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Abstract— This paper proposes a path correction method for
surgical robotic systems performing needle handoff manipu-
lations as part of autonomous execution of surgical suturing.
During handoff motions, the position and orientation of the
needle is subject to perturbations from the idealized planned
pose due to uncertainties in camera-robot calibration and
needle localization. If, after a perturbation, the system needs to
perform subsequent needle regrasp(s), but the robot still follows
the originally planned trajectory out of the path planner [1], it
has a lower chance of gripping the needle properly. In order to
accommodate these unpredictable needle pose perturbations,
the proposed path correction method works locally to direct
the needle from the wrong pose to the original pose by
partial replanning of the robot motion. The reliability of the
proposed method is evaluated with three sets of experiments in
a simulation environment.

Index Terms— Surgical Robotics: Laparoscopy; Medical
Robots and Systems

I. INTRODUCTION
In minimally-invasive surgical suturing, small, semicircu-

lar needles are introduced into the body cavity at arbitrary
locations and must be grasped near the base before being
driven through a specific section of tissue in a predetermined
arc. Since the initial grasp of the needle may not be ideal
[2] for driving it in the required suturing location, handoffs
from one minimally-invasive surgical tool to another may
need to be performed. Thus, dual-arm collaborative object
manipulation [3] becomes of interest to surgical robotics
applications, with needle handoffs needing to be performed
between two patient-side manipulators (PSMs).

Physical experiments reveal that during the execution of
the planned needle regrasping manipulations, the needle pose
is subject to perturbations from its original planned pose
during the handoff. This perturbation is due to uncertainties
in camera-robot calibration and needle localization, as well
as physical deformation and shifting of the needle by the
robot. Small errors in how the grippers are holding the
needle due to small calibration or needle localization errors
lead to competing internal forces between the initial grasp
and the new regrasp, which cannot be explicitly modeled or
measured without force sensing. For instance, when the first
gripper grips the needle while the second gripper is trying
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Fig. 1: A grasped needle is perturbed to a new pose after
a needle-handoff transition from a) to b), which results in
Gripper One holding the needle in a perturbed pose (shown
as the bold curve in solid black) as opposed to the desired
pose (shown as the bold curve in light grey).

to release its grip off of the needle (Fig. 1a), the needle
(which is slightly elastic and under torsion) may suddenly
snap to a new unplanned pose different than the originally
planned one (Fig. 1b) as soon as the second gripper opens
its jaws. As a result, the second gripper ends up holding the
needle with a grasp configuration different from what was in
the original plan. The specific nature of this perturbation is
highly unpredictable, but its occurrence is almost inevitable.
Therefore proper compensation of needle pose perturbations
is critical for successful completion of multi-step regrasp
sequences.

In this paper, a path correction method based on a vision-
based needle tracker [4] is proposed to overcome the un-
certainties resulting from the execution of the needle regrasp
manipulations. The rest of this paper is organized as follows.
The dual-arm needle regrasping manipulation planner is
briefly illustrated in Section III. The problem definition
is given in Section IV. The path correction algorithm is
described in Section V. Results of the simulation experiments
are presented in Section VI, with concluding remarks in
Section VII.

II. RELATED WORK

Studies to investigate dual-arm object manipulation have
been carried out since the 1950’s. By utilizing two arms,
a robot can perform more complex manipulations which
cannot be performed by a single manipulator [5], [6], such
as a jar-opening tasks where one hand securely holds the jar
body while the other hand unscrews the cap [7].

Recent developments in higher level planning, advanced
control, perception, and learning by demonstration have led
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Fig. 2: Demonstration of needle regrasp between two PSMs. The solution path successfully led to the needle being regrasped

by PSM1 (the arm on the left) with the optimal grasp [2], after three handoff motions.

to new advances in dual-arm manipulation [8]. A geometri-

cally consistent 6-DOF control scheme is adapted to dual-

arm cooperative manipulators by Caccavale et al. [9]. Sur-

dilovic et al. [10] proposed a framework used to synthesize

compliance control and dual-arm manipulation planning,

which successfully realized a bimanual parts assembly task.

Vahrenkamp et al. [11] investigated the problems of solving

inverse kinematics and motion planning for dual-arm object

regrasping, and two Rapidly-Exploring Random Tree (RRT)

based planning algorithms were proposed to calculate re-

grasping manipulation paths. Unlike the traditional sampling-

based or search-based planning methods applied to solve

dual-arm manipulation problems [12], [13], a learning-based

algorithm relies on the classification and segmentation of

the coordinated bimanual actions for a task planner to plan

the sequence of motion for decomposed tasks [7]. Jagersand

et al. propose an experimental framework to quantitatively

evaluate the precision improvements of visual servoing in

a variety of environments featuring variable occlusion and

kinematic obstacles [14]. Hynes et al. develop robust visual

tool-tracking of multiple arms in a surgical environment [15],

and subsequently employ uncalibrated visual servoing and

a pair of collaborating robot arms to realize suture knot-

tying within a physical tissue phantom [16]. Kruse et al.

develop a visually-guided precision teleoperation system for

two-arm industrial robots, autonomously translating human

hand motions without force feedback into stable grasping of

unknown objects [17]. Finally, Qu et al. examine the prob-

lem of uncertain grasp transforms when performing cyclical

object handoffs in an industrial setting, and implement a

vision-based cascade control structure based on a radial basis

function neural network [18]. Their later work then employs

marker fiducials and visual path planning to execute high-

precision dual-arm motions in environments of very high

initial position and rotation uncertainty [19].

III. DUAL-ARM NEEDLE REGRASPING MANIPULATION

PLANNER

Our previous work [1] presented a hybrid state space

RRT algorithm to plan bimanual needle handoff motions

between two PSMs of the da Vinci® robot, to address

the needle regrasping planning problem abstracted in (dis-

crete+continuous) hybrid state space.

The hybrid state space HHHyyySSSSSS is defined by the combination

of the Cartesian-space needle pose SSSndl ∈ SSSEEE(((333))), and 2

discrete state spaces: the grasping arm index space DDDarm (i.e.

whether the needle is grasped by Arm 1 or Arm 2), and the

grasp index space DDDgrasp of rigid grasp transforms [1]:

HHHyyySSSSSS = SSSndl ×DDDarm ×DDDgrasp (1)

Based on this definition, the edge (hqi, hqi+1) connecting

2 states is described by one of two different kinds of abstract

motions. The first is object-transfer, which involves moving

the needle to a new position while keeping it held by the

same arm with the same grasp. The second is object-handoff,
which involves changing the holding arm and/or the grasp

transform without moving the needle in space1.

The solution path generated is a sequence of motions com-

posed of object-transfer motion and object-handoff motion

primitives. An example of a planned path for needle regrasp-

ing is given in Fig. 2. The execution of this demonstration

assumes that the needle pose always remains accurate to the

planned results, and the grasp transformation is kept static

throughout each handoff. However these two assumptions

do not hold in hardware because of needle perturbations that

occur.

IV. PROBLEM DEFINITION

Given the planned needle regrasping trajectory generated

from the handoff planner mentioned in Section III, the robot

should accommodate perturbations by replanning, to direct

the needle from the perturbed pose to the planned pose, such

that the needle can be brought from initial state hqstart to the

goal state hqgoal without any collisions.

Some notation related to the path correction method is as

follows:

• hhhqqq represents a generic hybrid object state.

• hhhqqqrand is a random hybrid object state.

• hhhqqqstart is the initial hybrid object state.

• hhhqqqgoal is the goal hybrid object state.

• hhhqqqpert is the perturbed hybrid object state.

• hhhqqqtarget is the next hybrid state along the sequence of

states generated by the RRT algorithm.

• hhhqqq
cur ideal

is the state that the needle would be in if there

was no perturbation.

V. PATH CORRECTION

The proposed path correction method employs local-path-
correction (LPC). The needle regrasping paths generated by

the algorithm presented in Section III are a combination

1This terminology differs from the standard “object transfer and object
transit” terminology outlined in [20]. We have chosen to diverge from the
terminology of general dual-arm manipulation to more clearly describe this
specific problem.



Algorithm 1: CorrectTransfer()
Input: hqpert , hqtarget

1 while ‖ SSSndl ∈ hqpert , SSSndl ∈ hqtarget ‖> ε do
2 NewPath←CalcCartesianPath(hqpert , hqtarget )
3 if IsValid(NewPath) then
4 ExecuteTrajectory(NewPath)
5 else
6 if hqtarget 6= hqgoal then
7 return Succeeded
8 else
9 return Failure

10 end
11 end
12 hqpert ← UpdateNeedlePose()
13 end

of several object-transfer and object-handoff path segments.
The LPC method aims to correct each of these path segments
in a local fashion.

A. Local Path Correction

As noted earlier, the needle is subject to perturbations
after two grippers finish a handoff motion. As a result, the
current needle pose and grasp may deviate from that of the
original planned state provided by the planning algorithm.
At this point, the next path segment should be replanned
based on the perturbed needle pose and grasp (as reported
by the vision-based needle tracking algorithm [4]), such
that the new path steers the needle back on course. The
replanning is determined by the next trajectory only, which
means that no matter how many states are left to be visited,
the replanning is only being done from the current perturbed
state to the adjacent target state in order to avoid the
additional computation needed for a full replanning of the
needle regrasp. As the replanned new path only tries to
connect two neighboring states, the rest of the path(s) is left
untouched. This is why the method is called “local”.

Given the current perturbed hybrid object state hqpert ∈
HySS that has a different needle pose and grasp than that of
the current ideal state hqcur ideal ∈ HySS, and the neighboring
target state hqtarget ∈ HySS, the LPC plans a local collision-
free path according to the type of the next path segment.

Algorithm 1 summarizes the method used for local path
correction when the next segment of the path is an object-
transfer path. If the distance between the states hqpert and
hqtarget is larger than a user specified threshold ε , the algo-
rithm generates a new Cartesian straight-line path to connect
hqpert with hqtarget , such that the needle is moved from the
perturbed pose towards the next target pose with the same
supporting arm but with a different motion to accommodate
the incorrect grasp. Inside the CalcCartesianPath function,
the full path connecting hqpert and hqtarget is divided into
several steps, but NewPath only stores the first segment
(which transfers the needle from the current state hqpert to
the adjacent state hqadj). This is because, under the visually

Algorithm 2: CorrectHandoff()
Input: hqpert , hqtarget , hqcur ideal , NewPath

1 SameNdl←‖ SSSndl ∈ hqpert , SSSndl ∈ hqtarget ‖ < ε

2 SameRS← RobotJointDist(hqcur ideal , hqpert ) < ε

3 if SameNdl ∧ SameRS then
4 NewPath = OriginalPath
5 return True
6 end
7 hqtemp ← hqtarget

8 SSSndl ∈ hqtemp = SSSndl ∈ hqpert

9 if ¬ ReplanHandoffPath(hqpert , hqtemp , NewPath) then
10 if ¬ ValidPath(hqpert , OriginalGraspPath) then
11 return Failure
12 else
13 if ¬ GenerateNewReleasePath(hqpert ) then
14 return Failure
15 end
16 end
17 NewPath=OriginalGraspPath+NewReleasePath
18 return True
19 end
20 return True

guided system, the farther the distance traveled by the needle,
the more error the needle pose would accumulate. Therefore,
in order to minimize the error, the needle is instead moved
towards the target pose for a certain distance at each iteration.
As long as the target state hqtarget is not the goal state
hqgoal , the algorithm will still exit reporting Succeeded to
the outer layer of the program regardless of value evaluated
from IsValid(NewPath), since the remainder of the error
can potentially be compensated for by the rest of handoff
manipulation path. The idea is that even if the algorithm
has failed at progressing towards the temporary target, the
program still has a chance to correct the rest of the paths to
bring the needle to the goal state hqgoal . If hqtarget equals hqgoal
then the program will have no further chance to do more local
corrections and could only report Failure as shown in Line
8. In summary the new object-transfer path will only bring
the needle as close as possible to the target pose with the
same PSM arm holding needle as in hqtarget , however, cannot
guarantee that the grasp transform will be the same as that
of hqtarget .

The method used for local path correction when the
next segment is an object-handoff path is presented as
Algorithm 2. The algorithm first examines if the observed
perturbation of the needle is small enough to assume that
the needle is gripped as planned. If so, the original plan
is acceptable. If not, the algorithm attempts to plan a new
handoff path NewPath from the perturbed state hqpert to the
temporary state hqtemp such that the new supporting arm
can hold the needle with the grasp specified in hqtarget . For
instance, consider the situation where the needle needs to
be passed from PSM1 to PSM2, but, the current ideal state
hqcur ideal has a different needle pose and grasp from that of



the current perturbed state hqpert . In order to direct PSM2 to
grasp the needle as defined by the configuration hqtarget , a
new object-handoff path has to be generated. This new path
needs to compensate for the change of the needle pose so
that PSM2 correctly grasps the needle. PSM1 then releases
the grip and retreats back according to the new configuration
of PSM2. If any of the motions described above are not both
kinematically feasible and collision-free, then the algorithm
will attempt to keep using the original grasping path to
validate if PSM2 could correctly grasp the needle without any
collision. If not, then the program reports Failure and exits.
If the original grasping path is acceptable, then a new grip
release path for PSM1 is generated according to the perturbed
needle pose. It is important to note that the CorrectHandoff
algorithm only tries to correct the needle grasp to the value
given in the target state hqtarget but does not transfer the
needle to the target pose.

The local path correction strategy results in either a
new object-transfer path or a new object-handoff path that
attempts to correct the needle pose or correct the needle
grasp, respectively, from the perturbed state hqpert to the
adjacent target state hqtarget . Consequently, the entire needle-
handoff path is locally corrected, one path segment at a time.

B. Path Correction Algorithm

The LPC scheme described in Section V is incorporated
into a high-level path correction algorithm as presented in
Algorithm 3 to accommodate uncertainties during the execu-
tion of the needle-handoff manipulation trajectory generated
by the Dual-Arm Needle Regrasping Manipulation Planner
(Section III).

The input of the algorithm is the originally planned hand-
off manipulation trajectory PPPTTT that is a list of trajectories
sequentially composed of object-transfer and object-handoff
motions. If the kth trajectory is an object-transfer path, then
the algorithm tries to find a new path by Algorithm 1 to
try to direct the needle from the perturbed pose to the next
target pose. If the kth trajectory is a object-handoff path, then
algorithm tries to plan a new handoff path by Algorithm 2. If
successful, the chosen PSM in hqtargetk+1

will correctly grasp
the needle at the pose given in hqpertk

. After the execution
of the new trajectory, the kth state hqpertk

should have same
armid and graspid as hqtargetk+1

but a different needle pose,
which means the needle is already held by the right PSM
and the desired grasp configuration. The algorithm will then
compensate for the perturbation by moving the needle to
the target pose in hqtargetk+1

as shown from Line 13 by
Algorithm 3. If this failed and no more trajectory segments
are left in PPPTTT , then the program reports False, which means
that a global replanning of the regrasping manipulation needs
to be performed.

VI. VALIDATION

In this section, the simulation experiments conducted to
validate the performance of the path correction algorithm
are presented. In the simulation experiment the needle is
placed at a random pose and with a random choice of grasp

Algorithm 3: DualArmNeedleManipulation(PT )

1 N ← length(PT )
2 for k← 1 to N do
3 hqpert ← hqtargetk
4 hqpert ← UpdateNeedlePose()
5 if PTk = object-transfer-path then
6 if ¬ CorrectTransfer(hqpertk

, hqtargetk+1
) then

7 return False
8 end
9 end

10 if CorrectHandoff(hqpertk
, hqtargetk+1

, NewPathk)
then

11 ExecuteTrajectory(NewPathk)
12 hqpertk

← UpdateState()
13 if ¬ CorrectTransfer(hqpertk

, hqtargetk+1
) then

14 if k = N then
15 return False
16 end
17 end
18 else
19 return False
20 end
21 end
22 return True

configuration from DDDgrasp, the algorithm is asked to find
solution to bring the needle to a different random goal state.
Two kinds of system noises are introduced in a Gazebo-based
dVRK simulator [21] to emulate perturbations to needle
pose and errors in tracking of the needle pose. The first
experiment does not perform any path correction to establish
the baseline performance for comparison, while the second
and the third experiments use Algorithm 3 to validate the
reliability of LPC method. The first two experiments use the
true needle pose data received directly from the simulator,
evaluating performance under accurate visual needle tracking
conditions, while the third experiment uses noisy needle pose
estimates to evaluate the robustness of the path correction
algorithm to needle tracking errors.

A. Error Injection in Simulation

When validating the needle path correction algorithm,
artificial noise is injected to the simulated needle pose in
the Gazebo simulator to mimic the physical behavior of
the real needle. It is important to know that this simulated
perturbation is not based on mathematical modeling of the
underlying physics causing the random pose alteration of the
needle; only the end result of the visible sudden pose change
of the needle.2

The artificial perturbation is simulated by a random ro-
tation, which is obtained by rotating the needle about an

2In the simulations, the needle pose perturbation is assumed, without
loss of generality, not to happen in the last handoff motion of the whole
manipulation trajectory. Otherwise, the gripper would never correctly grasp
the needle, which would lead to an infinite loop of path corrections.
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Fig. 3: The diagram describes the transform performed to

add perturbation to the true needle pose.

axis through grasp point at PPP ∈ R
3 as shown in Fig. 3. In

the physical experiments, most of the perturbations were

observed to be similar to rotating the needle around the

vertical axis ZZZp. Therefore, across the experiments, the

perturbation is generated with 50% probability as a rotation

around the vertical axis ZZZp, 25% probability around the

radial axis RRRp and 25% probability around the tangential

axis TTT p. The angle of rotation dictates the magnitude of the

perturbation, which is applied at various grades.

The second type of noise is the object tracking error. This

error stems from matching errors in the tracking program, as

well as any errors in camera calibration and errors resulting

from finite camera resolution [4]. Object tracking error does

not modify the actual pose of the simulated needle, it only

perturbs the pose information reported by the needle tracking

algorithm to the needle-handoff algorithm. As a result, the

program guides the PSM to an inaccurate grasp pose, which

could lead to either an incorrect grasp or missing the needle.

Object tracking error is emulated by fetching the accurate

needle pose from the simulator, then perturbing it before

reporting the result to the path correction algorithm. Both

translational and rotational errors were included.

B. Experiment I

The first experiment demonstrates the baseline perfor-

mance of the execution of dual-arm needle manipulation

under perturbation to needle pose but without the help of

the correction algorithm. The perturbation error magnitude

was set to 0.2rad. Out of 10 trials, only 2 cases succeeded.

All failed cases exhibited the same issue: once the needle

pose was perturbed, insisting on the original manipulation

trajectory led to the manipulator missing the needle during

subsequent regrasps.

C. Experiment II

In order to validate the ability of the LPC algorithm to

handle the perturbations experienced during handoff motions,

the second experiment was conducted with various levels of

perturbation injected. 20 trials were performed for each error

magnitude, and both positive and negative perturbations were

considered. The results are presented in Table I. In order to

demonstrate the performance improvement realized by the

path correction algorithm, the percentage points (%-points)

of improvement over the control group is given in the last

column of the Table I.

TABLE I: Path Correction Performance

Pert. (rad) Successes
Success Rate

(%)
Performance

Change (%-points)
0.2±0.01 18 90 70
0.3±0.01 18 90 70
0.4±0.01 16 80 60
0.5±0.01 14 70 50

Note: For each level of error, 20 trials were performed.

As shown in Table I, the LPC algorithm accommodates

the perturbations well. With low-level perturbation at 0.2rad
and 0.3rad, the success rates are brought up to 90%, which

gives a substantial improvement over the control group. Even

at the larger magnitudes, 0.4rad and 0.5rad, the success rate

was maintained at 80% and 70%, respectively. The cause of

all the failures is that the LPC algorithm failed at replanning

either the local object-transfer path or the object-handoff
path.

An example of dual-arm needle manipulation plan is

shown in Fig. 4. The manipulation plan is composed of a total

of 8 states, sequentially connected by either object-transfer
or object-handoff trajectory. In order to ensure that the needle

can be grasped by PSM1 with the selected grasp, the LPC
algorithm is used during at the execution of the trajectories.

The Fig. 4 demonstrates the trajectory execution with the

involvement of LPC. During the execution, each connecting

trajectory is corrected by the LPC algorithm. After three

hand-offs, the needle is positioned at the goal pose held by

PSM1 with the optimal grasp.

D. Experiment III

The last experiment demonstrates the tolerance of the

needle regrasp plans to the noisy needle pose information

received from the tracking system. Specifically, the goal is

to determine the level of noise where LPC fails at assisting

the handoff manipulation. For each case, 20 trials were

performed with the magnitude of error represented by a

Gaussian distribution with standard deviation as 0.001rad
for orientation noise and 0.1mm for position error. The

magnitude of the needle pose perturbation was set as ±0.2±
0.01rad for all tests. The results are separately summarized

in Table II and Table III. The last column of each shows the

performance difference compared with the row of Table I that

corresponds to the test case with the same level of needle

pose perturbation but without noisy tracking information.

According to the outcomes in Table II, the LPC algorithm

is not adversely affected by the noise around 0.01rad, which

reaches a 95% success rate out of 20 trials, a performance

level similar to the first test case in Experiment II. How-

ever with the magnitude of noise increased to 0.03rad and

0.07rad, the success rate decreases to only 60% − 65%.

When compared to the result of the test case with the

accurate needle pose tracking, the performance dropped
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Fig. 4: The diagram describes an example execution of dual-arm needle manipulation with LPC. The needle is handed off
between PSMs three times with several object-transfer motions in between. The perturbation happens at the first handoff
motion, from e) to f), and the second handoff motion, from h) to i).

by 25 to 30 percentage points. The reason of the failed
trials is that the manipulator was deceived into adopting a
disadvantageous grasp pose where the needle was insecurely
grasped. For example, the needle was grasped too close to
the gripper’s tip, or the needle base or tip was barely attached
to the gripper.

As can be observed in the results listed in Table III, the
LPC algorithm is more strongly influenced by the noise along
the depth perceived by the camera. Even a 1mm error could
make the performance drop by 20% as compared to the
ground truth case. This 20% performance decrease consists
of 3 failures where the gripper missed the grasp of the needle
at handoff. At 2mm noise level, the success rate is slightly
decreased to 60%, but more failures where the needle grasp is
missed contributed to the number of failed trials. With noise
increased to 3mm, the performance of the LPC is further
reduced where only 25% of the tests could succeed.

Based on the last three experiments, we conclude the LPC
algorithm successfully handles perturbation at the magnitude
of 0.2rad − 0.3rad with good performance. In terms of
tolerance to errors in needle tracking, we can expect the LPC
algorithm to be effective at dealing with the perturbations
when the orientation noise is smaller than 0.03rad and the
position noise is at most 1mm.

TABLE II: Tolerance to Orientation Noise

Level of
Noise (rad) Successes Success Rate

(%)
Performance

Change (%-points)
0.01 19(1F) 95 +5
0.03 13(2F, 5I) 65 -25
0.07 12(1F, 7I) 60 -30

Note: The results in the second column also indicate the reason for
failure with the additional information in the parenthesis where F
and I represent the failure of LPC and insecure grasp, respectively.

VII. CONCLUSION

The algorithm presented in this paper focuses on how to
handle the perturbations in needle pose that result during
needle-handoff using a local-path-correction (LPC) strategy.
The LPC strategy adjusts the individual object-transfer and
object-handoff segments of the original needle regrasping
plan to compensate for perturbations to the needle position.
The validation of the LPC algorithm was performed by
experiments conducted in a simulated environment, with
artificial random perturbations. The LPC algorithm resulted
in performance improvement of 50− 70 percentage points
as compared to the baseline performance. Investigation of
tolerance of the LPC algorithm to errors in needle pose
estimation showed the LPC algorithm to be effective at
dealing with perturbations when orientation measurement
noise is smaller than 0.03rad and position measurement
noise is at most 1mm.

Future work will focus on the validation of the path
correction method on the physical dVRK setup. This de-
mands sufficient needle pose estimation accuracy from the
needle tracking system as well as sufficiently high camera-
robot calibration, (or robot tool localization and tracking
capability).

TABLE III: Tolerance to Position Error

Noise (mm) Successes
Success

Rate
(%)

Performance
Change (%-points)

1 14(3F, 3M) 70 -20
2 12(3F, 5M) 60 -30
3 16(1F, 14M) 25 -65

Note: The results in the second column also indicate the reason for
failure with the additional information in the parenthesis where F
and M represent the failure of LPC and missing-of-needle-grasp,
respectively.
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[8] P. Ögren, C. Smith, Y. Karayiannidis, and D. Kragic, “A multi
objective control approach to online dual arm manipulation1,” IFAC
Proceedings Volumes, vol. 45, no. 22, pp. 747–752, 2012.

[9] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani, “Six-
dof impedance control of dual-arm cooperative manipulators,”
IEEE/ASME Transactions On Mechatronics, vol. 13, no. 5, pp. 576–
586, 2008.

[10] D. Surdilovic, Y. Yakut, T. M. Nguyen, X. B. Pham, A. Vick,
and R. Martin-Martin, “Compliance control with dual-arm humanoid
robots: Design, planning and programming,” in 2010 10th IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2010, pp.
275–281.

[11] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dill-
mann, “Humanoid motion planning for dual-arm manipulation and
re-grasping tasks,” in 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2009, pp. 2464–2470.

[12] J.-P. Saut, M. Gharbi, J. Cortés, D. Sidobre, and T. Siméon, “Planning
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