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Abstract—Magnetic field inhomogeneity estimation is impor-
tant in some types of magnetic resonance imaging (MRI), includ-
ing field-corrected reconstruction for fast MRI with long readout
times, and chemical shift based water-fat imaging. Regularized
field map estimation methods that account for phase wrapping
and noise involve nonconvex cost functions that require iterative
algorithms. Most existing minimization techniques were compu-
tationally or memory intensive for 3D datasets, and are designed
for single-coil MRI. This paper considers 3D MRI with optional
consideration of coil sensitivity, and addresses the multi-echo field
map estimation and water-fat imaging problem. Our efficient
algorithm uses a preconditioned nonlinear conjugate gradient
method based on an incomplete Cholesky factorization of the
Hessian of the cost function, along with a monotonic line search.
Numerical experiments show the computational advantage of the
proposed algorithm over state-of-the-art methods with similar
memory requirements.

Index Terms—Magnetic field inhomogeneity, field map esti-
mation, water-fat imaging, preconditioned conjugate gradient,
monotonic line search, incomplete Cholesky factorization

I. INTRODUCTION

In magnetic resonance imaging (MRI), scans with long read-
out times require correction for magnetic field inhomogeneity
during reconstruction to avoid artifacts [1]-[5]. Field inhomo-
geneity is also a nuisance parameter in chemical shift based
water-fat imaging techniques [6]-[11]. Field map estimation is
thus crucial to field-corrected MR image reconstruction, and
for fat and water image separation.

One field map estimation approach is to acquire MR scans at
multiple echo times (usually 2 or 3), where a small echo time
difference can help resolve any phase wrapping issues and a
large echo time difference can help improve SNR. One can
then estimate field inhomogeneity using images reconstructed
from these scans [5]. Since field maps tend to be smooth within
tissue, estimation methods with smoothness assumptions have
been proposed for water-fat separation, including region grow-
ing techniques [12]-[17], filtering [18], curve fitting [19]-[21],
multiresolution and subspace approaches [21]-[24], and graph
cut algorithms [25]. To improve robustness of water and fat
separation and reduce ambiguity of assignment, field map pre-
estimation methods such as demodulation [26] and magneti-
zation transfer [27] have been proposed as part of the water-
fat imaging framework. Most of these methods, however, use
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various approximations to account for phase wrapping between
different acquisitions. In contrast, regularized estimation meth-
ods [5],[8]-[10] have been proposed to account for both phase
wrapping and the smoothness of the field map from multiple
acquisition images. Because the field map affects image phase,
these approaches involve a nonconvex optimization problem
that requires iterative methods.

To solve such optimization problems, [5],[9],[28] use a
majorization-minimization (MM) approach by introducing a
quadratic majorizer for their cost functions. The MM approach
decreases the cost monotonically, but is computationally inten-
sive, especially for large-scale datasets. Other regularized field
map estimation minimization techniques quantize the solution
space [8],[10] and may require a second descent algorithm
to produce sufficiently smooth estimates. An alternative min-
imization technique [29] uses nonlinear conjugate gradient
(NCG) with a monotonic line search (MLS), and explored
various preconditioners in the 3D single-coil case.

This paper considers the regularized field map estimation
problem in the 3D multi-coil MRI setting. In particular, we
consider a generalized cost function in the multi-coil case for
both multi-echo field map estimation and water-fat imaging.
We minimize it by a NCG algorithm with an efficient MLS and
an iteration-dependent preconditioner based on an incomplete
Cholesky factorization [30] of the Hessian of the cost function.
The incomplete Cholesky factorization has been applied to
field inhomogeneity estimation using surface fitting [31], and
recently to single-coil field map estimation with a similar
cost function [29]. In addition to faster convergence, this
preconditioner exploits the sparse structure of the Hessian, thus
it is memory efficient and scales to 3D datasets. Compared
to previous works [9],[28],[29], our new approach unifies the
field map correction and the water-fat imaging problems, with
a generalized expression that optionally considers multiple
coils in MRI. Our efficient algorithm on this problem shows
significant computational and storage advantages compared
with existing MM and NCG methods.

The rest of this paper is organized as follows. Section II de-
scribes the optimization problem for the field map estimation
problems for multi-coil MRI. Section III presents the NCG-
MLS optimization scheme with the proposed preconditioner.
Section IV reports simulated and real experimental results,
followed by conclusions in Section V.

II. PROBLEM FORMULATION

We are given reconstructed images ycl ∈ CNv for the cth
receiver coil of the lth scan, with c = 1, . . . , Nc , l = 1, . . . , L,
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where Nv denotes the total number of voxels in the image, Nc

denotes the number of coils, and L ≥ 2 denotes the number
of echo times. We model the field inhomogeneity effect as

yclj = eiωjtlscjxlj + εclj , (1)

where j = 1, . . . , Nv is the voxel index, ω ∈ RNv is the
unknown field map, tl ∈ R is the echo time shift of the lth
scan, sc ∈ CNv is the (known) coil sensitivity map for the cth
coil, and εcl ∈ CNv denotes the noise. For single-coil MRI, or
when the coil images are combined as a preprocessing step,
we have Nc = 1 and s = 1 in (1).

The unknown image xl ∈ CNv for the lth echo is problem-
dependent, where

xlj =


mj in field map estimation,

mw,j +mf,j

P∑
p=1

αpe
i2π∆f,ptl in water-fat imaging,

where m,mw,mf ∈ CNv are respectively the magnetiza-
tion, water, and fat components, and ∆f,p ∈ R denotes the
(known) frequency shifts of P fat peaks in the multipeak

fat model [32],[33],[10] with relative amplitudes
P∑
p=1

αp = 1

that can be estimated and averaged over all fat pixels as a
preprocessing step by existing methods [34]. The goal of the
field map estimation problem is to estimate ω and x given y
and s.

Assuming the noise ε is zero-mean, white complex Gaus-
sian, the joint maximum-likelihood (ML) estimates of the field
map ω and image x are the minimizers of the negative log-
likelihood as follows:

argmin
ω,x

Φ̃(ω,x), where

Φ̃(ω,x) =

Nv∑
j=1

L∑
l=1

Nc∑
c=1

|yclj − eiωjtlscjxlj |2 . (2)

For a given field map ω, the ML estimate of x has a closed-
form expression [8],[28] that one can substitute into (2) to give
a cost function in terms of ω:

Φ(ω) = min
x

Φ̃(ω,x) =

Nv∑
j=1

L∑
m,n=1

Nc∑
c,d=1

φcdmnj(ωj) , (3)

where

φcdmnj(ωj) := |rcdmnj |
[
1− cos

(
∠rcdmnj + ωj(tm − tn)

)]
,

rcdmnj :=
Γmn∑Nc

c′=1 |sc′j |2
scjs

∗
djy
∗
cmjydnj , (4)

Γ := γ(γ∗γ)−1γ∗ ,

where ·∗ denotes the complex conjugate, and L×L matrix Γ
is defined in terms of

γ =


1 in field map estimation,[
1

P∑
p=1

αpe
i2π∆f,pt

]
in water-fat imaging,

(5)

in which 1 denotes an all one vector of length L, and
the exponential is applied element-wise. In the field map
estimation case, this simplifies to Γmn = 1/L ∀ m,n.

As B0 field maps tend to be spatially smooth in MRI, we
add a regularization term to (3) to form a penalized-likelihood
(PL) cost function

Ψ(ω) = Φ(ω) +
β

2
‖Cω‖22 , (6)

where C is a first or second order finite difference operator
with optional spatial weights as in [10]. Such regularization
has been used in many other prior works [5],[28],[29].

III. EFFICIENT ALGORITHM

Several approaches have been proposed to solve the field
map estimation problem in the single-coil setting, but are de-
manding in computation or memory. In particular, a quadratic
majorizer with a diagonal Hessian [5] takes many iterations
to converge even for 2D images, and a quadratic majorizer
with an optimal curvature that inverts a Nv × Nv Hessian
matrix [28] is memory-limited to small-scale data. In water-fat
imaging, [10],[35] process data in a single-coil manner using
the graph cut method. Since graph cut requires discretization,
[10] proposes to overcome this limitation by additionally
running a descent algorithm such as in [9], which considers a
quadratic majorizer with a diagonal Hessian that convergences
slowly.

Here, we optimize (6) using NCG with a monotonic line
search [29], and consider a preconditioner with efficient
computation and memory storage. Our field map estimation
procedure is tabulated in the Algorithm below. For NCG, we
choose the Polak-Ribiere update to compute a µi that satisfies
the conjugacy condition [36].

After estimating the field map ω̂, we estimate the water
and fat components for each voxel in water-fat imaging by
applying the closed-form expression [8] using ω̂:[

mw,j

mf,j

]
=
(

(γ · diag(eiωjt)
)
⊗ sj

)†
yj , (7)

where ⊗ denotes the Kronecker product, (·)† denotes the
pseudo inverse, and sj ∈ CNc denotes the coil sensitivity map
for the jth voxel.

Next we present our initialization, choice of preconditioner,
and derive our iterative monotone line search algorithm in the
multi-coil setting.

A. Initialization

For field map estimation, we initialize ω by a field map
computed from the phase of the first two echoes of the coil
combined images:

(ωj)
0 = ∠

[( Nc∑
c=1

s∗cjyc1j

)∗( Nc∑
d=1

s∗djyd2j

)]/
(t2 − t1) . (8)

To initialize ω for water-fat imaging, we follow [9] and
sweep through a range of 100 values from −|∆f/2| to |∆f/2|
for each voxel, and choose the value with minimal cost (3),
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Fig. 1. Matrix structure of each factorization and the error of its inverse, in a toy problem of size 20× 16× 8.

denoted as ω̃0. We then run a few CG iterations to minimize
a penalized weighted least squares (PWLS) problem

ω0 = argmin
ω

Nv∑
j=1

ρj(ωj − ω̃0
j )2 +

β

2
‖Cω‖22 , (9)

where the spatial weights

ρj =
L∑

m,n=1

Nc∑
c,d=1

|rcdmnj |

are given by (4). We then use ω0 as our initial estimate in the
water-fat case.

To reduce ambiguity of water and fat assignment, one can
also consider robust initialization schemes such as demodula-
tion [26] or magnetization transfer [27].

B. Preconditioning matrices

To accelerate the NCG-based algorithm, given gradient gi of
the cost at the ith NCG iteration, we explore a preconditioner
P i with memory efficient implementation of (P i)−1gi using
an incomplete Cholesky factorization [30]. In particular, the
gradient g ∈ RNv is given by

g = ∇Ψ(ω) = ∇Φ(ω) + βC>Cω , (10)

where (
∇Φ(ω)

)
j

=
L∑

m,n=1

Nc∑
c,d=1

|rcdmnj |(tm − tn)2

· sin
(
∠rcdmnj + ω(tm − tn)

)
.

The Hessian of the cost (6) at the ith iteration is the sum of
a diagonal matrix and an (approximately, due to the support
mask) block Toeplitz with Toeplitz block (BTTB) matrix:

Hi = Di + βC>C ∈ RNv×Nv , (11)

where C is the finite difference operation and Di =
diag(dij) � 0, where the Hessian of the negative log-likelihood
has diagonal elements given by

dij =
L∑

m,n=1

Nc∑
c,d=1

κcdmnj
(
ucdmnj(ω

i
j)
)
, (12)

with

κcdmnj(u) = |rcdmnj |(tm − tn)2 sin(u)

u
, and

ucdmnj(ω) =
(
∠rcdmnj + ω(tm − tn)

)
modπ . (13)

Since the terms rcdmnj and tm − tn are shared across
iterations, we precompute them at the initialization stage to
efficiently calculate the gradient and Hessian at each itera-
tion i. Note also that Hi is positive definite as long as at least
one value of dij is positive (which is true for any nontrivial
problem).

Although Hi is sparse and banded, its inverse is approxi-
mately full, so directly computing the inverse would require
far too much memory. To reduce memory, we propose to use a
preconditioner that approximates the symmetric Hessian with
a LU factorization of the form

P i = Li(Li)> ≈Hi , (14)

where Li ∈ RNv×Nv is sparse lower triangular, enabling
efficient computation (via back-substitution) of (P i)−1gi in
the precondition step. Taking advantage of the sparsity and
positive definiteness of our Hessian (11), preconditioning with
an incomplete Cholesky factorization reduces both computa-
tion and memory. A popular form of the incomplete Cholesky
factorization matches the matrix H on its nonzero set, thus
is at least as sparse as H . Similar preconditioning with
incomplete LU factorization has been used for simulating
anisotropic diffusion in MRI [37]. In practice, for a better
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H H−1 Lc Lt L0

Number of nonzeros (×105) 1.67 655 72.5 1.77 0.96
Storage (megabytes) 0.31 100.1 11.9 0.53 0.27

NRMSE 3e-16 4e-3 3e-2

Table I. Number of nonzero elements, memory usage, and NRMSE of the
inverse of each factorization in a toy problem of size 20× 16× 8.

Fig. 2. Change of sparsity of Lt with respect to the scaling factor of Hmax

in its tolerance.

approximation one can control the sparsity of the factors by
defining a tolerance on the magnitude of the elements of H
(below which entries in the factors are set to zero), with
the trade-off between approximation accuracy and memory
storage.

Fig. 1 illustrates the memory improvement by a toy problem
of image size 20×16×8, where we computeH = D+βC>C
and its inverse, with randomly chosen diagonal elements
dj ∈ (0, 0.1) and β = 0.1. Fig. 1 considers the incomplete
Cholesky factorization without tolerance, denoted L0, and
with a tolerance of Hmax × 10−3, denoted Lt, where Hmax

is the element in H with maximum magnitude. Fig. 1 shows
the sparse structure of H , its nonsparse inverse H−1, and
the Cholesky factorizations as well as their approximation
errors. Table I shows the number of nonzero elements of each
matrix, their memory storage, and their errors that affect the
convergence rate, using the normalized root mean square error
(NRMSE) ‖I − L−1HL−>‖F/

√
Nv for each factorization

L in our example. Fig. 2 illustrates how the sparsity of
Lt changes with respect to its tolerance by showing the
percentage of nonzero elements in Lt versus the scaling factor
of Hmax in the tolerance.

For memory storage in this case, the number of nonzero
elements in the incomplete Cholesky factor without tolerance
L0 is more than 70 times less than that in the (complete)
Cholesky factor Lc, with more than 40 times memory saving.
In general, we observe (by the banded structures) that the
number of nonzero elements of Lc is lower bounded by
(Nv − NxNy) ∗ NxNy, while that of L0 is upper bounded
by 4Nv. This leads to the generalization that L0 is at least
(Nv − NxNy)/(4Nz) times more sparse than Lc, which
scales significantly with the problem size. The storage of the
incomplete Cholesky factor with tolerance Lt depends on the
tolerance, and with the choice of tolerance here we observe a
40 times fewer nonzero values, saving memory by a factor of
more than 20 compared with Lc.

The trade-off with a sparser factorization, however, is a
worse approximation error. This is reflected in the error matri-
ces in Fig. 1 and the NRMSE in Table I. While L0 has lower

memory usage than Lt, the inverse is a worse approximation to
H−1. In practice, nevertheless, both incomplete factorizations
LL> are positive definite, so as preconditioners they provide
a descent direction in addition to storage advantage, whereas
storing Lc is infeasible for realistically sized 3D datasets.

C. Monotonic step size line search

With a search direction given by NCG, the choice of
step size is important for convergence of the algorithm. To
avoid multiple function evaluations required by backtracking
line search algorithms [38], we implement a recursive line
search algorithm using a quadratic majorizer with an optimal
curvature, which guarantees monotone decrease of the cost
function [39].

In the line search step, given a current field map estimate
ωi and a search direction zi ∈ RNv , we aim to find a step
size that minimizes the cost (6):

α̂ = argmin
α

f(α) , where

f(α) = Φ(ωi + αzi) +
β

2
‖C(ωi + αzi)‖22 , (15)

We iteratively minimize the nonconvex problem (15) using
a quadratic majorizer based on Huber’s method [40, p. 184] at
the kth inner iteration (dropping outer iteration i for brevity):

qk(α) = Φ(ω + α(k)z)

+ z>∇Φ(ω + α(k)z)(α− α(k))

+
1

2
d(k)(α− α(k))2 +

β

2
‖C(ω + αz)‖22 ,

where the optimal curvature is given by [28]

d(k) =

Nv∑
j=1

|zj |2d(k)
j ,where

Algorithm: Preconditioned NCG-MLS
Inputs:
y, s, t, C, β

Intialization:
ω0 by (8) or (9)
z0 = −∇Ψ(ω0)
α(0) = 0
precompute rcdmnj by (4) and tm − tn

for i = 0, 1, . . . , N − 1 do
compute gradient gi = ∇Ψ(ωi) with (10)
precondition pi = (P i)−1gi with (14)
compute µi with conjugacy
search direction zi+1 = pi + µizi ∈ RNv

for k = 0, 1, . . . , Ni − 1 do
update step size α(k+1) by (17)

end for
update ωi+1 = ωi + α(Ni)zi+1

end for
output: ωN
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d
(k)
j =

L∑
m,n=1

Nc∑
c,d=1

κcdmnj
(
ucdmnj(ωj + α(k)zj)

)
, (16)

with κcdmnj(·) and ucdmnj(·) defined in (13).
Using one step of Newton’s method on the quadratic ma-

jorizer qk(α) gives the step size update

α(k+1) = α(k) −
∂
∂αqk(α(k))
∂2

∂α2 qk(α(k))

= α(k) −
∂
∂αf(α(k))

d(k) + β‖Cz‖22
. (17)

We implement (17) efficiently by computing ‖Cz‖22 only
once per outer NCG iteration i. Since the majorizer satisfies
qk(α) ≥ f(α) for all step size α and inner line search iteration
k, the update (17) guarantees monotonic decrease of the cost
(15).

IV. RESULTS

We investigated our algorithm and its efficiency with two
multi-echo field map estimation experiments and two water-
fat imaging experiments. Due to the large data size, mem-
ory intensive methods with a direct solver using the full
Hessian are excluded from our experiments. In particular,
we compare our incomplete Cholesky preconditioner (NCG-
MLS-IC) method versus a quadratic majorizer update with
diagonal Hessian (QM) [5] and versus the NCG algorithm
without any preconditioner (NCG-MLS) and with a diagonal
preconditioner (NCG-MLS-D) [28]. In addition, we used the
Poblano toolbox [41] to compare the convergence of the quasi-
Newton (QN) and truncated Newton (TN) methods in our
simulations.

For each dataset, we define a mask using the convex
hull of all voxels that contribute to the signal (with coil-
combined image magnitude thresholded below by 0.1ymax,
where ymax denotes the maximum image magnitude in the
coil-combined image for the first echo time.), with a dilation
of two voxels. We then computed ω within the mask, and
tuned the regularization parameter β by sweeping across a
range of values. All our experiments used MATLAB R2020a,
with a 2.4-GHz dual-core Intel Core i7. The MATLAB code
that reproduces the experiments with our efficient algorithm
will be available as part of the Michigan Image Reconstruction
Toolbox (MIRT) [42].

A. Brain Simulation

We first simulated a 3D brain dataset with 40 64×64 slices,
4 simulated coils and 3 echo times tl = 0, 2, 10 ms, with added
complex Gaussian noise so that the SNR ≈ 20 dB. To generate
multi-coil data, we simulated coil sensitivity maps with 4 coils
based on [43] using the MIRT. We set β = 2−4 with first order
regularization to achieve visual resemblance to the ground
truth field map. In light of the trade-off between storage and
approximation error discussed in Section III-B, we explored
preconditioners using the incomplete Cholesky factorization
both without tolerance (NCG-MLS-IC-0) and with a tolerance
of Hi

max × 10−3 for each iteration i (NCG-MLS-IC).

Fig. 3 shows four selected slices, their initial field map,
and the regularized estimate by our algorithm. To examine
the speed of convergence, we plot the root mean square error
(RMSE) ‖ωi − ωtrue‖2/

√
Nv versus wall time in Fig. 4.

The RMSE plots show that the QM and all the NCG-MLS
methods converge to RMSE ≈ 5.6 Hz, though going through
a slightly lower RMSE in the iterative process. Both the
quasi-Newton and the truncated Newton methods converge
to minimizers with higher RMSE, hence we omitted their
comparison in the phantom experiment below. The plots show
a significant computational gain of NCG-MLS preconditioned
with the incomplete Cholesky factorization over all the other
methods. We also observe that using a nonzero tolerance in
the incomplete Cholesky factorization gives a slightly faster
convergence than not using one, hence we adopt that choice for
the NCG-MLS-IC implementations in our next experiments.

Fig. 3. Top to bottom: selected slices of coil-combined simulation image,
initial field map (in Hz), regularized field map estimate ω̂, ground truth field
map ωtrue, and error |ω̂ − ωtrue|.

Fig. 4. RMSE versus wall time of seven algorithms used in simulation. Every
10 iteration is marked by a dot.
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B. Phantom Dataset

Our second experiment uses a Function Biomedical In-
formatics Research Network (FBIRN) phantom [44] with
two pieces of metal staple to induce field inhomogeneity,
collected on a GE MR750 3T scanner with a 32-channel
Nova Head Coil receiver. This dataset has size 74 × 74 × 10
with 3 mm3 isotropic voxel size, TR = 10.5 ms, with 3 echo
times tl = 0, 1, 2.3 ms. We computed coil sensitivity maps
using ESPIRiT [45], and set β = 2−3 with first-order finite
difference regularizaiton.

Fig. 5 shows four selected slices, their initial field map,
and the regularized estimate by our algorithm. To compare
convergence, we computed the root mean square difference
(RMSD) ‖ωi−ω∞‖2/

√
Nv to the converged ω∞ of the QM

method. The RMSD plots in Fig. 6 show that our algorithm
converges much faster than the other three, reaching 0.33 Hz
RMSD in 1 iteration, and 0.005 Hz RMSD in 2 iterations.
Since this 3D dataset has a more realistic problem size than
the simulated data, we quantify the convergence speedup by
comparing the time it takes for each method to reach an
RMSD below 0.5 Hz. Table II shows that our NCG-MLS
algorithm with an incomplete Cholesky preconditioner pro-

Fig. 5. Top to bottom: selected slices of coil-combined phantom image, initial
field map (in Hz), and regularized field map estimate.

Fig. 6. RMSD versus wall time of four algorithms used in the phantom
experiment. Every iteration is marked by a dot.

QM NCG-MLS NCG-MLS-D NCG-MLS-IC
Time (s) 96 81 69 4.5

vs. IC time 21× 18× 15×

Table II. Time for each method to reach an RMSD below 0.5 Hz, and their
relative proportions to the time taken by NCG-MLS-IC.

vides a speedup of 15 times from NCG-MLS with a diagonal
preconditioner, 18 times from that without a preconditioner,
and 21 times from the quadratic majorizer implementation.

C. Cardiac Water-Fat Simulation

For water-fat imaging, we first performed a cardiac simula-
tion based on one of the 8-echo datasets used in the ISMRM
Fat-Water Toolbox [46]. Since implementations in the toolbox
work only for 2D datasets, and coil combination such as [47]
is often used in practice, we illustrate the flexibility of our

Fig. 7. Left to right: simulated image for the 1st echo, initial field map ω̃0

(in Hz) by voxel-wise estimation, and initial fieldmap ω0 by PWLS (9).

Fig. 8. 1st row: ground truth field map, water, and fat images. 2nd and 3rd row:
graph cut estimates and their error images. 4th and 5th row: NCG-MLS-IC
estimates and their error images.

Fig. 9. Field map RMSE versus wall time of seven algorithms used in the
water-fat simulation. Every 20 iterations is marked by a dot.
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algorithm in a 2D coil-combined case by simply setting the
number of coils Nc = 1 and the coil sensitivitiy map s = 1.
We also consider the multipeak model in water-fat imaging.

This dataset has size 256 × 192 with 8 echo times from
1.5 to 17.4 ms (each 2.3 ms apart). We generated ground
truth field map and water and fat images using golden section
search with multiresolution [22]. We used the same values
{αp} and {∆f,p} as in the toolbox implementations both for
simulating images with 8 echo times using the model (1) and
for estimation. For comparison, we also ran the graph cut
(GC) method [10] using the same cost (6) with second-order
finite differences as in [10], and β = 2−7 as the regularization
parameter.

Fig. 7 shows the first echo image, the initial field map
ω̃0 by voxel-wise estimation, and the initial ω0 after 10 CG
iterations of PWLS minimization (9). Fig. 8 shows the ground
truth field map, water and fat images, and the estimates and
error images by the graph cut and by our algorithm. Compared
with graph cut, our algorithm achieves slightly lower NRMSE
on the water image (20.09% vs. 23.57%) and the fat image
(20.93% vs. 23.43%), with lower final RMSE on the field
map, shown in Fig. 9. To explore a combination suggested
by [10], we ran 100 graph cut iterations followed by 100
optimal transfer iterations using a quadratic majorizer [9]. We
used the implementation in the toolbox [46] which did not
precompute rcdmnj by (4). Fig. 9 shows the graph cut RMSE
curve jumps up (to 615 Hz) on its first iteration, and converges
to its own minimizer. The subsequent quadratic majorizer
update lowers the RMSE further, which opens a promising
future direction of combining graph cut with the faster NCG-
MLS-IC with precomputation of common terms. Fig. 9 also
shows the truncated Newton and quasi-Newton methods again
converge to their minimizers with higher RMSE. We omitted
all methods with higher RMSE in the real data experiment
below.

D. Ankle Water-Fat Dataset

We further illustrate our algorithm in the 3D multi-coil
setting using an ankle dataset from the ISMRM Fat-Water
Separation Dataset [46]. This dataset has 4 256×256 slices, 8
coils and 3 echo times tl = 2.2, 3, 3.8 ms, in a 3T scanner that
corresponds to a single ∆f ≈ 440 Hz. We chose β = 2−10

with first-order finite difference regularization to achieve visual
separation of water and fat components.

Fig. 10 shows the first echo image, the initial field map
ω̃0 by voxel-wise estimation, the initial ω0 after 10 CG
iterations of PWLS minimization (9), and the regularized
estimate by our algorithm. For completeness, Fig. 10 also
shows the estimated water and fat images using (7), which
achieve a visual separation of the two components. However,
it is worth emphasizing that our main interest is in the speed of
finding a minimizer of the problem (6). In this case, since QM
converged to a different local minimum than the other three
methods, we computed the RMSD to ω∞ of the NCG-MLS
method (without preconditioner). The RMSD plots in Fig. 11
show a significant computational gain of our algorithm over
the other algorithms.

Fig. 10. Top to bottom: coil-combined water-fat image for the 1st echo,
initial field map ω̃0 (in Hz) by voxel-wise estimation, initial fieldmap ω0

by PWLS (9), regularized field map estimate, estimated water image, and
estimated fat image.

Fig. 11. Field map RMSD versus wall time of four algorithms used in the
water-fat experiment. Every iteration is marked by a dot.

V. CONCLUSION

This paper presents an efficient algorithm for both multi-
echo field map estimation and water-fat imaging problem in
the 3D multi-coil MRI setting. Given the nonconvex cost
function, our algorithm uses the nonlinear conjugate gradi-
ent method with a preconditioner based on an incomplete
Cholesky factorization, and a monotonic step size line search
based on a quadratic majorizer with optimal curvatures. This
is the first work to use the incomplete Cholesky factorization
as a preconditioner for multi-coil field map estimation. Exper-
iments with simulation and real data show that our method has
faster convergence than existing memory-efficient methods.
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