two algorithms return sets of quasi-cliques that are of exactly the same size, but whose elements
are different, the Jaccard similarity will show a poor match, while the sgergel distance will show
a perfect match. Note that the spergel distance shows the similarity of two lists of non-negative
numbers. Here, we consider the lists of sizes of quasi-cliques, obtained by KERNELQC and BASELINE
algorithms. As mentioned above, the two lists are of length k and are sorted in order of descending
size of quasi-cliques. Henceforth, when we refer to the output distance of KERNELQC, we compare
the returned lists of KERNELQC and BASELINE using Equation (1).

Runtime compared to BASELINE: The experiments show that KERNELQC yields a significant
speedup over BASELINE for enumerating Top-k-quasi-cliques. For example, in Figure 7(b) in graph
Advogato with y = 0.7, k = 100, and kK’ = 300, when we set y’ = 0.9, KERNELQC yields a speedup
of 984x over BASELINE. For y = 0.6, the speedup is even more because BASELINE did not finish after
259K seconds, while KErneLQC took only 172 seconds.” For graph Bible, with y = 0.6 and y’ =
0.8, KErRNELQC yields a 34X speedup over BASELINE (Figure 9(a)). In Slash and the same values
for y and y’, KErNELQC yields a 638X speedup over BASELINE (Figure 10(a)). On the Route-views
graph, the speedup is not high, especially for large values of y. The reason is that this graph is
not very dense, and even BASELINE had a small runtime (< 100 seconds). For this graph, obtaining
high speedup is not as important.

Seergel distance: The results show that KERNELQC has high accuracy for different graphs
and various parameter settings while achieving a huge speedup over BASELINE. As shown in

7K stands for thousands.
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Fig. 10. The accuracy and runtime of KERNELQC on graph Slash, with k = 100, k¥’ = 300, minsize = 5. The
maximum sgergel distance for (c) is 0.02 and for (a), (b), and (d) is 0.

Figures 7-10, the seergel distance for most graphs and different values of y and y’ is less than
9% 1073 and is often zero (i.e., exactly matches the output of BAseLINE). The highest distance
measure among all experiments is 2.1 X 107 and belongs to the graph Slash, where y is 0.8
(Figure 10(c)). We did not report the distance measure of Figure 7(a) because BASELINE did not
finish after 259K seconds.

5.1 Dependence on y and y’

In Figure 7-10, we ran KErNELQC for different values of y’ and y on four graphs: Advogato,
Route-views, Bible, and Slash. The purpose of these experiments is to understand the effects
of the user-defined parameters y and y” on KErRNELQC in terms of accuracy and time-efficiency.
These experiments are helpful for choosing an optimum value for y” which can result in a good bal-
ance between accuracy and runtime. For all graphs, we set k = 100, k&’ = 300 to find top-k maximal
quasi-cliques, and minsize = 5, which is the minimum size threshold of quasi-cliques.
Performance of kernel detection and expansion: Here, we show how different values of y
and y’ can impact the performance of the two steps of KERNELQC. When y’ is close to y, kernel
detection is slower than kernel expansion (Figure 7—10). This is because kernel detection must
extract all y’-quasi-cliques. As shown in Figures 4 and 6, greater computation time is required to
mine all y’-quasi-cliques when y’ is smaller. On the other hand, if y’ is larger, the y’-quasi-cliques
found by kernel detection are smaller. This fact keeps the size of y’-quasi-cliques small, at least in
the graphs we used. Therefore, because the kernel expansion phase starts with smaller kernels, it
requires more time to explore larger y-quasi-cliques. The ideal choice of y” should balance between
the computational costs of the two phases, i.e., kernel expansion and kernel detection.
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Fig. 11. The runtimes of KERNELQC and BASELINE as a function of minsize, fory = 0.8, y’ = 1.0, k = 100, and
k’ = 300.

5.2 Impact of the Minimum Size Threshold (minsize)

Figure 11 represents the runtimes of KERNELQC and BastLINE for different values of minsize.
Based on the runtimes of KERNELQC, one can see that minsize does not have a major impact on the
runtime, for the most part. However, in some cases, such as Figure 11(c) and for minsize = 10, the
runtime of KERNELQC decreases drastically. This is because the size of largest y-quasi-clique in the
graph Bible is 12. Setting minsize = 10 can considerably reduce the search space for KERNELQC,
which leads to a lower runtime. minsize is a user-defined parameter. When there is no knowledge
about the given graph and minsize is set to a high value, it is possible that the graph does not
contain k y-quasi-cliques with a size of at least minsize, let alone top-k maximal y-quasi-cliques.
This can cause missing large y-quasi-cliques which could be good candidates for being placed in
top-k maximal y-quasi-cliques. One way to handle this is to start with a high value of minsize and
decrease it if enough quasi-cliques are not found with prior settings.

5.3 Dependence on k and k’

We consider different values of k and k’. Figures 13(a)-13(d) show the sgergel distance of Ker-
NELQC. More specifically, each cell shows the soergel distance for corresponding values of k and
k’.In addition, Figures 12(a)-12(d) represent the speedup factor of KERNELQC over BASELINE. Sim-
ilarly, each cell in these figures represents a speedup factor of KERNELQC over BASELINE. There
are also some empty cells (for example, in Figures 12(d) and 13(d)). The empty cells indicate that in
some graphs KERNELQC could not extract k maximal y-quasi-cliques with a given value of k” due
to a very low number of maximal quasi-cliques. Therefore, we did not report the distance metric
and speedup factors for those cases.

Speedup compared to BASELINE: Figures 12(a)-12(d) represent the speedup factor of KERNELQC
over BASELINE. Based on the results, an increase in the value of k" makes KERNELQC slower com-
pared to BASELINE. For example, in Figure 12(d), for k = 100 and k’ = 200, the speedup of KEr-
NELQC over BASELINE is 226X while for the same value of k and k” = 400, it is reduced to 108X.
The reason is that a higher value of k” in KERNELQC means a higher number of kernels. Therefore,
the kernel expansion phase must expand more kernels, which increases the overall runtime.
Seergel distance: Here, we describe the effect of parameter k’ on the accuracy of KERNELQC. As
shown in Figures 13(a)-13(d), the higher the value of k" we set, the lower the output distance we
obtain. For example, in Figure 13(d), for k = 100 and k’ = 200, the sgergel distance of KERNELQC
is 0.1 while increasing the value of k” to 800 can yield zero distance. The reason is that by setting
higher values for k’, we retrieve more y’-quasi-cliques in the kernel detection of KERNELQC, and
there are more kernels to be expanded by the kernel expansion of KERNELQC. In other words, a
high value for k’ can increase the chance that KERNELQC will unearth very large y-quasi-cliques.
For a fixed value of k’, the seergel distance of different values of k fluctuates slightly in most cases.
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Fig. 12. The speedup factor of KERNELQC over BASELINE, for y = 0.8, y’ = 1.0, and minsize = 3.

Here, we provide an example of why an increase in the value of k can result in both lower and
higher soergel distances. Let’s assume that the size of y-quasi-cliques returned by KERNELQC is
H =(10,10,9) (for k = 3), and the size of y-quasi-cliques returned by the exact algorithm (BAsE-
LINE) is Z = (12, 10, 10). Based on the distance metric we used (see Equation (1)), the output dis-
tance of KERNELQC in this case is 0.093. For k = 4, suppose that the list returned by BASELINE is
Z =(12,10,10,9). The soergel distance is lowered if KERNELQC returns H = (10, 10, 9, 9), where
the distance is 0.073. The distance is higher if KERNELQC returns H = (10, 10, 9, 8), where the dis-
tance is 0.097.

5.4 The Performance of KERNELQC on Large Graphs

Our method can handle larger graphs. As shown in Table 2, KERNELQC can retrieve large maximal
quasi-cliques on the graphs with millions of edges and vertices. For example, KERNELQC lists 100
maximal quasi-cliques in 3,130 and 9,026 seconds, respectively, for the graphs Youtube and Hyves
while BASELINE does not finish after 259K seconds (72 hours). The speedup is even higher in the
graph Live-mocha, where KERNELQC takes only 843 seconds while BASELINE did not finish in 72
hours. This is because Live-mocha has a higher average degree and, hence, is denser than other
graphs (see Table 1 for more details). Therefore, the search space for BASELINE in this graph can
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Fig. 13. The accuracy of KERNELQC, for y = 0.8, y’ = 1.0, and minsize = 3.

be huge while KERNELQC quickly enumerates kernels of Live-mocha and then expands them to
obtain k maximal y-quasi-cliques.

6 CONCLUSION

We considered the problem of enumerating top-k maximal degree-based quasi-cliques from a
graph. We first showed that it is NP-hard to even determine whether a given (degree-based) quasi-
clique is maximal. We then presented a novel heuristic algorithm, KERNELQC, for enumerating
top-k maximal quasi-cliques, based on an idea of finding dense kernels, followed by expanding
them into larger quasi-cliques. Our experiments showed that KERNELQC often leads to a speedup
of three orders of magnitude as compared to a state-of-the-art baseline algorithm, while the out-
put of KERNELQC matches the output of the exact solution in most cases. This implies that it may
be possible to mine quasi-cliques from larger graphs than was possible earlier. Many directions
remain to be explored, including the following: (1) Can the idea of detecting and expanding ker-
nels be applied to other incomplete dense structures, such as quasi-bicliques and k-plexes? (2)
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Table 2. The Performance of KERNELQC on Large Graphs

KerNELQC BASELINE
Graph Y y"  Avgsz Time(sec) Time(sec)
Live-mocha 0.85 1.0 24.1 843 >259K
Youtube 0.8 1.0 27.2 3,130 >259K
Hyves 0.75 0.95 334 9,026 >259K

With parameters k = 100, k” = 300, minsize = 5.Avg sz shows the average
size of k quasi-cliques, found by KERNELQC. >259K indicates that BASELINE
did not finish in 72 hours (note this occurs with every graph).

Can the algorithms for quasi-cliques be parallelized effectively? Generally speaking, one major
challenge in proposing an efficient parallel solution in dense subgraph mining is to obtain high
load balancing among sub-tasks [25]. For example, a parallel solution in a shared-memory setting
must consider the balanced workload of sub-divided tasks among threads to achieve a consider-
able speedup, which is non-trivial for mining maximal quasi-cliques because the computational
workload highly depends on the structure of the graph for each sub-task. (3) Can KERNELQC be
modified to reduce overlaps between the maximal quasi-cliques? Note that in the current version
of KERNELQC, there might be overlaps among the extracted maximal quasi-cliques. However, our
method KErNELQC is pliable enough to embrace other heuristic methods for reducing overlaps
among reported maximal quasi-cliques. For example, one can devise a heuristic algorithm and ap-
ply it to the expansion of kernels, or one can modify algorithm QuickM to lower the overlaps
among quasi-cliques in both kernel detection and expansion steps.
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