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Abstract— This paper presents a visually-guided autonomous
needle driving algorithm for autonomous robotic surgical su-
turing. Surgical needle tracking, needle path planning, and
optimum needle grasp selection algorithms are employed. The
procedure is performed in 5 major steps: needle grasp, needle
hand-off, needle drive, needle regrasp, and needle pull. The
performance of the procedure is experimentally evaluated using
the physical da Vinci R© surgical robotic system and da Vinci
Research Kit (dVRK). Initial results suggest that the dVRK
can successfully perform needle driving with visual guidance.

I. INTRODUCTION

While fully autonomous surgery will be a challenge in the
near future, autonomous robotic surgical assistants [1] have
been proposed to perform low-level manipulation tasks such
as suturing [2]–[4], debridement [5], dissection [6], resection
[7], needle grasping [8], [9], suture planning [2], [10], [11],
and retraction [12] to enhance surgeon performance and
reduce operation time. Due to its repetitive nature, suturing
is ideally suited to this form of automation. To reduce the
tissue trauma and operation time, an automation framework
can keep the surgeon as the decision maker while relying
on the robotic system to manage the execution of low-level
motions. As opposed to the use of primarily pre-planned
manipulation strategies employed in traditional industrial
robotics applications, the dynamic nature of surgical environ-
ments and the underlying substantial uncertainty necessitates
that surgical manipulations to be performed under sensory
guidance. As such, methods for perceiving the state of
the surgical environment and the robotic system are a key
requirement for autonomous and semi-autonomous execution
of surgical manipulation tasks [13]–[16]. Once such robust
robotic perception algorithms are available, they can be used
to perform precise visually-guided manipulations, allowing
the robotic surgical system to operate under imperfect and
varying robotic manipulator/camera-calibration conditions,
and to deal with the uncertainties resulting from unknown
initial conditions and complex tissue deformation dynamics.

This study specifically focuses on visually-guided surgical
needle driving for autonomous suturing tasks in RMIS.
The steps of the procedure are determined using the best
practices of manual suturing with a semi-circular needle.
The proposed method uses tools available in a regular RMIS
operation without modifying them. The task-critical element,
the surgical needle, is localized and tracked during the entire
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task and its 3D position and orientation is provided to the
other components of the algorithm.

In the presented method, the suturing task starts with one
of the robotic surgical manipulators grasping the surgical
needle, which is randomly placed within the workspace
observable through the endoscope. Then the robot hands
over the needle to the other robotic surgical manipulator to
provide a better needle grasp configuration for the needle
drive. Human surgeons perform this step frequently in RMIS
since the grasp configuration directly affects the quality of
the suture. The robotic manipulator then drives the needle
through the tissue. Once the tip of the needle exits the
tissue, the robot releases the base of the needle and regrasps
the needle from the tip using visual information from the
tracking algorithm. The visually-guided needle driving is
completed by pulling the needle out of the tissue. Several
repetitions of these steps form a running suture.

This study performs a fully autonomous needle drive and
pull without using any aid such as a painted needle, pre-
grasped needle, angle positioning end-effector apparatus for
needle grasping, external stereo camera system, or human
intervention. Unlike prior literature, in the proposed approach
the needle is randomly placed in the workspace, then picked
up and handed over from one manipulator to the other, with
only visual guidance. The hand-off is particularly demanding
since it requires precise needle positioning. Additionally,
most previous methods do not release the needle freely in
the tissue, whereas the approach presented in this study has
the capability to release the needle in the tissue and regrasp
it using visual guidance to pull it out.

This paper builds on prior work in needle path planning
[2], needle tracking [15], optimum needle grasp selection [8],
and surgical robot-camera calibration [17].

The paper is organized as follows: Section II discusses
related studies. In Section III, the problem definition and
the proposed methods are introduced. The specific details
of hardware based validation tests and the results of the
visually-guided needle driving are presented in Section IV.
The conclusions are presented in Section V.

II. RELATED STUDIES

One of the major steps of the autonomous suturing task
is driving the needle through the tissue. Once the needle is
inserted into and driven through the tissue by its base, it must
be regrasped from the tip and pulled out again. Researchers
studying the autonomous suturing task have tried to solve
this problem using various methods:

Staub et al. developed an autonomous tissue piercing
method for RMIS using a semi-circular needle. The incision



point is communicated to the robot using a laser pointer
and needle positioning employs a visual servoing approach.
The robot posture is initialized manually to hold the needle
perpendicular to the jaws of the end-effector. This prior
positioning minimizes the risk of a slip during the piercing
process. The needle tip, which is colored, is tracked in the
image frame rather than tracking the position and orientation
of the needle in the world frame. This method only pierces
the tissue with the needle, and needle regrasp and pull are
not performed [18].

Iyer et al. attempted to solve the suturing problem by
using a single-arm robotic manipulator with a standard
laparoscopic needle holder, a semi-circular surgical needle
and a clinical endoscope (single camera). The needle driv-
ing procedure was performed with a pregrasped needle. A
monocular pose measurement method was used along with
the least-square ellipse-fitting OpenCV functions to estimate
the position and orientation of the semi-circular needle. The
suture surface was identified using green circular stickers
and the needle entry/exit points were chosen manually by
the surgeon on the console [19].

Sen et al. developed an automated multi-throw surgical su-
turing algorithm using the da Vinci R© surgical system. Instead
of surgical endoscope images, a custom stereo camera pair
was employed to provide a larger workspace and a yellow-
painted surgical needle was used. The needle’s distinctive
shape and color were leveraged to calculate the 3D pose
of the needle using an ellipse fitting algorithm. To avoid
inaccurate grasping, a “Suture Needle Angular Positioner”
was used to align and hold the needle in a known orientation.
Additionally, the procedure started with the robot already
holding the needle rather than grasping the needle from the
scene [4].

Shademan et al. demonstrated an in vivo supervised au-
tonomous soft tissue surgery using a plenoptic 3D and near-
infrared fluorescent (NIRF) imaging system. A vision-guided
robotic system was equipped with an actuated suturing tool
which was capable of performing a running suture. The
supervisory control architecture of the system allowed the
surgeon to select incisions and track the placements of
stitches [20]. Recently, this study was further expanded by
developing a new 3D imaging endoscope, new actuated tool,
and a suture planning method for the autonomous suturing
task [21].

The earlier studies in the literature on autonomous needle
driving methods all rely on simplifying assumptions such
as artificially colored needles, a pregrasped needle, angle
positioning end-effector apparatus for the needle grasping,
or custom built end-effector and camera systems, none of
which are applicable to practical RMIS scenarios. In contrast,
the present study aims to perform fully autonomous needle
driving using images from the endoscopic stereo cameras
of a realistic RMIS system without any modification to the
robotic tools, endoscopes, or the surgical needles. This study
uses visual guidance while grasping and handing over the
needle; and the tracking algorithm provides 3D position and
orientation of the needle for planning. This condition requires

a robust needle tracking algorithm capable of tracking the
needle under high occlusions. To the best of the authors’
knowledge, there are also no earlier published studies using
such a realistic system without modifications where the
needle is released in the tissue and regrasped for pulling
while relying only on a visual tracking system.

III. METHODS

The visually-guided needle driving task starts with the
needle placed randomly on the tissue. Next the tissue surface
and the suture line are visually identified. Then the needle
tracking algorithm locates the needle and tracks it during the
entire task, meaning that the needle pose is available at any
time. The task proper then starts by grasping the surgical
needle with one of the surgical manipulator arms. Next,
the robot moves to an advantageous pose to hand over the
needle to the other surgical manipulator. This step provides
a better grasping configuration for driving the needle than
could be acquired with the needle lying flat against the tissue.
Once the needle is in the other surgical manipulator, the
manipulator brings the needle to the suture entry point at
the correct insertion orientation. When the needle tip is at
the suture entry point, the robot drives the needle through
the tissue by rotating the needle around the needle center to
minimize the tissue tear. Once the tip of the needle exits the
tissue, the manipulator releases the needle base to regrasp
it from its tip. Finally, the robot regrasps the needle tip and
pulls the needle out of the tissue.

A. Surface and Suture Line Identification

The incision to be sutured is represented with a 5cm
dark line drawn on the light-colored suture pad. The start-
and end-points of the suture are identified in image space
using standard image-processing techniques: Canny edge
detection [22] followed by extracting the longest line from a
probabilistic Hough transform [23]. Fiducials (visible in Fig.
1 as 6 small circles) aide in identifying the 3D location of
the tissue surface in the absence of sufficient texture on the
suturing training pad from which the depth could be properly
determined (Fig. 1).

Fig. 1. (a) Endoscopic view of the phantom tissue manufactured by Simulab
Corp. (b) Tissue with suture line highlighted.

B. Needle Localization and Tracking

The position and orientation of the needle are deter-
mined and tracked using the particle-filter-based algorithm
described in detail in [15]. The core idea of the particle
filter algorithm is to approximate the posterior probability
distribution of a state, such as the surgical needle pose, by



Fig. 2. Particle filter algorithm flow for needle localization and tracking.

using a finite number of randomly-generated samples, called

particles. The overall flow diagram can be seen in Fig. 2.

Since the visually-guided needle driving procedure starts

with placing the needle freely in the surgical scene, the initial

set of particles are randomly generated in the workspace.

If the rough pose of the needle is known, then this can be

used to reduce the computation necessary to solve the global

localization problem at the initialization stage.

The first step in the algorithm is to update the particle

states using a motion model. In this study, there are two

different cases for the update step. If the needle is free, i.e.,

not being held by the robot, then the motion of the needle is

modeled as Brownian motion, where the state of each particle

is perturbed at each time step with Gaussian noise. If the

needle is grasped by the robot, then each particle state is

updated using the incremental motion of the robotic gripper

holding the needle.

For the measurement update step, the images acquired by

the endoscope are segmented using a thin feature extraction

algorithm [14] in order to emphasize the needle outline.

The observation likelihoods are then estimated from the

image-space similarity between the virtual images of the

needle generated from the needle pose hypotheses, and the

observed segmented images of the scene, as calculated using

the normalized cross-correlation. In the final step of the

algorithm, particles are resampled using the low variance

resampling method [24].

The needle tracking algorithm runs as a separate Robot

Operating System (ROS) node which publishes the position

and orientation of the needle at all times. The steps outlined

above are implemented on a GPU-based schema using the

CUDA parallel computing platform. This implementation is

able to run at ∼ 3 frames per second with 3000 particles,

which is sufficient to track the needle for the autonomous

visually guided needle driving task.

C. Needle Grasp

The pose of the needle is obtained from the tracking

algorithm described in Section III-B, and the initial grasp

Fig. 3. Grasp configuration parameterization. The origin of the frame T
is at the tip of the gripper. The Y axis is perpendicular to the jaw of the
gripper and Z axis points points along the gripper. The origin of the frame
N is placed at the center of the needle. The X axis points to the base of the
needle and the Y axis points to the body of the needle.

is performed with the most feasible grasp as determined by

[8].

Needle grasping is managed by the ROS MoveIt! package,

which provides built-in trajectory planning and kinematics

functionality to grasp arbitrary objects using arbitrary ma-

nipulators defined based on a robot kinematic description, an

object model, and a user-determined grasp transform GT N .

The grasp configuration of the surgical needle is pa-

rameterized with 4 DoFs as shown in Fig. 3. The gripper

coordinate frame T is placed on the tip of the gripper. Its

Y axis is perpendicular to the jaw of the gripper and its Z

axis points along the gripper. The needle coordinate frame

N is placed at the center of the needle. Its X axis points

to the base of the needle and its Y axis points to the body

of the needle. The kinematics of the grasp configuration is

parameterized by one translation and three rotations. As can

be seen from the Fig. 3, ϑ0 specifies the insertion translation

along the negative Z axis of the T frame. ω1 and ω2 are

defined around axes passing through the origin of the gripper

frame, and ω3 is defined to be around an axis passing through

the center of the needle [8].

A full 4× 4 grasp transformation matrix between frame

T and frame N can be computed from these parameters as

follows, where r is the radius of the needle, si = sin(θi), and

ci = cos(θi):

R =

⎡
⎣

s1s3 − c1c3s2 −c1c2 −c3s1 − c1s2s3

−c1s3 − c3s1s2 −c2s1 c1c3 − s1s2s3

−c2c3 s2 −c2s3

⎤
⎦

p =

⎡
⎣

r(c1s2(c3 −1)− s1s3)−θ0

r(c1s3 + s1s2(c3−1))
rc2(c3 −1)

⎤
⎦

GT N(θ0) =

⎡
⎢⎢⎣

R(θ0) p(θ0)

0 0 0 1

⎤
⎥⎥⎦

(1)

The needle grasping method is implemented in an action-

server schema which takes a goal state consisting of the



Fig. 4. The origin of the frame T is at the tip of the gripper, N is at
the center of the needle, S is on the suture line, P is at the RCM of the
manipulator, and C is at the camera. GPT is the transform between the robot
base (P) and the gripper (T) frames, GPC is the hand-eye calibration, GCS is
the transform between the camera (C) and the tissue frames (S), and GT N
is the transform between the gripper and the needle.

Fig. 5. MoveIt! also divides the needle hand-off motion into approach,
reach, and grasp steps. The manipulator begins aligned with the needle
orientation, then approaches the needle position to a user defined offset
along the z-axis of the manipulator (a), opens its grippers (b), reaches the
non-offset pose of the needle (c), and closes the grippers(d).

desired grasp transform (defined by the 4 parameters de-

scribed above) and the manipulator arm (identified by ID

number) with which to perform the grasp. The action server

obtains the most recent needle pose published by the needle

tracking algorithm and calls the MoveIt! package to plan a

motion which will end at the goal state. MoveIt! plans the

grasping motion in three steps: approach, reach, and grasp. In

the approach step, the manipulator moves to the needle pose

with a user-defined offset along the z-axis of the end-effector.

Then, the manipulator opens the grippers and reaches to the

actual goal grasp configuration. The needle grasp is then

finalized by closing the grippers (Fig. 5).

D. Needle Hand-off

As described in [8], the grasp configuration of the needle

directly impacts the suture quality and success rate. In order

to obtain a good grasp, surgeons often change the needle

configuration by passing it from one manipulator to another.

Therefore, this study employs an automated handoff step

to obtain an optimal needle grasp transform. The handoff

procedure has three steps. Once the needle is grasped by first

manipulator using the grasping method described in Sec. III-

Fig. 6. Needle handoff steps. The needle is grasped by one of the
manipulators (a). The manipulator then moves to a pose within the camera
view where it is reachable by the other manipulator (b). Needle grasping is
performed using the other manipulator(c). Then the first manipulator releases
the needle and moves away without disturbing the grasp configuration (d).

C, the manipulator moves to a pose under the camera view

where the needle is more easily reachable by the second

manipulator. At this position, the second manipulator grasps

the needle using the procedure described in Sec. III-C, which

uses an optimal grasp configuration (selected as described in

detail in [8]). Finally, first manipulator releases the needle

and moves away without disturbing the grasp configuration

(Fig. 6).

E. Needle Drive

In the needle driving phase, the needle trajectory is calcu-

lated using the needle path planning algorithm as described

in detail in [2]. For the purpose of trajectory planning, the

tissue surface is assumed to be a plane and the needle

is approximated as a semicircle with a known radius. In

addition to these constants, the depth of the suture (d) is

defined by the surgeon. The needle entry point (g) and the

exit point (f ) can be computed using the suture depth (d) and

the needle radius (r) (Fig. 7). Using the available geometry,

the transform between local frames of the needle (N) and

the tissue (S), GSN , can be calculated as follows:

Gα
SN =

⎡
⎢⎢⎣

0

RZ(α) h
0

0 0 0 1

⎤
⎥⎥⎦ . (2)

Then the end-effector trajectory can be computed as:

GPT = GPC ·GCS ·Gα
SN ·G−1

T N , (3)

where GPT is the transform between the robot base (P) and

the end-effector (T) frames, GPC is the hand-eye calibration,

GCS is the transform between the camera (C) and the tissue

frames (S), and GT N is the transform between the end-

effector and the needle (Fig. 4). The rotation angle α ranges

from α0 to π − α0, increasing incrementally as the drive

progresses, and α0 can be computed as:

α0 = arcsin(h/r),

α0 ≤ α ≤ π −α0,
(4)

where h=r-d is the height of the needle center C from

the tissue surface (Fig. 7). Once the tool tip trajectory

is obtained, the robot executes the needle drive. First the

manipulator approaches the needle entry point along with the



Fig. 7. The depth of the needle in the tissue (d) is specified by the surgeon.
The needle entry point G, exit point F, and the height of the needle center
C (h) are determined from needle radius r and d as shown on the left. The
transformation between the needle (N) and the tissue (S) frames GSN can
then be computed. Once the needle penetrates the tissue, it is possible to
rotate the needle so that it will naturally drive to the exit point, as shown on
the right. The dashed view of the needle is the end position of the needle
after a successful drive.

Fig. 8. Image sequence from the needle driving task. (a) The manipulator
first moves the needle tip to the suture entry point, approaching along the
z-axis of the end-effector. (b) Once it reaches the desired entry point, it
rotates around the needle center point while minimizing the stress on the
entry point (c-e).

z-axis of the manipulator and then rotates around the center

of the needle to insert it into the tissue. Fig. 8 shows an image

sequence of the needle drive trajectory execution. After

successfully driving the needle, the manipulator releases the

needle base to regrasp it from the tip.

F. Needle Regrasp and Pull

Once the needle reorientation is completed, the needle pull

phase starts. In order to follow through with the suture, the

needle is first regrasped by the manipulator using the needle

grasp method described in Section III-C. The needle pose

information needed to determine the manipulator pose for

regrasping the needle is obtained from the needle tracking

algorithm (Section III-B). Once the needle tip is grasped,

the manipulator moves the needle out of the tissue while

minimizing the tissue deformation by moving the needle

along its own arc (Fig. 9) similar to the needle drive phase.

IV. EXPERIMENTS AND RESULTS

A. Hardware description

In order to control the da Vinci R© surgical robotic system

in an automated manner, the open-source/open-hardware da

Vinci Research Kit (dVRK) [25] is employed (Fig. 10). The

dVRK acts as a substitute for the teleoperation master station

via a ROS interface that can be controlled from any desktop

computer. Forward and inverse kinematics allow this joint-

level control to be leveraged into workspace (3D cartesian)

control of the robot in the manipulator (PSM) base frame.

Fig. 9. Needle regrasp and pull phase steps. The manipulator approaches
the needle (a). Then the manipulator grasps the needle (b). The needle is
pulled out of the tissue along its own arc (c). The manipulator moves away
to finish the needle driving task (d).

Fig. 10. daVinci R© surgical robotic system with the daVinci Research Kit.

Multiple manipulators can be managed in parallel by the

device.

B. Experiments

The experimental validation of the visually guided needle

driving procedure is presented in this section. To test the

needle drive, a surgical suture needle was driven through a

tissue phantom using a da Vinci R© IS-1200 Surgical Robotic

System, upgraded with the dVRK [25]. A 26 mm diameter

semi-circular taper point CT-1 surgical needle manufactured

by Ethicon Inc. was used for the experiments. The phantom

tissue was an SCS-10 subcuticular tissue simulator manu-

factured by Simulab Corp. as a surgical training aid. This

homogeneous phantom tissue produces repeatable results that

depend on the type of needle drive and not the location of

the suture. In addition, the phantom tissue deforms when the

needle is inserted to introduce uncertainty.

The needle driving experiments were performed using the

methods described in Section III. All of the experiments were

conducted autonomously without any human intervention.

The visually-guided needle drive method was broken into five

steps: Needle Grasp (NG), Needle Hand-Off (NH), Needle

Drive (ND), Needle Regrasp (NR), and Needle Pull (NP).

The result of each step is recorded as success or fail. If the

robot failed on a step, any subsequent step was recorded as

a fail.

An approximately 5cm straight line was drawn on the

phantom tissue using a black ink marker to simulate the

incision that will be sutured. The needle and the tissue

were placed randomly within the camera view (provided



that the needle was reachable by the robot end effector).
The system was then initialized with a desired suture depth
(d), needle diameter (r), and approach distance for needle
grasping. A total of 20 visually-guided needle driving trials
were performed and results were recorded. The results of
each trial can be found in Table I and detailed success rates
in Table II.

C. Results

Table I shows the detail of the success/failures in each step
of each of the trials. Out of 20 trials, the robot successfully
performed the operation in 14 cases (70%). Specifically, the
robot successfully grasped the needle in 19 cases (95%),
successfully handed over the needle in 18 cases (90%),
successfully drove the needle in 18 cases (90%), regrasped
the needle in 14 cases (70%), and pulled the needle out in
14 cases (70%).

Since the result of each step of the procedure affected the
result of its successor, the success rate of a step excluding
failures due to the earlier steps is additionally calculated in
Table II. The individual results of each step of the task are as
follows: The robot successfully grasped the needle in 19/20
cases (95%). The failure to grasp the needle occurred because
the needle localization algorithm estimated the needle closer
to the camera than it actually was. The robot successfully
handed over the needle in 18/19 cases (94.7%). In the failure
case, the robot missed the needle because the needle tracking
algorithm estimated the needle to be further away from the
camera than it actually was. The needle was successfully
driven in 18/18 cases (100%). Once the robot grasped the
needle, it could always drive the needle trough the tissue.
The robot regrasped the needle in 14/18 cases (77.7%). In
all 4 failure cases, the robot missed the needle because
of X-Y tracking inaccuracy. The robot then successfully
performed the needle pull in 14/14 (100%) cases. Once the
robot regrasped the needle, it could always successfully pull
the needle out of the tissue. The video attachment contains
several successful visually guided needle drives as well as
the failure cases.

V. CONCLUSIONS

This study presents an automated visually-guided needle-
driving method for autonomous suturing. This work builds on
needle path planning, needle tracking, and optimum needle
grasp selection algorithms developed in our earlier work.
In the proposed approach, a needle tracking algorithm is
employed to provide needle pose information throughout
the task to guide the needle manipulations. The suturing
pad surface and the wound locations are identified using
computer vision techniques. The suture entry/exit points are
then computed from this surface information. The task is
then performed in 5 major steps: needle grasp, needle hand-
off, needle drive, needle regrasp, and needle pull. Execu-
tion of these steps performs a successful visually guided
needle driving. Multiple repetitions of the procedure would
form a running suture. The performance of the procedure
is experimentally evaluated using the physical da Vinci R©

TABLE I
RESULTS FOR NEEDLE DRIVING EXPERIMENT. 20 TRIALS WERE

PERFORMED. FOR THE NEEDLE DRIVING STEPS, NG REPRESENTS

INITIAL NEEDLE GRASP, NH REPRESENTS NEEDLE HAND-OFF, ND
REPRESENTS NEEDLE DRIVE, ”NR” REPRESENTS NEEDLE REGRASP,

AND ”NP” REPRESENTS NEEDLE PULL.

Experiment NG NH ND NR NP
1 4 4 4 4 4
2 4 4 4 4 4
3 6 6 6 6 6
4 4 4 4 4 4
5 4 6 6 6 6
6 4 4 4 4 4
7 4 4 4 4 4
8 4 4 4 6 6
9 4 4 4 4 4
10 4 4 4 4 4
11 4 4 4 6 6
12 4 4 4 4 4
13 4 4 4 4 4
14 4 4 4 4 4
15 4 4 4 6 6
16 4 4 4 4 4
17 4 4 4 6 6
18 4 4 4 4 4
19 4 4 4 4 4
20 4 4 4 4 4

TABLE II
OVERALL AND INDIVIDUAL STEP SUCCESS RATES OVER THE NEEDLE

DRIVING EXPERIMENT. 20 TRIALS WERE PERFORMED WITH AN

OVERALL 70% SUCCESS RATE. EACH INDIVIDUAL STEP OF THE

EXPERIMENT WAS AFFECTED BY PREVIOUS STEP. THEREFORE, THE

INDIVIDUAL MEAN IS CALCULATED SEPARATELY WHILE EXCLUDING

ANY FAILURES IN PREVIOUS STEP.

Experiment NG NH ND NR NP
Overall Mean 95% 90% 90% 70% 70%

Individual Mean 95% 94.7% 100% 77.7% 100%

surgical robotic system. The validation results indicate that
the proposed method can successfully drive a surgical needle
using visual guidance, and the initial experiments in this
paper confirm that the system presented can computationally
plan and execute visually-guided needle driving task.

Future work will proceed in several directions. Although
the tracking algorithm is implemented on a GPU-based
parallel computing scheme, the frame rate (3 frames per
second for 3000 particles) is currently insufficient for closed-
loop visual servo control. We are therefore working on
improving the speed of the tracking algorithm up to a
sufficient frame rate for a closed-loop visual servo control
by optimizing the GPU-based implementation. The closed-
loop visual servo control will improve the success rate of the
procedure. Another direction will take place in combining
the presented study with previous developed suture thread
tracking [14] and knot tying [3] algorithms to perform the
suturing task fully autonomously.
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