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Abstract— This paper presents a method of planning and
performing dual-arm needle grasp and regrasp manipulations
using the da Vinci®Robotic Surgical System. This method im-
plements a hybrid-object-based state-space Rapidly-Exploring
Random Tree (RRT) algorithm to manage needle regrasps.
Previous methods have attempted to pick up a loose surgical
needle in the environment and then use the same grasp to
begin suturing; however, the initial needle grasp is not always
ideal in terms of the needle pose with respect to the gripper
or the workspace of the arm. Thus, it is advantageous to
regrasp the needle in a more optimal manner before suturing
proper begins. To solve the problem, a hybrid-object state
space (HySS) planner is implemented under the RRT−Connect
motion planning framework. This planner is able to find a
collision-free handoff manipulation path connected by a series
of intermediate hybrid states. We show that this algorithm
produces trajectories which can be successfully executed by a
simulated da Vinci® robot and result in grasps that are optimal
as defined by [1].

Index Terms— surgical robotics, motion planning and control,
object regrasping

I. INTRODUCTION

In order to improve object-manipulation efficiency, dual-
arm robots have been introduced into industrial environ-
ments. Two arms allow pick-and-place tasks to make use
of handoff movements to transition from a grasp ideal for
picking to a different grasp ideal for placing; and objects
can to be transferred through a workspace larger than that of
a single arm [2].

This approach is particularly appealing in surgical robotics
for the suturing task: small, semicircular needles are intro-
duced into the body cavity at arbitrary locations and must be
grasped near the base before being driven through a different
section of tissue in a predetermined arc; it is not always
possible to grasp the needle and drive it with the same
gripper, necessitating one or more re-grasps. In the suturing
cycle, the first motion will be the grasping of the needle by
one of the patient-side manipulators (PSMs). However, the
initial grasp may not always be ideal in terms of the needle
pose, arm selection, or grasp transformation from needle
to gripper. In order to address this issue, needle regrasping
needs to be performed between the two PSMs such that after
a small number handoffs, the needle can be grasped in a
way that is optimal for insertion into tissue. Repeated needle
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regrasp manipulations are then needed to perform a running
suture.

This paper proposes a hybrid-object-based Rapidly-
exploring Random Tree (RRT) [3] motion-planning al-
gorithm to calculate a collision-free manipulation path
which accommodates handoffs, for the dual PSMs of the
da Vinci®Surgical Robot. A manipulation path is divided into
a sequence of actions sorted into two different categories:
a needle transfer by single arm in Cartesian space, and a
handoff between arms which does not move the needle.
A planner specification exploiting the RRT−Connect [4]
planning framework is illustrated in Section IV. Section
IV-C defines the hybrid-object state space (HySS) which is
composed of the needle pose, arm index and a grasp index
selected from a pre-defined grasp transformation list. To
grow the RRT tree, a heuristic distance function is defined
in Section IV-D. The state interpolation implementation
necessary to interpolate between two different hybrid states
is described in Section IV-E. To fully connect these states
a collision checker and local planner are also explained in
Section IV-F.

Though much research involving dual-arm robot manip-
ulation has been done [5], this study is the first within a
surgical-robotics context to fit a novel HySS into a standard
sampling-based planning scheme, while taking into account
state sampling and interpolation between continuous and
discrete variables.

II. RELATED WORK

Extensive studies have been done on dual-arm manip-
ulation path planning (refer to [5] for a recent survey).
This class of problem becomes distinct from single-arm
manipulation planning when regrasping by a handoff action
is considered, instead of pick-and-place with a single arm.
In these scenarios, an object is (for instance) unreachable
by robot’s right arm but reachable by its left arm, and the
objective is for the right arm to put the object in a box nearby.

The naive solution is to pick up the object with the
left arm first, then place it on a supporting surface close
enough for right arm to pick up again. This “pick-place-
pick” solution is inefficient because it requires the offline
storage of data including different workspace dimensions,
end-effector configurations, and grasp transforms. Marino et
al. [6] pre-generate and store in a database all possible grasps
between the start state and goal state; to connect the two a
Dijkstra shortest path algorithm is used to search through
the database. This database requires storing not only a fea-
sible object transition table, but also geometric information
about the object and supporting surface, approximation of
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reachable region of each arm, and grasp transformations.
Additionally, this method does not guarantee a collision-
free path because collision checking is postponed until after
planning.

Probabilistic Roadmap (PRM) sampling path-planning
algorithms have also been employed in regrasping-based
manipulation scenarios. Saut et al. [7] offer an offline decom-
position technique for a kinematically-independent dual-arm
robot, which generates a “SuperGrasp” (“SG”) by merging
two graphs which form a collision-free roadmap for the left
arm and right arm, respectively. After this, the collision-
free path is realized by a sequential online query on SG
to find desired motions, i.e. object grasping, carrying to an
exchange location, object placement, and going to the rest
configuration. Though this method is well-suited to resolving
multiple manipulation problems in the same environment,
the nature of the PRM remains a disadvantage in that it
requires offline computation of roadmaps specific to each
environment.

Branicky et al. [8] present the original RRT evolved to
a hybrid version which can solve motion problems within
a continuous-and-discrete state space. A “stair climber”
experiment demonstrated that the hybrid RRT could solve a
problem where the initial state was located on the first floor
of a building and the goal state was located on the fourth
floor. In this example, the switching points (the location of
stairs on each floor) were given, the planner was tailored
to find a path from each switching point to another, and
eventually found a solution path connecting the first floor to
the fourth floor goal point.

The HySS introduced in this study is inspired by the
above work, although in the proposed approach switching
points are not explicitly defined. This means that for the
needle regrasping problem, the location in Cartesian space
where the handoff occurs remains unknown before planning
starts. Our research also differs from the above in that the
planning does not depend on an external database; only
the object’s geometric model and grasp transformations are
stored for planning. Additionally, thanks to the probabilistic
completeness of RRT−Connect, a collision free path is
always findable given enough planning time. The offline tree-
building of RRT is faster than PRM, because rather than
exploring the entire Q f ree space, tree growth is guided by
sampling towards the goal. Finally, in the querying stage
there is only one solution path connecting the start and goal
state, which is easier to find by simple back-tracing.

III. PROBLEM DEFINITION

This planner is designed to solve the surgical-needle
regrasping problem, where a semicircular needle is initially
grasped by one of the patient-side manipulators of the
da Vinci® robot with a known grasp transformation between
the needle frame and the gripper’s tool tip frame GGGtn;
the robot must either pass the needle to another arm with
an arbitrary final grasp configuration, or change the grasp
configuration while leaving the needle in the same arm in
which it was held originally. Additionally, the needle must

be moved to an arbitrary Cartesian position in the workspace
after the completion of one or more such handoffs.

IV. PLANNER SPECIFICATION

The planning framework is inherited from RRT−Connect
[4]; its algorithm is briefly explained in Algorithm 1.

Algorithm 1 RRT−Connect(hqinit, hqgoal)

1: Ta.init(hqinit);Tb.init(hqgoal)
2: for k = 1 to K do
3: hqrand ← RANDOM CONFIG()
4: SWAP(Ta, Tb)
5: if (EXTEND(Ta, hqrand) 6= Trapped) then
6: if (CONNECT(Tb, hqnew) = Reached) then
7: return PATH(Ta,Tb)
8: end if
9: end if

10: SWAP(Ta,Tb)
11: end for
12: return failure

Initially, 2 trees are rooted at start state and goal state
respectively. Without loss of generality, the start-state tree
is designated Ta and the end-state tree is designated Tb. In
the first iteration, a random state qrand is created, then Ta
is extended by one step-length towards qrand. As long as it
is not trapped, Tb attempts to connect its nearest vertex to
Ta’s new vertex. Afterwards, the two tree roles are swapped
to make Ta grow towards Tb in the next iteration.

A. Notation

In order to reduce the dimensionality of the problem space
(similarly to Cohen et al. [9]), two arms are not permitted to
move objects simultaneously. This precludes the formation
of closed kinematic loops. The arm not holding the object
is asssumed to be in the home position whenever the arm
that is holding the object moves. However, the resting arm
is not excluded from collision checking- this ensures that
the moving arm and the needle it holds are guaranteed not
to collide with the resting arm.

Some notation related to the planning algorithm is as
follows:
• Ta represents the start-state tree, Tb represents the end-

state tree, and T represents the combined state tree in
the RRT−Connect algorithm.

• hhhqqq represents a generic hybrid object state.
• hhhqqqrand is a random hybrid object state.
• hhhqqqstart is the initial hybrid object state.
• hhhqqqgoal is the goal hybrid object state.
• ddd(((hhhqqq))) is a heuristic distance function between hybrid

object states.

B. Grasp

The grasp transformation describes how the surgical nee-
dle is held by the gripper. It is the position and orientation
of the needle frame with respect to the gripper tool tip
frame. This relationship is illustrated in greater depth in Liu
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[1], which describes criteria by which different grasp trans-

forms can be compared and identifies optimal transforms. A

nominal grasp configuration is depicted below, along with

the 4 parameters ω1, ω2, ω3, and v0 which can together
completely describe any such configuration. Our planner

generates multiple grasp options by iterating exhaustively

through a discretized space of these parameters, and stores

the resulting rigid-body transforms between the needle and

gripper tip in an indexed list.

Fig. 1: A nominal needle grasping configuration which

describes the relationship between needle frame and gripper

frame in the form of four parameters.

C. Definition of Hybrid Object State Space

The hybrid object state space HHHyyySSSSSS is defined by the com-
bination of the Cartesian-space needle pose SSSndl ∈ SSSEEE(((333))),
and 2 discrete state spaces: the grasping arm index space

DDDarm (i.e. whether the needle is grasped by Arm 1 or Arm 2),

and the grasp index space DDDgrasp of rigid grasp transforms:

HHHyyySSSSSS = SSSndl ×DDDarm ×DDDgrasp (1)

Thus any hybrid object state hq ∈ HySS can be fully

represented as a list composed of 9 parameters:

• The needle’s Cartesian position
(
xndl , yndl , zndl

)
, by

convention measured in meters.

• The needle’s Cartesian angular orientation(
qxndl , qyndl , qzndl , qwndl

)
, stored as a quaternion.

• The index of the arm in which the needle is grasped,

armid . In the case of the da Vinci
®IS1200 surgical robot,

the arm index space is Darm = {1,2}.
• The index of the grasp transform, graspid , correspond-

ing to a rigid grasp transform within the list of generated

transforms.

Given an inverse kinematics solver, like TRAC-IK [10],

each hq physically reachable by the gripper can be mapped
to a robot joint configuration.

Based on this definition, the edge (hqi, hqi+1) connecting

2 states is described by one of two different kinds of abstract

motions. The first is object-transfer, which involves moving
the needle to a new position while keeping it held by

the same arm with the same grasp. The second is object-
transit, which involves changing the holding arm and/or

the grasp transform without moving the needle in space

[11]1. Object transit requires keeping the needle stationary

in Cartesian space without assuming any supporting surfaces
to be present (rendering the elementary pick-place-pick ap-

proach impossible). This is realized by having the needle

steadily grasped by (for instance) PSM1, then controlling
PSM2 to grasp the needle, and then releasing the needle from
PSM1 and sending PSM1 back to its home configuration.
This is referred to as one ”handoff” action. A local planner

which can accommodate both types of motion is explained

in section IV-F.

D. Heuristic

When the RRT−Connect planner is expanding its trees,
the nearest state hqnear to the random state hqrand is found by

the function EXTEND(T , hqrand). If the two states are within
a step-length of each other, the trees are connected; if not,

interpolate(hqnear, hqrand, hqnew) generates a new state hqnew
for hqnear to grow towards. As the calculation of distance

between hq states is not straightforward, a heuristic distance
function is required. The heuristic distance function must be

easy to compute and must reflect the fact that object-transit

costs more than object-transfer. One such heuristic function

is defined as:

dddSE(3)(((hhhqqq))) = dddSE(3) +μμμ ·NNN (2)

where dddSE(3) is the Euclidean distance travelled by the needle

in space, and NNN is the number of handoffs required to connect
2 states that only differ in arm and grasp. As shown by an

exhaustive decomposition of the problem in Table I, NNN will

always be either 0, 1, 2, or 3.

TABLE I: Description of Needle Handoff Scenarios

Grasping Arm Grasped Sector Num. Handoffs
Goal Goal 0

Non-Goal Non-Goal 1
Goal Non-Goal 2

Non-Goal Goal 3

Note: Derivation of the number of handoffs required to resolve each scenario
is shown in Fig. 2.

Since NNN ∈ Z≥0, the parameter μμμ has to be larger than the
maximum distance (in 6DOF) across the robot workspace in

order to indicate the long “distance” involved in performing

a handoff motion.

E. Interpolation

Interpolation must be performed when attempting to con-

nect states (hqnear, hqrand) that cannot directly connect, to

determine the final position to reach along the path to hqrand.

Depending on the needle pose and needle grasp configuration

discrepancies between the state pair (hqnear, hqrand), a call

to interpolate(hqnear, hqrand, hqnew) could switch to any of
the nine different actions as given in Table II:

Cases where the object pose is changed but the grasp is the

same require a geometric interpolation in SE(3); the resulting

1While this terminology seems counterintuitive, it is used in previous
works.
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1 2 3START GOAL

(a) 3-Handoff Case: Needle starts out grasped by the non-goal PSM in the goal sector. The goal PSM must first grasp a non-goal sector
so that the non-goal PSM can move to the other non-goal sector (and get out of the way), then the goal PSM may move back to the goal
sector that has just been vacated.

1 2 GOALSTART

(b) 2-Handoff Case: Needle starts out grasped by the goal PSM, but in a different sector from the goal. The non-goal PSM must grasp a
third sector for the goal PSM to move from its current sector to the goal sector.

1 GOALSTART

(c) 1-Handoff Case: Needle starts out grasped by a different PSM in a different sector from the goal. The goal PSM can grasp the goal
sector immediately.

Fig. 2: This figure outlines the conditional logic of the heuristic distance function’s handoff count, displaying under what
conditions a motion will require 1, 2, or 3 handoffs. Not shown is the trivial case where the needle is already grasped by
the goal PSM in the goal sector, which requires 0 handoffs. When interpolating between grasps, 2 PSMs are forbidden from
grasping the same sector of the needle simultaneously. Without loss of generality, the white square represents the gripper
of the goal PSM and the leftmost sector the goal sector.

TABLE II: Action Depending Upon State Transition Type

Pose Arm Grasp Action

With uniform 40% probability... Change object pose, keep
grasp and arm.

Same Same Same No action taken.

Same Changed Same Keep object pose, change
grasp and arm.

Same Same Changed Keep object pose, change
grasp and arm.

Changed Same Same Change object pose, keep
grasp and arm.

Same Changed Changed Keep object pose, change
grasp and arm.

Changed Changed Same Keep object pose, change
grasp and arm.

Changed Same Changed Keep object pose, change
grasp and arm.

Changed Changed Changed Keep object pose, change
grasp and arm.

state hqnew differs from hqnear merely in its pose. In order
to connect hqnew to hqnear in this case, an object-transfer
motion will be selected from the local planner. The other
cases, except the ”No Action” case which simply copies
hqrand to hqnew, have to interpolate in space (Darm×Dgrasp),
but keep the needle pose the same. To change the grasp
and arm values, the program first examines the number of
handoffs needed to connect (hqnear, hqrand). If this number
is greater than 1, the function will pick an intermediate
state hqinterm which is only one handoff further from hqnear.
In implementation, the needle is divided into three sectors
along its semicircular arc, and two grippers are permitted to
grasp different sectors simultaneously but disallowed from
grasping the same sector. For example, if hqnear has armid =
1 and has grasped Sector 1, the hqinterm will have armid = 2

(given only 2 arms), and it can adopt any grasp transform
that puts it in contact with Sector 2 or 3, but not Sector 1.
Only 3 sectors are used in order to reduce the complexity
of the handoff calculation, and to guarantee that the robot
will indeed grasp the needle in the desired sector and not a
neighboring one (in consideration of uncertainties in needle
localization and grasping [12] [13]). A comprehensive listing
of handoff sequences and their motivation is depicted and
described in Fig. 2.

During experimental testing, we observed that branch of
a constructed tree may get needlessly trapped in states un-
favorable for needle handoff despite it could make progress
towards the goal by performing object-transfer motions. For
instance, the tree could grow into a collision-free state hqnew
where the needle is held by a PSM which is not in collision
with any object but is very close to an object, preventing
access by the other PSM for a needle handoff, while the
needle-holding PSM is free to move towards the goal by
performing an object-transfer motion (Fig. 3a). In such a
scenario, the naive algorithm would only be able to extend
such a branch with very low probability, because, by default,
the interpolation algorithm is biased towards a needle hand-
off (object-transit). This is because probability of randomly
generating a hqrand which would lead to an object-transfer
motion would be 1 / (2·148), given 2 PSMs and 148 grasps,
while probability of randomly generating a hqrand that would
lead to a hand-off would be (2·148 - 1) / (2·148). In order to
balance the extension of the tree through object-transfer and
object-transit, the algorithm is modified to assign a distinct,
40%, probability to perform object-transfer.
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F. State Sampling, Validity Checker and Local Planner

In order to improve performance of the state generator,

a random state hqrand is generated by sampling uniformly

from the robot joint space (within the joint limits in order

to guarantee to a tool-tip-reachable pose). Then, values are

sampled uniformly for armid ∈ Darm and graspid ∈ Darm
respectively. Since each grasp index graspid corresponds to

a specific grasp transformation, a random needle pose Sndl
with respect to reference frame is:

GGGrn = GGGrt ·GGGtn (3)

Grt and Gtn represent the transformation from tool tip

to reference frame, and from needle to tool tip frame,

respectively. Instead of directly sampling in object space and

then using inverse kinematics to get a corresponding joint

position, the forward method relies on forward kinematics,

which takes less time to compute. This also avoids having

the state validity checker repeatedly examine IK solutions

from many hqrand.

To create collision-free regrasping paths, a validity checker

and local planner are implemented. The validity checker

checks if sample state hqrand causes any collisions, and if the

state hqnew from the interpolate function is IK-solvable and
collision-free. Upon completion, the local planner decides

which motion is used to connect (hqnear, hqnew), and checks

collisions for each incremental motion along the resulting

path.

V. VALIDATION

A simulation-based validation of the proposed method was

carried out in a simulated environment [14] which included

a semicircular needle model with radius r = 12mm, 2 PSMs,
and an simplified column endoscopic camera, shown as Fig.

3a. The hybrid-state-space RRT−Connect motion planner
was implemented using the Open Motion Planning Library

(OMPL) [15].

A. Example Needle Regrasp Plan

In order to demonstrate the operation of the algorithm, an

example multi-arm grasping task is presented in this section.

When given a start state hqstart with PSM2 holding the needle
tail as shown in Fig. 4a, and goal state hqgoal with PSM1
holding the needle tail optimally as shown in Fig. 4h, PSM2
successfully passed the needle to PSM1 after three handoffs.
From the PSM2-grasped initial state, the first handoff motion
was executed as shown in Fig. 4b after two object-transfer

steps (corresponding to motion 2 and 3 in Table III). The

needle was grasped by both arms simultaneously, (PSM1
held the needle’s middle arc, as per the grasping choice

routine which forbids it from grasping in the same sector as

PSM2). The subsequent handoff motions listed in Table III
were then executed sequentially, and intermediate arm and

grasp choices obeyed the interpolate function, eventually
leaving PSM1 holding the needle with the optimal grasp
transformation.

(a)

(b)

Fig. 3: Needle regrasping simulation environment setup. (a)

The two Patient Side Manipulators and the endoscopic cam-

era of the da Vinci® Surgical Robot simulation model. The

camera holding arm is not shown to simplify the diagram.

(b) Simulated needle model.

TABLE III: Solution Path Information

Motion Motion Type (armid ,graspid )
1 Initial Grasp (2, 0)
2 Transfer (2, 0)
3 Transfer (2, 0)
4 Transit (1, 24)
5 Transit (2, 145)
6 Transfer (2, 145)
7 Transit (1, 147)

The RRT−Connect trees constructed by the planner were
composed of a of total 16 nodes and 15 edges, with the

solution path containing 7 nodes and 6 edges executed in

motions 1−7 (excluding the initial grasp). The total planning
time was 8.08 seconds. The solution is summarized in Table

III; for conciseness, the needle pose is not listed.

B. Performance

Performance testing focused on the computational effi-

ciency of the algorithm, namely, how quickly the hybrid-

state-space based RRT−Connect motion planner could find
a collision free solution path given start state hqstart and goal

state hqgoal. For each test case, 100 trial (hqstart, hqgoal) pairs

were fed into the planner, producing the results listed in Table

IV.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Needle regrasping experiment with three handoffs and the needle successfully held by PSM1 with optimal grasp.
This is a three-handoff situation since the needle is grasped by PSM2 at the start in the same location where PSM1 will
grasp it in the end; thus, three handoffs are required since two PSMs cannot grasp the needle at adjacent locations.

TABLE IV: Performance Testing

Test Case
Num.
Success

Ave.
Time
(s)

Std.
Dev
(s)

Min
Time
(s)

Max
Time
(s)

One
Handoff

100 11.79 10.97 1.50 51.28

Two
Handoffs

100 11.93 10.10 2.20 50.92

Three
Handoffs

100 14.83 12.59 2.64 73.98

Note: For each test case, 100 tests were performed.

For each trial state, the needle pose was randomly sampled

within the starting PSM’s estimated workspace; the values
of the discrete variables (armid ,graspid) were randomly
sampled with the expectation that they would be solvable

after at least a certain number of handoffs (one, two, or

three).

The statistics listed in Table IV indicate that the proposed

method was able to successfully and effectively generate

collision free plans that allowed the needle to be regrasped

at the desired needle grasp pose. No failures occurred out

of a total of three hundred tests. The average running

times of the first two tests were very close, around 0.2s

difference. The three-handoffs case had the longest average

time; this is expected as a longer planning time is required

to accommodate more handoffs. The same consequence can

be seen in the minimum running time across all cases. Since

RRT−Connect is a probabilistic algorithm, large differences
between the minimum and maximum running times are to

be expected.

VI. CONCLUSIONS

Building upon the RRT−Connect motion planner, we
address the needle regrasping manipulation task by allowing

the two arms of the da Vinci® Surgical Unit to collaborate

with each other. Planning in hybrid space is a non-trivial

question, and to resolve it we propose a hybrid object state

space accompanied by a corresponding heuristic distance

measure capable of evaluating both continuous Cartesian

space transitions and discrete grasp space transitions simul-

taneously. We also propose an interpolation algorithm which

directs a local planner to compute motion choices between

states- thus, two explorational trees in RRT−Connect are re-
alized. Simulation experiments demonstrated a typical needle

regrasping problem, in which the planner controlled the robot

to finish the handoffs and move the needle to the goal pose.

We also verified the runtime performance of our algorithm.

With arbitrary initial and goal states a total of 300 tests were

conducted with zero failures, suggesting that the planner can

reliably find solutions.

In our future work, we will focus on physical-robot execu-

tion. Additionally, though collision-free regrasping paths are

reliably generated, there exist redundant path segments (such

as motion 2 listed in Table III) which could be eliminated

by path optimization in hybrid state space. Another focus of

future work will be the improvement of the computational ef-

ficiency of the proposed algorithm, including parallelization

of the code.

Software is available online at [16].
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