
IEEE TR. MEDICAL IMAGING 1

Blind Primed Supervised (BLIPS) Learning for
MR Image Reconstruction

Anish Lahiri, Student Member, IEEE , Guanhua Wang, Student Member, IEEE ,
Saiprasad Ravishankar, Senior Member, IEEE , Jeffrey A Fessler, Fellow, IEEE

Abstract— This paper examines a combined supervised-
unsupervised framework involving dictionary-based blind
learning and deep supervised learning for MR image re-
construction from under-sampled k-space data. A major
focus of the work is to investigate the possible synergy of
learned features in traditional shallow reconstruction using
adaptive sparsity-based priors and deep prior-based recon-
struction. Specifically, we propose a framework that uses
an unrolled network to refine a blind dictionary learning-
based reconstruction. We compare the proposed method
with strictly supervised deep learning-based reconstruc-
tion approaches on several datasets of varying sizes and
anatomies. We also compare the proposed method to al-
ternative approaches for combining dictionary-based meth-
ods with supervised learning in MR image reconstruction.
The improvements yielded by the proposed framework sug-
gest that the blind dictionary-based approach preserves
fine image details that the supervised approach can itera-
tively refine, suggesting that the features learned using the
two methods are complementary.

Index Terms— Magnetic resonance image reconstruc-
tion, deep learning, dictionary learning, inverse problems,
unrolled neural networks, sparse representations.

I. INTRODUCTION

Reconstruction of images from limited measurements re-
quires solving an ill-posed inverse problem. In such prob-
lems, additional regularization is typically used. Often, such
regularization reflects ‘prior’ knowledge about the class of
images being reconstructed. Traditional regularizers exploit
the sparsity of images in some domains [1], [2], or low-
rankness [3], [4]. Compared to using a fixed regularizer, such
as total variation (TV) or wavelet sparsity-based regularization,
data-driven or adaptive regularization has proven to be very
beneficial in several applications [5]–[10]. In this form of
reconstruction, one or more components of the regularizer,
such as a dictionary or sparsifying transform, are learned from
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data adaptively, rather than being fixed to mathematical models
like the discrete cosine transform (DCT) or wavelets. In
particular, methods that exploit the sparsity of image patches
in a learned transform domain or express image patches as
a sparse linear combination of learned dictionary atoms have
found widespread use in regularized MR image reconstruction
[11]–[15].

A subset of this class of adaptive reconstruction algorithms
relies only upon the measurements of the image being re-
constructed to learn dictionaries or transforms, and uses no
additional training data. These methods are dubbed blind
learning-based reconstruction algorithms or blind compressed-
sensing methods [16], [17]. One advantage of patch-based
dictionary-blind reconstruction algorithms is that they do not
require much (or any) training data to operate, and effectively
leverage unique patterns present in the underlying data.

With the success of deep-learning-based methods for com-
puter vision and natural language processing, there has also
been a rise in methods that use neural networks to “regularize”
(often in implicit manner) MRI reconstruction problems [18]–
[22]. Some works treat reconstruction as a domain adaptation
problem similar to style transfer and in-painting [23]–[26].
Correspondingly, image refinement networks, such as the U-
net [27], were adopted to correct the aliasing artifacts of
the under-sampled input images. Although such CNN-based
reconstruction methods achieved improved results compared
to compressed sensing (CS) based reconstruction, the stability
and interpretability of these models is a concern [28].

Besides improvements through algorithms, another driving
force for supervised learning-based reconstruction is the cura-
tion of publicly available datasets for training. The availability
of pairwise training data owing to initiatives like [29], [30]
has further helped showcase the ability of deep learning-based
algorithms for extracting or representing image features, and
in learning richer models for image reconstruction in MR
applications. These methods, due to their reliance on pixel-
wise supervision perform exclusively supervised learning-
based reconstruction, barring a few exceptions [31], [32].

Consequently, due to the popularity and computational effi-
ciency of deep learning approaches across MRI applications,
there has been a rising trend of favoring deep supervised
methods over shallower dictionary-based methods—perhaps
because the latter methods use “handcrafted” priors.

The rising popularity of supervised deep learning compared
to shallow blind-dictionary learning may be based on an
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underlying assumption that the features learned using rel-
atively unrestricted supervised deep models subsume those
learned in a blind fashion, and other sparsity-based priors that
are deemed “handcrafted”. Though supervised deep-learned
regularization may allow for the learning of richer models in
reconstructing MR images, the aforementioned assumption is
largely untested. Moreover, deep CNNs often require relatively
large datasets to train well. This paper seeks to address these
issues.

This work studies the processes of blind learning-based
and supervised learning-based MRI reconstruction from under-
sampled data, and highlights the complementarity of the two
approaches by proposing a framework that combines the two
in a residual fashion. We implement and compare multiple
approaches for combining supervised and blind learning.

Our results indicate that supervised and dictionary-based
blind learning may learn complementary features, and com-
bining both frameworks using “BLInd Primed” Supervised
(BLIPS) learning can significantly improve reconstruction
quality. In particular, the combined reconstruction better pre-
serves fine higher-frequency details that are very important in
many clinical settings. We also find that this improvement from
combining blind and supervised learning is relatively robust to
changes in training dataset size, and across different imaging
protocols.

The rest of this paper is organized as follows. Section II
describes the blind and supervised learning-based approaches
and the proposed strategies for combining them. Section III
details the experiment settings, including datasets, hyper-
parameters, and control methods. Section IV presents the
results and Section V provides related discussion. Finally,
Section VI explains our conclusions and plans for future work.

II. PROBLEM SETUP AND ALGORITHMS

This work combines two modern approaches to MR image
reconstruction: dictionary-based blind learning reconstruction
and CNN-based supervised learning reconstruction. The for-
mer approach capitalizes on the sparsity of natural images in
an adaptive dictionary model. Usually, this method involves
expressing patches in the MR image as a linear combination of
a small subset of atoms or columns of a dictionary. Across sev-
eral applications, including MR image reconstruction, learned
or adaptive dictionaries often provide better representations
of signals than fixed dictionaries. When these dictionaries
are learned from the image being reconstructed, using no
additional information, they are called blind, and can be
considered to be ‘tailored’ specifically to the reconstruction
at hand. Since individual image patches are approximated by
different atoms, overcomplete dictionaries are often preferred
for this approach because of their ability to provide richer
representations of data.

For supervised learning reconstruction, this paper uses
an unrolled network algorithm similar to the state-of-the-art
method MoDL [20], whose variants have achieved top perfor-
mance in recent open data-driven competitions in MR recon-
struction [18], [33]. As ‘unrolled’ implies, the method consists
of multiple iterations or blocks. In each iteration, a CNN-based

denoiser updates the image from the previous iteration. A
subsequent data-consistency update ensures the reconstructed
image is consistent with the acquired k-space measurements.
By incorporating CNNs into iterative reconstruction, MoDL
demonstrates improved reconstruction quality and stability
compared to other direct inversion networks on large public
datasets [18].

Given a set of k-space measurements yc ∈ Cp, c =
1, . . . , Nc, from Nc coils with corresponding system matrices
Ac ∈ Cp×q, c = 1, . . . , Nc, this section reviews the proce-
dures of reconstruction using blind and supervised learning,
and then proposes a method for combining them, along with
a few special cases. We write the system matrix for the cth coil
as Ac = PFVc, where P ∈ {0, 1}p×q incorporates the mask
that describes the sampling pattern, F ∈ Cq×q is the Fourier
transform matrix and Vc ∈ Cq×q is the cth coil-sensitivity
diagonal matrix, pre-computed from fully sampled k-space
using the E-SPIRiT algorithm [34].

A. Reconstruction using Blind Dictionary Learning
Like most model-based regularized reconstruction ap-

proaches, the blind sparsifying dictionary learning-based re-
construction scheme solves for an image x that is consistent
with acquired measurements, and possesses properties that are
ascribed to the image (or a class of images). Mathematically,
the approach optimizes a cost function that balances a data-
fidelity term and a data-driven sparsity inspired regularization
term as follows [35]:

arg min
x

ν

Nc∑
c=1

‖Acx− yc‖22 +R(x), (1)

where ν > 0 reflects confidence in data fidelity and R(x)
is a regularizer that, in the case of synthesis dictionary-based
regularization, reflects the presumed sparsity of image patches
as follows:

R(x) = min
D,Z

N1∑
j=1

‖Pjx−Dej‖22 + λ2‖ej‖0

s.t. ‖du‖2 = 1 ∀ u,

(2)

where Pj extracts the jth
√
r ×
√
r overlapping patch of

an image as a vector, D ∈ Cr×U denotes an overcomplete
dicitionary, du its uth atom, ej the sparse codes for the jth
patch and the jth column of Z, and λ is the sparsity penalty
weight for dictionary learning, respectively.

A typical approach to solving this blind dictionary learning
reconstruction problem is to alternate between updating the
dictionary and sparse representation in (2) using the current
estimate of the image x, called dictionary learning, and then
updating the reconstructed image itself (image update) through
(1) using the current estimate of the regularizer parameters
[36]. This alternation between dictionary learning and image
update is repeated several times to obtain a clean recon-
struction. Let Bi(·) denote the function representing the ith
iteration of this algorithm, and xi ∈ Cq be the reconstructed
image at the start of the iteration, then we have

xi+1 = Bi(xi) = B
(
xi; νi, λi, {Ac,yc}Nc

c=1

)
, (3)
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where νi, λi denote regularization parameters at the ith iter-
ation for data fidelity and for dictionary learning, respectively.
After K iterations, we have,

xblind = xK =

(
K−1

i=0

Bi

)
(x0), (4)

where F
i=1 represents the composition of F functions fF ◦

fF−1◦ . . .◦f1, and x0 is an inital image, possibly a zero-filled
reconstruction.

In this work, we used a few iterations of the SOUP-DIL
algorithm [36] for the dictionary and sparse representation
update (or dictionary learning) in (2) and the conjugate gra-
dient method for the image update step. (See next section for
details.)

In our comparisons, we also investigated a similar iterative
scheme as in (3), but the dictionary D in (2) is not learned
from data, and is instead fixed (e.g., to a discrete cosine
transform (DCT) or wavelet basis).

B. Reconstruction using Supervised Learning
The supervised learning module (MoDL [20]) also aims to

solve (1). Introducing an auxiliary variable z, (1) becomes:

arg min
x,z

ν

Nc∑
c=1

‖Acx− yc‖22 + µ‖x− z‖22 +R(z), (5)

where µ controls the consistency penalty between x and z.
MODL updates x and z in alternation. The z update is:

zl+1 = arg min
z

R(z) + µ‖xl − z‖22. (6)

We replace the proximal operator in (6) with a residually
connected denoiser Dθ + I applied to xl, where I is the
identity mapping.

The x update involves a regularized least-squares minimiza-
tion problem:

xl = arg min
x

ν

Nc∑
c=1

‖Acx− yc‖22 + µ‖x− zl‖22, (7)

solved via conjugate gradient method.
Similar to blind learning, the lth iteration of supervised

residual learning-based reconstruction algorithm can be writ-
ten:

xl+1 = Sθl (xl) = S
(
xl; νl, {Ac,yc}Nc

c=1

)
,

S
(
x̄; ν, {Ac,yc}Nc

c=1

)
,

arg min
x

ν

Nc∑
c=1

‖Acx− yc‖22 + ‖x−
(
Dθ(x̄) + x̄

)
‖22,

(8)

where x̄ denotes the input image for the residual learning-
based reconstruction algorithm. After L iterations, we have

xsupervised = xL =

(
L−1

l=0

Slθ

)
(x0). (9)

The network parameters θ are learned in a supervised manner
so that xsupervised matches known ground truths (e.g., in mean
squared error or other metrics) on a training data set.

C. Combining Blind and Supervised Reconstruction

Fig. 1 (P1) depicts our proposed BLIPS approach to com-
bining blind and supervised learning. The skipped connection
in the deep network enables the addition of the previous iterate
to the output of the denoiser during supervised reconstruction,
and ensures separation (the output of the residual denoiser
gets added to the blind image going into data consistency)
of the blind learned image and the supervised learned image
in the first iteration when the aforementioned algorithms are
combined. In subsequent iterations, this skipped connection
also causes the denoiser to learn residual features after the
combination of blind and supervised learning in the previous
iteration. The output of the full pipeline of our proposed
method Fig. 1 (P1) is:

(P1) x̂ =

(
L−1

l=0

Slθ

K−1

i=0

Bi

)
(x0) , Mθ(x0). (10)

D. Training the Denoiser Network

The denoiser Dθ shares weights across iterations. To train it,
we use the output of our proposed pipeline (P1) in a combined
`1 and `2 norm training loss function as follows:

θ̂ = arg min
θ

N2∑
n=1

Cβ(Mθ(x
(n)
0 );x

(n)
true) = arg min

θ

N2∑
n=1

(∥∥x(n)
true −Mθ(x

(n)
0 )
∥∥2

2
+ β

∥∥x(n)
true −Mθ(x

(n)
0 )
∥∥

1

)
,

where n indexes the training data consisting of target im-
ages x

(n)
true reconstructed from fully sampled measurements

and corresponding undersampled k-space measurements, and
Cβ(x̂;xtrue) denotes the training loss function. The initial
x

(n)
0 are obtained from the undersampled k-space measure-

ments using a simple analytical reconstruction such as zero-
filling inverse FFT reconstruction. Our implementation used
β = 0.01 in (11), which was chosen empirically.

E. Direct Addition of Blind and Supervised Learning

A special case we investigate is when there is no residual
connection in (P1), and we add the blind reconstruction output
directly to the output of the supervised deep network during
the data consistency update, as described in (11) below. Similar
to (P1), the input to the supervised module is also the blind
reconstruction output. We express an iteration of such an
algorithm as follows:

xl+1 = S̃lθ(xl) = S̃
(
xl;xblind, νl, {Ac,yc}Nc

c=1

)
,

S̃(x;x′, ν, {Ac,yc}Nc
c=1) = arg min

x̄

ν

Nc∑
c=1

‖Acx̄− yc‖22 + ‖x̄−
(
Dθ(x) + x′

)
‖22, (11)

where x0 = x′ is the initial input to the supervised module.
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Fig. 1. Proposed pipelines (P1), (P2) and (P3) for combining blind and supervised learning-based MR image reconstruction.

After L iterations, the reconstruction is:

(P2) x̃ =

(
L−1

l=0

)
S̃lθ(xl) = M̃θ(xblind), (12)

where xblind =
(

K−1
i=0 Bi

)
(x0), as depicted in Fig. 1 (P2).

The training loss for this variation is:

θ̂ = arg min
θ

N2∑
n=1

Cβ(M̃θ(x
(n)
blind);x

(n)
true). (13)

F. Combined Supervised and Blind Learning with
Feedback

Since iterations of blind learning-based reconstruction take
significantly longer than propagating an image through a
deep network, we investigated a feedback-based pipeline that
reduces computation by only approximately optimizing the
objective of blind learning reconstruction (using an outer
single iteration of the blind learning module) that in turn
is warm-started by a supervised learning reconstruction. The
result of partial blind learning is then fed into a second stage
with a supervised deep network similar to (P1), as depicted
in Fig. 1 (P3), introducing image-adaptive features that may
improve image quality. Essentially, the output for this pipeline
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can be expressed as:

(P3) x̂ =

(
L2−1

l=0

Slθ2 ◦B
1 ◦

L1−1

l=0

Slθ1

)
(x0)

= M̄θ1,θ2(x0),

(14)

where θ1 and θ2 are the weights of the initial and second stage
unrolled networks, respectively. The training losses for these
unrolled networks are:

θ̂1 = arg min
θ1

N2∑
n=1

Cβ(M̄θ1(x
(n)
0 );x

(n)
true), (15)

θ̂2 = arg min
θ2

N2∑
n=1

Cβ(M̄θ1,θ2(x
(n)
0 );x

(n)
true), (16)

respectively, where M̄θ1(x0) =
(

L1−1
l=0 Slθ1

)
(x0) and the

other symbols are as explained above. We train θ1 and θ2

separately in two stages. The training of θ2 starts after θ1

converges. The combination of supervised and partial blind
learning could be iterated. We worked with a two-stage
network architecture and a single iteration of blind learning
optimization to keep computations low.

III. EXPERIMENTAL FRAMEWORK

A. Training and Test Dataset
We trained and tested both our method and a strict su-

pervised learning-based method with the same deep learning
architecture (described below) on two datasets1. The first was a
randomly selected subset from the fastMRI knee dataset, while
the second consisted of the entire fastMRI brain dataset [29].
In the first case, our dataset for training and testing consisted
of 8705 knee images, and were used in experiments involving
the proposed pipelines in (P1) and (P2). We used smaller and
randomly-selected subsets for our various experiments, which
is described in detail in section IV.

To test the pipeline proposed in (P3), we used the fastMRI
Brain dataset, consisting of 23220 T1 weighted images, 42250
T2 weighted images and 5787 FLAIR slices. For each contrast,
we reserved 500 images as the test data and the rest for training
and validation.

All sensitivity maps were estimated using the ESPIRiT
[34] method. The details of the algorithms in our work are
explained below.

B. Undersampling Masks
For experiments with the pipeline (P1), we used three types

of undersampling masks. First, we used the 5× Cartesian
phase encode undersampling mask shown in Fig. 2(a) that
was held fixed across training and test images. This pattern
had 29 fully sampled lines in the center of the k-space,
and the remaining lines were sampled uniformly at random.
We similarly tested (P1) on 2D Poisson-disk Cartesian un-
dersampling at 20× acceleration. Finally, we tested (P1) by
varying the 1D phase encode undersampling mask Fig. 2(a)

1The code will be publicly available on Github if accepted.

used across training and test images randomly, to further
evaluate its generalizability across different sampling patterns.
For this purpose, we used ≈ 4.5× undersampling, and 24 fully
sampled k-space lines. Pipeline (P2) was tested using only the
sampling pattern in Fig. 2(a), while (P3) was tested using 8×
equidistant acceleration mask shown in Fig. 2(c), as well as
the 1D phase encode mask in Fig. 2(a). This mask had 4%
fully sampled lines at the center of k-space [29].

(a) (b) (c)

Fig. 2. Undersampling masks used in experiments: (a) 5-fold un-
dersampled 1D Cartesian phase-encoded; (b) 20-fold undersampled
Cartesian Poisson-disk; and (c) 8× equidistant.

C. Blind Dictionary Learning-based Reconstruction
We used the SOUP-DIL algorithm [36] to perform blind dic-

tionary learning-based reconstruction initialized with a ‘zero-
filled’ reconstruction of the data. In both (P1) and (P2), we
set the number of outer iterations to be K = 20, and each
outer iteration had 5 inner iterations of dictionary learning
and sparse-coding. We set νi = 8 × 10−4 and λi = 0.2
across iterations, respectively. The dictionary size was 36×144
and the initial dictionary was an overcomplete inverse DCT
matrix, while the sparse code matrix was initialized with
zeros. We used conjugate gradient method to perform the
data consistent image update. It required ≈ 170 seconds to
perform 20 iterations of SOUP-DIL reconstruction of a single
640× 368 image slice, on an Intel(R) Xeon(R) E5-2698 with
40 cores. For (P3), we used only one (K = 1) iteration of
SOUP-DIL reconstruction with ν = 0.5 and λ = 0.8 on
the fastMRI brain dataset (when used on the knee dataset,
these were fixed to values mentioned earlier). For experiments
involving the fastMRI brain dataset and pipeline (P1), we only
use K = 3 outer iterations of SOUP-DIL reconstruction, due
to the huge dataset size. A single iteration of SOUP-DIL took
≈ 6.5 seconds to reconstruct a 640× 320 image on the same
server. (Table VIII in the Supplementary Materials compares
reconstruction time for different methods.)

When performing non-adaptive dictionary-based reconstruc-
tion, we fixed the dictionary to its inverse DCT initialization
across all iterations, while keeping all other algorithm parame-
ters unchanged. The experiment and results are shown in Sec.
VII-A of Supplementary Materials.

An additional experiment compared the compressed sensing
algorithm against blind dictionary learning. We used the MRI
reconstruction instance included in the SigPy package2, which
uses the primal-dual hybrid gradient (PDHG) algorithm and 30
iterations. The sparsity penalty is the `1 norm of a orthogonal

2https://github.com/mikgroup/sigpy

https://github.com/mikgroup/sigpy
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discrete wavelet transform, with a weight of 10−7 compared
with the data-fidelity term.

D. Supervised Reconstruction
The denoiser Dθ we used is the Deep Iterative Down-

Up Network [37], which has been shown to be efficient on
previous benchmark research with the same fastMRI dataset
[18] and in an image denoising competition [38]. Real and
imaginary component of the complex-valued images are for-
mulated as two input channels of the network. The magnitude
of the input image is normalized by the median absolute value.
The batch size is set to 4. We set the data-fidelity weight ν = 2
for the supervised learning.

In each iteration of (8), we used the conjugate gradient
method to solve the least-squares minimization problem. Back-
propagation of the least-squares problem (calculation of the
Jacobian-vector product) is also performed using the conjugate
gradient method. Here we set L = 6 to balance reconstruction
quality and model dimension. In the inference phase, the time
cost is around 1.2s for a 20-channel 640 × 320 slice on a
single Nvidia(R) GTX1080Ti GPU. For a fair comparison,
the denoiser training settings are the same between different
scenarios in Section IV. The number of epochs is set to 40,
with a linearly decaying learning rate from 1e-4 to 0. The
optimizer was Adam [39], with parameter βs = [0.5, 0.999].

E. Performance Metrics
For a quantitative comparison of the reconstruction quality,

we used three common metrics: peak signal-to-noise ratio
(PSNR, in dB), structural similarity index (SSIM) [40], and
high-frequency error norm (HFEN) [12], to measure the simi-
larity between reconstructions and ground truth. The HFEN
was computed as the `2 norm of the difference of edges
between the input and reference images. Laplacian of Gaussian
(LoG) filter was used as the edge detector. The kernel size was
set to 15× 15, with a standard deviation of 1.5 pixels.

IV. RESULTS

A. Comparing Blind+Supervised vs Strictly Supervised
Reconstruction

Table I compares the performance of combined blind and
supervised learning versus strictly supervised learning on
datasets of various sizes using (P1). We used 4 training dataset
sizes: 1105, 2244, 4198, and 8205 slices. 10% for each training
set was reserved for validation purposes. The test set consisted
of 500 different slices. Training/validation set and test set are
from different subjects to avoid data leakage between slices.

Our proposed method’s improvements are fairly robust even
when the total dataset size increases, as illustrated in Fig. 3
that depicts Table I as a bar chart. Moreover, for small-scale
datasets, which are usually the case in medical imaging, our
method still provides significant improvements over the strict
supervised scheme. We conjecture that the blind learning-
based reconstruction provides an image where many artifacts
have been resolved and details have been restored that the
supervised learning reconstruction can further refine.

Tables II and III display the quantitative results with the
2D Poisson disk Cartesian sampling pattern and 1D variable
density Cartesian sampling mask (changing randomly across
training and test cases), respectively. The training/validation
set consisted of 4198 slices and the test set consisted of 500
slices (same as the 4198/500 slices in the previous case).
The improvement provided by our scheme (B+S) over strict
supervised learning (S) holds for multiple sampling masks,
and is significant under the paired t-test (P < 0.005).

To support the assertion that BLIPS can learn different
features than supervised learning, Figs. 4, 5, and 6 also
display example slices. Compared to supervised learning, the
most obvious difference in the combined model is the better
restoration of fine details. It can be seen that in the blind
dictionary learning results, a fair amount of fine structure is
already recovered from the aliasing artifacts. The dictionary
learning results provide a foundation for supervised learning
to then residually reduce aliasing artifacts while preserving
these details. This is also strongly implied by our observations
in Section VII B and accompanying Fig. 9.

Table IV compares the proposed BLIPS techniques to strict
supervised learning, and to supervised learning initialized
with compressed sensing. The compared methods were
trained and tested on identical datasets (4198 slices). The
results indicate that the S+B+S BLIPS reconstruction yields
the best performance, and the B+S reconstruction provides
the second best performance. However, even compressed
sensing reconstruction combined with supervised learning-
based reconstruction performs better than strict supervised
learning-based reconstruction.

B. Strict Separation of Blind and Supervised Learning
Reconstruction

Table V compares explicitly combining blind and
supervised learning using (P2) without residual learning
against the proposed method for combining blind and
supervised learning. The sampling pattern here is the same as
in Fig. 2a. The dataset is the same as the 8205/500 case in
Table I. Compared to explicit consistency with blind learning
results, our latent approach reaches a better result. The results
demonstrate that rather than a fidelity prior, the blind learned
reconstruction works better as an input to the deep residual
network for further refinement.

C. Combined Supervised and Blind Learning with
Feedback

For the large-scale brain dataset, we tested the idea of
using a supervised learning network’s output as a potentially
improved initialization for blind learning (14). The blind
learning cost is then optimized for a single iteration with
this improved initialization to incorporate additional details
captured with blind learning to improve the first supervised
network’s reconstruction. The blind learning result is passed
on to another (second) stage of supervised learning. The
networks’ parameters θ1 and θ2 are pre-trained on all three
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Dataset Size 8205 4198 2244 1105
Method S B+S S B+S S B+S S B+S
SSIM 0.944 0.947 0.942 0.946 0.939 0.943 0.930 0.941

PSNR (dB) 35.44 35.70 35.09 35.53 34.65 35.05 33.92 34.82
HFEN 0.450 0.433 0.470 0.443 0.494 0.471 0.538 0.484

Table I: Comparison of supervised learning-based reconstruction (S) versus our proposed combined blind and supervised learning-based
reconstruction (B+S) using (P1) at various knee training dataset sizes for 5× acceleration using 1D Cartesian undersampling. The undersampling
mask in Fig. 2a was held fixed for training and testing. Bold digits indicate that B+S method performed significantly better than the S method
under pairwise t-test (P < 0.005).

Fig. 3. Comparison of strict supervised learning-based reconstruction
with BLIPS reconstruction across various knee dataset sizes. Table I
shows the corresponding quantitative values.

Recon. Method Supervised Blind Blind+Supervised
SSIM 0.960 0.949 0.963

PSNR (dB) 35.33 33.38 35.81
HFEN 0.434 0.507 0.403

Table II: Comparison of supervised learning-based reconstruction
versus our proposed BLIPS and blind learning-based reconstruction
using (P1) for 20 × acceleration using Cartesian 2D Poisson disk
undersampling with mask shown in Fig. 2b. The fastMRI knee
dataset was used for training and testing. Bold digits indicate that
B+S method performed significantly better than the S method under
paired t-test (P < 0.005).

Recon. Method Supervised Blind Blind+Supervised
SSIM 0.954 0.945 0.957

PSNR (dB) 34.34 32.79 34.80
HFEN 0.308 0.360 0.284

Table III: Comparison of performance of supervised learning-based
reconstruction against our proposed BLIPS and blind learning-based
reconstruction using (P1) for ≈ 4.5× acceleration using random
variable density 1D sampling mask (changing randomly across
training and test cases). The fastMRI knee dataset was used for
training and testing. Bold digits indicate that B+S method performed
significantly better than the S method under paired t-test (P < 0.005).

Recon. Method S B CS+S B+S S+B+S
SSIM 0.942 0.906 0.943 0.946 0.948

PSNR (dB) 35.09 30.29 35.24 35.53 35.83
HFEN 0.470 0.648 0.464 0.443 0.426

Table IV: Comparison of supervised learning-based reconstruction
versus various proposed BLIPS reconstruction approaches using
(P1) and (P2), and CS-initialized supervised reconstruction for
5× acceleration using 1D Cartesian undersampling with mask
shown in Fig. 2a. Training was performed using 4198 knee slices
from the fastMRI Knee dataset. Bold digits indicate that S+B+S
method performed significantly better than the S method and CS+S
method under paired t-test (P < 0.005).

Recon. Method Explicit Proposed
Blind + Supervised Blind + Supervised

SSIM 0.938 0.946
PSNR (dB) 34.29 35.53

HFEN 0.495 0.443

Table V: Comparison of combined blind and supervised learning using
(P1) versus explicit addition of blind and supervised learning using (P2)
for the mask in Fig. 2a. Training was performed using 4198 knee slices
from the fastMRI Knee dataset. Bold digits indicate that B+S method
performed significantly better than the explicit blind + supervised method
under paired t-test (P < 0.005).

contrasts and fine-tuned on individual contrast, including T1w,
T2w and FLAIR. As a control method, we concatenated
two supervised learned networks sequentially, which can also
improve the reconstruction performance compared with a
single unrolled supervised network, and demonstrates substan-
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tial improvements in PSNR, SSIM, and HFEN for S+B+S
with a large dataset. We also compare to deep supervised
reconstruction preceded by a few iterations of blind dictionary
learning. (We used 3 iterations here due to the time constraints
associated with generating data for the large fastMRI brain
dataset.)

Table VI summarizes the results of this comparison,
showing that while S+B+S performs the best, even B+S
(which on the brain dataset, only used 3 iterations of
SOUP-DIL reconstruction in the blind module) manages
to out perform strict supervised learning in most contrasts.
Fig. 7 shows an example slice for this comparison. Again,
combined blind and supervised learning using (P3) preserves
finer details better than cascaded strict supervised learning.

D. Performance in the Presence of Planted Features
To compare the ability of BLIPS reconstruction and strictly

supervised reconstruction to faithfully reproduce image fea-
tures that are not present in the training dataset (as is often
the case with identifying pathologies, etc.), we planted some
features in a knee image from the fastMRI dataset, from
which raw k-space was simulated and undersampled, inspired
by [28]. The undersampling pattern was 1D variable density
≈ 4.5×, and was chosen at random to further test robustness.

Fig. 8 shows the aforementioned comparison. The BLIPS
reconstruction reproduces the planted features with signifi-
cantly higher fidelity than strict supervised reconstruction, and
has much fewer aliasing artifacts, as is evident from the residue
maps (also pointed out by the blue arrows in the figure). The
details or edges of the planted features are better preserved
in the BLIPS reconstruction compared to strict supervised
learning-based reconstruction. The phenomena are consistent
across simulated attempts we have tried.

V. DISCUSSION

This work investigated the combination of blind and su-
pervised learning algorithms for MR image reconstruction.
Specifically, we proposed a method that combines dictionary
learning-based blind reconstruction with model-based super-
vised deep reconstruction in a residual fashion. Comparisons
against strictly supervised learning-based reconstruction in-
dicate that the proposed reconstruction method significantly
improves reconstruction quality in terms of metrics including
PSNR, SSIM, and HFEN, across a range of undersampling
and acceleration factors. The robustness of these improve-
ments to the training dataset size suggests that the features
learned during blind learning-based reconstruction using a
sparse dictionary adapted separately for each training and
testing image may differ significantly from features learned by
deep networks trained on a large dataset with strictly pixel-
wise supervision. While the latter showcases the potential
for removing global aliasing artifacts, the former successfully
leverages patterns in an image that are learned just from
its measurements, thereby preserving the finer details of the
image in the reconstruction. This claim is further supported
by the error maps of regions of interest of reconstructed

image slices. Moreover, the experiments using planted features
suggest that BLIPS reconstruction can adapt to, and reproduce
unfamiliar (absent from the training set) features better than
strict supervised learning-based reconstruction. This ability
may be a distinct benefit in the context of identifying pathol-
ogy in MRI images. The combination of compressed sensing
MRI and deep-supervised learning-based reconstruction also
outperformed strict supervised learning-based reconstruction,
reinforcing that features learned using supervision may not
subsume traditional sparsity-based priors.

Past studies have shown that deep learning-based recon-
struction is good at reducing aliasing artifacts compared with
model-based iterative methods such as compressed sensing.
The majority of supervised models are trained with pixel-wise
`1/`2 norm loss. These approaches generally produce smooth
images with high PSNR but can also introduce blurring. Other
methods use GANs or perceptual loss to preserve details. How-
ever, these data-driven methods are often known to introduce
realistic artifacts, which is very risky for medical imaging
reconstruction. In our approach, the intrinsic sparsity of MR
images is exploited in the dictionary learning phase to preserve
fine structures. Thus, our method combines the advantages of
both worlds: the representation ability of CNNs to resolve
aliasing artifacts and dictionary-based signal modeling to
recover high-frequency details. The superior performance in
fine-detail recovery is reflected in the smaller HFEN values
that quantify high-frequency features.

From the network training perspective, compared to the pure
supervised model our network demonstrates improved stability
and generalizability since it is powered and complemented
by both model-based and adaptive dictionary learning-based
components. First, on a relatively small dataset (1105/2244 im-
ages), the method still achieved similar results as with the full
(8205 images) training dataset. This means that our method
has clearly lower requirements on the amount of training data
to work well compared to the massive amount of training
data needed by typical deep learning-based reconstruction
algorithms. Second, the improvements hold across different
sampling patterns with very different PSFs. Third, although
40 training epochs were used in experiments, our approach
requires only 5-8 epochs to converge (with no obvious over-
fitting seen thereafter). In contrast, the supervised model
required 20-30 epochs for the training loss to converge.

Due to the serial nature of the SOUP-DIL algorithm [36]
used for dictionary learning here, our algorithm’s reconstruc-
tion time is higher than that of strictly supervised recon-
struction. The computational bottleneck is in the atom-wise
block-coordinate descent approach to dictionary updating,
which cannot be accelerated by simple vectorization. These
alternating updates between each dictionary atom and the
corresponding sparse codes [36] allow for the blind algorithm
to residually learn and represent features in the reconstructed
image. Further acceleration of the blind dictionary learning
approach might be needed to use the approach in clinical
settings that need a real-time imaging reconstruction workflow.
However, it may be still acceptable for most conventional
settings since the scanning itself is often the throughput
bottleneck. The proposed S+B+S approach involves a much
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Dataset T1w T2w FLAIR
Method S+S S+B+S B+S S+S S+B+S B+S S+S S+B+S B+S
SSIM 0.965 0.968 0.966 0.964 0.967 0.966 0.944 0.947 0.945

PSNR (dB) 36.86 37.27 36.85 35.37 35.88 35.72 34.23 34.62 34.36
HFEN 0.388 0.369 0.384 0.371 0.349 0.353 0.481 0.458 0.470

Table VI: Comparison of strictly supervised learning-based reconstruction (S+S) versus the proposed combined blind and supervised learning-based
reconstruction (S+B+S) in (P3) for the fastMRI brain dataset with 8× undersampling with the mask in Fig. 2c.

quicker (partial) dictionary learning-based step compared to
the proposed vanilla B+S approach. Other fast blind learning
approaches involving transform learning [12] could also make
our schemes much more efficient.

Fully Sampled

(a)(PSNR/SSIM/HFEN)
Blind+Supervised Recon. Supervised Recon.

(b) (41.24/0.984/0.355) (c) (39.59/0.980/0.428)
Blind Dict. Learning Recon. Zero-Filled Recon.

(d) (34.20/0.957/0.621) (e) (32.20/0.942/0.850)

Fig. 4. Comparison of reconstructions for a knee image using the
proposed method versus strict supervised learning, blind dictionary
learning, and zero-filled reconstruction for the 5× undersampling mask
depicted in Fig. 2a. Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panel on the bottom left
in each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map.

Fully Sampled

(a)(PSNR/SSIM/HFEN)
Blind+Supervised Recon. Supervised Recon.

(b) (39.81/0.988/0.242) (c) (37.84/0.984/0.329)
Blind Dict. Learning Recon. Zero-Filled Recon.

(d) (32.86/0.981/0.984) (e) (28.9/0.934/0.837)

Fig. 5. Comparison of reconstructions of a knee image using the
proposed method versus strict supervised learning, blind dictionary
learning, and zero-filled reconstruction for the 20× Poisson-disk un-
dersampling mask depicted in Fig. 2b. Metrics listed below each re-
construction correspond to PSNR/SSIM/HFEN respectively. The inset
panel on the bottom left in each image corresponds to regions of interest
(indicated by the red bounding box in the image) in the image that
benefits significantly from BLIPS reconstruction, while the inset on the
bottom right depicts the corresponding error map.

VI. CONCLUSION AND FUTURE WORK

This paper investigated a combination of shallow dictionary
learning and deep supervised learning for MR image recon-
struction that leverages the complementary nature of the two
methods to bolster the quality of the reconstructed image.
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Fully Sampled

(a)(PSNR/SSIM/HFEN)
Blind+Supervised Recon. Supervised Recon.

(b) ( 35.60/0.970/0.164) (c) (34.66/ 0.964/0.209)
Blind Dict. Learning Recon. Zero-Filled Recon.

(d) (33.75/0.962/0.219) (e) (27.66/0.881/0.628)

Fig. 6. Comparison of reconstructions of a knee image using the pro-
posed method versus strict supervised learning, blind dictionary learn-
ing, and zero-filled reconstruction for the random 1D undersampling
masks (≈ 4.5×). Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panel on the bottom left
in each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map.

We verify this benefit by comparisons using a variety of
metrics (including SSIM, PSNR, and HFEN) against strictly
supervised learning-based reconstruction, reconstruction as
initialization. We also investigate alternative approaches for
combining the two forms of reconstruction. Our observations
suggest that the primary benefits of including blind learning
in the reconstruction pipeline are the preservation of ‘finer’
details in the output image and robustness to the availability
of training data.

In the future, we aim to apply our methods to non-
Cartesian undersampling patterns such as radial and spiral
patterns, and to other modalities. The generalizability of the
method, especially with heterogeneous datasets, will be further

Fully Sampled

(a)(PSNR/SSIM/HFEN)
S+B+S Recon. S+S Recon.

(b) (40.00/0.987/0.269) (c) (38.73/0.983/0.320)
S+B Recon. Zero-Filled Recon.

(d) (38.89/0.981/0.314) (e) (30.13/0.9451/0.8615)

Fig. 7. Comparison of reconstructions for two T2w brain images
using the S+B+S learning reconstruction method proposed in (P3)
versus cascaded S+S strict supervised learning-based reconstruction,
S+B reconstruction, and zero-filled reconstruction for an 8× equidistant
undersampling mask. The S+B reconstruction depicts the output of
one iteration of blind reconstruction initialized with a supervised re-
construction. Metrics listed below each reconstruction correspond to
PSNR/SSIM/HFEN respectively.The inset panel on the bottom left in
each image corresponds to regions of interest (indicated by the red
bounding box in the image) in the image that benefits significantly from
BLIPS reconstruction, while the inset on the bottom right depicts the
corresponding error map. The blue arrows indicate the position of image
detail that is present in the the BLIPS reconstruction, but not strict
supervised learning-based reconstruction.

explored. We observed some variation in the performance of
our method to the imposed sparsity level in (2). More careful
tuning of hyperparameters will be necessary to optimize the
overall performance of such methods. Curiously, we also
observed that using additional iterations of blind learning
reconstruction in (14) adversely impacted the performance
of our methods. The cause for this behavior is unknown
(beyond oversmoothing), and needs further investigation. We
also plan to investigate the benefits of multiple iterations of
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combined blind and supervised learning based reconstruction,
extending the S+B+S approach considered here. Aside from
the benefits of traditional ‘handcrafted’ priors in combination
with supervised deep learning, from the perspective of learning
only from measurements of the image being reconstructed, and
then filling in the gaps with supervised data-driven learning,
it would be interesting to study the combination of deep blind
approaches [41]–[44] with deep supervised learning.
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Fully Sampled Blind+Supervised Recon. Supervised Recon.

(a)(PSNR/SSIM/HFEN) (b) (35.00/0.960/0.2263) (c) (33.83/0.955/0.3020)
Blind Dict. Learning Recon. Zero-Filled Recon.

(d) (29.86/0.948/0.2985) (e) (30.07/0.915/0.6356)

Fig. 8. Comparison of reconstructions of a knee image using the proposed method versus strict supervised learning for an image slice with
artificially planted features. The undersampling mask was chosen to be random ≈ 4.5×. Metrics listed below each reconstruction correspond
to PSNR/SSIM/HFEN respectively. The inset panels on the bottom in each image correspond to regions of interest (indicated by the red/green
bounding boxes in the image) in the image that benefit significantly from BLIPS reconstruction, while the insets on the top depicts the corresponding
error map. The blue arrows indicate the position of an aliasing artifact that is present in the zero-filled reconstruction and strict supervised learning,
but not in the BLIPS reconstruction.
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VII. SUPPLEMENTARY MATERIALS

A. Comparison with Non-Adaptive Dictionary-based
Initialization for Supervised Learning

In this experiment, we fixed the dictionary D in (2) as
an overcomplete inverse DCT matrix and did not update it.
We then used the resulting reconstructed image to initialize
the supervised reconstruction algorithm. Table VI compares
the results of proposed blind+supervised learning versus non-
adaptive dictionary-based initialization for supervised learning.
The sampling pattern remains the same as in the previous case.
4198 slices were used for training, with 10% left for validation.
The test set consisted of 500 slices.

Recon. Method Fixed Dictionary+Supervised Blind+Supervised
SSIM 0.945 0.946

PSNR (dB) 35.37 35.53
HFEN 0.452 0.443

Table VII: Comparison of performance of non-adaptive dictionary-based
initialization for supervised learning-based reconstruction versus our proposed
combined blind and supervised learning-based reconstruction, for the
undersampling mask shown in Fig. 2b. The data set involved is the 4198/500
slices from the fastMRI knee dataset.

We surmise that the reason for relatively small improve-
ments with blind learning over a fixed dictionary initialization
in our proposed pipeline is due to the lack of proper parameter
tuning during dictionary learning. One way to remedy this
would be to vary the sparsity penalty weight, λ, across outer-
iterations of dictionary learning-based reconstruction as is
done in [36]. Furthermore, the initialization for blind dictio-
nary learning was a zero-filled reconstruction, which can be
detrimental to learning a ‘good’ dictionary. We expect that
addressing these issues could further bolster the performance
of BLIPS reconstruction.

B. Contribution of Residual Supervised Learning

To gain more insight into the mechanism of the proposed
BLIPS reconstruction, we examined the residual component
added to the blind dictionary learning-based reconstruction
by the supervised learning-based reconstruction component.
Essentially, we removed the blind learning output from the
BLIPS reconstruction to study the contribution of the super-
vised module. Fig. 9 shows the contribution of the supervised
learning component for Fig. 5.

We observe that the supervised learning module mainly con-
tributes to removing left-over aliasing artifacts from the blind
learning-based reconstruction, and also focuses on sharpening
the details in the blind reconstruction. This observation rein-
forces the concept of complementarity of blind and supervised
learning-based reconstruction.

C. Reconstruction Times

Table VIII lists the reconstruction times for the various
methods proposed and compared to in this work. Strict su-
pervised learning is the fastest, while the BLIPS approach in
Fig. 1 (P1) is the slowest, because it requires several iterations
of the SOUP-DIL algorithm [36], currently implemented in

Fig. 9. Residual contribution of the supervised learning module for the
image in Fig. 5, obtained by removing the blind dictionary learning output
from the BLIPS reconstructed image.

Matlab. This drawback may be remedied by providing a
better initialization for dictionary learning and using GPUs
for acceleration.

Recon Method Recon Time (s)
S 1.2
B 170

CS+S 80.2
B+S 171.2

S+B+S 8.7

Table VIII: Comparison of reconstruction times of various
methods explored in our work
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