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ABSTRACT

One of the most popular applications of Location Based Services
(LBS) is recommending a Point of Interest (POI) based on user’s
preferences and geo-locations. However, the existing approaches
have not tackled the problem of jointly determining: (a) a sequence
of POIs that can be traversed within certain budget (i.e., limit on
distance) and simultaneously provide a high-enough diversity; and
(b) recommend the best origin (i.e., the hotel) for a given user, so
that the desired route of POIs can be traversed within the specified
constraints. In this work, we take a first step towards identifying
this new problem and formalizing it as a novel type of a query.
Subsequently, we present naïve solutions and experimental obser-
vations over a real-life datasets, illustrating the trade-offs in terms
of (dis)associating the initial location from the rest of the POIs.
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1 INTRODUCTION

The advances in networking and location-aware devices [11] have 
enabled the generation of large volumes of data providing unique
opportunities for coupling geo-spatial data (e.g., locations, dis-
tances) with additional context such as properties of venues, users
preferences, popularity, etc. Contrary to the the traditional recom-
mendation systems capable of suggesting items like books, movies,
and other products – the Location-Based Recommendation Sys-
tems (LBRS) [1] fuse them with the functionalities of efficient
location-aware spatial queries processing commonly available by
the Location-Based Services (LBS) [8].

One paradigm that has gained popularity in the past decade are
the, so called, semantic (synonymously, activity or spatio-textual) 
trajectories, which interleave mobility data with the properties
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of activities (e.g., transportation mode, stay) and the Points of In-
terest (POIs) [12]. In addition to their own challenges in terms of
spatio-textual queries processing [5], combining sequences of visits,
activities and properties of POIs with data obtained from Location-
Based Social Networks (LBSN) has enabled further improvements
on the quality of recommendations [2]. However, works targeting
the recommendation of a set of POIs to users [19] do not provide
routes that maximize the number and/or variety of POIs that can
be visited within a given travel-budget. A particular facet of the
problem of recommending a set of POIs (as well as a path (or, a
sequence) of POIs [18]) is to incorporate the (semantic) diversity –
in the sense that the user is enabled to experience POIs with greater
variety of their combined features [16]. Additional types of con-
straints that have been considered include the limit (in terms of
travel-time or travel-distance) that the user may have, along with
the number of POIs in the “budget” [15].

At the heart of the motivation for this work is the observation
illustrated by the following:

Example 1. Alice is attending a conference finishing on November
5th, and her return flight is early on November 7th. As a conscientious
attendee, she will not have any time to explore any attractions in
the venue-city during the conference. She wants to use November
6th for that purpose. Having only a single day, instead of directly
selecting (locations of) specific POIs, she would like to simply put a
limit on the trip for visiting them (as she needs to have a business
diner meeting with folks whom she met at the conference), and provide
a few categories of POIs that she would be interested in visiting. Her
additional objective is to select a hotel from which there exists a path
that allows her to visit such POIs within the allocated time.

It may be tempting to exploit the existing results on 𝑘-Nearest
Neighbor (𝑘NN) for trajectorieswith respect to static points (e.g., [7]),
or recent works on query processing in activity/semantic trajec-
tories [14] to help Alice. However, we note that the nature of the
problem illustrated in Example 1 is rather different: unlike the spa-
tial and spatio-temporal variants, Alice does not specify in advance
the precise sequence of points to be visited. In addition, the existing
approaches which incorporate semantic aspect in the motion, do so
only for known trajectories and do not cater to the diversity aspect.
Complementary to these, the works incorporating the diversity of
the POIs semantic descriptors in motion planning (cf. [15]) have not
addressed the issue of selecting the location before the trip takes
place.

To our knowledge, this is a novel kind of query which com-
bines Semantic Diverse Paths with Range and Origin Constraints
(SP𝑅

𝑂
). In addition to the scenario discussed in Example 1 and other

tourist based scenarios, SP𝑅
𝑂
query is important in domains such

as exploratory process control [13] where one would like to reason
about different executional constraints (i.e., coupling duration with
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diverse classes of events) by also suggesting a proper origin-state
for a given analysis/simulation [3].

The main contributions of this work can be summarized as fol-
lows:

• We introduce and formally define a novel type of query –
SP

𝑅
𝑂
, which can be used to determine path for a semantically

diverse POI sequence and its origin, under semantics and
range constraints.

• We provide real dataset which we use to demonstrate that
naïve approaches for graph exploration that one may thing
of using to answer SP𝑅

𝑂
, cannot guarantee practically ac-

ceptable behavior.

2 PRELIMINARIES AND PROBLEM

DEFINITION

We now formalize the problem statement.
We consider a POI-Augmented Road Network as a weighted di-

rected graph G = (𝑉 , 𝐸), where 𝑉 is a set of vertices and each
vertex 𝑣 ∈ 𝑉 is associated with a (possibly empty) set of POIs 𝑣 .P;
𝐸 ⊆ 𝑉 ×𝑉 represents the set of edges between pairs of vertices and
each edge 𝑒 ∈ 𝐸 is associated with a weight 𝑒.W ∈ R+ representing
the cost of traversing 𝑒 .

In practice, G might be constructed from a regular road network
graph𝐺 = (𝑉𝑟𝑜𝑎𝑑 , 𝐸𝑟𝑜𝑎𝑑 ) where edges in 𝐸𝑟𝑜𝑎𝑑 correspond to road
segments and the vertices𝑉𝑟𝑜𝑎𝑑 are their respective end-points, and
each 𝑣 ∈ 𝑉𝑟𝑜𝑎𝑑 is associatedwith a geo-location 𝑣 .L such as (latitude,
longitude) or (𝑥,𝑦) in a suitable coordinate system. Besides, we
consider a collection of POIs P = {𝑝1, ..., 𝑝 |P |}, where each 𝑝 ∈ P
is characterized by geo-location 𝑝.L, descriptors 𝑝.D and category
𝑝.C.

To generate G = (𝑉 , 𝐸), we consider 𝐺 = (𝑉𝑟𝑜𝑎𝑑 , 𝐸𝑟𝑜𝑎𝑑 ) and
P as inputs and start with adding each 𝑣 ∈ 𝑉𝑟𝑜𝑎𝑑 to 𝑉 (initially
𝑣 .P = ∅), and each 𝑒 ∈ 𝐸𝑟𝑜𝑎𝑑 to 𝐸. If the location of a particular
POI 𝑝 ∈ P coincides with a given 𝑣 ∈ 𝑉 (i.e., 𝑝.L = 𝑣 .L), we
add 𝑝 to 𝑣 .P. However, in practice, a particular POI might not be
located at any 𝑣 ∈ 𝑉 , especially when POI dataset is obtained from
a different source. In such a scenario, we employ map-matching
strategy (cf. [4, 15]) to project a POI 𝑝 ∈ P to the nearest location
on the nearest edge in 𝐺 (which, sometimes may coincide with
a vertex in 𝑉 ). This projected location becomes a new vertex 𝑣𝑝
and is added to 𝑉 , initialized with 𝑣𝑝 .P = {𝑝}. Additionally, a new
vertex splits the associated edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) into two new edges
𝑒𝑖 = (𝑣𝑖 , 𝑣𝑝 ) and 𝑒 𝑗 = (𝑣𝑝 , 𝑒 𝑗 ) added to 𝐸, 𝑒 is removed from 𝐸.

Fig. 1 presents a small-scale example illustrating a POI Road
Network with 12 vertices, 11 of which (𝑣1, . . . , 𝑣11) are part of the
original road network. Five POIs P = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} (shown
as colored rectangles, triangles and diamond, representing three
different categories) are augmented in the network. The locations
of three of them (𝑝1, 𝑝3 and 𝑝5) coincide with locations of vertices
from the road network. When map-matching 𝑝2, it is assigned to
𝑣1 and hence 𝑣1 .P = {𝑝1, 𝑝2}. However, 𝑝4 is projected to a location
𝑣12 among the edge (𝑣7, 𝑣8) and, consequently: (1) . 𝑣12 is added to
𝑉 with 𝑣12 .P = {𝑝4}; (2) . the edge (𝑣7, 𝑣8) is split into (𝑣7, 𝑣12) and
(𝑣12, 𝑣8), added to 𝐸; (3) . the edge (𝑣7, 𝑣8) is removed from 𝐸.

We reiterate that each POI is described by descriptors and a cate-
gory (cf. the table in Fig. 1). Textual descriptors, such as restaurant

Attractions Descriptors Category

𝑝1 {Historical, Cultural, Art} Museum
𝑝2 {Turtle, Tiger, Safari} Zoo
𝑝3 {Fountain, Forest, Playground} Park
𝑝4 {Green, Fish, Monument} Park
𝑝5 {Literature, Art, Painting} Museum

Figure 1: Example of POI Road Network

menus, attraction reviews and keywords, are provided and give a
sufficiently accurate description of corresponding POI. To extract
latent topics from textual descriptors we leverage Latent Dirichlet
allocation (LDA) based diversity [16] in this work to determine the
latent category of each POI.

For a given POI road network G = (𝑉 , 𝐸), a path 𝜋 = [𝑣1, ..., 𝑣 |𝜋 |]
is a sequence of adjacent vertices in G, i.e., ∀ 𝑖 = 1, ..., |𝜋 | : 𝑣𝑖 ∈
𝑉 and ∀ 𝑖 = 1, ..., |𝜋 | − 1 : (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. For a given path 𝜋 ,
its cost is defined as the sum of the weights of traversed edges
𝜋.cost :=

∑ |𝜋 |−1
𝑖=1 𝑒 (𝑣𝑖 , 𝑣𝑖+1) .W, and the set of POIs among a path

𝜋.P :=
⋃ |𝜋 |

𝑖=1 𝑣𝑖 .P – i.e., the union of all the POIs contained in the
vertices along 𝜋 .

We note that a semantic path needs not be simple, i.e., it can
have cycles and visit the same vertex more than once. This is nec-
essary in scenarios where a path needs to collect a POI(s) which
has only one incident edge (i.e., one adjacent vertex). In Fig. 1,
𝜋 = [𝑣8, 𝑣12, 𝑣8, 𝑣3, 𝑣1] is an example of a semantic path having
cost 𝜋.cost = 3 + 3 + 11 + 10 = 27 that includes the set of POIs
𝜋.P = {𝑝4, 𝑝1, 𝑝2}.

Next, we present a few formal definitions.

Definition 1 (Categorical Diversity). Let 𝑪 denote a vector
containing |𝑪 | components for a distinct category. cDiv is a diversity
function mapping a given set of POIs 𝑃 to a vector of length |𝑪 |
where the value of each component corresponds to the number of its
appearances in each category among all the POIs in 𝑃 .

Take the instance from POI road network in Fig. 1, where 𝑪 =

⟨Museum, Park,Zoo⟩. Given 𝜋 = [𝑣2, 𝑣4, 𝑣3, 𝑣8, 𝑣7, 𝑣9], cDiv(𝜋.P) =
cDiv({𝑝3, 𝑝4, 𝑝5}) = ⟨1, 2, 0⟩ representing 1 museum and 2 parks.

Definition 2 (SemanticallyDiverse andRangeConstrained
Path). Let G = (𝑉 , 𝐸) be a POI road network and 𝑪 denote all cate-
gories among the POIs inG. Given a positive value 𝜀 ∈ R+ and a vector
𝜃 = ⟨𝜃1, ..., 𝜃 |𝑪 |⟩ where 𝜃𝑖 (𝑖 = 1, ..., |𝑪 |) ∈ N represents the desired
number of POIs in 𝑖𝑡ℎ category. A path 𝜋 is called a Semantically
Diverse and Range Constrained Path (SP𝑅) if:

𝜋.cost ≤ 𝜀

cDiv(𝜋.P)𝑖 ≥ 𝜃𝑖 (∀ 𝑖 = 1, ..., |𝑪 |)
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The concepts introduced so far are shown in Fig. 1. Assume firstly
that we merely focus on the distance range and consider a distance
limit 𝜀 = 25. Possible 𝜋 ’s could include (but not limited to) 𝜋1 =

[𝑣4, 𝑣2, 𝑣4], 𝜋2 = [𝑣10, 𝑣9, 𝑣7, 𝑣12] and 𝜋3 = [𝑣10, 𝑣8, 𝑣12]. However, if
𝜃 is configured to ⟨1, 1, 0⟩ corresponding to 𝑪 = ⟨Museum, Park,Zoo⟩,
that is to say we prefer at least one museum and one park, then 𝜋2
is the only one satisfying SP

𝑅 .
We recall that in addition to having semantically and “execution-

ally” constrained paths, one may want to impose further constraints
in the origin. For example, in addition to catering to tourist’s varied
interest in terms of POIs, one may want to recommend hotels to
book.

Figure 2: Example of POI Network with Origin locations

Towards that, we consider a subset 𝑂 of the vertices in network
(indicated with red crosses in Fig. 2) to be representatives of an-
other restriction – possible origins for the path. Specifically, we
are interested only in those SP

𝑅s whose starting location is an
element of 𝑂 as valid results. We call this novel (extended) variant
SP

𝑅 – SP
𝑅with origin constraint. The assumption that a particular

𝑜 ∈ 𝑂 is a vertex from POI road network comes without any loss
of generality, as we can project any location to a (potentially new)
network node (for instance, 𝑜2 can be attached to 𝑣2 in Fig. 2).

Definition 3 (SP𝑅
𝑂
). Let G = (𝑉 , 𝐸) be a POI road network, let

𝑂 ⊆ 𝑉 be a set of candidate origin locations, let 𝐶 be a set of POI
categories, let 𝜀 ∈ R+ be a distance threshold, and let 𝜃 ∈ N |𝐶 | be a
vector of numbers of user desired POIs in each category. A Semantically
Diverse Path with Range and Origin constraints (SP𝑅

𝑂
) Query returns

a SP𝑅 from 𝑜 ∈ 𝑄 .

Recent results in [15] have provided a solution to discover a
simplified version of SP𝑅 in POI network, whereby the user must
fix a single unique origin. However, in practice, there might be
numerous candidates for a origin – e.g., a large number of hotels
that can be chosen as starting locations – and the user desires
a recommendation. Thus, the SP

𝑅
𝑂

not only determines an SP
𝑅

satisfying all constraints, but also a preferred origin from 𝑂 .

3 EVALUATIONS AND OBSERVATIONS

Since there are no existing dataset which can be directly used for
evaluating any approaches targeting SP

𝑅
𝑂
-like queries, one of the

tasks for this initial stage was to integrate real data from several
sources. To construct the POI network, we relied on two main re-
sources: road network from OpenStreetMap, and attractions/POIs
along with related reviews from TripAdvisor. The POI network of
New York City, New York, USA contains 56, 730 nodes, 142, 233

edges and 621 POIs. In terms of POIs, on average, each POI has
52.41 reviews and each reviews contains 29.22words. Regarding the
origin locations 𝑂 , 576 accommodations (other than 621 POIs men-
tioned above) in New York City have been considered. The data used
to generate this POI network, as well as the code to generate POI net-
work can be found published at https://github.com/XTRunner/SPRO-
query.git.

Typically, when a problem involves path planning, one would
like to capitalize on existing shortest path algorithms [10]. However,
from a complementary perspective, when designing a path intend-
ing to visit a sequence of vertices on a graph (subject to certain
criteria) – there is the intuition brought about by the Traveling
Salesman Problem (TSP). In our case, we have the following:

Lemma 1. Processing SP𝑅
𝑂
query in NP-hard.

Proof. We reduce the NP-complete Traveling Salesman Prob-
lem (TSP) to a special of a SP

𝑅
𝑂

query having |𝑄 | = 1 (having
a single query location), having 𝜃 = 1 = (1, ..., 1) (requiring to
visit all classes of POIs exactly once), having ∀𝑝𝑖 , 𝑝 𝑗 ∈ P : 𝑝𝑖 ≠

𝑝 𝑗 =⇒ 𝑝𝑖 .𝐶 ≠ 𝑝 𝑗 .𝐶 (no two POIs have the same class), and hav-
ing ∀𝑣 ∈ 𝑉 P : |𝑣 .𝑃 | = 1 (each vertex has exactly one POI). The
traveling salesman problem (TSP) decides if, for a graph 𝐺𝑇𝑆𝑃 =

(𝑉𝑇𝑆𝑃 , 𝐸𝑇𝑆𝑃 ) and a starting note 𝑞𝑇𝑆𝑃 ∈ 𝑉𝑇𝑆𝑃 , there exists a round
trip of distance not greater than 𝜀𝑇𝑆𝑃 that visits all vertices in𝑉𝑇𝑆𝑃
at least once. This can be reduced to a special case of a SP𝑅

𝑂
query

by setting GP = 𝐺𝑇𝑆𝑃 , 𝑄 = 𝑞𝑇𝑆𝑃 , and 𝜀 = 𝜀𝑇𝑆𝑃 . If and only if this
SP

𝑅
𝑂
query returns a path, then the decision of the corresponding

TSP is true (and false otherwise). Since TSP is an NP-complete prob-
lem [9], the problem of answering this special case of a SP𝑅

𝑂
query

is NP-hard, and the general problem of answering SP
𝑅
𝑂
queries is

also NP-hard. □

In this preliminary stage, we resort to exploring the benefits of
certain popular heuristics and conduct a comparison evaluation
between them. Dijkstra algorithm [6] is one of the most popular
shortest-path algorithms. However, it does not consider any prefer-
ence on the vertices among the retrieved path. In our settings of
SP

𝑅
𝑂
query, one natural extension of Dijkstra algorithm would be

greedily collecting the next nearest POI, which is demanded in 𝜃 ,
from the current location. From the origins𝑂 , Dijkstra algorithm is
employed to find the nearest POI 𝑝 , which is then used as the new
initial location and we search for the next nearest POI from 𝑝 . The
whole greedy process will be terminated until the distance budget
is exploited and we call it Greedy-Dijkstra searching strategy. Aside
of them, another option we utilize in this work is Random Walk
with Restart (RWR) [17]. RWR starts from a random vertex among
the origins 𝑂 and creates a random path using adjacent edges until

(1) the generated path satisfies all POI categories in 𝜃 . In this
case, the path is returned;

(2) the length of the generated path is greater than 𝜀. In this
case, the algorithm restarts;

(3) a time limit is reached. In this case, None is returned.
For our experiments, we use |C| = 6 different POI categories cor-

responding to the number of latent topics yielding the highest topic
coherence. To thoroughly evaluate different searching algorithms,
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# of Origins Found? Dijkstra Greedy-Dijkstra RWR ×3

576 Y 928 975 509
N 134 87 553

200 Y 894 947 701
N 168 115 361

60 Y 830 875 645
N 232 187 417

Table 1: Comparison of results

177 different category preferences 𝜃 (i.e., the number of POIs pre-
ferred which are distributed in different categories) were randomly
generated by (1) choosing an integer 𝑘 uniformly at random be-
tween 1 and 5 as the user desired number of POIs, and (2) choosing
𝑘 categories with replacement from C. In terms of distance budget,
500, 700, 1000, 1500, 2500 and 3500 meters are evaluated. Moreover,
we realize the pool of origins might as well influence the perfor-
mance. Thus, we evaluate experiments having all 576 origins, as
well as subsets of random samples of size 200 and 60.

The experiments are conducted on a PC with Intel(R) Xeon(R)
CPU 𝐸3-1240 v6@3.70GHz and 32GB RAM.Windows 10 Enterprise
64-bit is the operating system, and all the algorithms are imple-
mented by Python 3.7. Both the POI network and code are available
at https://github.com/XTRunner/SPRO-query.git.

Table. 1 illustrates the effectiveness benefits (and, implicitly, the
efficiency trade-off) between three most popular searching strate-
gies introduced above. Specifically, the first column shows the num-
ber of origins. The values of the second column are labels ‘Y’ or ‘N’,
indicating whether any path satisfied SP𝑅

𝑂
query was Found or Not,

respectively. Finally, for each row corresponding to the number of
origins, the specific values in each sub-row indicate the number of
Found (resp. Not Found) paths by the respective approaches. As
mentioned earlier, a time limit determines the termination of RWR.
In our experiments, we triple the maximum/worst searching time
of Dijkstra and Greedy-Dijkstra algorithms, and use it as the termi-
nate condition for RWR. As can be seen, Greedy-Dijkstra strategy
outperforms the other two algorithms in all settings. However, on
the opposite, RWR always find the least number of demanded paths
even if it was granted three times longer of the searching time.
When the number of origins increases, Dijkstra and the greedy
variant are capable to discover more satisfied paths since the more
origins, the greater flexibility of initial locations we have. Besides,
another interesting observation from Table. 1 is the relationship
between the number of origins and the searching time. We can
discover from the last column that for RWR, the number of found
paths drops when the number of origins increases from 200 to 576,
which is different from the other two algorithms. The reason is that
plenty of origin locations allows Dijkstra and the greedy variant
quickly discover a valid path and hence the time limit for RWR will
be shortened. Last note we want to emphasis is that those cases
which do not find any satisfied path might be due to the nonexis-
tence of solution at all – e.g., find a path with 2 museums and 3
parks within 500 meters.

4 CONCLUSION

We introduced a novel query – SP
𝑅
𝑂

, which returns not only a
semantically diverse path along which the POIs fail within a certain
cumulative distance range, but also considers constrains on the set

of possible origin-locations. SP𝑅
𝑂
enables tourists to concomitantly

select a hotel and obtain a customized path for visiting POIs.
We note that we constructed an actual POI network based on

real data, which can be useful for the further research since, at the
time of this work, there is no online available resource of such data.
We integrated OpenStreetMap and TripAdvisor to generate our
datasets.

There are several directions of our future work. First and fore-
most, we would like to extend the definition of SP

𝑅
𝑂

so that it
can incorporate well-defined preferences and/or optimization crite-
ria. Concomitantly, we will explore the development of novel data
structures that would enable more efficient processing of SP𝑅

𝑂
.

Complementary to these, we would like to incorporate the time-
dependency when catering to the travel constraints/budget, to cap-
ture the fact that different starting times may impact the generated
paths corresponding to a solution of SP𝑅

𝑂
.
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