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Abstract— This paper introduces a cost-effective and high
speed approach for predicting a 2-DOF bend parameterization
for soft bodies through a magnetic and constant curvature
system. We propose a design for a probabilistic particle filter
that can be paired with magnetic simulations to produce highly
accurate and fast pose information for parameter-constrained
magnets. We include the design, fabrication, modeling, and
experimental results of a physical sensor with the ability to
produce both bend directionality and bend magnitude results
with a speed of ~60Hz. The proposed design consists of a
magnet and tri-axis Hall effect sensor embedded in a soft
silicone body. We demonstrate the effectiveness of this system
through real-world interaction tests.

I. INTRODUCTION

There are many techniques for proprioception in soft
robotics, however there is not a standard for any applica-
tion due to each technique’s respective drawbacks. Optical
fiber proprioception produces high quality results with quick
update frequency, but these systems are often high in cost
or equipment requirements [1]. Development and execution
require complex custom circuits for optical fiber cable read-
ing or high quality cameras with high refresh rate. Vision
proprioception can also produce highly accurate results,
however it usually requires expensive depth-sensing cameras
and a hollow body for non-occluded sight to the vision
targets [2]. Conversely, resistive bend sensors are low-cost
and easy to manufacture, but the readings can result in drift
over time and temperatures [3]. Capacitive sensors address
many of these concerns [4]; unfortunately both resistive and
capacitive modalities still affect the mechanical behaviour of
the soft body in which they are mounted.

These drawbacks demonstrate that there is a need for a
pose sensing option that offers real-time shape measure-
ment without affecting the bending response of soft robotic
structures. Our solution provides a probabilistic approach for
predicting magnet pose in a parameterized body through the
use of as little as one Hall Effect IC. One such example
of this application is demonstrated in Figure 1. This figure
shows the filter predicting the pose of a 2-degree-of-freedom
(DOF) bending module. This prediction was done using a
single embedded Hall Effect IC sensor and cuboid magnet.
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Fig. 1. 1. Depicts sensor module components embedded in silicone cylinder
created through a multi-step molding process. 2. Shows a modified sensor
module embedded in a soft 2-DOF module, able to handle delicate objects.

One advantage of embedded magnets for proprioception
is that their presence minimally effects the properties of the
surrounding material, as no sensor deformation is required
for readings. The magnets can even be mounted where there
is no physical connection between the electrical components
and the body that requires sensing. These sorts of applica-
tions are already demonstrated in industry to robustly solve
a multitude of rigid sensor tasks such as encoders and force
Sensors.

There is previous work utilizing magnets for pose esti-
mation using a minimal number of Hall Effect sensors [5],
[6]. These efforts employ mapping the entire workspace and
using lookup tables for 1-DOF bend estimation. This process
is unfortunately too slow for use in closed-loop control and
would be reduced in speed exponentially for increased DOF
applications.

One field that has heavily explored soft-bodied magnet
proprioception is endoscopy [7], [8], [9], [10]. Endoscope
research includes an impressive body of magnetic pose
estimation work. However many methods proposed to predict
the pose of the magnet utilize large arrays of Hall Effect
sensors. Likewise, these solutions consist of highly complex
algorithms designed to produce clear results in very con-
trolled environments.

This paper introduces a novel probabilistic technique for 2-
DOF applications that overcomes many of the drawbacks of
these other systems. By implementing a single Hall Effect IC
paired with a particle filter, this method allows for magnetic
pose estimation in a multitude of applications for multi-
DOF constraints. Particle filters provide several advantages
over directly inverting the magnetic field equations. They
do not generally require solving multidimensional nonlinear
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Fig. 2. Basic model of embedded magnet and Hall effect sensor in silicone
cylinder at multiple positions. The magnetic flux field lines generated by
the magnet are the same but interact differently with the sensor in different
orientations. On the left is a silicone cylinder with bend angle 0; the right
has a silicone cylinder with bend angle .

equations. Particle filters also inform their estimates based
on recent history, improving stability. The computations
represent a unique approach to magnetic pose estimation that
can be applied to future tasks consisting of multiple magnetic
components and sensors. These sets of magnet and sensor
combinations could be arranged in a multitude of structures,
such as a touch-sensitive plane, or a chain.

II. MODELING

We estimate the curvature of a soft body using an embed-
ded Hall effect sensor and magnet. As the soft body bends,
the relative locations and orientations of the magnet and Hall
effect sensor change. This relative change then impacts the
measured magnetic field as shown in Figure 2.

Unfortunately it is not easy to convert magnetic field
strength measurements directly into a relative locations of
the magnet and sensor. Although we focused on a soft
body containing a single sensor-magnet pair, the calculations
necessary to directly solve a chain of several interacting
sensor-magnet pairs are nearly intractable. To sidestep this
difficulty we use a particle filter linked to a magnetic field
simulation.

A particle filter is a stochastic algorithm which operates
on a set of particles each representing a possible state of a
system [11], [12]. Each particle is associated with a single
state within a given iteration of the algorithm. Kalman filters
are closely related, being a special case optimization for
linear Gaussian systems.

Particle filters use information from the recent past to
improve the location estimate and to help describe the
precision of the estimate. The past information or a priori
belief about the true state of the system is incorporated
through the initial distribution of particles at the beginning of
each iteration. Each particle is assigned a probability based
on how consistent it is with the measured magnetic field.
The ensemble of particles is used to predict a single state
and then the distribution of particles is updated to cancel
out the particle probabilities. The result is the same as mul-
tiplying the particle distribution by the particle probability
distribution and then normalizing.
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Fig. 3. A depiction of the parameter space containing all possible bend
angle ¢ and direction 6 combinations. The red dot represents one possible
state.

The accuracy of the predicted location and the distri-
butions is dependent on the number of particles in the
filter, the correctness of the internal model, and noise. The
number of particles in the filter can be decreased to reduce
computational requirements at the cost of accuracy.

We assume that when bent, the soft body module has a
constant curvature. We describe its state using two parame-
ters: bend direction and bend angle. The bend angle ¢ is the
angle of the soft body interpreted as an arc of a circle. The
bend direction 6 is the angle between the body projected into
the XY plane and the X axis. The bend angle is bounded
to be in the interval from O to m/2. Figure 3 contains a
representation of the bend direction and bend angles in a
parameter space. Each particle in the particle filter stores
a state made up of these two parameters. The collection
of particles in the particle filter represents a collection of
possible states for the soft body module.

A. Weighting

There are several steps in the particle filter. The first is to
assign weights to each particle. These weights or likelihoods
represent an un-normalized probability of that particle’s state
being correct given the Hall effect sensor readings.

For each particle (using their states) a predicted magnetic
field is calculated along with Hall effect sensor measure-
ments [13], [14]. These simulated magnetic flux measure-
ments are compared to the measurements from reality. Parti-
cles with modeled measurements closer to the experimental
measurements have a higher likelihood. Let Z be the pre-
dicted measurements, y be the actual measurements, and
o be a scaling constant. For simplicity we use a normal
distribution for the likelihood function:

= =2
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After calculating the likelihoods, they are normalized to
form weights which sum to 1. This step reduces numerical
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Each path is defined by the parametric curves listed in Equations 5 (Spiral), 6 (Flower), and 7 (Seagull). Each equation is plotted in polar

coordinates using bend direction as the angle and bend angle as the radius. For each equation, the maximum radius is 1 as to fully avoid the % bound

placed on bend angle.

errors in later steps, improves reliability, and allows the
weights to be interpreted as probabilities. We calculate the
sum of all of the particle likelihoods Z and then divide each
likelihood by that sum. Both calculating and applying the
normalization factor has to be handled carefully to avoid
large numerical errors. We use a LogSumExp function to
calculate Z. This normalization factor is applied to the
likelihoods by subtracting inside the exponent:
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P(Z | §) = exp (02 - ln(Z)) . 2)

B. Predicting

After associating each potential particle with a probabil-
ity, we calculate a single point estimate prediction. This
prediction is our best guess of the true state based on the
information contained in each of the particles.

We found that the point estimate was more accurate in
simulation if it was only based on the 10 percent of particles
with the highest probability. We took an average of the states
of these high probability particles as the predicted state. The
10 percent cutoff worked sufficiently well for all of our tests.

Suppose that S is the set of states with the highest 10
percent of probabilities. Let 6, ¢, and ps be the bend
direction, bend angle, and probability of a state s € S. The
predicted bend direction 6 and bend angle ¢ are

0 = atan2 (Z sin(6s), Zcos(95)> 3)
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The bend angle ¢ must be between 0 and 7/2, so a standard
average is appropriate. However, because the bend direction
6 can be any angle, we use a circular mean to avoid boundary
issues near 0 and 27. We chose to use unweighted averages
as we did not observe any further benefits from weighting
states based on their probabilities.

C. Resampling

Resampling the particles is vital for exploring the state
space and keeps the particle filter from becoming less
efficient over time. The distribution of particle states is
adjusted to incorporate the particle probabilities. Regions of
the state space which have low probability given the sensor
measurements lose particles, and high probability regions
gain particles. After resampling, the distribution of particle
states captures our belief about the state of the physical
system given all current and past measurements.

Let N be the number of particles in the particle filter.
Using random sampling with replacement, a new N particles
are selected. The probability of any particle being selected
in each of the IV rounds is the probability from Equation 2.
Some of the original particles will appear multiple times in
the sample and some won’t appear at all. A small amount
of noise is then added to the states of the sampled particles;
the noise separates duplicate particles and helps explore the
state space.

When adding noise to the particle states it is desirable
that bend direction can change more freely for states with
a small bend angle . If bend angle is O, the soft body is
perfectly straight and all bend directions are equivalent. For
small non-zero bend angles, a large change in bend direction
only changes the magnet position and orientation slightly.
This characteristic informed our choice of noise.

To add the noise each particle state is transformed into
a vector. The bend direction 6 is the direction of the state
vector and its length is ¢ as shown in Figure 3. A random
vector is drawn from a symmetric normal distribution with
mean 0 and variance o2. The noise vector is added to the
state vector. After adding the noise vector to the state vector,
the result is transformed back into a bend direction and a
bend angle based on its orientation and length. o was equal
to 0.027 in simulations and 0.0027 for the experimental
predictions.

Rejection sampling guarantees that the particle states re-
main valid. In particular, new random vectors are generated
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Fig. 5. Simulation results of position error using bend parameters from

spiral input. This plot depicts the error of 100 and 1000 particle prediction.
The error is the total 3D space between actual position and filter predicted
position.

until the resulting bend angle ¢ is no greater than /2.

D. Model Results

To validate the filter we simulated several parametric
curves

0=t, ¢ =0.03t (5)
0 = (0.1t)?, @ = sin(t) (6)

and
0 =sin(t) + /2, © = |sin(t)]. (7)

These Equations are labeled Spiral, Flower, and Seagull
and are plotted in Figure 4.

The time ¢ varied from O to 107 in increments of 0.01.
At each time step a simulated sensor measurement was
computed for each curve to drive particle filters with 1000
particles. To quantify the prediction error we compared the
predicted positions of the magnet in Cartesian space with
ground truth positions.

Figure 4 shows a plot of Equation 6 and Figure 5 shows
the errors over the entire simulation period for that curve.
Despite the drastic differences in the rate of change of the
ground truth state at the beginning and end of this curve,
the prediction errors are remarkably uniform. Although not
shown here, the errors on the other two curves were similarly
consistent. The predictions driven by Equations 5, 6, and 7
had root mean square errors of 0.0044 mm, 0.0046 mm, and
0.0046 mm respectively.

III. FABRICATION & DESIGN
A. Construction & Components

The proposed sensor was built using an embedded magnet
and Hall Effect IC inside a soft cylinder. This design and
corresponding components were chosen to promote constant
curvature tendencies and reduce interference with the user.

o The low durometer silicone (Ecoflex 00-30) helps to

give the module the necessary flexibility to cover a

4.

Fig. 6. 1. Bottom mold with with silicone poured and component
placeholder arms installed 2. Placeholder arms removed after silicone sets,
leaving press-fit insets for components 3. Components (magnet and Hall
effect sensor) fit into place inside silicone 4. Top piece of mold added, and
more silicone is poured to complete the sensor 5. Sensor is removed from
mold once set, ready for use 6. Actual image of sensor plus scalebar after
being fully constructed using the process described above.

workspace large enough to be useful and reduces the
effect of the sensor on any soft body that it would
measure.

« The Hall Effect chip and corresponding IC was chosen
for its accuracy, small size (.35in x .35in x .08in), and
high speed interface enabled through SPI. The sensor
(Melexis MLX90363) is embedded on a custom IC
constructed through circuit etching in lab through a
process identical to the one described in [15]. Due to
concerns during the manufacturing process of excess
movement inside the silicone, an acrylic (.4in x .4in
x .0625in) plate was attached to the bottom of the IC
with chemical adhesive to produce a larger surface area,
discouraging shifting inside the silicone.

o The high-strength cuboid magnet (K&J Magnetics Part
Number B444B) is chosen for its unique and strong
magnetic field output. In contrast to a cylindrical shape,
a cuboid magnet produces a more unique and less
uniform magnetic field that proves helpful when ap-
plying localization techniques based on readings from
a single point. The size of the magnet (.25in), and
corresponding distance between the magnet and sensor
(15mm, or ~.6in) are picked to strike a balance between
meaningful sensor length, low signal to noise ratio, and
similarity in size to the Hall Effect IC.

Figure 6 shows the molding process utilized to construct
the module with the components described. Overall, the
sensor was effective in its performance and achieved its
design goals.

IV. EXPERIMENTAL RESULTS

As a demonstration of the applicability of the sensor, a
secondary sensor module was constructed with a smaller
silicone cylinder in order to fit inside an existing 2-DOF
manipulator [16]. This sensor was used to measure the bend
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Fig. 8. Complete data of 3 independent lightbulb experiments. Vertical lines

cross into plots taken from the same experiment. These lines show repeatable

spikes when an attempt is made to tighten the lightbulb after it has been completely screwed in the socket. All experiments were run with 1000 particles,
at 60Hz. Experiment 1 (left) Demonstrates 3 attempts to further tighten the lightbulb. Experiment 2 (middle) Also demonstrates 3 attempts to tighten
the bulb more than possible. Experiment 3 (right) Demonstrates a singular, much more concerted effort to tighten the bulb further than possible, which
instigates a much more significant spike due the longer attempt. All three of these experiments show how this sensor is able to produce results accurate

enough to interpret states in delicate tasks.

angle and direction parameters of the constant curvature
manipulator at a speed of ~60Hz.

A. Lightbulb Test

A task that is incredibly difficult in robotics, and slightly
less so in soft robotics, is the handling of fragile objects.
In this paper we utilize a 2-DOF module similar to the
construction of the actuators in [5] to grasp a lightbulb.
We can utilize the proprioceptive sensing enabled by the
2-DOF sensor to measure the bend angle and direction of
the manipulator to determine when the bulb has completely
tightened in its socket without excess force.

The experiment consists of a setup shown in Figure 7 with
an active 2-DOF manipulator with an embedded sensor, and
a static soft finger. Together, with pneumatic pressure used

to bend the 2-DOF sensor, the lightbulb is held between the
two points and a lightbulb socket is screwed in from the top
manually.

Figure 8 shows the results and analysis of multiple re-
peated tests utilizing this process. The results demonstrate
how this sensor is easily integrated into existing systems,
and utilized for sensitive tasks that require high-speed, and
consistent feedback.

B. Motion Capture Demonstration

To further validate our readings from our sensor, we placed
the 2-DOF soft module in an Opti-Track motion capture
environment to compare real measurements with our sensor
measurements. We tracked the bend angle and direction of
the 2-DOF soft module, as we increased and decreased the
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Fig. 9. Data from multiple bend tests, showing both bend direction and

angle plots for motion capture ground truth and sensor readings. Offsets in
data readings can be attributed to multiple factors other than sensor error,
including imperfect placement in manufacturing and Opti-Track tracking
errors.

pressure of different sets of chambers to produce varying
levels of bending in multiple directions. Each experiment
focused on bending in a singular direction, and slowly
increasing and decreasing bend angle. Our results for this
experiment can be seen in Figure 9.

V. CONCLUSIONS & FUTURE WORK

We introduce a method for pose estimation of a magnet
in 3D space utilizing model-representative particle filter
simulations. Our model can estimate the curvature of a soft
body with a single Hall Effect sensor and magnet unlike
many magnet pose estimating tools. We also evaluate the
prediction quality on simulated data and test the filter on a
physical manipulator. Our approach is able to identify when a
light bulb was fully screwed in to its socket based on changes
in a measured magnetic field.

The filter is expandable to countless scenarios. It could
be applied to non constant-curvature settings or multiple
magnets and sensors could be incorporated in a single
device. Having multiple magnets and sensors would allow
for multiple-point localization within the same body. There is
plenty of room for the particle filter to be made more efficient
and accurate through algorithmic improvements. Other than
improving the filter or applying it to more complex scenarios,
there is also room for improvement in the empirical evalu-
ation of its accuracy. Tracking a physical manipulator with
a motion capture system while collecting the magnetic field
data from a calibrated sensor is an important future step in
measuring the real world accuracy of the filter.

Python code for reproducing the results in this paper is
available in a public repository!.
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