
Vol.:(0123456789)

https://doi.org/10.1007/s10619-020-07315-w

1 3

Stratified random sampling from streaming and stored
data

Trong Duc Nguyen1 · Ming‑Hung Shih1 · Divesh Srivastava2 ·
Srikanta Tirthapura1 · Bojian Xu3

Accepted: 9 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Stratified random sampling (SRS) is a widely used sampling technique for approxi-
mate query processing. We consider SRS on continuously arriving data streams and
statically stored data sets. We present a tight lower bound showing that any stream-
ing algorithm for SRS over the entire stream must have, in the worst case, a variance
that is �(r) factor away from the optimal, where r is the number of strata. We pre-
sent S-VOILA, a practical streaming algorithm for SRS over the entire stream that
is locally variance-optimal. We prove that any sliding window-based streaming SRS
needs a workspace of �(rM logW) in the worst case, to maintain a variance-opti-
mal SRS of size M, where W is the number of elements in the sliding window. Due
to the inherent high workspace needs for sliding window-based SRS, we present
SW-VOILA, a multi-layer practical sampling algorithm that uses only O(M) work-
space but can maintain an SRS of size close to M in practice over a sliding window.
Experiments show that both S-VOILA and SW-VOILA result in a variance that is
typically close to their optimal offline counterparts, which was given the entire input
beforehand. We also present VOILA, a variance-optimal offline algorithm for strati-
fied random sampling. VOILA is a strict generalization of the well-known Neyman
allocation, which is optimal only under the assumption that each stratum is abun-
dant. Experiments show that VOILA can have significantly smaller variance (1.4x to
50x) than Neyman allocation on real-world data.

Keywords Stratified random sampling · Stream sampling · Sliding window
sampling · Neyman allocation

A preliminary version of this work appears in [1].

 * Trong Duc Nguyen
 trong@iastate.edu

1 Iowa State University, Ames, USA
2 AT&T - Research, Austin, USA
3 Eastern Washington University, Cheney, USA

Distributed and Parallel Databases (2021) 39:665–710

/ Published online: 23 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07315-w&domain=pdf

1 3

1 Introduction

Random sampling is a widely-used method for data analysis, and features prom-
inently in the toolbox of virtually every approximate query processing system.
The power of random sampling lies in its generality. For many important classes
of queries, an approximate answer whose error is small in a statistical sense can
be efficiently obtained through executing the query over an appropriately derived
random sample. Sampling operators are part of all major database products, e.g.,
Oracle, Microsoft SQL Server, and IBM Db2. The simplest method for random
sampling is uniform random sampling, where each element from the entire data
(the “population”) is chosen with the same probability. Uniform random sam-
pling may however lead to a high variance in estimation. For instance, consider
a population D = {1, 2, 4, 2, 1, 1050, 1000, 1200, 1300} , and suppose we wanted to
estimate the population mean. A uniform random sample of size two leads to an
estimate with a variance of approximately 1.6 × 105.

An alternative sampling method is stratified random sampling (SRS), where
the population is partitioned into subgroups called “strata”. From within each
stratum, uniform random sampling is used to select a per-stratum sample. All per-
stratum samples are combined to derive the “stratified random sample”. Suppose
that the population is divided into two strata, one with elements {1, 2, 4, 2, 1} and
the other with elements {1000, 1050, 1200, 1300} . A stratified random sample of
size two that chooses one element from each stratum yields an estimate with vari-
ance 2.47 × 103 , much smaller than a uniform random sample of the same size.

SRS provides the flexibility to emphasize some strata over others through con-
trolling the allocation of sample sizes; for instance, a stratum with a high stand-
ard deviation can be given a larger allocation than another stratum with a smaller
standard deviation. In the above example, if we desire a stratified sample of size
three, it is best to allocate a smaller sample of size one to the first stratum and a
larger sample size of two to the second stratum, since the standard deviation of
the second stratum is higher. Doing so, the variance of estimate of the population
mean further reduces to approximately 1.23 × 103 . The strength of SRS is that a
stratified random sample can be used to answer queries not only for aggregates
such as the mean, and sum of the entire population, but also of subsets of the pop-
ulation defined by selection predicates that are provided at query time. SRS has
been used widely in database systems for approximate query processing [2–4].

A problem with handling large streaming data is that current methods for SRS
are predominantly offline methods that assume all data is available before sam-
pling starts. As a result, systems that rely on SRS (e.g., [3–5]) cannot easily adapt
to new data and have to recompute stratified random samples from scratch, as
more data arrives. With the advent of streaming data warehouses such as Tid-
alrace [6], it is imperative to have methods for SRS that work on dynamic data
streams, and maintain stratified random samples in an incremental manner.

We address the shortcoming of current methods through a study of SRS on
streaming data. The difficulty of SRS on streaming data is that there are two
logical processes simultaneously at work. One is sample size allocation, which

Distributed and Parallel Databases (2021) 39:665–710666

1 3

allocates samples among the different strata in a manner that minimizes the vari-
ance of an estimate. The second is the actual sampling of elements from within
each stratum. While each of these two steps, sample size allocation and sampling,
can be done individually in a streaming fashion, it is far more challenging to do
them simultaneously. We present lower bounds as well as algorithms for the task
of maintaining a stratified random sample on a data stream. The quality of a strat-
ified random sample is measured using the variance of an estimate of a popula-
tion statistic, computed using the sample.

1.1 Our contributions

Streaming lower bounds We present a lower bound showing that in the worst case,
any streaming algorithm for SRS over the entire stream that uses a memory of M
records must have a variance that is �(r) away from the variance of the optimal
offline algorithm that uses the same memory of M records, where r is the number
of strata. We show that this lower bound is tight, by construction. We also present a
lower bound showing that any streaming algorithm for SRS over a timestamp sliding
window needs a workspace of �(rM logW) in order to maintain a variance-optimal
SRS of M records from the sliding window, where W is an upper bound of the num-
ber of elements in the sliding window.

Practical streaming algorithm for SRS over the entire stream We present
S-VOILA (Streaming Variance OptImaL Allocation), a streaming algorithm for
SRS that is locally variance-optimal. Upon receiving new elements, it (re-)allocates
sample sizes among strata so as to obtain the smallest variance among all possible
re-allocations. S-VOILA can also deal with the case when a minibatch of multiple
data items is seen at a time, as in systems such as Spark streaming [7]. Re-alloca-
tions made by S-VOILA are locally optimal with respect to the entire minibatch,
and the quality of re-allocations improve as the minibatch size increases. Since
S-VOILA can deal with minibatches of varying sizes, it is well-suited to real-world
streams that may have bursty arrivals.

Practical streaming algorithm for SRS over a sliding window We present SW-
VOILA, an algorithm for sampling from a timestamp sliding window of the most
recent elements in a stream. This algorithm uses only O(M) workspace, which is
much smaller than the �(rM logW) lower bound, but can maintain an SRS whose
size is close to M records in practice. The variance of the sample produced by this
algorithm is also empirically demonstrated to be close to the one obtained by an
optimal offline algorithm that takes multiple passes through data in the window.
SW-VOILA takes a novel multi-layer sampling approach that is composed of mul-
tiple carefully designed samples of different sample rates. These multiple layers of
samples allow the dynamic changes of their sample rates in order to adapt to the
progression of the sliding window, and can be collectively used to produce a good
quality SRS from the sliding window.

Variance-optimal sample size reduction The streaming algorithms (S-VOILA
and SW-VOILA) re-allocate sample sizes based on a novel method for reducing
the size of an existing stratified random sample down to a desired target size in a

Distributed and Parallel Databases (2021) 39:665–710 667

1 3

variance-optimal manner. This novel technique for sample size reduction may be of
independent interest in other tasks, e.g., sub-sampling from a given stratified ran-
dom sample.

Variance optimal offline SRS We present the first offline algorithm for variance-
optimal SRS. Our algorithm VOILA computes an allocation with provably optimal
variance among all possible allocations of sample sizes to strata. The well known
Neyman Allocation [8] (NeyAlloc), which originated from the statistics litera-
ture, assumes that each stratum has an abundance of data to choose from. How-
ever, this assumption may not hold in databases, since each stratum is a subset of a
database table, and the size of a stratum may be small. VOILA does not make such
assumptions, and computes a variance optimal allocation no matter how large/small
the sizes of the strata. Hence, VOILA is a strict generalization of NeyAlloc. In
addition, VOILA does not make any assumption on how data is stratified.

Experimental evaluation We present a detailed experimental evaluation using real
and synthetic data, considering both the quality of sample and accuracy of query
answers using the sample. In our experimental study, we found that:

(a) The variance of S-VOILA is typically close to that of the optimal offline
algorithm VOILA, and the allocation of S-VOILA also closely track that of VOILA.
S-VOILA improves significantly upon prior work [9]. The variance of S-VOILA
improves as the size of the minibatch increases, and a minibatch of size 100 pro-
vides most of the benefits of S-VOILA.

(b) Samples produced using S-VOILA yield accurate answers to a range of que-
ries that involve a selection followed by aggregation, where the selection predicate
is provided at query time, and the aggregation function can be one of sum, average,
and standard deviation.1

(c) SW-VOILA can produce sliding window-based SRS of size close to the given
memory (workspace)—at least as large as 97% of the workspace size. The variance
of the sample produced by SW-VOILA is smaller than those from Senate (the
memory budget is shared evenly among all strata), Reservoir and S-VOILA in
the setting of sliding windows, and is close to that of VOILA, the optimal offline
algorithm for SRS

(d) In the offline setting, VOILA can have significantly smaller variance than
Senate and NeyAlloc.

1.2 Related work

Streaming stratified random sampling in the online setting can be viewed as
weight-based reservoir sampling where the weight of each stream element depends
on the stratification of the stream and the statstics of the strata. Since the weight
of a stream element changes dynamically (even after it has been observed), prior
work on weighted reservoir sampling [10] does not apply as their work assumes
the weight of each element to be unchanged. Meng [11] considered streaming SRS

1 Note that a query for the variance or standard deviation of data is distinct from the variance or standard
deviation of an estimate.

Distributed and Parallel Databases (2021) 39:665–710668

1 3

using population-based allocation and thus does not achieve the goal of optimality
in variance that we are targeting. Al-Kateb et al. [9, 12] considered streaming SRS
using power allocation, based on their prior work on adaptive reservoir sampling
[13]. Their work does not guarantee the uniformity of each sample in the SRS. They
also did not consider the case of bounded strata. Prior work on streaming SRS nei-
ther considers provable guarantees on the quality of the resulting samples, nor lower
bounds for streaming SRS, like we do here.

Stratified random sampling on static data has been studied for long and can be
done using two scans of the data set. The first scan is to learn the statistics of each
stratum and use them to decide the sample size allocation. Example allocation poli-
cies that have been developed by the statstics community include the Neyman allo-
cation [8] and power allocation [14]. The second scan of the data set is to draw the
actual sample for each stratum using the allocated the sample size, and this can be
done via the classic reservoir sampling [15] or weighted reservoir sampling [10]. A
recent interesting work by Lang et al. [16] consider machine learning methods for
determining the per-item probability of inclusion in a sample. This work is meant
for static data, and can be viewed as a version of weighted random sampling where
the weights are learnt using a query workload.

Stratified random sampling has had a long history of usage in the database com-
munity for approximate query processing. The heuristic-based congressional sam-
pling from [17], which is also used in their system Aqua [2], is a hybrid of pop-
ulation-based allocation (“house”) and fixed allocation (“senate”) with the goal of
serving a collection of group-by queries, while our work VOILA targets a different
goal that is to optimize the variance of the whole population estimate with a theoret-
ical guarantee. The “small group sampling” from [18] draws uniform random sam-
ples from big groups while keeping the entire data set of small groups in their pre-
processing phase that construct a family of multiple samples. For each query, they
dynamically select and combine an appropriate subset of the pre-computed samples
so as to serve the query well. Chaudhuri et al. [5] formulate the approximate query
processing as an optimization problem using SRS for a query workload. SRS for
low selectivity queries was studied in [19]. BlinkDB [3] uses SRS as the funda-
mental tool to allow users to have the trade-off between query accuracy and query
response time. Quickr [4] is a query-time sampling system that use the first pass of
the data to generate samples to serve a query that needs multiple passes over the
data. Using the random samples generated during the first pass helps speed up the
subsequence query processing. A recent work “Sample+Seek” [20] uses a combina-
tion of measure-biased sampling and an index to help with low- selectivity predi-
cates. All of these prior work [2–5, 17–19] that use SRS for approximate query pro-
cessing have assumed static data and it is not clear how to adapt them in a streaming
setting. However, with the emergence of data stream processing systems [21] and
data stream warehousing systems [6], it is important to devise methods for stream-
ing SRS with quality guarantees.

Non-stratified random sampling has been widely used in approximate query
processing on both static and streaming data [22–26]. The reservoir sampling
[27, 28] algorithm for uniform sampling from a stream has been known for
decades, and many variants and generalizations have been considered, such as

Distributed and Parallel Databases (2021) 39:665–710 669

1 3

weight-based sampling [10, 29], insertion and deletion of elements [30], distinct
sampling [31], sampling from a sliding window [30, 32–34], time-decayed sam-
pling [35, 36], and distributed streaming sampling [37–40].

2 Problem statement

Stratified sampling can be viewed as being composed of three parts—stratifica-
tion, sample allocation, and sampling. Stratification is a partitioning of the uni-
verse into a number of disjoint strata. Equivalently, it is the assignment of each
data element to a unique stratum. In database applications, stratification is usually
a pre-defined function of one or more attributes of the data [22]. For example,
the works of Chaudhuri et al. [5] and Agarwal et al. [3] on approximate query
answering stratify tuples in a database table based on the set of selection predi-
cates in the query workload that the tuple satisfies, and the work of Kandula et al.
[4] on approximate query answering stratify rows of a table using the group ids
derived from a group-by query. Note that our methods do not assume that strati-
fication is performed in any specific manner, and work regardless of the method
used to stratify data.

Our work considers sample allocation, the partitioning of the available mem-
ory budget of M samples among the different strata. In streaming SRS, the alloca-
tion needs to be continuously re-adjusted as more data arrives, and the character-
istics of different strata change. In offline sampling, allocation needs to be done
only once, after knowing the data in its entirety.

The final sampling step considers each stratum and chooses the assigned num-
ber of samples uniformly at random. In offline stratified sampling, the sampling
step can be performed in a second pass through the data using reservoir sampling
on the subset of elements belonging to each stratum, after a first pass has deter-
mined the sample size allocation. In the case of streaming sampling, the sam-
pling step needs to occur simultaneously with sample (re-)allocation, which may
change allocations to different strata over time.

Variance-optimal allocation The quality of a stratified random sample is meas-
ured through the variance of an estimate that is derived using the sample. Con-
sider a data stream R = {v1, v2,… , vn} of current size n, whose elements are strat-
ified into r strata, numbered 1, 2,… , r . Let ni denote the number of elements in
stratum i. For each i = 1… r , let Si be a uniform random sample of size si drawn
without replacement from stratum i. Let � = {S1, S2,… , Sn} denote the stratified
random sample. The sample mean of each per-stratum sample Si is: ȳi =

∑
v∈Si

v

si
 .

The population mean of R, �R can be estimated as: ȳ =
∑r

i=1
niȳi

n
 . It can be shown

that the expectation of ȳ equals �R . Given a memory budget of M ≤ n elements to
store all the samples, so that

∑
i si = M , the following question of variance-opti-

mal allocation of sample sizes has been considered in prior work [8]: How to
split the memory budget M among the si’s to minimize the variance of ȳ ? The var-
iance of ȳ can be computed as follows (e.g. see Theorem 5.3 in [22]):

Distributed and Parallel Databases (2021) 39:665–710670

1 3

While the theory around SRS in both statistics and database communities has used
the variance of the population mean as a minimization metric, variance-optimal SRS
is useful for other types of queries as well, including predicate-based selection que-
ries, sum queries across a subset of the strata, queries for the variance, and combina-
tions of such queries [3, 5]—also see Sect. 7.

NeyAlloc for Abundant Strata Prior studies on variance-optimal allocation
have primarily considered static data. Additionally, they assume that every stratum
has a very large volume of data, so that there is no restriction on the size of a sample
that can be chosen from this stratum. This may not be true for the scenario of data-
bases. Especially in a streaming context, each stratum starts out with very little data.
Given a collection of data elements R, we say that a stratum i is abundant if
ni ≥ M ⋅ (ni�i)∕

�∑r

j=1
nj�j

�
 . Otherwise, the stratum i is said to be bounded. Under

the assumption that each stratum is abundant, the popularly used “Neyman Alloca-
tion” NeyAlloc [8, 22] minimizes the variance V, and allocates a sample size for
stratum i as

We note that NeyAlloc is no longer optimal if one or more strata are bounded.
Our methods of sample size reduction and online (S-VOILA and SW-VOILA) and
offline (VOILA) algorithms do not have this restriction and work under the general
case whether or not strata are bounded.

Our solution to streaming SRS consists of two parts—sample size re-allocation,
and per-stratum random sampling. Both parts execute continuously and in an inter-
leaved manner. Sample size re-allocation is achieved using a reduction to a “sample
size reduction” in a variance-optimal manner. Given a stratified random sample �1
of size larger than a target M, sample size reduction seeks to find a stratified sample
�2 of size M that is a subset of �1 such that the variance of �2 is as small as possible.

Roadmap In Sect. 3, we consider streaming SRS over the entire stream. We pre-
sent a tight lower bound for this challenge, followed by S-VOILA, a practical and
locally optimal algorithm for streaming SRS over the entire steram. In Sect. 4, we
prove a lower bound for streaming SRS over a timestamp sliding window, followed
by SW-VOILA, a streaming algorithm that uses much less space than the lower
bound but can produce an SRS whose size is close to the entire memory cost of
the algorithm, making the algorithm a practical solution for streaming SRS over a
sliding window. Both S-VOILA and SW-VOILA use as a subroutine a novel vari-
ance-optimal sample size reduction technique that we describe in Sect. 5. We start
with SingleElementSSR for reducing the size of the sample by one element,
followed by a general algorithm SSR for reducing the size by � ≥ 1 elements. We
then present an algorithm MultiElementSSR with a faster runtime. We then
present VOILA, the optimal offline algorithm for SRS in Sect. 6. We present an

(1)V = V(ȳ) =
1

n2

r∑

i=1

ni(ni − si)
𝜎
2
i

si
=

1

n2

r∑

i=1

n2
i
𝜎
2
i

si
−

1

n2

r∑

i=1

ni𝜎
2
i

(2)Mi = M ⋅
ni�i∑r

j=1
nj�j

Distributed and Parallel Databases (2021) 39:665–710 671

1 3

experimental study of our algorithms in Sect. 7, followed by a conclusion in Sect. 8.
Table 1 summarizes the set of notations we use in this paper.

3 Streaming SRS over an infinite window

We now consider SRS from an entire data stream, whose elements are arriving con-
tinuously. As more elements are seen, the allocations as well as samples need to be
dynamically adjusted. We first note there is a simple two-pass streaming algorithm
with optimal variance that uses O(k + r) space, where k is the desired sample size
and r the number of strata. In the first pass, the size, mean, and standard deviations
of each stratum are computed using O(r) space, constant space for each stratum.
At the end of the first pass, the allocations to different strata are computed using
an optimal offline algorithm, say VOILA (Sect. 6). In the second pass, since the
desired sample sizes are known for each stratum, samples are computed using res-
ervoir sampling within the substream of elements belonging to each stratum. The
above two-pass algorithm cannot be converted into a one-pass algorithm. The dif-
ficulty is that as more elements are seen, allocations to different strata may change,
and the sampling rate within a stratum cannot in general be (immediately) dynami-
cally adjusted in order to satisfy variance optimality. We first show a lower bound
that it is in general not possible for any streaming algorithm to have optimal vari-
ance compared with an offline algorithm that is given the same memory.

Table 1 Notations used throughout the paper

Variable Definition

R Data stream, |R| = n

n Number of elements in the data stream
M Sample size, M < n

B Minibatch of size b elements
r Number of strata
i A single stratum, i = 1… r

ni,�i, �i Size, mean, and standard deviation of stratum i
Ri Stream of elements from stratum i, |Ri| = ni

Si Sample for stratum i, |Si| = si

Mi Allocated sample size for stratum i
�i Acceptance threshold of selecting an element into Si
t Clock time
W(t) Number of elements in the window at t
Wi(t) Number of elements for stratum i in the window at t
ni(t),�i(t), �i(t) Size, mean, and standard deviation of stratum i in the window at t

S
j

i
Sample of stratum i in the layer j

�
j

i
Acceptance threshold of selecting an element into Sj

i

p
j

i
Timestamp of the oldest element of stratum i in the layer j

Distributed and Parallel Databases (2021) 39:665–710672

1 3

3.1 A lower bound for streaming SRS over an infinite window

Given a data stream R with elements belonging to r strata, and a memory budget
of M elements, let V∗ denote the optimal sample variance that can be achieved by
an offline algorithm for SRS that may make multiple passes through data. Clearly,
the sample produced by any streaming algorithm must have variance that is either
V∗ or greater. Suppose a stratified random sample R is computed by a streaming
algorithm using memory of M elements. Let V(R) denote the variance of this sam-
ple. For � ≥ 1 , we say R is an SRS with multiplicative error of � , if: (1) the sample
within each stratum in R is chosen uniformly from all elements in the stratum, and
(2) V(R) ≤ � ⋅ V∗.

Theorem 1 Any streaming algorithm for maintaining an SRS over a stream with r
strata using a memory of M elements must, in the worst case, result in a stratified
random sample with a multiplicative error �(r).

The idea in the proof is to construct an input stream with r strata where the vari-
ance of different strata are the same until a certain point in time, at which the vari-
ance of a single stratum starts increasing to a high value—a variance-optimal SRS
will respond by increasing the allocation to this stratum. However, we show that a
streaming algorithm is unable to do so quickly. Though a streaming algorithm may
compute the variance-optimal allocation to different strata in an online manner, it
cannot actually maintain these dynamically sized samples using limited memory.

Proof Consider an input stream where for each i = 1… r , the ith stratum consists of
elements in the range [i, i + 1) . The stream so far has the following elements. For
each i, 1 ≤ i ≤ r , there are (� − 1) copies of element i and one copy of (i + �) where
� = 1∕(r − 1) and � ≥ 3 . After observing these elements, for stratum i we have
ni = � , �i =

(
i +

�

�

)
 , and it can be verified that �i =

√
�−1

�
�.

Since the total memory budget is M, at least one stratum (say, Stratum 1) has a
sample size no more than M/r. Suppose an element of value (2 − �) arrives next.
This element belongs to stratum 1. Let n′

1
 , �′

1
 , and �′

1
 denote the new size, mean, and

standard deviation of stratum 1 after this element arrives. We have n�
1
= � + 1 and

�
�
1
= 1 +

1

�+1
 . It can be verified that ��

1
=

√
�2+(1−�)2−

1

�+1

�+1
 . It follows that:

In 3, the left inequality stands when � = 1∕2 and the right inequality stands when
� = 0 or 1. We also have:

∑r

i=2
ni�i = (r − 1)�

√
�−1

�
� =

√
� − 1 , where we have

used � =
1

r−1
 . Thus,

(3)(� + 1)

√
1

2
−

1

�+1

� + 1
≤ n�

1
�
�
1
≤ (� + 1)

√
1 −

1

�+1

� + 1

(4)⟹

√
𝛼

2
≤ n�

1
𝜎
�
1
≤
√
𝛼 (Note: 𝛼 > 2)

Distributed and Parallel Databases (2021) 39:665–710 673

1 3

Let V denote the sample variance of A after observing the stream of (r� + 1) ele-
ments. Let V∗ denote the smallest sample variance possible with a stratified random
sample of size M on this data. Let � =

�
n�
1
�
�2

1
+
∑r

i=2
ni�

2
i

��
n2.

We observe that after processing these (r� + 1) elements, the sample size
s1 ≤ M∕r + 1 . Using this fact and the definition of sample variance in Eq. 1:

On the other hand, the smallest sample variance V∗ is achieved by using Ney-
man allocation. By Inequalities 4 and 5, we know that if Neyman allocation is for
the current stream of r� + 1 elements, stratum 1 uses at least M/3 memory space,
whereas all other strata equally share at least M/3 elements since all ni�i are equal
for i = 2, 3,… , r . Using these observations into Equation 1:

Since � ≥ 0 and M > r , we have: V
V∗

≥
V+�

V∗+�
= �(r) . ◻

We note that the above lower bound is tight (up to constant factors). Consider
the algorithm which always allocates M/r memory to each of r strata that have been
observed so far. Using the formula for the variance of an SRS in Equation 1, we can
verify that this algorithm has a variance within an O(r) multiplicative factor of the
optimal. While theoretically such an algorithm (which we call the “senate” algo-
rithm due to allocating every stratum the same resources) meets the worst case lower
bound, it performs poorly in practice, since it treats all strata equally, irrespective of
their volume or variance (see the experiments section).

3.2 S‑VOILA: streaming algorithm for SRS over an infinite window

We now present a streaming algorithm S-VOILA that can maintain a stratified random
sample on a stream with a good (though not optimal) variance. Given a memory budget
of M items, S-VOILA maintains a SRS of size M with the following properties: (1) the
samples within each stratum are chosen uniformly from all the stream elements seen

(5)

√
𝛼

2
≤

r�

i=2

ni𝜎i ≤
√
𝛼 (Note: 𝛼 > 2)

V =
1

n2

(
n�

2

1
�
�2

1

s1
+

r∑

i=2

n2
i
�
2
i

si

)
− � ≥

1

n2

(
n�

2

1
�
�2

1

M

r
+ 1

+

r∑

i=2

n2
i
�
2
i

M

r−1

)
− �

≥
1

n2

(
�∕4
M

r
+ 1

+

r∑

i=2

(� − 1)�2

M∕(r − 1)

)
− � =

1

n2

(
�∕4
M

r
+ 1

+
� − 1

M

)
− �

V∗
≤

1

n2

(
n�

2

1
�
�2

1

M∕3
+

r∑

i=2

n2
i
�
2
i

M∕(3(r − 1))

)
− �

≤
1

n2

(
�

M∕3
+

r∑

i=2

(� − 1)�2

M∕(3(r − 1))

)
− � =

(
1

n2
6� − 3

M

)
− �

Distributed and Parallel Databases (2021) 39:665–710674

1 3

in the stratum so far, (2) the sizes of samples allocated to different strata adapt to new
stream elements by making “locally optimal” decisions that lead to the best allocations
given the new stream elements. S-VOILA conceptually has to solve two problems.
One is sample size re-allocation among strata, and the second is uniform sampling
within each stratum. Let R denote the stream observed so far, and Ri the elements in R
that belong to stratum i.

We first consider sample size re-allocation. Suppose due to the addition of new ele-
ments, the stream went from R1 to R2 , and suppose that the stratified random sample
at R1 allocated sample sizes to strata in a specific manner, S1 . Due to the new elements,
the sizes and variances of different strata change, and as a result, the optimal allocation
of samples in R2 may be different from the previous allocation S1 . Our approach is to
first add new elements to the sample, and then re-allocate sample sizes using a “vari-
ance-optimal sample size reduction” optimization framework. Given a current alloca-
tion of sample sizes to different strata, suppose new elements are added to the sample,
causing it to exceed a memory threshold M. What is a way to reduce the current sample
to a sample of size M such that the variance of the new sample is as small as possible?
In Sect. 5, we present algorithms for sample size reduction.

The second issue is to maintain a uniform random sample Si of Ri when si , the
size of the sample is changing. A decrease in an allocation to si can be handled easily,
through discarding elements from the current sample Si until the desired sample size is
reached. What if we need to increase the allocation to stratum i? If we simply start sam-
pling new elements according to the higher allocation to Si , then recent elements in the
stream will be favored over the older ones, and the sample within stratum i is no longer
uniformly chosen. In order to ensure that Si is always chosen uniformly at random from
Ri , newly arriving elements in Ri need to be held to the same sampling threshold as
older elements, even if the allotted sample size si increases. S-VOILA resolves this
issue in the following manner. An arriving element from Ri is assigned a random “key”
drawn uniformly from the interval (0, 1). The sample is maintained using the following
invariant: Si is the set of si elements with the smallest keys among all elements so far in
Ri . It is easy to verify that this is indeed a uniform sample drawn without replacement
from Ri . The consequence of this strategy is that if we desire to increase the allocation
to stratum i, it may not be accomplished immediately, since a newly arriving element in
Ri may not be assigned a key that meets this sampling threshold. Instead, the algorithm
has to wait until it receives an element in Ri whose assigned key is small enough. To
ensure the above invariant, the algorithm maintains for each stratum i a variable �i that
tracks the smallest key of an element in Ri that is not currently included in Si . If an
arriving element in Ri has a key that is smaller than �i , it is included within Si ; other-
wise, it is not.

Distributed and Parallel Databases (2021) 39:665–710 675

1 3

Algorithm 1: S-VOILA: Initialization
Input: M – total sample size, r – number of strata.
// Si is the sample for stratum i, and Ri is the substream of elements

from Stratum i
1 Load the first M stream elements in memory, and partition them into per-stratum

samples, S1, S2, . . . , Sr, such that Si consists of (e, d) tuples from stratum i,
where e is the element, d is the key of the element, chosen independently and
uniformly at random from (0, 1).

2 For each stratum i, compute ni, σi. Initialize θi ← 1 // θi tracks the smallest
key among all elements in Ri not selected in Si

Algorithm 2: S-VOILA: Process a new minibatch B of b elements.
Note that b need not be known in advance, and can vary from one
minibatch to the other.
1 for each e ∈ B do
2 Let α = α(e) denote the stratum of e
3 Update nα and σα // per-stratum mean and std. dev. maintained in a

streaming manner
4 Assign a random key d(e) ∈ (0, 1) to element e
5 if d(e) < θα then // element e is sampled
6 Sα ← {e}

⋃
Sα;

/* Variance-optimal reduction down to M /*stnemele
7 if |S| −M = 1 then // faster for evicting 1 element
8 � ← SingleElementSSR(M)
9 x ← argmaxx∈S�

d(x)
10 S� ← S� \ {x}
11 θ� = d(x)

12 else if |S| −M > 1 then
13 L ← MultiElementSSR(M)
14 for i = 1 . . . r do // Actual element evictions
15 if L[i] < |Si| then
16 Delete |Si| − L[i] elements from Si with the largest keys
17 θi ← smallest key discarded from Si

Here is a short example to demonstrate the idea of S-VOILA. Suppose a new
element e arrives, we update the statistics of its corresponding stratum, and a ran-
dom key will be generated to determine if e is selected into the sample. If e is
selected and the sample is full, we evict one element from sample using the vari-
ance-optimal sample size reduction technique from Sect. 5. Otherwise, we discard
e. Similar process could be applied to multiple new elements. Algorithms 1 and 2
respectively describe the initialization and insertion of a minibatch of elements.
S-VOILA supports the insertion of a minibatch of any size b > 0 , where b can
change from one minibatch to another. As b increases, we can expect S-VOILA
to have a lower variance, since its decisions are based on greater amount of data.
Lines 1–6 make one pass through the minibatch to update the mean and standard

Distributed and Parallel Databases (2021) 39:665–710676

1 3

deviations of the strata, and store selected elements into the per-stratum samples.
If 𝛽 > 0 elements from the minibatch get selected into the sample, in order to bal-
ance the memory budget at M, � elements need to be evicted from the stratified
random sample.

A sample size reduction algorithm takes a current allocation to a stratified
random sample, the statistics (volume, mean, and variance) of different strata,
and a target sample size M, and returns the final allocation whose total size is
M. For the special case of evicting one element, we can use the faster algorithm
���������������� ; otherwise, we can use ��������������� . Lemma 1 shows
that the sample maintained by S-VOILA within each stratum is a uniform ran-
dom sample, showing this is a valid stratified sample, and Lemma 2 presents the
time complexity analysis of S-VOILA.

Lemma 1 For each i = 1, 2,… , r sample Si maintained by S-VOILA (Algorithm 2)
is selected uniformly at random without replacement from stratum Ri.

Proof First, note that each Si is selected from Ri without replacement, because each
element of Ri is selected into Si no more than once. Next, we prove the uniformity
of Si . In case |Si| = ni , all elements of Ri are in Si . In case |Si| < ni , Si contains the
|Si| elements with the smallest keys from stratum Ri , because: (1) Anytime an ele-
ment is discarded from Si , it is the element of the largest key in the sample. (2) If
another element e with key d(e) enters later, it cannot be inserted into Si unless d(e)
is smaller than all other keys discarded so far. Because the keys of elements are
assigned randomly, each element has a chance of |Si|∕ni to be selected into Si . There-
fore, Si is a uniform random sample from Ri without replacement. ◻

Lemma 2 If the minibatch size b = 1 , then the worst-case time cost of S-VOILA for
processing an element is O(r). The expected time for processing an element belong-
ing to stratum � is O(1 + r ⋅ s

�
∕n

�
) , which is O(1) when r ⋅ s

�
= O(n

�
) . If b > 1 , then

the worst-case time cost of S-VOILA for processing a minibatch is O(r log r + b).

Proof b = 1 : The worst case happens when the single new element from belong-
ing to stratum � gets selected into S

�
 . In that case, we need to reduce the stratified

random sample size by one via SingleElementSSR, which takes O(r) time. The
probability that the new element is selected into S

�
 is equal to s

�
∕n

�
 , so the expected

time follows.
b > 1 : The time cost for Lines 1–6 is O(b). The time cost for Lines 1–6 is

O(r log r + �) . So the total time cost is O(b) + O(r log r + �) = O(r log r + b) . ◻

We can expect S-VOILA to have an amortized per-item processing time of
O(1) in many circumstances. When b = 1 : After observing enough stream ele-
ments from stratum � , such that r ⋅ s

�
= O(n

�
) , the expected processing time of

an element becomes O(1). Even if certain strata have a very low frequency, the
expected time cost for processing a single element is still expected to be O(1),
because elements from an infrequent stratum � are unlikely to appear in the

Distributed and Parallel Databases (2021) 39:665–710 677

1 3

minibatch. When b > 1 : The per-element amortized time cost of S-VOILA is
O(1), when the minibatch size b = �(r log r).

4 Streaming SRS over a sliding window

We consider maintaining an SRS from a timestamped sliding window. Let t denote
the clock time that starts from 0 and increases by 1 at every clock tick. A sliding
window of length � consists of the most recent elements observed in the data stream
during the clock time [t − �, t] . Let Wi(t) denote the number of elements that belong
to stratum i in the window at time t. We call W(t) =

∑r

i=1
Wi(t) the size of the sliding

window at time t. We consider the window size W to be very large and thus storing
the entire window is infeasible. Similar to S-VOILA in Sect. 3.2, the algorithm to
maintain an SRS over sliding window consists of two parts: sample size re-alloca-
tion and sampling, which are interleaved with each other.

For re-allocating sample sizes, we need the statistics of each stratum within the
sliding window. The required memory space to calculate the exact mean and vari-
ance over a sliding window is linear to W [41], which is not practical with a large
window size. We adopt existing works on approximations of the mean [41, 42] and
variance [43, 44].

To maintain the uniformity within each stratum, we use the mechanism presented
in Sect. 3.2, which assigns each arriving element a random key chosen uniformly in
(0, 1). Each stratum maintains a threshold for selecting new elements, which is the
smallest key that has not been selected. However, an exact tracking of that smallest
key for each stratum requires memory linear in W [41]. In Sect. 4.2, we propose an
approximation of that smallest key for each stratum.

Selecting new samples may cause the sample size to exceed the allocated mem-
ory. We use our variance-optimal sample size reduction technique, i.e., Algorithm
MultiElementSSR, to reallocate sample sizes to each stratum such that the total
size of SRS is controlled under the memory budget. Those strata whose sample size
shall be reduced are sub-sampled by evicting the elements of the largest keys from
the stratum’s current sample.

4.1 A lower bound for streaming SRS over a sliding window

We first prove that to maintain a variance-optimal SRS over a timestamped sliding
window, there exists a lower bound of memory space which is larger than the size
of SRS. Let ni(t) , �i(t) , and �i(t) denote the size, mean, and standard deviation of the
stratum i in the sliding window at time t, respectively. The allocated sample size for
stratum i is denoted as Mi(t) and can be calculated using Equation 2. For the clarity
of context, we omit t when using these notations for this section.

Theorem 2 Any streaming algorithm that maintains an SRS of size M over a sliding
window needs at least �(rM logW) space in the expectation for the worst case, such
that every Si is a uniform random sample and every si = Mi.

Distributed and Parallel Databases (2021) 39:665–710678

1 3

The idea for the proof shares a similar spirit from the proof for Theorem 1, but
also considers the additional challenges in the sliding window-based random sam-
ple maintenance. The idea for the proof is to show that we can construct a stream
such that each stratum i can potentially receive a new element that significantly
increases the variance of stratum i, causing Mi , the memory allocation size for stra-
tum i, to be close to M. That means, in order to ensure that si = Mi is still maintained
after receiving such a new element, si needed to be close to M before the new ele-
ment arrives. Because every stratum can potentially receive such a new element, it
becomes mandatory for every stratum to maintain a random sample of size close to
M. Because the expected space cost for maintaining a uniform random sample of
size M for a single stratum i over the sliding window is at least �(M logWi) ([34]),
we can verify the correctness of the theorem.

Proof Consider an input stream where for each i = 1… r , the ith stratum consists of
elements in the range [i, i + 1) . At every clock time t ≥ � up to the current clock time
denoted as tc , every stratum i has the following set of elements within the window of
length � : There are (� − 1) copies of element i and one copy of (i + �) , where
� = 1∕(r − 1) and � ≥ 3 . That is, at every clock time t = �,� + 1,… , tc , we have
Wi = � = W∕r , ni(t) = � , �i(t) =

(
i +

�

�

)
 , and �i(t) =

√
�−1

�
� , for every i.

For each stratum i, we call an element of value (i + 1 − �) a bad element. Suppose
at this current time tc , we also receive a bad element for stratum 1. Let n�

1
(tc) , ��

1
(tc) ,

and ��
1
(tc) denote the new size, mean, and standard deviation of stratum 1 within the

current window after the bad element arrives. It is easy to calculate that

n�
1
(tc) = � + 1 , ��

1
(tc) = 1 +

1

�+1
 , and ��

1
(tc) =

√
�2+(1−�)2−

1

�+1

�+1
 . It follows that:

We also have:
∑r

i=2
ni(tc)�i(tc) = (r − 1)�

√
�−1

�
� =

√
� − 1 . Thus,

From Inequalities 6 and 7, we can observe that in a variance-optimal SRS, the mem-
ory allocation size for stratum 1 is as least M/3, i.e., M1 ≥ M∕3 . After Stratum 1
receives its bad element at time tc , there is no way to ensure s1 = M1 ≥ M∕3 unless
the sampler has maintained a sample S1 whose size is at least M/3 before the bad ele-
ment of Stratum 1 arrives.

Note that every stratum can receive its bad element at any clock time, in order
to ensure si = Mi for every stratum i at every clock time, we have to maintain a
random sample Si for every stratum i such that si ≥ M∕3 at every clock time. We
also know from [34] that the expected workspace cost for maintaining a single

(6)
(� + 1)

�
1

2
−

1

�+1

� + 1
≤ n�

1
(tc)�

�
1
(tc) ≤ (� + 1)

�
1 −

1

�+1

� + 1

⟹

√
�

2
≤ n�

1
(tc)�

�
1
(tc) ≤

√
�

(7)

√
�

2
≤

r�

i=2

ni(tc)�i(tc) ≤
√
�

Distributed and Parallel Databases (2021) 39:665–710 679

1 3

uniformly random sample of size M over a sliding window of size W is at least
�(M logW) in the worst case. Therefore, the expected workspace needs for main-
taining a random sample of size M/3 for Stratum i over the sliding window is at
least �(M logWi) = �(M log �) = �

(
M log(W∕r)

)
 in the worst case. Adding all the

workspaces needs by all strata, the expected workspace needs for maintaining a vari-
ance-optimal SRS over a sliding window is at least �

(
rM log(W∕r)

)
= �(rM logW)

in the worst case. The last equality is because r is polynomial smaller than W. Other-
wise, we can just cache the entire window and there is no need to design a sublinear-
space streaming algorithm. ◻

This lower bound can indeed be matched (other than a constant factor) by a prob-
abilistic upper bound for maintaining a variance-optimal SRS over the sliding win-
dow. It can be proved that the following algorithm can maintain a variance-optimal
SRS over the sliding window with a high probability and it uses
O
�
M

∑r

i=1
log(Wi)

�
= O(rM logW) space in expectation: For each stratum i, we

maintain ⌈log2 Wi⌉ + 1 buffers named as Bi
0
,Bi

1
,… ,Bi

⌈log2 Wi⌉
 , where each buffer has

size M. Every buffer Bi
j
 saves the M most recent elements that are selected uniformly

at random from stratum i with probability 1∕2j . When a query for an SRS arrives, for
each stratum i, we pick the smallest j ∈

�
0, 1,… , ⌈log2 Wi⌉

�
 , such that buffer Bi

j
 is

saving all the selected elements from the current window, and use buffer Bi
j
 to gener-

ate Si for stratum i.
Due to the inherent high workspace needs as shown by the lower bound in Theo-

rem 2, we next present a practical algorithm that uses a workspace of only O(M)
but can maintain a sliding window-based SRS whose size is very close to M, the
target SRS size. Experimental results (Sect. 7) shows its quality in query answering
is close to the optimum.

4.2 SW‑VOILA: a practical algorithm for sliding window SRS

In the sliding window setting, elements collected in the sample will expire and be
removed, leaving vacancies in the sample. Arbitrarily accepting newly arrived ele-
ments to fill out the vacancies is not a good approach since it breaks the uniformity
within each stratum.

In order to keep the uniformity, we observe that the sample rate can only decrease
in the infinite window setting. However, in the sliding window setting, it is possible
to increase the sample rate while the uniformity is still maintained. Given two non-
overlapped timestamp windows: [t1, t2] and [t3, t4] , where t2 < t3 . Both windows are
uniform, at the sample rates of r1 and r2 , respectively. It is possible to have r1 < r2 ,
i.e., the sample rate increases over time. However, if we simply increase the sample
rate from r1 to r2 , when the window slides between t2 and t3 , the samples are nonuni-
form. It is nontrivial to keep the uniformity when the window is sliding between two
frames.

We introduce SW-VOILA, an algorithm for maintaining a stratified random sam-
ple over the sliding window of a stream. SW-VOILA fully utilizes the given mem-
ory M over the sliding window by having the sampler rate increasing over time.

Distributed and Parallel Databases (2021) 39:665–710680

1 3

Meanwhile, SW-VOILA guarantees a sample with uniformity within each stratum at
any time. The key insight of SW-VOILA is to maintain multiple layers of the sample
with growing sample rates. The first layer is the base maintained in the same way
as S-VOILA except the expired elements will be removed. The second layer (and
onward if necessary) uses the leftover memory from the first layer to accept newly
arrived elements at a higher sampling rate. While the uniformity of the first layer is
always guaranteed, the second and upper layers serve as buffers to keep more ele-
ments which potentially can be used later.

Let �j
i
 denote the acceptance threshold of the layer j of the stratum i. For conveni-

ence, we set �0
i
= 0 . All other thresholds have initial value 1. Let pj

i
 is the timestamp

of the oldest element in layer j of stratum i, that is used to keep track of the window
frame in which the layer collects its sample. Every element e is assigned a random
key d(e) ∈ (0, 1) . e belongs to a layer k of its stratum i, such that 𝜃k−1

i
≤ d(e) < 𝜃

k
i
 .

Let S denote the current sample set. Si ⊂ S is the subset of samples that belong to
stratum i. We define:

is the subset of sample that belongs to the layer j of stratum i. The base sample ⋃r

i=1
S1
i
 is returned to user when requested, as in Algorithm 4.

S
j

i
= {e ∈ Si | 𝜃

j−1

i
≤ d(e) < 𝜃

j

i
}

Distributed and Parallel Databases (2021) 39:665–710 681

1 3

Algorithm 3: SW-VOILA: Process a new minibatch B, at the current
timestamp t(B)
/* Sj

i = {e ∈ Si|θj−1
i ≤ d(e) < θji }: elements of the layer j of stratum i */

1 S = {e ∈ S | t(e) +∆ ≥ t(B)} // Remove expired elements
2 for i = 1 . . . r do
3 if p2i +∆ ≤ t(B) then // Merge the first and second layers

4 pji = pj+1
i , ∀j

5 θji = θj+1
i , ∀j

6 Update n̂i and σ̂i

7 for e ∈ B do
8 Let α denote the stratum of e
9 Assign a random key d(e) ∈ (0, 1) to element e

10 k = min{j | d(e) < θjα}
11 S = S ∪ {e}
12 if |Sk

α| = 1 and θkα = 1.0 then
13 pkα = t(e) // New (highest) layer of stratum α

/* /*reyalreppunamorfevomeR

14 while |S| > M and
∑

i,j>1 |S
j
i | > 0 do

15 {x, β, l} = argmaxx∈Sl
β
,l>1 d(x)

16 S = S \ {x}
17 θlβ = d(x)

18 θjβ = 1.0, j > l

/* /*reyalesabehtmorfevomeR
19 if |S| −M > 0 then
20 L ← MultiElementSSR(M)
21 for i = 1 . . . r do
22 if L[i] < |S1

i | then
23 Delete |S1

i | − L[i] elements from S1
i with the largest keys

24 θ1i ← smallest key discarded from Si

25 θji = 1.0, j > 1

Algorithm 4: SW-VOILA: get stratified random sample that guarantee
the uniformity within each stratum
1 return

⋃r
i=1 S

1
i

Figure 1 demonstrates an example of a stratum � with 4 layers of the sample.
The base layer (green) is uniform since it contains all elements in the current
window, whose random key is less than �1

�
 . Meanwhile, the combination of the

first and second layers in the time frame from p2
�
 to the current timestamp is uni-

form as well. It is because the combination contains all the elements seen from p2
�

Distributed and Parallel Databases (2021) 39:665–710682

1 3

until now, whose key is less than �2
�
 . Similarly, in the upper layers, the combina-

tion of samples within the corresponding time frames are uniform.
As the window slides (from left to right), p2

�
 eventually matches the starting

time of the current window. That is the merging point where we can safely merge
layer 2 into the base sample since the combination of the first and second layer
becomes uniform in the current window. We mark the other layer’s index down
by one, i.e., layer 3 becomes the new layer 2.

SW-VOILA supports the general case of timestamp-based sliding window,
where the window length is � . The counting-based sliding window can be con-
sidered as a special case, where the timestamp increases by 1 at receiving every
element and thus W = � . Algorithm 3 handles a new minibatch B received from
the stream. The size of B is unknown in advance and can vary from one minibatch
to another. As the window slides, we first remove all expired elements (Line 1).
When a stratum � has the second layer fit the current time frame, i.e., its start-
ing point p2

�
 is at least a window size away from current timestamp, the second

layer is merged into the base sample (layer 1). The upper layers are re-indexed
(Lines 3–5). Each new element e in B is assigned a random key and added to its
corresponding layer (Lines 7–11). If e is the first element of its layer, we mark
down the timestamp of e as the starting time pk

�
 of this layer (Lines 12–13). As

new elements are received and expired elements are removed, we update the fre-
quency and standard deviation of each stratum over the current window, that are
needed to run the algorithm, using an existing work [41–44].

The most crucial part of the algorithm is to keep the memory usage within
the limit, i.e., eliminating elements when the size of S exceeds M. To preserve
the serving sample, we remove elements from the base layer only when all upper
layers are empty. If they are not empty, the elements with the largest key in
the upper layers is removed (line 14–18). Once all the upper layers are empty
but the used memory still larger than the limitation, the SW-VOILA algorithm
behaves similarly to S-VOILA. It uses MultiElementSSR to choose elements
to be removed such that it minimizes the increase of the variance of the sample
(Lines 19–25). When an element is removed, its layer’s threshold is set to the
key of the removed item. Note that, the higher layers of the same stratum are all

Layer 1
(base)

Layer 2

Layer 3

Current window frame

Layer 4

A
cc

ep
ta

nc
e

th
re

sh
ol

d

0
Current

timestamp

Fig. 1 Example of 4 layers of sample in stratum � . Both the acceptance thresholds and the starting times
of layers are in order

Distributed and Parallel Databases (2021) 39:665–710 683

1 3

empty. In other words, we remove items from the highest non-empty layer of the
chosen stratum.

Theorem 3 For each i = 1, 2,… , r , sample S1
i
 returned by SW-VOILA (Algorithm 4)

is selected uniformly at random without replacement from the current window of the
stratum i.

Proof Each element in S1
i
 is selected without replacement from the current window

because a new element e is chosen exactly once into its layer Sj
i
 of the stratum it

belongs to. Next, we prove the uniformity of S1
i
 due to the following reasoning:

1. Before any merging, S1
1
 is maintained as a S-VOILA sample. By Lemma 1, it is

uniform.
2. The second layer S2

i
 is merged into the first layer S1

i
 only if its starting point p2

i
 is

at least a window-size older than the current timestamp. On the other hand, all
the expired elements are removed from the sample. Thus both S1

i
 and S2

i
 contain

elements from the current window. Since S1
i
 has all the elements from stratum

i whom the key is less than �1
i
 , while all elements of stratum i with their key in

range [�1
i
, �2

i
) belong to S2

i
 , the combination S1

i
∪ S2

i
 contains all the elements from

stratum i, within the current window, whose key is less than �2
i
 . Because the keys

of elements are assigned randomly between (0, 1), each element has a chance of
�
2
i
 to belong to S1

i
∪ S2

i
 . Therefore, S1

i
= S1

i
∪ S2

i
 is a uniform random sample of

stratum i at this merging point.
3. After merged, S1

1
 is maintained as a S-VOILA sample again, until the next merg-

ing point. Thus it is uniform during the time between 2 merging points.

 ◻

5 Variance‑optimal sample size reduction

Suppose it is necessary to reduce a stratified random sample (SRS) of total size M
to an SRS of total size M′

< M . This will need to reduce the size of the samples
of one or more strata in the SRS. Since the sample sizes are reduced, the variance
of the resulting estimate will increase. We consider the task of variance-optimal
sample size reduction (VOR), i.e., how to partition the reduction in sample size
among the different strata in such a way that the increase in the variance is mini-
mized. Note that once the new sample size for a given stratum is known, it is easy
to subsample the stratum to the target sample size.

Consider Equation 1 for the variance of an estimate derived from the stratified
random sample. Note that, for a given data set, a change in the sample sizes of
different strata si does not affect the parameters n, ni , and �i . VOR can be formu-
lated as the solution to the following non-linear program.

Distributed and Parallel Databases (2021) 39:665–710684

1 3

subject to constraints:

In the rest of this section, we present efficient approaches for computing the VOR.

5.1 Sample size reduction by one element

We first present an efficient algorithm for the case where the size of a stratified
random sample is reduced by one element. An example application of this case
is in designing a streaming algorithm for SRS, when stream items arrive one at
a time. The task is to choose a stratum i (and discard a random element from the
stratum) such that after reducing the sample size si by one, the increase in vari-
ance V (Eq. 1) is the smallest.

Lemma 3 When required to reduce the size of a stratified random sample by one, the
increase in variance of the estimated population mean is minimized if we reduce the

size of S
�
 by one, where � = argmin i

{
n2
i
�
2
i

si(si−1)

|||||
1 ≤ i ≤ r

}
.

Proof For i = 1, 2,… , r , let �i denote the increase of the variance of the population
mean estimate if si is reduced by one. Using Equation 1, we have

It is obvious that in order to minimize the increase of the variance, we shall reduce

s
�
 by one, where � = argmin i

{
n2
i
�
2
i

si(si−1)

|||||
1 ≤ i ≤ r

}
 . ◻

Lemma 3 naturally makes sure that strata are not missing from the sample by
giving the infinity penalty to remove the last element of a stratum, which pre-
vents the sample of every stratum from being empty. In the case where we have
multiple choices for � using Lemma 3, although it is practically rare, we choose
the one where the current sample size s

�
 is the largest. Algorithm SingleEl-

ementSSR for reducing the sample by a single element is a direct implementa-
tion of the condition stated in Lemma 3. It is straightforward to observe this can
be done in O(r) time.

(8)Minimize

r∑

i=1

n2
i
�
2
i

s�
i

(9)
r∑

i=1

s�
i
= M� and 0 ≤ s�

i
≤ si for each i = 1, 2,… , r,

�i =
n2
i
�
2
i

n2
1

si(si − 1)
.

Distributed and Parallel Databases (2021) 39:665–710 685

1 3

Algorithm 5: SingleElementSSR(): Variance-Optimal Sample Size
Reduction by One

1 return argmini

{
n2
iσ

2
i

si(si−1)

∣∣∣∣ 1 ≤ i ≤ r

}
/* The id of the stratum whose sample

size shall be reduced by one. */

5.2 Sample size reduction by ˇ ≥ 1 elements

We now consider the general case, where the sample needs to be reduced by � ≥ 1
elements. A possible solution idea is to repeatedly apply the one-element reduction
algorithm (Algorithm SingleElementSSRfrom Sect. 5.1) � times. At each itera-
tion, we choose and discard a single element from a stratum, hoping the overall vari-
ance increases caused by the discartion of � elements is minimized. However, this
greedy approach may not yield a sample with the smallest variance. On the other
hand, an exhaustive search of all possible evictions is not feasible either, since the
number of possible ways to partition a reduction of size � among r strata is

(
�+r−1

r−1

)
 ,

which can be very large. For instance, if r = 10 , this is �(�10) . We now present effi-
cient approaches to ��� . We first present a recursive algorithm, followed by a faster
iteration-based method. Before presenting the algorithm, we present the following
useful characterization of a variance-optimal reduction.

Definition 1 We say that stratum i is oversized under memory budget M, if its allo-
cated sample size si > Mi . Otherwise, we say that stratum i is not oversized.

Lemma 4 Suppose that E is the set of � elements that are to be evicted from a strati-
fied random sample such that the variance V after eviction is the smallest possible.
Then, each element in E must be from a stratum whose current sample size is over-
sized under the new memory budget M� = M − �.

Proof We use proof by contradiction. Suppose one of the evicted elements is deleted
from a sample S

�
 such that the sample size s

�
 is not oversized under the new mem-

ory budget. Because the order of the eviction of the � elements does not impact the
final variance, suppose that element e is evicted after the other � − 1 evictions have
happened. Let s

�
 denote the size of sample S

�
 at the moment t right after the first

� − 1 evictions and before evicting e. The increase in variance caused by evicting an
element from S

�
 is

𝛥 =
1

n2

�
n2
𝛼
𝜎
2
𝛼

s
𝛼
(s

𝛼
− 1)

�
=

�∑r

i=1
ni𝜎i

nM�

�2
M�2

𝛼

s
𝛼
(s

𝛼
− 1)

>

�∑r

i=1
ni𝜎i

nM�

�2

Distributed and Parallel Databases (2021) 39:665–710686

1 3

where M�
�
= M� n

�
�
�∑r

i=1
ni�i

 . The last inequality is due to the fact that S
�
 is not oversized

under budget M′ at time t, i.e., s
�
≤ M′

�
.

Note that an oversized sample exists at time t, since there are a total of M� + 1 ele-
ments in the stratified random sample at time t, and the memory target is M′ . Instead
of evicting e, if we choose to evict another element e′ from an oversized sample S

�′
 ,

the resulting increase in variance will be:

where M�
��
= M� n

�����∑r

i=1
ni�i

 The last inequality is due to the fact that S
�′

 is oversized
under budget M′ at time t, i.e., s

𝛼′
> M′

𝛼′
 . Because 𝛥′

< 𝛥 , at time t, evicting e′ from
S
�′

 leads to a lower variance than evicting e from S
�
 . This is a contradiction to the

assumption that evicting e leads to the smallest variance, and completes the proof.
 ◻

Lemma 4 implies that it is only necessary to reduce samples that are oversized
under the target memory budget M′ . Samples that are not oversized can be given
their current allocation, even under the new memory target M′ . Our algorithm
based on this observation first allocates sizes to the samples that are not oversized.
The remaining memory now needs to be allocated among the oversized samples.
We note that this can again be viewed as a sample size reduction problem, while
focusing on a smaller set of (oversized) samples, and accomplish it using a recursive
call under a reduced memory budget; See Lemma 5 for a formal statement of this
idea. The base case for this recursion is when all samples under consideration are
oversized, in which case we can simply use NeyAlloc under the reduced memory
budget M′ (Observation 1). Our algorithm ��� is shown in Algorithm 6.

𝛥
� =

1

n2

�
n2
𝛼�
𝜎
2
𝛼�

s
𝛼�
(s

𝛼�
− 1)

�
=

�∑r

i=1
ni𝜎i

nM�

�2
M�2

𝛼�

s
𝛼�
(s

𝛼�
− 1)

<

�∑r

i=1
ni𝜎i

nM�

�2

Distributed and Parallel Databases (2021) 39:665–710 687

1 3

Algorithm 6: SSR(A,M,L): Variance-optimal sample size reduction
Input: A – set of strata under consideration.

M – target sample size for all strata in A.
Output: For i ∈ A, L[i] is the final size of sample for stratum i.

1 O ← ∅ // oversized samples
2 for j ∈ A do
3 Mj ← M · njσj/

∑
t∈A ntσt // Neyman allocation

4 if (sj > Mj) then O ← O ∪ {j}
5 else L[j] ← sj // Keep current allocation

6 if O = A then
7 for j ∈ A do L[j] ← Mj // All samples oversized. Recursion stops

8 else
9 SSR(O,M −

∑
j∈A−O sj ,L) // Recurse on O, under remaining budget

Let � = {S1, S2,… , Sr} be the current stratified random sample. Let A denote the
set of all strata under consideration, initialized to {1, 2,… , r} . Let O denote the set
of oversized samples, under target memory budget for � , and U = � −O denote the
collection of samples that are not oversized. When the context is clear, we use O, U ,
and A to refer to the set of stratum identifiers as well as the set of samples corre-
sponding to these identifiers.

Lemma 5 A variance-optimal eviction of � elements from � under memory budget
M′ requires a variance-optimal eviction of � elements from O under memory budget
M� −

∑
j∈U sj.

Proof Recall that s′
i
 denotes the final size of sample Si after � elements are evicted.

Referring to the variance V from Eq. 1, we know a variance-optimal sample size
reduction of � elements from � under memory budget M′ requires minimization of

By Lemma 4, we know si = s�
i
 for all i ∈ U . Hence, minimizing Formula 10 is equiv-

alent to minimizing

The minimization of Formula 11 is exactly the result obtained from a variance-
optimal sample size reduction of � elements from oversized samples under the new
memory budget M� −

∑
i∈U si . ◻

Observation 1 In the case every sample in the stratified random sample is oversized
under target memory M′ , i.e., � = O , the variance-optimal reduction reduces the
size of each sample Si ∈ � to M′

i
 under the new memory budget M′.

(10)
∑

i∈A

n2
i
�
2
i

s�
i

−
∑

∈A

n2
i
�
2
i

si

(11)
∑

i=O

n2
i
�
2
i

s�
i

−
∑

i∈O

n2
i
�
2
i

si

Distributed and Parallel Databases (2021) 39:665–710688

1 3

The following theorem summarizes the correctness and time complexity of Algo-
rithm SSR.

Theorem 4 Algorithm 6 (���) finds a variance-optimal reduction of the stratified
random sample A under new memory budget M. The worst-case time of ��� is
O(r2) , where r is the number of strata.

Proof Correctness follows from Lemmas 4–5 and Observation 1. The worst-case
time happens when each recursive call sees only one stratum that is not oversized. In
such a case, the time of all recursions of ��� on a stratified random sample across r
strata is: O(r + (r − 1) +… + 1) = O(r2) . ◻

An Example (Table 2). Suppose we have 6 strata with their statistics (ni�i) and
current sample sizes (si) showin in Table 2 using a total size of

∑6

i=1
si = 400 . Sup-

pose that we wish to reduce the sample size down to 200 by reducing each si to the
target sample size s′

i
 . The computation involves a sequence of recursive rounds. In

the initial round, we allocate 200 samples among all 6 strata using Neyman alloca-
tion. Strata 1 and 3 turn out to be not oversized (M1 ≥ s1 , M3 ≥ s3), and therefore
we set s�

1
= s1 and s�

3
= s3 . In Round 2, we exclude strata 1 and 3 from considera-

tion, and the available memory budget which now becomes 200 − 15 − 50 = 135 .
This is allocated among strata 2, 4, 5, and 6 using Neyman allocation. Stratum 4 is
not oversized (M4 ≥ s4) and therefore we set s�

4
= s4 . At the next round 3, we fur-

ther exclude stratum 4 from consideration, and the available memory budget now
becomes 135 − 45 = 90 . When this is allocated among the remaining strata, it turns
out that all of them are oversized (Mi < si , i = 2, 5, 6). We simply set s�

i
= Mi for

each i ∈ {2, 5, 6} , and the recursion exits. Each stratum i now has a new sample size
s′
i
 such that s′

i
≤ si for every i, and

∑6

i=1
s�
i
= 200.

5.3 A faster method for sample size reduction by ˇ ≥ 1 elements

We present a faster algorithm for variance-optimal sample size reduction, Multi-
ElementSSR, with time complexity O(r log r) . MultiElementSSR shares the
same algorithmic foundation as ��� , but uses a faster iterative method based on
sorting.

Table 2 An example of
variance-optimal sample size
reduction from 400 × 10

6 down
to 200 × 10

6

i 1 2 3 4 5 6

ni�i (×109) 10 8 30 20 8 24

si (×106) 15 50 50 45 60 180

Round 1 Mi (×106) 20 < 50 60 < 45 < 60 < 180

Round 2 Mi (×106) – < 50 – 45 < 60 < 180

Round 3 Mi (×106) – 18 – – 18 54

s�
i
(×106) 15 18 50 45 18 54

Distributed and Parallel Databases (2021) 39:665–710 689

1 3

Algorithm 7: MultiElementSSR(M): A fast implementation of Sam-
ple Size Reduction without using recursion.
Input: The strata under consideration is A = {1, 2, . . . , r}, and the volumes and

standard deviations. M is the target total sample size.
Output: For 1 ≤ i ≤ r, L[i] is set to the final size of sample for stratum i, such

that the increase of the variance V is minimized.
1 Allocate L[1..r], an array of numbers
2 Allocate Q[1..r], an array of (x, y, z) tuples
3 for i = 1 . . . r do Q[i] ← (i, niσi, si/(niσi))
4 Sort array Q in ascending order on the z dimension
5 for i = (r − 1) down to 1 do
6 Q[i].y ← Q[i].y +Q[i+ 1].y

7 Mnew ← M ; D ← Q[1].y
8 for i = 1 . . . r do
9 MQ[i].x ← M · nQ[i].xσQ[i].x/D

10 if sQ[i].x > MQ[i].x then break
11 L[Q[i].x] ← sQ[i].x]

12 Mnew ← Mnew − sQ[i].x

// Check the next sample, which must exist.
13 MQ[i+1].x ← M · nQ[i+1].xσQ[i+1].x/D

14 if sQ[i+1].x > MQ[i+1].x then // oversized
15 M ← Mnew; D ← Q[i+ 1].y

16 for j = i..r do // Reduce sample size to target.
17 L[Q[j].x] ← M · nQ[j].xσQ[j].x/D // Desired size for SQ[j].x

18 return L

Definition 2 Let Q[1..r] be an array of (x, y, z) tuples, where for each stratum
i = 1… r , element Q[i] is initialized as (i, ni�i, si∕(ni�i)) . Array Q is then sorted in
ascending order on its z dimension.

Lemma 6 Under memory budget M, if there exists at least one sample that is not
oversized, then the collection of sample identifiers that are not oversized must
occupy a continuous prefix of the array Q.

Proof Recall that under a memory budget M, NeyAlloc allocates Mi = ni�i∕D
records to Stratum i, where D =

∑r

i=1
nj�j . A sample Si is not oversized if and only

if si ≤ Mi , i.e., si∕(ni�i) ≤ 1∕D . A sample Si is oversized if and only if si > Mi , i.e.,
si∕(ni𝜎i) > 1∕D . Because array Q is in the ascending order of its z dimension, the
lemma is proved. ◻

Lemma 6 implies that we can linearly traverse array Q from Q[1] toward Q[r]. By
comparing the sample size and the Mi for each stratum, we will be able to find the
collection of samples that are not oversized, under the new target memory budget
M′ . After finding the prefix of the Q array that represents the collection of samples

Distributed and Parallel Databases (2021) 39:665–710690

1 3

that are not oversized, we pause the walk and then set the new memory budget to be
M′ minus the total size of the samples in the prefix. Then, we repeat on the remain-
ing part of the array Q (after excluding the prefix) and continue the traversal under
the new memory budget. The walk will stop if we do not see any sample that is not
oversized under the current memory budget M′ . In that case, we can just set the size
of the sample for stratum i to M′

i
.

In order to avoid a re-computation of D for each new memory budget during the
walk, we precompute the D for every suffix of the array Q and save the result in the
y dimension of the Q array. The method ��������������� in Algorithm 7 shows
the pseudocode of this faster algorithm for variance-optimal sample size reduction.

Theorem 5 (1) The ��������������� procedure in Algorithm 7 finds the correct
size of each sample of a stratified random sample, whose memory budget is reduced
to M, such that the increase of the variance V is minimized. (2) The worst-case time
cost of ��������������� on a stratified random sample across r strata is O(r log r)
.

Proof The correctness follows from Lemmas 4–5, Observation 1, and Lemma 6. The
time complexity of ��������������� is dominated by the step of sorting array Q
on its z dimension (Line 4), so the worst-case time complexity of ���������������
is O(r log r) . ◻

Sample size reduction is the core to our streaming algorithms and it usually deter-
mines the time complexity for the entire algorithm. Therefore, we summarize the
time complexity of each VOR algorithm in Table 3 for a concise view. Note that in
both S-VOILA and SW-VOILA, we use SingleElementSSRfor evicting single
element, and MultiElementSSRfor evicting multiple elements.

6 VOILA: variance‑optimal offline SRS

We now present an algorithm for computing the variance-optimal allocation of
sample sizes in the general case when there may be strata that are bounded. Note
that once the allocation of sample sizes is determined, the actual sampling step is
straightforward for the offline algorithm—samples can be chosen in a second pass
through the data, using reservoir sampling within each stratum. Hence, in the rest
of this section, we focus on determining the variance-optimal allocation. Consider
a static data set R of n elements across r strata, where stratum i has ni elements, and

Table 3 Time complexity
of each VOR algorithm with
minibatch of size b and r strata

Algorithm Time complexity

SingleElementSSR (Algorithm 5) O(b)
SSR (Algorithm 6) O(r2)

MultiElementSSR (Algorithm 7) O(r log r)

Distributed and Parallel Databases (2021) 39:665–710 691

1 3

has standard deviation �i . How can a memory budget of M elements be partitioned
among the strata in a variance-optimal manner? We present VOILA (Variance-
OptImaL Allocation), an efficient offline algorithm for variance-optimal allocation
that can handle strata that are bounded.

Neyman Allocation assumes there are no bounded strata (strata with small vol-
umes). Note that it is not possible to simply eliminate strata with a low volume,
by giving them full allocation, and then apply Neyman allocation on the remaining
strata. The reason is as follows: suppose bounded strata are removed from further
consideration. Then, remaining memory is divided among the remaining strata. This
may lead to further bounded strata (which may not have been bounded earlier), and
Neyman allocation again does not apply.

The following two-step process reduces variance-optimal offline SRS to variance-
optimal sample size reduction.

Step 1: Suppose we start with a memory budget of n, sufficient to store all data.
Then, we will just save the whole data set in the stratified random sample, and thus
each sample size si = ni . By doing so, the variance V is minimized, since V = 0
(Eq. 1).

Step 2: Given the stratified random sample from Step 1, we reduce the memory
budget from n to M such that the resulting variance is the smallest. This can be done
using variance-optimal sample size reduction, by calling ��� or ���������������
with target sample size M.

VOILA (Algorithm 8) simulates this process. The algorithm only records the
sample sizes of the strata in array L , without creating the actual samples. The actual
sample from stratum i is created by choosing L[i] elements from stratum i, using a
method for uniform random sampling without replacement.

Algorithm 8: VOILA (M): Variance-optimal stratified random sam-
pling for bounded data
Input: M is the memory target

1 for i = 1 . . . r do
2 si ← ni // assume total memory of n

3 L ← MultiElementSSR(M)
4 return L /* L[i] ≤ ni is the sample size for stratum i in a

variance-optimal stratified random sample . */

Theorem 6 Given a data set R with r strata, and a memory budget M, ����� (Algo-
rithm 8) returns in L the sample size of each stratum in a variance-optimal stratified
random sample. The worst-case time cost of ����� is O(r log r).

Proof The correctness follows from the correctness of Theorem 5, since the final
sample is the sample of the smallest variance that one could obtain by reducing the
initial sample (with zero variance) down to a target memory of size M. The run time
is dominated by the call to ��������������� , whose time complexity is O(r log r) .
 ◻

Distributed and Parallel Databases (2021) 39:665–710692

1 3

7 Experimental evaluation

We present the results of an experimental evaluation. The input for our experiment
is a (finite) stream of records from a data source, which is either processed by a
streaming algorithm or by an offline algorithm at the end of computation. A stream-
ing sampler must process data in a single pass using limited memory. An offline
sampler has access to all data received and can compute a stratified random sample
using multiple passes through data. We evaluate the samplers in two ways. The first
is a direct evaluation of the sample quality through the resulting allocation and the
variance of estimates obtained using the samples. The second is through the accu-
racy of approximate query processing using the maintained samples for different
queries.

7.1 Sampling methods

We compared our stream sampling method S-VOILA to Reservoir, ASRS, and
Senate sampling. Reservoir is a well-known stream sampling method that
maintains a uniform random sample chosen without replacement from the stream—
we expect the number of samples allocated to stratum i by Reservoir to be pro-
portional to ni . Senate [17] is a stratified sampling method that allocates each stra-
tum an equal amount of sample space. For each stratum, Reservoir sampling is
used to maintain a uniform sample.

ASRS is an adaptive stratified sampling algorithm due to Al-kateb et al. (Algo-
rithm 3 in [9]). Their algorithm considers re-allocations of memory among strata
using a different method, based on power allocation [14], followed by reservoir sam-
pling within each stratum. We chose the power allocation parameter to be 1 in order
to obtain a sample of the entire population.

For streaming with sliding window, we implemented SW-VOILA and compared
to Reservoir and a naive approached S-VOILA, which follows the original
S-VOILA except expired elements in the sample will be removed. The statistics of
strata over a sliding window could be estimated using techniques from existing work
such as [41–44], which we assume available in our experiments. Note that ASRS
does not support sliding window and thus it was excluded.

We also implemented three offline samplers VOILA, NeyAlloc, and an offline
version of Senate. Each uses two passes to compute a stratified random sample of
a total size of M records. The first pass is to determine strata characteristics used to
allocate the space between strata. The second pass is to collect the samples accord-
ingly to the computed allocation.

7.2 Data

We conducted our experiments with two a real-world datasets. The first dataset
called OpenAQ [45], which contains more than 31 million records of air qual-
ity measurements (concentrations of different gases and particulate matter) from

Distributed and Parallel Databases (2021) 39:665–710 693

1 3

7, 923 locations in 62 countries around the world in 2016. Data is replayed in
time order to generate the stream and is stratified based on the country of ori-
gin and the type of measurement, e.g., all measurements of carbon monoxide in
the USA belong to one stratum, all records of sulfur dioxide in India belong to
another stratum, and so on. The total number of strata at different points in time
are shown in Fig. 2c. We also experimented with another method of stratifying
data, based only on the city of origin, whose results are shown at the end of this
section.

Each stratum begins with zero records, and in the initial stages, every stra-
tum is bounded. As more data are observed, many of the strata are not bounded
anymore. As Fig. 2c shows, new strata are added as more sensors are incorpo-
rated into the data stream. Figure 2a and b respectively show the cumulative
frequency and standard deviation of the data over time; clearly these change sig-
nificantly with time. As a result, the variance-optimal sample-size allocations to
strata also change over time, and a streaming algorithm needs to adapt to these
changes.

The second dataset, named Bikes, is a system logs from Divvy Bikes [46], a
Chicago bike-share company. The bike-share system allows customers to pick
up a bike at a station and return it to any station at their convenience. This data-
set contains more than 11 million records of the bike rides collected from the
year 2014 to 2018. In this paper, we stratify the data by the stations where the
bikes were picked up, and we analyze the aggregation of trip duration for each
stratum at the end of the month.

0% 20% 40% 60% 80% 100%
2016-01

2016-03

2016-05

2016-07

2016-09

2016-11

(a) Relative (cumulative) frequencies of dif-
ferent strata changes over time. Each color
represents a stratum.

0% 20% 40% 60% 80% 100%
2016-01
2016-03
2016-05
2016-07
2016-09
2016-11

(b) Relative (cumulative) standard devia-
tions of different strata changes over time.
Each color represents a stratum

0
10
20
30
40

0
50
100
150
200

D
at

a
co

un
t (

m
il)

of

 st
ra

ta

Data count # of strata

(c) The number of strata received so far,
and the number of records in data.

Fig. 2 Characteristics of the OpenAQ dataset changes over time. Because the data’s statistics changed
significantly during the stream, the sampling algorithm has to adapt to constant changes during the
stream

Distributed and Parallel Databases (2021) 39:665–710694

1 3

7.3 Allocations of samples to strata

We measured the allocation of samples to different strata. Unless otherwise speci-
fied, the sample size M is set to 1 million records. For all experiments on allo-
cations or variance, each data point is the mean of five independent runs. The
allocation can be seen as a vector of numbers that sum up to M (or equivalently,
normalized to sum up to 1), and we observe how this vector changes as more ele-
ments arrive.

Figure 3 shows the allocation of Reservoir, Senate, S-VOILA and
VOILA algorithms at the end of September of the OpenAQ dataset. As seen,
S-VOILA ’s allocation is close to that of VOILA, which is optimal. Meanwhile,
Senate allocates the memory equally among strata, despite their characteristic.
Reservoir ’s allocation fits to the frequency of the data.

Figure 4a, b and c show the change in allocations over time resulting from
VOILA, S-VOILA with single element processing, and S-VOILA with mini-
batch processing. Unless otherwise specified, in the following discussion, the
size of a minibatch is set to equal one day’s worth of data. Visually, the alloca-
tions produced by the three methods track each other over time, showing that the
streaming methods follow the allocation of VOILA. To understand the difference
between the allocations due to VOILA and S-VOILA quantitatively, we measured
the cosine distance between the allocation vectors from VOILA and S-VOILA.
While detailed results are omitted due to space constraints, our results show that
allocation vectors due to S-VOILA and VOILA are very similar, and the cosine
distance is close to 0 most of the time and less than 0.04 at all times.

7.4 Streaming with infinite window

To evaluate the performance of each sampler over the data stream, we first assume
a window with an infinite size, i.e., the elements in the data stream never expire.

0% 20% 40% 60% 80% 100%

Reservoir

Senate

S-VOILA

VOILA

Fig. 3 Allocation of sample space among strata after 9 months of OpenAQ data. Each color represents
a stratum. While S-VOILA has the allocation close to the offline optimal VOILA, Senate gives each
stratum approximately equal amount of space. Reservoir space allocation matches the frequency of
the data (Color figure online)

Distributed and Parallel Databases (2021) 39:665–710 695

1 3

7.4.1 Variance

We compared the variance of the estimates (Eq. 1) produced by different meth-
ods. The results are shown in Figs. 5 and 6. Generally, the variance of the sample
due to each method increases over time, since the volume of data and the number
of strata increase, while the sample size is fixed.

The comparison of different streaming algorithms is shown in Fig. 6. Among
the streaming algorithms, we first note that both variants of S-VOILA have a var-
iance that is lower than ASRS, and typically close to the optimal (VOILA). The
variance of S-VOILA with minibatch processing is typically better than with sin-
gle element processing. We note that the variances of both variants of S-VOILA

0% 20% 40% 60% 80% 100%
2016-01

2016-03

2016-05

2016-07

2016-09

2016-11

(a) VOILA

0% 20% 40% 60% 80% 100%
2016-01

2016-03

2016-05

2016-07

2016-09

2016-11

(b) S-VOILA with single element

0% 20% 40% 60% 80% 100%

2016-01

2016-03

2016-05

2016-07

2016-09

2016-11

(c) S-VOILA with minibatch of size one day

Fig. 4 Memory allocations of the samples of OpenAQ data change over time. The streaming algorithm
S-VOILA produces sample allocations close to that of the optimal offline VOILA

0.0000
0.0001
0.0010
0.0100
0.1000
1.0000

Va
ria

nc
e

VOILA NeyAlloc Senate

Fig. 5 The variance of VOILA compared to NeyAlloc and Senate. With the same sample size of 1M
records, VOILA has a significantly smaller variance than that of NeyAlloc and Senate

Distributed and Parallel Databases (2021) 39:665–710696

1 3

are nearly equal to that of VOILA until March, when they start increasing relative
to VOILA, and then converge back. From analyzing the underlying data, we see
that March is the time when several new strata appear in the data (Fig. 2c), caus-
ing a substantial change in the optimal allocation of samples to strata. An offline
algorithm such as VOILA can resample more elements at will since it has access
to all earlier data from the stratum. However, a streaming algorithm such as
S-VOILA cannot do so and must wait for enough new elements to arrive in these
strata before it can “catch up” to the allocation of VOILA. Hence, S-VOILA with
a single element as well as with minibatch processing show an increasing trend
in the variance at such a point. When data becomes stable again the relative per-
formance of S-VOILA improves. In November and December, new strata appear
again, and the relative performance is again affected.

Among offline algorithms, we observe from Fig. 5 that Senate performs
poorly since it blindly allocates equal space to all strata. NeyAlloc results in a
variance that is larger than VOILA, by a factor of 1.4× to 50× . While NeyAlloc
is known to be variance-optimal under the assumption of having all strata being
abundant, these results show that it is far from variance-optimal for bounded str
ata.

Impact of sample size To observe the sensitivity to the sample size, we con-
ducted an experiment where the sample size is varied from 5000 to 1 million. We
fixed the minibatch size to 100 thousand records. As expected, in both VOILA and
S-VOILA, with single element and minibatch processing, the variance decreases
when the sample size increases. The general trend was that the variance decreased
by approximately a factor of 10 when the sample size increased by a factor of 10.
Figure 7 shows the snapshot in September 2016 of the variance as a function of the
sample size.

Impact of minibatch size We further conducted an experiment where the mini-
batch size is chosen from {1, 10, 102, 103, 104} . The results are shown in Fig. 8. A
minibatch size of 10 elements yields significantly better results than single element
S-VOILA. A minibatch size of 100 or greater makes the variance of S-VOILA
nearly equal to the optimal variance.

0.000

0.001

0.002

0.003

0.004
Va

ria
nc

e

VOILA S-VOILA, One-day Batch S-VOILA, Single ASRS

Fig. 6 The variance of streaming sampling S-VOILA compared with ASRS and the offline optimal
VOILA. With the same sample size of 1M records, S-VOILA is close to VOILA. S-VOILA outperforms
ASRS

Distributed and Parallel Databases (2021) 39:665–710 697

1 3

7.4.2 Query performance on OpenAQ

We now evaluate the quality of these samples indirectly, through their use in
approximate query processing. Samples constructed using S-VOILA and VOILA
are used to approximately answer a variety of queries on the data so far. For
evaluating the approximation error, we also implement an exact (but expensive)
method for query processing ����� that stores all records in a MySQL database.
Identical queries are made at the same time points in the stream to the different
streaming and offline samplers, as well as to the exact query processor.

A range of queries is used. Each query selects a subset of data through a selec-
tion predicate supplied at query time, and applies an aggregate. This shows the
flexibility of the sample since it does not have any a priori knowledge of the
selection predicate. We have chosen predicates with selectivity equal to one at
0.25, 0.50, and 1.00. We consider four aggregation functions: SUM, the sum of
elements; SSQ, the sum of squares of elements; AVG, the mean of elements; and
STD, the standard deviation. Each data point is the mean of five repetitions of the
experiment with the same configuration. Each query was executed over all the

0.0

0.5

1.0

1.5

5k 10k 50k 100k 500k 1M

V
ar

ia
nc

e

Sample size
VOILA S-VOILA, Batch size: 100k S-VOILA, Single

Fig. 7 Impact of Sample Size on Variance, in September, OpenAQ data

0
0.001
0.002
0.003
0.004
0.005

Va
ria

nc
e

VOILA S-VOILA, Single S-VOILA, Batch 10
S-VOILA, Batch 100 S-VOILA, Batch 1K S-VOILA, Batch 10K

Fig. 8 Impact of Minibatch Size on Variance, OpenAQ

Distributed and Parallel Databases (2021) 39:665–710698

1 3

received data after one month of data arrived, up to the entire year of 2016 in the
OpenAQ dataset with thirty-one million records.

Figures 9 and 10 shows the relative errors of different aggregations as the size
of streaming data increases, while the sample size is held fixed. Both figures

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(a) Selectivity=0.25

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(b) Selectivity=0.50

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(c) Selectivity=0.75

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12
Er

ro
r

Time (Month)

(d) Selectivity=1.00

Reservoir Senate ASRS S-VOILA VOILA

Fig. 9 Streaming samplers. SUM with different selectivity, sample size = 1 million. OpenAQ data

0.000%
0.001%
0.010%
0.100%
1.000%

10.000%
100.000%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(a) SSQ

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(b) AVG

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)

(c) STD

Reservoir Senate ASRS S-VOILA VOILA

Fig. 10 Streaming samplers. SSQ, AVG, and STD with selectivity 0.50, sample size = 1 million.
OpenAQ data

Distributed and Parallel Databases (2021) 39:665–710 699

1 3

show that S-VOILA outperforms other streaming samplers across queries with
different aggregation and selectivity. This result shows that S-VOILA maintains
a better quality of stratified sample to answer an aggregation over a subset of data
accurately. Also, S-VOILA performs very closely to its offline version, VOILA,
which samples from the entire received data. We note that when ASRS evicts ele-
ments from per-stratum samples, there may not always be new elements to take
their place, hence it often does not use its full quota of allocated memory.

Alternate methods of stratification We also experimented with the OpenAQ
data set stratified differently, using the city where the observation was made.
Sample results are shown in Fig. 11. We still see that S-VOILA outperforms
Reservoir, Senate, and ASRS. This supports our observation that the sam-
ple maintained by S-VOILA is of a higher quality than other streaming samplers,
no matter how data is stratified.

Impact of sample size We also explored different sample sizes varied from
500, 000 to 1 million. All methods benefit from increased sample size and the
relative performance between different methods remains the same across different
sizes.

0.000%
0.001%
0.010%
0.100%
1.000%

10.000%
100.000%

Er
ro

r

Reservoir Senate ASRS S-VOILA VOILA

Fig. 11 Streaming samplers, data stratified by the city (SUM with selectivity 0.5)

0.00%
1.00%
2.00%
3.00%
4.00%

Er
ro

r

Reservoir S-VOILA, Single S-VOILA, Batch 10
S-VOILA, Batch 100 VOILA

Fig. 12 Streaming samplers, impact of minibatch size, sample size = 100,000. (SUM with selectivity
0.5)

Distributed and Parallel Databases (2021) 39:665–710700

1 3

Impact of minibatch size Figure 12 shows the impact of the minibatch size on the
accuracy of streaming samplers for the SUM query with selectivity 0.5. The sample
size is set to one hundred thousand for each sampler. S-VOILA with different mini-
batch sizes has an error of less than 1%, often much smaller, while Reservoir has
an error that is often 3% or larger. Besides, we observe that S-VOILA with different
minibatch sizes is very close to VOILA.

7.4.3 Query performance on bikes

Figure 13a shows the evaluation of a SUM query on the Bikes dataset. Similar to the
results on OpenAQ showed in Fig. 9, the S-VOILA yields the smallest error among
streaming samplings, that is close to the optimal offline VOILA. ASRS performs
poorly on this dataset because the number of strata in this dataset is much higher and
each stratum is smaller than the ones in OpenAQ.

Figure 13b show the error for offline samplers. To no surprise, the optimal
Offline gives the smallest error. However, the difference between errors produced
by NeyAlloc and VOILA is smaller since the number of strata increased and fewer
bounded strata are observed.

7.5 Streaming with sliding window

Theoretically, SW-VOILA could derive multiple layers of the sample in order to
fully utilize the given memory budget. In practice, we observed in our experiments
that SW-VOILA only needs two layers to fill up the memory in most cases. Thus, we
use two-layer SW-VOILA for the following experimental studies.

We evaluate SW-VOILA by comparing it to Reservoir, Senate, VOILA,
and the naive version of S-VOILA for the sliding window. Note that VOILA is
an offline sampler and it serves as a reference of the optimal stratified random
sample. Reservoir, Senate, and S-VOILA are the same streaming samplers
as in the previous section, except the expired elements will now be removed from
their collected samples. The removal of expired elements will prevent Senate
and naive S-VOILA from fully utilizing the given sample size since they can-
not easily take new elements into the sample due to the guarantee of uniformity

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

'14 '15 '16 '17 '18

Er
ro

r

Year (2014-2018)
Reservoir Senate ASRS S-VOILA VOILA

(a) Streaming Samplers

0.00%

0.01%

0.10%

1.00%

10.00%

'14 '15 '16 '17 '18

Er
ro

r

Year (2014-2018)
NeyAlloc Senate VOILA

(b) Offline Samplers

Fig. 13 Sum query accuracy for streaming samplers with infinite window and offline samplers with sam-
ple size 100, 000. Divvy Bikes data

Distributed and Parallel Databases (2021) 39:665–710 701

1 3

within each stratum. For the experiment configuration, the sliding window size is
set to 10E6 and the samplers are given the maximum of 10E5 sample each (10%
sample) unless otherwise specified.

7.5.1 Memory usage

Figure 14 shows the sample size utilization of each streaming sampler at the end
of each month. Each sampler is given the sample size of 10E5, Senate and
naive S-VOILA could not keep their sample full due to the expiration of old ele-
ments and the guarantee of uniformity. Most of the time, Senate used less than
20% and S-VOILA used around 80% of the given sample size, proving that to
keep the uniformity within a sliding window is a challenging task. Since Senate
has such a poor sample utilization percentage, we excluded it from the rest of our
experiment comparisons since a poor performance is anticipated. On the other
hand, SW-VOILA has used all of the given sample space throughout the entire
stream. More than 97% of the given memory is used for the first (base) layer of
SW-VOILA where uniformity of each stratum is guaranteed. The rest (3%) is

0
20000
40000
60000
80000

100000
120000

Sa
m

pl
e

Si
ze

Senate S-VOILA SW-VOILA

Fig. 14 Sample space utilization of streaming sampling algorithms Senate, S-VOILA and SW-VOILA
changes during the stream of OpenAQ data

0.00001
0.0001
0.001
0.01
0.1

1

Sa
m

pl
e

R
at

e

Time

S-VOILA SW-VOILA

Fig. 15 Sample rate of a stratum containing measurements of NO
2
 in Canada with S-VOILA and

SW-VOILA on OpenAQ. While naive S-VOILA ’s sample rate decreases, SW-VOILA ’s sample rate
increases periodically

Distributed and Parallel Databases (2021) 39:665–710702

1 3

used for the second (buffer) layer of SW-VOILA. Overall, the sample rates of 88
strata have increased over the stream. We see similar results on the Bikes dataset
as well.

We take a closer look at SW-VOILA in Fig. 15, that shows the sample rate of
the stratum containing measurement of NO2 from Canada (CA − NO2). Along the
stream, while naive S-VOILA ’s sample either decreased or stayed the same, the
SW-VOILA ’s sample rate periodically increased. This result shows the effect of the
upper layers as the buffers for the base sample. Not only the sample size increased
by merging the buffer layer and the first layer, but more importantly, the sample rate
of first layer increases after merged, which means accepting new samples at a higher
sample rate.

7.5.2 Variance

We measure the variance of the mean estimation, which is the objective function
of our optimization problem (see Eq. 1). Figures 16 and 17 show the variance of

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025

Va
ria

nc
e

Reservoir S-VOILA SW-VOILA VOILA

Fig. 16 Variance of SW-VOILA compared with Reservoir, S-VOILA and offline VOILA in the same
window frame, OpenAQ dataset

0.0
10.0
20.0
30.0
40.0
50.0

2014 2015 2016 2017 2018

Va
ria

nc
e

Time

Reservoir S-VOILA SW-VOILA VOILA

Fig. 17 Variance of SW-VOILA compared with Reservoir, S-VOILA and offline VOILA in the same
window frame with sample size 100,000 and window size 1 million. Divvy Bikes data

Distributed and Parallel Databases (2021) 39:665–710 703

1 3

different samples at the end of each month for OpenAQ and Divvy Bikes data-
sets, respectively. In both figures, the offline optimal VOILA gave us a sample
with the lowest variance. Among streaming samplers, SW-VOILA yields the
smallest variance. On the OpenAQ dataset, Reservoir has lower variances
than naive S-VOILA in a large portion of the stream due to unused memory
space in naive S-VOILA. Unlike the infinite window case (Fig. 7), the variance
of every sampler does not go up as the stream continues. It is because the older
elements will no longer have an effect in the sample after being expired and
removed.

7.5.3 Query performance

To evaluate the query performance of the sampling algorithms, we use their pro-
duced samples to answer the sum queries. As shown in Figs. 18 and 19, SW-
VOILA yields the smallest error among all streaming samplers for both data-
sets. It stays close to the offline optimal VOILA. S-VOILA performs worse than
Reservoir since the latter always utilizes all the given sample space, which
also matched what we observed in Figs. 16 and 17.

0.01%

0.10%

1.00%

10.00%

Er
ro

r

Reservoir S-VOILA SW-VOILA VOILA

Fig. 18 Sum query accuracy of SW-VOILA compared with Reservoir, S-VOILA and offline VOILA
in the same window frame, OpenAQ dataset

0.01%

0.10%

1.00%

10.00%

'14 '15 '16 '17 '18

Er
ro

r

Time (Year)

Reservoir S-VOILA SW-VOILA VOILA

Fig. 19 Sum query accuracy of SW-VOILA compared with Reservoir, S-VOILA and offline VOILA
in the same window frame with sample size 100,000 and window size 1 million. Divvy Bikes data

Distributed and Parallel Databases (2021) 39:665–710704

1 3

7.5.4 Sensitivity to the parameters

We conducted experiments to study the sensitivity of the SW-VOILA to the size
of sample and the sliding window. Figures 20 and 21 show how the sample size
affect the quality of the sample on variance and query performance for OpenAQ
data. As expected, when the sample increases from 1 to 50%, the variances and
query error of all samples decreases. Meanwhile, for each setting, VOILA always

0.0000

0.0050

0.0100

0.0150

0.0200

1% 2% 5% 10% 25% 50%

Va
ria

nc
e

Sample Rate
Reservoir S-VOILA SW-VOILA VOILA

Fig. 20 Sensitivity to the sample rate: variance of the sample of sliding window size 10E6 when sample
size various between 1% and 50%. OpenAQ data

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%

1% 2% 5% 10% 25% 50%

Er
ro

r

Sample Rate
Reservoir S-VOILA SW-VOILA VOILA

Fig. 21 Sensitivity to the sample rate: Sum query of the sample of sliding window size 10E6 when sam-
ple size various between 1% and 50%. OpenAQ data

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

 500,000 1,000,000 2,000,000 5,000,000 10,000,000

Va
ria

nc
e

Window Size
Reservoir S-VOILA SW-VOILA VOILA

Fig. 22 Sensitivity to the window size: Variance of the sample of different window size, from 5E5 to
1E7, with 10% sample size. OpenAQ data

Distributed and Parallel Databases (2021) 39:665–710 705

1 3

provides the best sample as an offline optimal sampler. Among streaming algo-
rithms, SW-VOILA provides the best sample.

Figures 22 and 23 show how the window size affects the quality of the sample
for OpenAQ data when the sample size is set to 10% of the window size. As seen,
the larger the window, the larger the sample size. Thus the quality of the sample
increased as we increased the window size. Note that as window size increases,
S-VOILA performs closer to SW-VOILA because it could be considered as a spe-
cial case of SW-VOILA where window size is infinity.

0.0%

0.2%

0.4%

0.6%

0.8%

500,000 1,000,000 2,000,000 5,000,000 10,000,000

Er
ro

r

Window Size
Reservoir S-VOILA SW-VOILA VOILA

Fig. 23 Sensitivity to the window size: Sum query of the sample of different window size, from 5E5 to
1E7, with 10% sample size. OpenAQ data

0.0

10.0

20.0

30.0

40.0

0.05 0.1 0.25 0.5 0.75

Va
ria

nc
e

Sample Rate
Reservoir S-VOILA SW-VOILA VOILA

Fig. 24 Sensitivity to the sample rate: Variance of the sample of sliding window size 10E6 when sample
size various between 5% and 75%. Divvy Bikes data

0.00%

0.50%

1.00%

1.50%

2.00%

5% 10% 25% 50% 75%

Er
ro

r

Sample Rate
Reservoir S-VOILA SW-VOILA VOILA

Fig. 25 Sensitivity to the sample rate: Sum query of the sample of sliding window size 10E6 when sam-
ple size various between 5% and 75%. Divvy Bikes data

Distributed and Parallel Databases (2021) 39:665–710706

1 3

The sensitivity tests for Divvy Bikes data were also conducted. Figures 24 and 25
show the impacts of different sample rates within the same window size. As the sam-
ple rate increases in the fixed window, the performances of S-VOILA, SW-VOILA,
and the offline VOILA will be closer to each other. Experiments for different sliding
window sizes are shown in Figs. 26 and 27. Similar results were observed compar-
ing to OpenAQ data.

7.6 Offline sampling

We also compared VOILA with other offline samplers for the SUM query with dif-
ferent selectivities. Figure 28 shows that VOILA always has better performance
than Senate and NeyAlloc. Our experiments with other aggregations (sum of
squares, average, and standard deviation) also showed similar results.

8 Conclusions

We presented S-VOILA, an algorithm for streaming SRS with minibatch processing,
which interleaves a continuous, locally variance-optimal re-allocation of sample sizes
with streaming sampling. Our experiments show that S-VOILA results in variance that

0.0
10.0
20.0
30.0
40.0
50.0

 500,000 1,000,000 2,000,000 5,000,000 10,000,000

Va
ria

nc
e

Window Size
Reservoir S-VOILA SW-VOILA VOILA

Fig. 26 Sensitivity to the window size: Variance of the sample of different window size, from 5E5 to
1E7, with 10% sample size. Divvy Bikes data

0.0%

0.5%

1.0%

1.5%

2.0%

500,000 1,000,000 2,000,000 5,000,000 10,000,000

Er
ro

r

Window Size
Reservoir S-VOILA SW-VOILA VOILA

Fig. 27 Sensitivity to the window size: Sum query of the sample of different window size, from 5E5 to
1E7, with 10% sample size. Divvy Bikes data

Distributed and Parallel Databases (2021) 39:665–710 707

1 3

is typically close to VOILA, which was given the entire input beforehand, and which
is much smaller than that of algorithms due to prior work. We also show an inherent
lower bound on the worst-case variance of any streaming algorithm for SRS—this limi-
tation is not due to the inability to compute the optimal sample allocation in a stream-
ing manner, but is instead due to the inability to increase sample sizes in a streaming
manner, while maintaining uniformly weighted sampling within a stratum. We also
investigated the more challenging case that is to maintain a streaming SRS over a slid-
ing window. Given the high workspace lower bound we proved, we proposed a SW-
VOILA, practical algorithm that can produce an SRS with good quality using a work-
space that is close to the sample size. Our work also led to a variance-optimal method
VOILA for offline SRS from data that may have bounded strata. Our experiments show
that on real and synthetic data, an SRS obtained using VOILA can have a significantly
smaller variance than one obtained by Neyman allocation.

There are several directions for future research, including (1) restratification in a
streaming manner, (2) handling group-by queries and join queries, (3) incorporating
general versions of time-decay, and (4) SRS on distributed data.

Acknowledgements Nguyen and Tirthapura were supported in part by NSF Grants 1527541 and
1725702.

References

 1. Nguyen, T.D., Shih, M., Srivastava, D., Tirthapura, S., Xu, B.: Stratified random sampling over
streaming and stored data. In: EDBT, pp. 25–36 (2019)

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)
NeyAlloc Senate VOILA

(a) Selectivity=0.25

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)
NeyAlloc Senate VOILA

(b) Selectivity=0.50

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Er
ro

r

Time (Month)
NeyAlloc Senate VOILA

(c) Selectivity=0.75

0.00%
0.01%
0.10%
1.00%

10.00%
100.00%

1 2 3 4 5 6 7 8 9 10 11 12
Er

ro
r

Time (Month)
NeyAlloc Senate VOILA

(d) Selectivity=1.00

Fig. 28 Offline samplers. SUM with different selectivities, sample size = 1 million. OpenAQ data

Distributed and Parallel Databases (2021) 39:665–710708

1 3

 2. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: The aqua approximate query answering
system. In: Proceedings in SIGMOD, pp. 574–576 (1999)

 3. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: Queries with
bounded errors and bounded response times on very large data. In: Proceedings in EuroSys, pp.
29–42 (2013)

 4. Kandula, S., Shanbhag, A., Vitorovic, A., Olma, M., Grandl, R., Chaudhuri, S., Ding, B.: Quickr:
lazily approximating complex adhoc queries in bigdata clusters. In: SIGMOD, pp. 631–646 (2016)

 5. Chaudhuri, S., Das, G., Narasayya, V.: Optimized stratified sampling for approximate query pro-
cessing. ACM TODS (2007). https ://doi.org/10.1145/12425 24.12425 26

 6. Johnson, T., Shkapenyuk, V.: Data stream warehousing in tidalrace. In: Proceeding in CIDR (2015)
 7. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant

streaming computation at scale. In: SOSP, pp. 423–438 (2013)
 8. Neyman, J.: On the two different aspects of the representative method: the method of stratified sam-

pling and the method of purposive selection. J. R. Stat. Soc. 97(4), 558–625 (1934)
 9. Al-Kateb, M., Lee, B.S.: Adaptive stratified reservoir sampling over heterogeneous data streams.

Inf. Syst. 39, 199–216 (2014)
 10. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. Inf. Process. Lett.

97(5), 181–185 (2006)
 11. Meng, X.: Scalable simple random sampling and stratified sampling. In: Proceedings in ICML, pp.

531–539 (2013)
 12. Al-Kateb, M., Lee, B.S.: Stratified reservoir sampling over heterogeneous data streams. In: Proceed-

ings of SSDBM, pp. 621–639 (2010)
 13. Al-Kateb, M., Lee, B.S., Wang, X.S.: Adaptive-size reservoir sampling over data streams. In: Pro-

ceedings in SSDBM, p. 22 (2007)
 14. Bankier, M.D.: Power allocations: determining sample sizes for subnational areas. Am. Stat. 42(3),

174–177 (1988)
 15. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)
 16. Lang, K., Liberty, E., Shmakov, K.: Stratified sampling meets machine learning. In: Proceedings in

ICML, pp. 2320–2329 (2016)
 17. Acharya, S., Gibbons, P., Poosala, V.: Congressional samples for approximate answering of group-

by queries. In: Proceedings in SIGMOD, pp. 487–498 (2000)
 18. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate query processing.

In: Proceedings in SIGMOD, pp. 539–550 (2003)
 19. Joshi, S., Jermaine, C.: Robust stratified sampling plans for low selectivity queries. In: Proceedings

in ICDE, pp. 199–208 (2008)
 20. Ding, B., Huang, S., Chaudhuri, S., Chakrabarti, K., Wang, C.: Sample + seek: approximating

aggregates with distribution precision guarantee. In: SIGMOD, pp. 679–694 (2016)
 21. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream sys-

tems. In: Proceeding in PODS, pp. 1–16 (2002)
 22. Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley, New York (1977)
 23. Haas, P.J.: Data-stream sampling: basic techniques and results. Data Stream Management, pp.

13–44. Springer, Berlin (2016)
 24. Lohr, S.L.: Sampling: Design and Analysis, 2nd edn. Duxbury Press, London (2009)
 25. Thompson, S.K.: Sampling, 3rd edn. Wiley, New York (2012)
 26. Tillé, Y.: Sampling Algorithms, 1st edn. Springer, Berlin (2006)
 27. Mcleod, I., Bellhouse, D.: A convenient algorithm for drawing a simple random sample. J. R. Stat.

Soc. Ser. C 32, 182–184 (1983)
 28. Vitter, J.S.: Optimum algorithms for two random sampling problems. In: Proceeding in FOCS, pp.

65–75 (1983)
 29. Braverman, V., Ostrovsky, R., Vorsanger, G.: Weighted sampling without replacement from data

streams. Inf. Process. Lett. 115(12), 923–926 (2015)
 30. Gemulla, R., Lehner, W., Haas, P.J.: Maintaining bounded-size sample synopses of evolving data-

sets. VLDB J. 17(2), 173–201 (2008)
 31. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data streams. In: Pro-

ceedings in SPAA, pp. 281–291 (2001)
 32. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data. In:

SODA (2002)

Distributed and Parallel Databases (2021) 39:665–710 709

https://doi.org/10.1145/1242524.1242526

1 3

 33. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows. In: Proceedings
in PODS, pp. 147–156 (2009)

 34. Gemulla, R., Lehner, W.: Sampling time-based sliding windows in bounded space. In: SIGMOD
(2008)

 35. Cormode, G., Shkapenyuk, V., Srivastava, D., Xu, B.: Forward decay: a practical time decay model
for streaming systems. In: Proceedings in ICDE, pp. 138–149 (2009)

 36. Cormode, G., Tirthapura, S., Xu, B.: Time-decaying sketches for robust aggregation of sensor data.
SIAM J. Comput. 39(4), 1309–1339 (2009)

 37. Chung, Y., Tirthapura, S.: Distinct random sampling from a distributed stream. In: IPDPS, pp. 532–
541 (2015)

 38. Chung, Y., Tirthapura, S., Woodruff, D.: A simple message-optimal algorithm for random sampling
from a distributed stream. IEEE TKDE 28(6), 1356–1368 (2016)

 39. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous sampling from distributed streams.
JACM (2012). https ://doi.org/10.1145/00000 00.00000 00

 40. Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed streams revisited. In:
DISC, pp. 283–297 (2011)

 41. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows.
SIAM J. Comput. 31(6), 1794–1813 (2002)

 42. Gibbons, P.B., Tirthapura, S.: Distributed streams algorithms for sliding windows. In: SPAA, pp.
63–72 (2002)

 43. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and k-medians over
data stream windows. In: Proceedings of 22nd ACM Symposium on Principles of Database Systems
(PODS), pp. 234–243, June (2003)

 44. Zhang, L., Guan, Y.: Variance estimation over sliding windows. In: PODS, pp. 225–232 (2007)
 45. http://opena q.org
 46. https ://www.divvy bikes .com/syste m-data

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Distributed and Parallel Databases (2021) 39:665–710710

https://doi.org/10.1145/0000000.0000000
http://openaq.org
https://www.divvybikes.com/system-data

	Stratified random sampling from streaming and stored data
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Problem statement
	3 Streaming SRS over an infinite window
	3.1 A lower bound for streaming SRS over an infinite window
	3.2 S-VOILA: streaming algorithm for SRS over an infinite window

	4 Streaming SRS over a sliding window
	4.1 A lower bound for streaming SRS over a sliding window
	4.2 SW-VOILA: a practical algorithm for sliding window SRS

	5 Variance-optimal sample size reduction
	5.1 Sample size reduction by one element
	5.2 Sample size reduction by elements
	5.3 A faster method for sample size reduction by elements

	6 VOILA: variance-optimal offline SRS
	7 Experimental evaluation
	7.1 Sampling methods
	7.2 Data
	7.3 Allocations of samples to strata
	7.4 Streaming with infinite window
	7.4.1 Variance
	7.4.2 Query performance on OpenAQ
	7.4.3 Query performance on bikes

	7.5 Streaming with sliding window
	7.5.1 Memory usage
	7.5.2 Variance
	7.5.3 Query performance
	7.5.4 Sensitivity to the parameters

	7.6 Offline sampling

	8 Conclusions
	Acknowledgements
	References

